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Abstract

We present a generative approach for simultaneously registering a probabilistic atlas of a healthy 

population to brain magnetic resonance (MR) scans showing glioma and segmenting the scans into 

tumor as well as healthy tissue labels. The proposed method is based on the expectation 

maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process 

which modifies the original atlas into one with tumor and edema adapted to best match a given set 

of patient’s images. The modified atlas is registered into the patient space and utilized for 

estimating the posterior probabilities of various tissue labels. EM iteratively refines the estimates 

of the posterior probabilities of tissue labels, the deformation field and the tumor growth model 

parameters. Hence, in addition to segmentation, the proposed method results in atlas registration 

and a low-dimensional description of the patient scans through estimation of tumor model 

parameters. We validate the method by automatically segmenting 10 MR scans and comparing the 

results to those produced by clinical experts and two state-of-the-art methods. The resulting 
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segmentations of tumor and edema outperform the results of the reference methods, and achieve a 

similar accuracy from a second human rater. We additionally apply the method to 122 patients 

scans and report the estimated tumor model parameters and their relations with segmentation and 

registration results. Based on the results from this patient population, we construct a statistical 

atlas of the glioma by inverting the estimated deformation fields to warp the tumor segmentations 

of patients scans into a common space.

Index Terms

Diffusion-reaction model; expectation maximization (EM) algorithm; glioma atlas; joint 
segmentation-registration

I. Introduction

Glioma is a class of brain tumors, primarily originating from glial cells in the brain. The 

most common malignant form of glioma is Gliobalstoma (GBM) that exceeds in its 

mortality rate beyond other types of brain tumors [1]. Despite of significant advances in 

imaging, introduction of novel chemotherapeutic agents, and technological development, the 

median life expectancy of patients with GBM is less than 12 months, with only 5% of these 

patients surviving five years after diagnosis [2]. Quantifying the volume and other 

morphological characteristics of a tumor is an important indicator of the disease progression 

in retrospective studies such as [3], as well as the efficacy of the therapy [4]. 

Conventionally, such assessments are often done using so-called McDonald criteria [5], a 2-

D evaluation of the largest tumor diameters. This technique, however, falls short in accurate 

quantification of the tumor volume due to its 2-D description of the tumor structure. The 

central concept for this quantification is segmenting the whole pathology into various 

underlying components from magnetic resonance images (MRI). Usually automatic 

segmentation is more reproducible and therefore preferable over manual delineations. 

However, the automatic segmentation of GBMs is considered very challenging as the 

pathology is highly heterogeneous and may consist of several components including 

necrosis (dead central part), enhancing tumor ring and edema (swelling). Moreover gliomas 

are highly variable in their size as well as shape and might cause deformation of surrounding 

tissues (mass-effect). Part of the presented work is a new automatic segmentation approach 

for this task.

There have been a variety of publications discussing automatic segmentation of brain 

tumors. Early works including the fuzzy clustering method of [6] revealed the intensity 

overlap of tumor with other tissues. Clark et al. [7] applied knowledge-based techniques to 

design more sophisticated features using multi-modality MR images for fuzzy clustering. In 

a similar framework, [8] extracted the 3-D connected components of the segmented tumor 

voxels to eliminate the false positives. The limited success of these methods on the larger 

number of data sets proved the need for more sophisticated approaches, which were based 

on the level sets and active contours [9]–[11]. In these methods, the spatial smoothness of 

segmented tumor is based on the curvature smoothing term that reduces the risk of curve 

leaking to the background. However, an excessively large curvature weight could also 
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prevent the full segmentation of tumor. To facilitate specifying this free parameter, Lefhon 

et al. [9] used GPU programming which enabled the user to chose it interactively, a process 

which otherwise can be a tedious task. Furthermore, curvature smoothing has a global effect 

and can not be locally adaptive.

Another series of tumor segmentation methods are based on the modern pattern 

classification techniques. The majority of these methods can be broadly categorized into 

discriminative [12]–[15], and generative approaches such as [16]–[24]. Generative 

approaches explicitly define a model for the joint probability distribution of voxel labels 

(target variables) and intensities (observed variables). Often they compute the product of the 

class conditional (likelihood) and prior probability functions of the labels, specifying a full 

probabilistic model which can be used to simulate (i.e., generate) all variables. On the other 

side, discriminative methods only define a model to infer the voxel labels conditioned on 

their intensities, without assuming a meaningful prior probability.

Support vector machine (SVM) classifiers [13]–[15] comprise a subgroup of discriminative 

methods which their label inferring models are SVM scoring functions. These functions are 

trained by maximizing the margin in the training and minimizing expected error in the 

testing data. The underlying assumption in this training is that the all voxels are independent 

and identically distributed (i.i.d.) random variables. However, in an actual image due to the 

obvious spatial dependencies of the neighboring voxels, the i.i.d assumption does not hold 

true. Hence, the quality of the final segmentation is significantly degraded. To eliminate 

these errors Gaussian smoothing and inclusion of neighboring intensities in the feature 

vectors are often considered. Similarly, Lee et al. [12] proposed pseudo-conditional random 

fields where the spatial interaction of the neighboring voxels is directly modeled on the 

posterior probabilities, through a potential function which depends on both voxel labels and 

intensities. Yet, his work is another form of discriminative methods because it does not 

specify an explicit model for prior probabilities of the labels. A more systematic approach to 

model the spatial smoothness of the labels can be achieved through generative models 

discussed below.

Generative methods can be further subcategorized according to their specific ways to 

determine the likelihood and the prior probability functions. For instance, Prastawa et al. 

[17] first affinely registered a spatially smooth probabilistic atlas to the patient scans to 

determine the prior probabilities of healthy tissues. Next, they refined a training set of 

healthy tissue voxels and used a Parzen kernel approach [25] to nonparametrically infer the 

likelihood probabilities from training samples. Similarly, [18] used the probabilistic 

boosting trees [26] to infer the likelihood probabilities from a training set, and a Markov 

random field (MRF) [25] as the prior probabilities of the labels. Corso et al. [23] computed 

the likelihoods from a Gaussian mixture models [25] and used a graph structure [27], [28] to 

implicitly model the prior probabilities of the labels in the from of longer dependencies 

induced by the graph.

