
Glivenko-Cantelli Properties of some Generalized 

Empirical D F's and Strong Convergence 

of Generalized L-Statistics * 

R. Helmers 1, P. Janssen;: and R. Serfling-' 
1 Centre for Mslhemam:s and Computer Science, Kruislaan 413, SJ-!098 Amsterdam. 

The Netherl:1.nas 
2 L1mburgs Umvers1t11ir Centrum, B-3610 Dkpcnbc:<::k, Belgium 

Department c•f Mathema11cai Sciences, Johns Hopkins University, Balllmon::, MD 21218, USA 

Summar)'. We study a nondassical form of empirical H~ which is of U­
statistic structure and extend to H n the classical exponential probability 

inequalities and Glivcnko-Cantelli convergence properties known for the 

usual empirical df An important class of statistics is given by T(Hn), where 

) is a generalized form of L-functionaL For such statistics we prove almost 

sure convergence using an approach which separates the functional-analytic 

and stochastic components of the problem and handles the latter component 

by application of Glivenko-CanteHi t)pe properties. Classical results for V­
statistics and L-statistics are obtained as special cases without addition of 

unnec..-essary restrictions. Many important new types of statistics of current 

interest are covered as well by our result. 

l. Introduction 

Let X 1' ... , x. be independent r.v.'s having common df F and let h be a measur­

able function from lR"' to R Define the associated df HF (y) = Pp { h (X i. ... , X .,) 
~ yeR and empirical df 

lln(Y)=n;;.: I 1 {J1{Xil' .... x •.. J~_}'}, ydl, 

where the sum is taken over all n(.,l=n(n--· l) ... (n~m+ 1) m-tuples (i 1 , ••• , iJ 
of distinc1 elements from p, ... , n}. For each fixed y, H.lr) is a U-statistic 

with mean ·in the case m == 1 and h(x) = x, H. reduces to the usual empirical 

df 

Statistics of the form T(R.) were investigated by Serfling (1984) for T( ·) 
an L-functional and by Janssen et al. (1984) for T(-) a more general type of 

L-functional. Certain Glivenko-Cantelli properties for H. and asymptotic nor­

mality results for T(R,.) were established. 

" Research supp;.nied by the U.S. Department of Navy under Offi1.-e of Naval Research Contract 

No. NOOOl 4-79-C-0801 and by NA TO under Research Grant No. 0034/87 
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The present paper provides further Glivenko-Cantelli results for the general­

ized empirical df Hn (Sect. 2) and strong convergence results for the "generalized 

£-statistics" discussed above (Sects. 3 and 4). Results for the multi-sample case 

are indicated also. 

Our key tool in establishing Glivenko-Cantelli results is an extension to 

Hn of the exponential probability inequality of Dvoretzky et al. (1956) for the 

Kolmogorov distance between F,, and F. Our strong convergence results general­

ize those of Hoeffding (1961) for U-statistics and of van Zwet (1980) for L­

statistics, without adding unnecessary restrictions. 

In our treatment of the strong convergence problem for generalized £-statis­

tics, we separate the functional-analytic and stochastic components of the prob­

lem. As a result, one can obtain results for statistics T(HJ by substituting H,. 
for Gn into basic convergence theorems proved for the functional T( ·) defined 

on deterministic sequences { Gn}· This permits flexibility and easier generalization 

in the choice of (nonclassical) empirical df to be used and illuminates the funda­

mental issues involved in the convergence problem. 

It should be noted that results on the behavior of Hn typically apply also 

to the empirical df HF,. given by putting F,, for Fin the definition of HF. For 

each fixed y, HF.(y) is a von Mises statistic. 

The closeness of Hn and HF. may be evaluated through the relations 

(i) 

where Hn(y) is the average of terms l{h(X1,, .. .,X,j~y} with at least one 

equality i0 =ib, a=Fb, and 

(ii) m 0( m-1) n -n(m)= n . 

We shall leave results for HF,. implicit from those stated for Hn. 