One advantage of generative methods over discriminative ones, lies in the fact that they 

provide a systematic framework to explicitly model the spatial smoothness through prior 

probabilities of the voxel labels. To achieve this, using the Bayes rule the posterior 
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probability of the labels in the whole image is computed and subsequently maximized in a 

process which is called maximum a posterior (MAP) estimation. Since the posterior 

probability is proportional to both likelihood and prior probabilities, the MAP framework 

results in a segmentation which is in general constrained by both observed intensities and 

spatial smoothness implied by the priors. The maximization itself can be achieved by the 

graph cut methods [18]–[21], [23], expectation-maximization (EM) algorithm [22], [24] and 

level set methods [17].

In spite of relative success of generative methods, the applied prior probabilities for the 

spatial integrity of tumor labels has been limited to various forms of random fields such as 

Markov random fields (MRFs) [18], [24], discriminative random fields [19] or graph 

hierarchical dependencies [23]. These priors in general might lead to spatially smooth 

segmentation, however, the effect of smoothness prior is globally determined by a 

temperature parameter, a scalar which is involved in definition of the clique potentials [29]. 

We are ideally interested in a set of probability functions, that are spatially variable and 

adaptive to the local structure of the brain. Such locally variable prior probabilities for 

healthy tissues in normal looking brain segmentation can be achieved through registration to 

probabilistic atlases of a healthy population [30]–[32]. These atlases are defined as a set of 

spatially variable and smooth probability maps for white matter, gray matter and 

cerebrospinal fluid [see Fig. 1(a)–(c)]. However, inferring such a probability map for tumor 

is far more difficult because the tumor distribution in the brain is specific to the patient.

To infer such a subject specific tumor probability map, in a multiple MR modality study, 

Prastawa et al. [22] modified a probabilistic atlases of a healthy population into one with 

tumor. They modeled the difference of T1 and T1-CE (contrast enhanced) modalities as a 

mixture of gamma (tumor) and Gaussians (noise) distributions. Next, they compute the 

posterior probability of the gamma distribution and affinely register it into the probabilistic 

atlas of healthy population. The affinly registered posterior is used as the tumor prior 

probability map to mask out the original probability maps in the atlas. One major issue is 

that the method relies on the contrast enhancement signal hence necrotic cores are not easily 

detected. Moreover, since only an affine registration is used, the mapping between the 

probabilistic atlas and patient scans is structurally inconsistent, an issue which leads to 

misclassification of the tissue labels.

Our method of inferring such a tumor probability map in the probabilistic atlas is based on 

the tumor growth and infiltration model by [33]. The method has several advantageous over 

previous work in [22]. First, the model mimics the underlying biophysical process of a 

tumor growth in the brain hence the generated tumor map provides more realistic 

information about the tumor distribution in the brain than [22]. Second, our approach does 

not rely on contrast enhancement signal alone and handles necrotic cores. Finally, the tumor 

model reduces the structural inconsistency between the atlas and patient’s images by 

adapting a mass-effect on the atlas. The remaining inconsistency with patient scans is 

captured by a deformable registration model which in turn improves result of the 

segmentation.
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In this paper, we present a generative method for glioma segmentation, called Glioma image 

segmentation and registration (GLISTR), based on the EM algorithm which jointly segments 

and registers the patient scans to a probabilistic atlas of healthy individuals. The main 

contribution of the paper is the incorporation of the diffusion-reaction tumor growth model 

[33] to infer a patient specific atlas and subsequently use it as a set of probability maps to 

compute the posterior probabilities of tissue labels. In other words, we rely on the tumor 

growth model to deform and mask out the original atlas with a synthetically generated tumor 

probability map, a process which we call it atlas seeding. The seeded atlas is registered to 

patient scans and guides the segmentation process. EM iteratively refines the estimates of 

the posterior probabilities of tissue labels, the deformation field and the tumor growth model 

parameters. Therefore in addition to segmentation, the proposed method results in both atlas 

normalization and a low dimensional description of the patient tumor by estimation of the 

growth model parameters. These quantities are relevant for the prognosis of treatment or 

estimation of the patient survival rates [34]. These additional parameters, however, greatly 

increase the complexity of the optimization problem compared to [30]–[32] which are 

targeted to healthy brain segmentation.

We previously focused just on registering brain scans of a healthy individual to a tumor 

patient in [35]; an issue that was also investigated in similar registration works such as [36], 

[37]. Unlike the approach of this paper, the method proposed in [35] required the 

segmentations of both brain images to initialize the registration process. Our proposed work, 

however, is an extended version of [38]. We additionally provide a detailed derivation and 

validate the method by comparing the segmentation accuracies to the discriminative [14] 

and generative [22] methods. These comparisons are based on the reference volumes from 

two clinical experts in our institute. Moreover, we apply the proposed method (GLISTR) to 

122 data sets, construct a statistical glioma atlas based on those results, and show the 

distribution of the extracted average tumor probability and the estimated tumor seeds in the 

brain.

The remainder of the paper is organized as follows. In Section II we review the diffusion-

reaction model and describe the construction of the atlas. The atlas is then used in Section III 

to guide our joint registration and segmentation framework. In Section IV we present our 

quantitative evaluation and results of the application to sample patients and conclude the 

paper in Section V.

II. Atlas Generation

In this section, we first briefly review the tumor model and describe the procedure we take 

to the convert the original atlas of the healthy population into the one with tumor and edema. 

We define the atlas as a set of probability maps that specify the spatial distribution of brain 

tissues [see Fig. 1(a)–(c)]. The modified atlas then guides the EM algorithm in registering 

and segmenting of subjects with glioma.

Our tumor growth model [33] is a framework for modeling gliomas growth and their 

mechanical impact on the surrounding brain tissue (the so-called, mass-effect). It is an 

Eulerian continuum approach that results in a strongly coupled system of nonlinear partial 
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differential equations (PDEs): a reaction-diffusion model for the tumor growth [see (1)] and 

a piecewise linearly elastic material for the brain tissue [see (2)]. These equations are solved 

using fictitious domain method [39], where the target brain domain is embedded in a larger 

rectangular space which encompasses the brain background. The reaction-diffusion equation 

determines the rate of change in the tumor probability, as the tumor cells diffuse into brain 

and cause displacement (advection) and further proliferation (reaction).Quite comprehensive 

tumor models based on anatomical MRI and diffusion tensor images (DTI) have recently 

been proposed by [40]–[42]. In this paper to circumvent the need for DTI, we choose the 

model by [33], which only requires anatomical MRI. The good results of Section IV seem to 

indicate that this was a reasonable choice as our approach reliably registers and segments the 

scans even without the additional information provided by DTI. Based on this model, we 

artificially seed a tumor in the healthy atlas and grow it.

To define this model formally, let ΩA denote the space of atlas and [0, T] a time interval for 

growing the tumor. The evolution of tumor probability πTU (x, t) in ΩA × [0, T] is 

determined by the following diffusion-reaction model [(1)] and the mass effect model [(2)]:

(1)

(2)

where ∇ and ∇ · are gradient and divergence operators respectively, (·)T denotes the 

transpose operation, u : ΩA → ΩA (i.e., a displacement in the atlas space) is the mass effect 

caused by the presence of the tumor, v = ∂u/∂t is the relevant velocity field, p is a scalar 

which determines the strength of the tumor mass effect, D is a spatially variable function 

capturing diffusion coefficient within white (DWM) and gray matters (DGM), and ρ is 

proliferation coefficient. We fix ρ = 0.025 (the default values of [33]) and optimize the 

model with respect to D because the profile of πTU is effectively determined by the ratio of 

D/ρ. We also fix DGM = 1e−10 as the method is relatively insensitive to that parameter. λ and 

μ are Lamé coefficients that relate to stiffness (Young’s module) and compressibility 

(Poisson ratio) [43] properties of the brain tissues. In order to minimize the computational 

cost of the estimation problem, we fix those to the preset values utilized in [33] and [44], 

[45], i.e., λ = 6500, μ = 725.0 for brain parenchyma, and λ = 57.0, μ = 227.0 for ventricles.

Now, if we denote with x0 the initial seed location of the tumor and with d the voxel size of 

the ΩA, then our tumor growth model is completely defined by the parameters q ≡ {x0, p, 

DWM, T} given the initial conditions for the u(x|q, t = 0) = 0 and πTU (x|q, t = 0) ≃ exp(−(x 
− x0)2/d2). This approximation is because the Gaussian form is only computed for the seed 

and its neighboring voxels. We assign πTU (x|q, t = 0) to zero for other voxels to constraint 

the initial tumor probability into the local proximity of the seed.
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Once we solve the above equation for u and πTU, we combine those results at t = T with the 

original atlas of healthy brains  to infer tissue probability maps πX (·|q) for tissue X. To 

simplify notation, we omit t = T from u and πTU and simply denote with πTU (x|q) the 

spatial probability map of glioma being present at location x ∈ ΩA at time T and u(x|q) the 

corresponding mass effect at that location and time.

We initially note that a typical tumor may consist of both enhancing (EN) and necrotic (NE) 

regions which have different imaging specifications. We address this issue in our framework 

by characterizing them with distinct intensity distributions. However, our biophysical model 

views them as one class generating the spatial probability map πTU for both pathologies. To 

resolve this issue we further assume that both NE and EN labels are equally probable. Thus, 

to infer their corresponding probability maps, we simply divide πTU by two

(3)

We then construct πX (·|q) for GM and CSF by deforming the corresponding spatial 

probabilities  of the healthy population via the mass-effect u and weighing them with 

(1 − πTU)

(4)

We construct the spatial probability map of edema πED based on the assumption that edema 

is in close proximity of the tumor, which we model via the Heaviside function defined as

(5)

and it is confined to the mass deformed white matter of the healthy brain, which we model 

with . Thus

(6)

where the multiplication by 0.5 essentially means that no particular preference is given to 

either of edema or white matter labels; the tissue type is to be determined by the image 

intensities. We finally define the subject specific spatial probability map of the white matter 

as the remaining probability given the probabilities of the other labels

(7)

A sample set of the generated probability maps πTU (·|q), πED (·|q), πCSF (·|q), πGM (·|q) and 

πWM (·|q) is shown in Fig. 1(e)–(i), illustrating the impact of the mass effect and tumor 

invasion in originally healthy atlas. In the rest of paper, we simplify our notation by 
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denoting the probability maps generated in this section with πk (·|q), 1 ≤ k ≤ K = 6, with k 

enumerating the set of our segmented labels: {NE, EN, GM, CSF, ED, WM}.

III. Joint Segmentation-Registration

We now describe the framework for joint segmentation-registration which is guided by the 

atlas defined in the previous section. We assume that a set of J co-registered, 

inhomogeneity-corrected, and skull stripped MR images is given in the reference (fixed) 

domain ΩF so that for any sample voxel x ∈ ΩF, y(x) ≡ [y1(x), …, yJ(x)]T is an independent 

observation vector that corresponds to the J image modalities. We then define observation 

set as: Y ≡ {y(x)|x ∈ ΩF}. The goal of this section is to derive an algorithm for estimating 

the intensity distributions of each structure Φ, the atlas coefficient q, and the deformation 

between the atlas and the reference domain h.

We further specify Φ by assuming the conditional probability distribution function (pdf) of 

each y(x) is a weighted mixture of K Gaussians

(8)

where fk ~ N (mk, Σk) is a multivariate Gaussian distribution with mean mk and the 

covariance matrix Σk, and Φ ≡ {m1, …, mK, Σ1, …, ΣK}. The mixture weights are 

determined by πk (h(x)|q) which are originally defined in the atlas space ΩA (see Section II) 

and registered to the patient space through h : ΩF → ΩA, a vector field mapping the patient 

space into the atlas. Based upon these assumptions, we write the likelihood of Y as

(9)

Our problem of joint segmentation, registration and atlas parameter estimation can be 

defined as the solution of the following:

(10)

One way of computing the solution to this problem is via an implementation of the EM 

algorithm [46]. EM is an iterative algorithm which instead of solving (10), it maximizes the 

expectation of the log-likelihood of the complete observation under the current estimates of 

posteriors [47]. In other words, at every iteration given the last estimate of the unknown 

parameters Φ′, h′ and q′, it sequentially maximizes the following statement:

(11)

where pk (x) stands for the posterior probability of class k at voxel x. The structure of the 

proposed EM algorithm consists of iterations between the E-Step and M-Step, during which 
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the pk (x) and parameters {Φ, h, q} are respectively updated. Further details are explained in 

the rest of this section.