2. Glivenko-Cantelli Results 

Here we establish results on the almost sure convergence to 0 of llHn-HFllco, 
where llfllc., denotes sup lf(x)I. Our first result is an analogue of the exponential 

probability inequality ofDvoretzky, Kiefer and Wolfowitz (1956) for 11.F,,-Fllco· 
Their inequality, which serves as a lemma in our development, is the following. 

Lemma 2.1. There exists a finite constant C0 , not depending on F, such that 

(2.1) P{llF,,-Fll«>>d}~C 0 exp{-2nd2}, d>O, n~l. 

We shall utilize Lemma 2.1 to establish a related inequality for the moment­

generating function of llFn-Fllco, which is evidently a novel result for the classi­
cal empirical df 

Lemma 2.2. There exists a finite constant C1, not depending on F, such that 
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Proof By a well-known identity and an application of Lemma 2.1, we have 

"" 
(2.3) E{expsl!Fn-Fil 00 }= J P{exp(sllF.-FllC<J)>t} dt 

0 

e" 

=l+ J P{llF,,-Fll 00 >(logt)/s}dt 
1 

e• 

~l+C 0 f exp{-2n(logt)2/s2}dt, 
l 

where we have used the fact that 0 ~ llFn - Fii 00 ~ l. The integral in (2.3) is easily 
evaluated as (here N (µ, cr2) denotes a normal distribution with mean µ and 
variance CJ2 ) 

(11:)112 
l sn- 112 P{O~ N (s2/4n, s 2 /4n)~s} exp {s2 /8n}, 

(n)112 
so that (2.2) follows with C1 = C0 2 . D 

We now extend Lemma 2.2 to the empirical df H,.. 

Lemma 2.3. For the constant C 1 in (2.2), we have 

(2.4) 

E {exp s l!Hn-HFllC<)} ~(1 +C1 s[n/m]- 1' 2 ) exp{s2/8 [n/m]}, s>O, n~m. 

(Here [ ·] denotes greatest integer part.) 

Proof Utilizing a representation for U-statistics given by Hoeffding (1963) (or 
see Serfling (1980), p. 180), we have the representation 

(2.5) 
1 n! . 

H -H = "\' (H('J·-H) n F 1 /...; n F• 
n. i= 1 

where each H~l is a classical empirical df based on [n/m] terms h(Xi,, ... , Xj.J, 
h(Xim+i' ... , X; 2 m), ... corresponding to a particular permutation (ii> i 2 , .. ., iJ 
of(l, ... , n). By convexity of the exponential function and Lemma 2.2, we obtain 
(2.4). D 

Applying Lemma 2.3 in connection with the elementary relation 

and with s=4[n/m]d, we obtain 
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Theorem 2.1. There exists a finite constant C 1 , not depending on F, or h, such 

that 

(2.7) 

P{llHn-HFll'"' >d} ~(1 +4C1 [n/m] 112 d) exp { -2[n/m] d2 }, d>O, n~m. 

It should be noted that Theorem 2.1, specialized to the case m= 1, is not 

as sharp as Lemma 2.1. This is due to the indirect method of proof using 

moment-generating functions and perhaps also due to a lack of sharpness in 

the bound obtained in Lemma 2.2. Nevertheless, for practical purposes in typical 

applications, Theorem 2.1 in its present form is sufficiently powerful. For exam­

ple, it immediately yields, via the Borel-Cantelli lemma, the following rate for 

the almost sure convergence of liHn-HFll 00 to 0. 

Corollary 2.1. There exists a finite constant Cm, not depending on For otherwise 

on h, such that with probability 1 

(2.8) limsup -- llHn-HFlloo<Cm. ( 
n )i12 

n-->oo logn 

(For example, Cm>(m/2) 112 suffices.) In the case m= l, it follows by the LIL 

for llFn-Fll 00 {due to Chung (1949); see also Serfling (1980), p. 62, for discussion) 

that the limsup in (2.8) remains finite with (log n) replaced by (loglog n). Such 

refinements of (2.8) involve tools more delicate than Lemma 2.1 and Theorem 

2.1 and will not be pursued here. 