A. E-Step

We compute the posterior probabilities given the current estimate of the parameter

(12)

B. M-Step

We update the parameters Φ, h and q. The mean and covariances of the Gaussian 

distributions in Φ are updated using the following equations such as in [32]

(13)

(14)

To update the deformation field h we follow a variational framework which computes the 

differential of (11) with respect to an infinitely small test function v. The maximizing 

direction v is specified by equating the differential to zero

(15)

In this equation, the gradient vector r(x) and the matrix W(x) are defined as

(16)

(17)

where H is the Hessian matrix (The detailed derivations can be found in the Appendix). 

Equation (15) leads to r(x) + W(x)․v(x) = 0, hence v can be obtained as

(18)
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Because the matrix W can be singular, we add an identity matrix component to W for 

damping, therefore the update of h(x) can be written as

(19)

where I is the identity matrix and c is the damping parameter. In this paper, we found c = 0.1 

to produce a robust and reasonable deformation field. Notice, the update equation is 

computed independently at every voxel, which in general results in a nonsmooth 

deformation field. In order to apply the smoothness constraint, similar to Thirions’ demons 

framework [48], we diffuse the estimated deformation vectors by a Gaussian convolution 

filter. We heuristically set the standard deviation to 2.

The other set of parameters updated in the M-Step are the tumor growth parameters q. Since 

no analytical expression for the derivatives of Q(Φ′, h′, q|Φ′, h′, q′) with respect to q exists, 

we maximize (11) using a derivative free pattern search library [49]. Since this operation is 

computationally expensive it is performed only after having an adequate convergence on h 
and Φ, otherwise we keep it fixed.

Hence, our EM algorithm is an iterative procedure; having the current estimates Φ′ and h′, 

we proceed by optimizing q using the numerical scheme in [49]. Next, with q′ fixed in the 

optimal point, we iteratively update the parameters Φ and h. This requires an iterative 

sweeping through equations in (12), (13), (14), and (19) until a convergence is achieved. 

Then, the whole procedure starts over with newly updated parameters. Typical examples, 

each with three iterations of this procedure, are shown in Fig. 2. This completes our 

derivation of the EM implementation for joint segmentation and registration.

IV. Experiments

In this section, we first describe our data preprocessing pipeline, and introduce organization 

of our experiments which mainly cover our validation framework and application of the 

method to a large data set of glioma patients. Finally, we present the results which include 

quantitative and qualitative evaluations of the segmentations and registrations, estimated 

tumor model parameter values and a statistical glioma atlas obtained using the proposed 

method.

A. Data Specification and Preprocessing

Four MR modalities (T1/T2/FLAIR/T1-CE) were acquired for every patient in our data sets. 

Following a clinical protocol in University of Pennsylvania, all patients were imaged on a 

3.0T MRI scanner system (MAGNETOM Trio Timstem, Siemens Medical Systems, 

Erlangen, Germany) with the same protocol: magnetization prepared rapid acquisition 

gradient echo 760/3.1/950, matrix size (192 × 256), pixel spacing (0.9766 × 0.9766 mm. A 

slice thickness of 3 mm was used to acquire FLAIR and T1-CE modalities. Also, T1 and T2 

modalities were acquired with slice thickness of 0.9 and 1 mm, respectively.

The preprocessing starts with image inhomogeneity correction [50] and proceeds with skull-

striping and cerebellum removal of all modalities [51]. Next, these images are co-registered 
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using an affine registration algorithm [52]. Finally, the co-registered images are 

subsequently affine registered to the atlas space using the same algorithm in the previous 

step. This results in a set of scans with dimensions of (256 × 256 × 128) and the voxel size 

of (0.9375 × 0.9375 × 1.5 mm3).

To speed up the simulations of the tumor growth, we solve the partial differential equations 

in (1) on a lattice of (65 × 65 × 65) nodes that is down sampled from the original atlas. The 

computed tumor probability map is then up sampled to the original resolution and used to 

mask out the healthy atlas using equations in (4), (6), and (7).

B. Organization of the Experiments

We first study the sensitivity of the method with regard to initial seed location and 

demonstrate its robustness to changes in this parameter. We present these results in terms of 

the quality of acquired segmentations versus the converged cost values and show that a 

higher cost value produces lowered quality results.

Next we compare our segmentation results with two state-of-the-art methods and a human 

expert rater. The first method [22] is a generative method based on EM algorithm which has 

two major distinctions with GLISTR: it uses an affine model for registration, and it does not 

rely on a tumor model to alter the atlas but constructs a probability model of the tumor 

purely based on intensity analysis. To differentiate GLISTR from discriminative 

segmentation methods, we also compare the results of GLISTR to a second method denoted 

as SVM [14]. In our implementation, the intensities of co-registered FLAIR, T2, T1 and 

T1CE images specify the feature vector for every voxel. The target tissue labels of the SVM 

segmentor are the same labels that are segmented by GLISTR, i.e., necrosis (NE) and 

enhancing tumor (NE), edema (ED), cerebrospinal fluid (CSF), gray matter (GM), and white 

matter (WM). For each patient, an expert choses small sample ROIs inside the target tissue 

regions, that we use to train a multi-class SVM model [53] and segment the whole brain.

We measure the overlap of the reference (R) and the segmented (S) volumes using [54]

(20)

where |x| denotes the cardinality of the set x. We use manual segmentations as for reference 

volumes in our measurements. Furthermore, because we did not have separate reference 

segmentations for necrosis and enhancing labels, we unify the NE and EN labels to make a 

single tumor label (TU)

(21)

We then evaluate the Dice ratios for this combined label for which we have the reference 

maps from our clinicians.

The manual segmentations for our experiments were made by two specialists who 

independently segmented 10 patients scans into the set of target tissue types. To reduce the 

amount of required labor, only five cases were fully segmented into edema and tumor labels. 
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For the other cases, every third slice of the pathology was considered for tumor and edema 

delineations. To ensure that there is no significant difference across the Dice scores 

measured using these selected slices and those measured based on entire volumes, we 

additionally computed the Dice scores with respect to every third slice in the fully 

segmented five cases. Then we computed the difference between these scores and those 

obtained based on entire volumes for all cases. The average of these five differences was 

less than 0.75%.

For tumor and edema labels, we also evaluate the segmentation accuracies in terms of the 

surface distances between the reference and the acquired segmented volumes with various 

methods.

Moreover, for CSF, gray and white matter tissues, similar to the validation method taken by 

[55], these manual segmentations were limited into small rectangular ROIs with the size of 

(80 × 80) pixels located in the healthy part of brain. The availability of two expert 

segmentations allowed us to chose one set as the reference and compare the accuracy of 

GLISTR versus the second expert.

In the second set of experiments, we estimate the tumor model parameters and present the 

relations between these parameters and results of segmentation-registration for 122 tumor 

patients. These data sets consist of of various brain neoplasms including: 74 cases of 

Glioblastoma World Health Organization (WHO) grades of III/IV, 11 cases of Metastasis, 5 

Oligodendrogliomas, 4 Anaplastic astrocytomas WHO grades of II/IV, and 32 cases of other 

low grade gliomas. The age of these patients ranged from 22 to 87 with the average 56.72 

and the standard deviation of 14.67 years.

We should point out that the metastatic brain tumors are not glial based as they originate 

from a primary cancer in other parts of the body. These tumors are usually noninfiltrative 

[56], hence the diffusion-reaction model which explicitly formulates infiltration, may not be 

an appropriate model for their growth. Nevertheless, since the manual segmentation of these 

lesions is difficult (mostly due to tissue heterogeneity) we have included them in our studies 

to show the versatility of the proposed method.

C. Sensitivity with Respect to Initial Seed Location

In this section we demonstrate the sensitivity of the proposed method with respect to initial 

tumor seed location. In principle, this location is initially determined by the user clicking an 

approximate center of tumor. The seed location is then refined in the M-step as a part of 

tumor parameters (q). We show the robustness of GLISTR in producing satisfying results 

when this initial seed location is displaced.

To achieve this objective we chose a patient with an approximate tumor size of 5 cm3 [Fig. 

3(a) and (b)]. Then around the tumor center, we pick up eight different initial seed locations 

placed 2 ~ 3 cm apart from each other. Given the fact the size of the search box for the 

tumor seed is 3 cm3, the entire tumor region is examined. We then run GLISTR for each of 

these selected seed points and compare the results.
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Fig. 2(a) shows the optimization process and the converged cost value for each seed. Note 

that the largest drop of the cost corresponds to the first round of convergence in h. This 

brings the probabilistic atlas into a better correspondence with patient anatomy compared to 

the starting point of optimization (with affine registered atlas). Hence, the subsequent 

optimization of q generally have much lower cost values. As seen in Fig. 2(b), converged 

local minimums are quite similar, with the lowest (best) and highest minimums found in S.7 

and S.4, respectively. We quantitatively compare and visually inspect the various 

segmentations qualities obtained from these experiments.

For this purpose we first use the Dice ratio introduced in (20) and measure the overlaps of 

the segmented ED and TU labels with expert provided reference volumes. Table I 

summarizes these measurements. We note that except for the case S.4, which produces 

significantly smaller Dice ratios, all other overlaps vary minimally across different seeds. 

Moreover, we also note that the particular case of S.4. the corresponding cost value is 

significantly larger, showing that the quality of results is sensitive to the converged cost 

value and degrades with increase in the latter.

Fig. 3(d)–(k) show the corresponding segmentations within the slice through the largest 

section of the tumor. With an exception of Fig. 3(g), we observe that these segmentations 

visually resemble the expert provided reference segmentations of ED and TU labels in Fig. 

3(c) with a high degree. The particular case shown in (g) corresponds to case S.4, for which 

we measured the largest converged cost as well as the worst Dice ratios.

In summary, these observations indicate that the cost function has multiple local minimums 

which are associated with the converged values in Table I. For 7 out of 8 initial seed 

locations, the converged local minimums produced both visually and quantitatively 

satisfying results (except for S.4). This shows that the GLISTR is reasonably robust to 

changes in the initial seed location.

D. Segmentation and Registration Results

In this section, we first visually compare the segmentation results of GLISTR with those 

obtained from [22], SVM and a second clinical expert in Fig. 4. This is followed by our 

quantitative evaluations of the segmentation accuracies in Fig. 5. Finally, for visual 

assessments of the joint segmentation and registration efficacy of GLISTR, we present 

sample results for ten patients in Fig. 6.

Fig. 4 shows sample segmentation for five patients. As seen, the discrepancy in the results 

from two experts is noticeable (e.g., refer (a) and (b) to the forth row). This discrepancy is 

because of ambiguity of the intensities in the pathological region. Subjective interpretation 

of this ambiguity results in different expert segmentations. Moreover, by assuming the 

segmentations of the first rater as reference volumes, we observe a very good agreement 

between our results with the reference segmentations.

Notice that using [22] in the column (d) of Fig. 4, many necrotic parts of the tumors are 

miss-classified as CSF (red in color). This is because [22] subtracts T1CE and T1 modalities 

to form a prior map for the pathology. Since those modalities show a same range of 
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intensities in necrosis, their difference is very small and hard to detect. This leads to a poor 

estimation of the prior map for the necrosis, hence its segmentation fails. In contrary, 

GLISTR does not segment the necrosis independently but as a part of tumor whose 

probability map in the atlas is generated by a bio-mechanical model. Hence, it produces 

better results in all cases. On the other hand, SVM segmentations in column (e) seem to 

segment the necrosis and most of the tumors correctly. However, it also detects many tumor 

false-positives in the rest of the brain. This is because this type of segmentation is purely 

voxel-based and does not rely on any spatial constraint. Whereas in GLISTR, we effectively 

constrain tumor detection into the pathological region where the model generated tumor 

probability map has nonzero values. These observations are further verified by our 

numerical evaluations summarized in Fig. 5. As seen, results of our proposed method are 

comparable to the second rater and outperforms [22] and SVM on tumor and edema. We 

verify those findings by performing statistical hypothesis paired t-tests between our 

computed Dice scores and those from the second expert and the other two methods in 

columns (b)–(d). The results from these tests confirm that segmented tumor and edema 

using GLISTR, are not significantly different from the second human rater segmentations 

and they are significantly better than the other reference methods (p-value < 0.01). 

Moreover, on the healthy tissue labels, all automatic methods had a similar accuracies and 

the difference was only significant for the second expert.

To provide a further insight on the accuracies in terms of physical units, in Table II we 

present the average surface distances between the reference and acquired segmented 

volumes in millimeters. As seen, GLISTR’s performance compares favorably to the second 

human rater (RATER) and stays higher than the other methods. The large surface errors for 

SVM and [22] are due to existence of false tumors and edema positives that are scattered 

within the brain (e.g., refer to fifth row in Fig. 4). These regions increase the average surface 

distances from the reference segmentations that are limited to the borders of the pathologies.

The joint segmentation and registration results of ten patients are given in Fig. 6. As seen, 

the segmentations obtained using GLISTR in column (d) show a high visual correspondence 

with patients anatomies. Moreover, it is interesting to observe that the registered atlas 

probability maps in column (e) and (f) closely match the patient segmented labels, which 

indicate good registration as well.

Finally we comment on the computation time required by each method. Depending on the 

size of the tumor and complexity of the images, GLISTR requires 3 ~ 6 h to converge on 

segmentation and estimate of the tumor parameters. On the other hand, the method proposed 

in [22] needs shorter periods of around 30 min to estimate the labels, and SVM requires 40 ~ 

50 min for training and testing. However, we note that the prolonged computation time for 

GLISTR is due to inherent complexity that this joint framework requires for deformable 

registration, segmentation and estimation of the relevant tumor parameters.

E. Relations of Tumor Parameters With Segmentation-Registration Outcomes

Our objective in this section is to investigate the relations between the estimated tumor 

parameters q and the segmentation- registration outcomes defined as: volumes of segmented 

tumor Vol(TU), edema Vol(ED) and the total average expansion (mass-effect) in the tumor 
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region. The latter is specified by the average of determinant of the Jacobian of the total 

deformation field [57] in the tumor region, i.e., |Jac(h ◦ u)|. In Fig. 7, we plot Vol(TU), 

Vol(ED), and |Jac(h ◦ h)| versus the estimates of the parameters T, Dw, and p1, respectively, 

for 122 Glioma patients described in Section IV-B. In addition, we compute their 

corresponding correlation coefficients and significance p-values in Table III. We use 

Spearman correlation coefficient because it is robust to outliers and captures nonlinear 

relationships [58].

It should be emphasized that we do not estimate the tumor parameters based on longitudinal 

studies, where a tumor growth pattern is traced over a time span to specify the diffusion-

reaction parameters [41]. Rather in this paper, we estimated them by comparing a given 

patient’s anatomy with a healthy population (the probabilistic atlas). Therefore, we view the 

estimated model parameters as a feature set that determines the subject’s deviation from the 

atlas. Hence, the rationale of this analysis is that tumor parameters, estimated for each 

patient individually, can potentially be of diagnostic and prognostic value, and can 

potentially serve as guides for the tumor treatment procedure, including targeted radiation 

therapy.

Fig. 7(a) shows the distribution of the tumor growth durations T versus Vol(TU), indicating a 

strong relationship between these variables. Moreover as seen in Table III, the p-value of 

having a correlation between T and Vol(TU) is near zero. This means the size of the tumor 

has a very significant correlation with the estimated tumor growth duration such that the 

bigger tumors are estimated with larger values T of and vice versa.

In Fig. 7(b), we show the distribution of the estimated diffusion coefficient Dw versus 

Vol(Ed). Although the relation between these parameters is not linear, two groups are 

distinguishable. The first group consists of those cases whose estimates of diffusion 

coefficients satisfy −8 < log(Dw). The majority of these cases also have large volumes of 

edema (50 ml < Vol(Ed)). The second group comprises of the patients with the lowest 

estimate of the diffusion coefficient (log(Dw) = −9) whose majority of edema volumes 

satisfy Vol(Ed) < 50 ml.1 This implies that large estimates of diffusion coefficients are in 

general associated with greater edema volumes in the patient scans, a finding that could 

potentially be important in terms of guiding radiation therapy in edematous regions. The 

correlation coefficient of Dw and Vol(Ed) in Table III is 0.6616 and the corresponding p-

value is very small which implies a very significant correlation between these parameters. 

Next, we investigate the relation between the model estimated mass-effect and the total 

mass-effect which is measured by registration to the original healthy atlas. Notice that the 

original atlas is warped to the patient scans through a cascade of two deformation fields. The 

first deformation field is the tumor model mass-effect u as described in Section II. The 

second deformation field h subsequently warps the modified atlas into the patient’s scans. 

Hence the total difference between the original atlas and the patients anatomy has a 

composite form of h ◦ u. We show that the most of total mass-effect (expansion) is captured 

1Ideally, by decreasing the lower end of the search span for Dw we could have separated this cluster into individuals (along with the 
vertical axis) with different diffusion coefficients. However, since our numerical tumor model solver was conditionally unstable for 
such low levels of Dw, we initially chose a rather conservative search span.
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by u rather than h. This ensures that the estimated model mass-effect u is consistent with the 

amount of the mass-effect in the patient scans that is measured by registration.

In this paper, as a measure of mass-effect we compute the average of the determinant of the 

Jacobian (|Jac(·)|) of the deformation field [57] in the tumor region. Values close to zero 

indicate strong expansion whereas values of one means no expansion. As such, the total 

mass effect measured by the registration, and the model estimated mass-effect are denoted 

by |Jac(h ◦ u)| and |Jac(u)|, respectively.

In Table III, we have also measured the correlation coefficients between |Jac(h ◦ u)| versus |

Jac(u)| and |Jac(h)| in the tumor region. Notice that |Jac(h ◦ u)| has a smaller p-value and a 

slightly higher correlation with |Jac(u)| compared to |Jac(h)|. This means that the total mass-

effect is most likely captured by model created deformation field u rather than h as 

expected.

We have also plotted |Jac(h ◦ u)| versus p1 in Fig. 7(c). Note that the amount of total 

expansion is reversely proportioned with |Jac(h ◦ u)|, so that the values close to 1 means no 

change in the volume. Consequently as we could see in this figure, the larger values of p1 

are in general associated with small values of |Jac(h ◦ u)| (i.e., large expansions). Hence, the 

reported correlation between these values in Table III is significant but negative, which 

implies that estimates of p1 are consistent with the expansions captured by the method. Also 

notice that because the numerical scheme of our tumor model was conditionally unstable 

with larger p1 values, we chose a conservative maximum value of 8 for this parameter. As a 

result, some patients with significant mass-effect (small values of |Jac(h ◦ u)|) are estimated 

with the largest possible value for p1.

F. Construction of Statistical Atlas for Gliomas

A highly unexplored question is whether the spatial extent and distribution of tumors relates 

to their phenotypes and clinical outcome. Exploring such questions calls for generation of 

statistical atlases from relatively large numbers of patients. We begun to explore this 

direction, by forming an atlas from our patient population.

To construct the brain tumor atlas that captures the statistics of the spatial distribution of 

glioma in this population, first the computed tumor posterior probability of every patient is 

transformed to the common atlas space ΩA. We performed this spatial normalization by 

inverting the total deformation field that originally warps the common atlas to the individual 

patients scan. Hence the resulting inverted deformation field (i.e.,(h ◦ u)−1) warps the patient 

scans into the common atlas space. Next we warp the posterior probability of the tumor 

using the inverted deformation field and then we compute the average of all warped 

posteriors over the patient population. Fig. 8 shows this atlas normalization procedure using 

two sample patient images. For comparison the original T1CE scans are indicated in the 

upper row. The inverted deformation field is applied on both the tumor posterior map and 

the T1CE scan, then the resulting images are overlayed together in the second row. As seen 

the mass effect has been relaxed in the atlas normalized images hence the tumors appear to 

be smaller and ventricles seem to be relaxed compared to the original patients scans in the 
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upper row. This is because h ◦ u is an expansive field due to the mass-effect, hence its 

inverse shrinks the images in the tumor region.

Fig. 9 shows the resulting tumor atlas created by the procedure explained above across 122 

patients. We have overlaid the computed average tumor map on the probability map of the 

CSF (in the grey background) to specify its relative position with respect to the original 

atlas. The color bar indicates that, within our patient population, the region with the highest 

tumor probability (7.6%) coincides with the left temporal lobe which is associated with low-

level perception, comprehension, naming and verbal memory.

We also render the spatial distribution of the estimated tumor seed locations in the atlas 

space Fig. 10. The estimated seed positions are overlayed as small colored spheres on the 

outer surface and the ventricles of the atlas. In this figure, the colors do not convey 

particular information about types of the tumor and are only intended for easy differentiation 

of the positions in different views. Although it is difficult to distinguish a particular pattern, 

we can notice that fewer seeds are located in the frontal and occipital lobes of the brain. We 

anticipate that, this outcome should be taken with care because it is known that the 

diffusion-reaction-advection based models do not model the initial stages of the tumor 

growth. Hence, the actual seed points might be different from locations shown in Fig. 10. 

Nevertheless, we believe that the nonuniformity of the glioma incidence in these figures 

may be the result of either a potential fundamental aspect of glioma developmental biology, 

or the possibility of selection bias rather than errors introduced by the method2. Many of the 

patients were imaged after they referral to our institution for resection. Therefore, we should 

anticipate that the presented atlas may have such a bias for tumor locations that can be safely 

resected.

V. Conclusion and Discussion

In this paper, we presented a method (GLISTR) for segmentation of gliomas in multi-modal 

MR images by joint registering the images to a probabilistic atlas of healthy individuals. The 

major contribution of the paper was the incorporation of a tumor growth model to adopt the 

normal atlas into the anatomy of the patient brain. This adoption required us to estimate a set 

of optimal parameters for the tumor model. Our motivation for this incorporation was to 

generate more realistic prior probabilities for the tumor and other labels. We used the EM 

algorithm to iteratively refine the estimates of tissue label posteriors, the registration 

parameters and the tumor growth model parameters. We evaluated the accuracy of the 

segmentations by computing Dice overlap scores with reference segmentations made by a 

clinical expert. We compared the segmentation accuracy of the GLISTR to a second human 

rater and two state-of-the-art methods using 10 patients scans. The results show that 

GLISTR outperforms the reference methods and achieves a similar accuracy of the second 

human rater in segmenting tumor and edema. However, the accuracy of the healthy tissue 

segmentations was not significantly different across the proposed and reference methods.

2We could confirm this because the segmentation results of all patients were visually inspected by our clinical expert and only a few 
cases were found as nonsatisfactory.
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An important contribution of this work is that, in the process of estimating segmentation-

registration, it also estimates the parameter set q of the reaction-diffusion tumor model. 

These parameters can potentially offer additional diagnostic and prognostic values clinically, 

as they might relate to the tumor’s aggressiveness and extent of infiltration beyond imaging-

visible tumor boundaries. Particularly interesting is the relationship between the diffusion 

coefficient Dw and the volume of edema, since it is known that aggressive gliomas are very 

likely to have infiltration into the region defined as edema via imaging measures, therefore 

more aggressive treatment of the estimated tumor extent might potentially improve patient 

survival. Further studies are needed to elucidate the ultimate value of these estimated model 

parameters.

Deformable registration of the atlas to the patient scans, that is jointly estimated with 

segmentation, allowed us to construct a statistical atlas of the glioma. To that end, we 

mapped the tumor segmentations of patients scans into the common space by inverting the 

estimated deformation fields. We show that the average tumor probability is a nonuniform 

function which reaches a maximum in the left temporal lobe within our patient population. 

Such atlases can potentially carry prognostic value, as gliomas are believed to progress 

preferentially along white matter fiber pathways as well as along brain vasculature. Such 

relationships can be investigated in a principled way in the future using our atlas.

In summary, application of GLISTR to a large number of data sets reveals that the method 

can produce promising segmentation and atlas registration results, even in the presence of 

large mass-effects, necrosis and edema. GLISTR is freely available for download through 

the homepage of Section of Biomedical Image Analysis, the University of Pennsylvania.3
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Appendix

We now derive the update equation for the deformation field h as described in (19). Keeping 

the current estimation of q′ and Φ′ fixed, we compute the variation of (11) with respect to h 
in the direction of infinitely small and arbitrary test function v and assign it to zero [59]. i.e.,

(22)

where h′ + v ≡ {h′(x) + v(x)|x ∈ ΩF}. We replace (11) in (22), and consider only those 

terms that depend on deformation parameters h′(x). Abbreviating πk (h′(x)) = πk ◦ h′, and v 
= v(x), (22) can be written as

3Available online: http://www.rad.upenn.edu/sbia/projects/glistr.html
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(23)

where ∇ and H stand for the gradient and Hessian operators. Considering the fact that

and keeping the terms up to second order with respect to |v| we can approximate the first 

logarithm term using

(24)

plugging (24) back into (23), we arrive at

(25)

where W and r, have the same definitions in equations (16) and (17). Since (25) should hold 

for every v, we must have: r + W․v = 0, from which (18) the update equation of deformation 

field in (19) can be justified.
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Fig. 1. 
(a) Sample glioma scan, (b)–(d) healthy cerebro spinal fluid, gray matter and white matter 

probability maps, evolution of the corresponding probability maps of (e) tumor, (f) edema, 

(g) cerebro spinal fluid, and (h) gray matter (i) white matter at t ≃ 0 (right after initial 

condition), t = T/2, and t = T, computed by the proposed method.
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Fig. 2. 
(a) Minimization of the total cost (defined as the negative of Q in the M-Step) for eight 

different initial seed points. Initial variations of the cost correspond to updates in q (with h 
and Φ fixed) whereas the large drops correspond to first round of convergence and update in 

h (with q fixed), (b) enlargement of the second and third rounds of optimization with minor 

changes of the cost, showing the convergence.

Gooya et al. Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
(a)–(b) Slices of FLAIR and T2 modalities, (c) the corresponding slice of the reference 

segmentations from our clinician expert, (d)–(k) the corresponding final segmentations 

acquired with GLISTR for eight different initial seed points (S.1–S.8 in Fig. 2). Except for 

S.4, all other segmentations look reasonably similar to the references in (c). This shows that 

the method is relatively robust to changes in initial seed location.
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Fig. 4. 
Comparison of segmentations obtained from various raters. Each row corresponds to a 

single patient: FLAIR and T1-CE modalities are shown in columns (a) and (b), followed by 

segmentations of Expert1, Expert2, the proposed method (GLISTR), methods proposed in 

[22] and [14] (SVM) in columns (c)–(g) respectively. Comparison of (c) to (d) reveals the 

inter-rater variability of the segmentations (e.g., compare second row from bottom; a larger 

tumor volume has been delineated by Expert2). Many necrotic regions are not segmented as 

tumor by [22], whereas a lot of false-tumor positives are observable in SVM results. The 

proposed GLISTR method, however, has the most resemblance to the results of Expert1 

considered as the reference volumes in this study.
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Fig. 5. 
Error bar graphs of the measured Dice scores for the segmented labels for various raters, the 

second human rater (RATER), the proposed method (GLISTR), method of [22], and SVM 

based method [14], with regard to the first rater as the ground truth. On tumor and edema 

labels GLISTR outperforms these methods and reaches a similar accuracy of the second 

clinical expert.
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Fig. 6. 
Segmentation and registration results for 10 sample patients. Each row corresponds to a 

single patient and represents the results in the slice with largest tumor section. (a)–(c) 

FLAIR, T2 and T1-CE images, (d) segmentation results of GLISTR showing enhancing 

tumor, necrosis, edema, CSF, gray and white matters in light and dark yellows, purple, red, 

gray and white colors respectively, (e) overlay of the tumor and CSF probability maps 

registered to the patient scans, (f) probability map of GM registered to the patient scans.
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Fig. 7. 
Scatter plots of the estimated tumor model parameters for the 122 glioma cases. (a) Tumor 

growth duration T versus the volume of the segmented tumor Vol(TU), (b) Diffusion 

coefficient Dw versus the volume of the segmented edema Vol(ED), (c) The average 

determinant of the Jacobian of the total composite deformation field |Jac(h ◦ u)| in the tumor 

area versus mass-effect coefficient p1 The blue line fits show the linearities in the relations 

of the estimated parameters. Further deviations from these lines correspond to higher 
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degrees of the nonlinearity. Hence, the most linear relation is observed between T and 

Vol(TU), whereas the least linearity is observed for Dw versus Vol(ED) (see Section IV-E).
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Fig. 8. 
First row: sample T1CE images of gliomas, Second row: atlas normalized tumor posteriors 

overlayed on their corresponding T1CE images. Ventricles seem to be relaxed compared to 

the original patients scans (cf. the regions encircled by the markers).
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Fig. 9. 
Tumor atlas indicating the spatial probability distribution of tumor on the atlas space. We 

mapped the posterior probability of tumors back to the atlas space by inverting the total 

deformation field (h ◦ u)−1. Then we computed the average of these transformed tumor 

posteriors over 122 glioma cases. The color bar indicates that, within our patient population, 

the region with the highest tumor probability is placed in the left temporal lobe of the brain.
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Fig. 10. 
Spatial distribution of the estimated tumor seeds for 122 glioma cases in the atlas space 

indicated from: (a) sagital, (b) coronal, (c) axial, and (d) 3-D views. The colors distinguish 

the spatial location of each tumor seed in different views. Fewer seeds are located in the 

frontal and occipital lobes compared to other regions of the brain.
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TABLE I

Converged Cost Values And Corresponding Dice Overlap Ratios for Eight Different Seed Locations

Seed Converged Cost TU Dice(%) ED Dice(%)

S.1 1.4960 87.40 60.15

S.2 1.4897 87.40 59.76

S.3 1.4953 88.11 57.76

S.4 1.5008 73.14 54.61

S.5 1.4892 86.88 58.94

S.6 1.4924 87.87 58.53

S.7 1.4890 87.90 59.46

S.8 1.4916 87.06 57.57
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TABLE II

Surface Distances (MM) Between the Reference and the Acquired Segmented Volumes by Different Methods 

for Tumor (TU) and (ED) Labels

RATER GLISTR Method proposed in [22] SVM

TU 2.78±1.80 2.00±0.29 9.35±7.35 26.45±8.44

ED 2.45±1.31 2.28±1.29 7.7±7.00 2.56±1.73

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 March 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gooya et al. Page 36

TABLE III

Spearman Correlation Coefficients and p-Values for: T Versus the Volume of the Segmented Humor Vol(TU), 

Diffusion Coefficient Dw Versus the Volume of the Segmented Edema Vol(ED) the Average Determinant of 

the Jacobian of the Total Composite Deformation Field in The Tumor Area |Jac(h ◦ u)| Versus Mass-Effect 

Coefficient p1, |Jac(u)| and |Jac(h)|

Correlation coefficient p-value

T, Vol(TU) 0.7272 1.6773e−21

Dw, Vol(ED) 0.6616 1.1102e−16

p1, |Jac(h ◦ u)| −0.6383 2.5535e−15

|Jac(u)|, |Jac(h ◦ u)| 0.6104 8.3711e−14

|Jac(h)|, |Jac(h ◦ u)| 0.4701 4.4820e−08
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