Our next result treats the almost sure behavior of weighted discrepancies 

between Hn and HF, extending the strengthened Glivenko-Cantelli theorem for 

F,. given by Wellner (1977). 

Theorem 2.2. Let q be a nonnegative continuous function in [O, 1] which is nonde­

creasing in [O, b] and nonincreasing in [1-<5, l], for some c5 > 0, and satisfies 
1 

J [q(t)r 1 dt< co. Then with probability 1 
0 

(2.9) 

Proof We follow the technique of Wellner (1977). Let e>O be given and choose 
M 1 

M<c5suchthat J[q(t)]- 1 dt<eand J [q(tff. 1 dt<eandsuchthatMand 
0 1-M 

1-M are continuity points of H; 1 . Put 00 =Hi 1 (M) and 01 =Hi 1 (1-M). 

Now write 

+ sup IHn(y)-HF(y)l+sup 1-Hn(y)+sup 1-HF(y) 

Bo&Y~O, qoHF(y) y>O, qoHF(y) y>81 qoHF(y) 

=:A 1 +A2 +A3 +A4 +A5 • 
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Now 

A 3 ~( sup [qoHp(y)r 1) J!H,,-HpJJ<X> -+Owpl 
60;1!1~91 

by Theorem 2.1. And, since y<80 =>Hp(y)<M, we have 

t t M 

A 2 ~ sup -()~ sup J [q(u)]- 1 du= J [q(u)]- 1 du<e. 
O<t<M qt O<t<M O O 

Similarly, we have A5 <e. And w p 1 

using the SLLN for U-statistics (Hoeffding (1961); or see Serfling (1980)) and 

the fact that 

h(X;1 , ••. , XiJ~y<8 0 =>h(X;,, ... , X;J<Hj; 1 (M) 

=>Hp(h(X,1' ... , X;J)<M <D. 

Similarly, A4 has an a.s. limit <e. 

Therefore, for every e>O, limsup ll(Hn-HF)/q oHpJJ<X> < 5e. 0 
n->co 

As an application of Theorem 2.2, we have 

Corollary 2.2. Let p~ 1. If J (Hp(l -Hp))P<1 -•l < oo for some O<e< 1, then with 

probability 1 

(2.10) 

(Here ilgllP denotes (f lg(x)IP dx)11P.) 

Proof We write 

and apply Theorem 2.2 with q(t)=(t(l -t))1 -•. O 

It is easily checked that the assumption of Corollary 2.2 is satisfied if 
E lh]P-'+J< co for some b>O (cf. Lemma 2.2.l of Hebners (1982)). 
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Let µ,, and µp denote the probability measures on the class B of Borel sets 

in 1R, associated with the df's Hn and HF- Following Gaenssler (1983), for 

any subclass C of B, we define the empirical C-discrepancy 

(2.11) 

and we assume that this quantity is Borel-measurable. Let X<n>=(Xn, l• ... , Xn,n) 
denote the vector of order statistics of X 1 , ... , X n. 

Theorem 2.3. {D"(C, µp)},,~m is a reverse submartingale with respect to the 

sequence of <f-fields A,,=u{X<n» Xn+ 1 , Xn+ 2 , ••• },i.e., for m~k~n, with probabil­

ity 1 

(2.12) 

Proof Use the reverse martingale property (Serfling (1980), p. 180) of the U­

statistic µ,,(C)-µp(C), for each fixed CeC, to get 

E {D1(C, µp) IA,,} ?;sup IE{(µk(C)-µp(C)) I A,,}l=Dn(C, µp). 0 
CeC 

In the case m= 1 this reduces to Lemma 5 of Gaenssler (1983). 

We now examine extensions to the multi-sample case. Consider c indepen­

dent collections of independent observations { X~ 1 >, ••• , X~~>}, ... , { xr, ... , X~?} 
taken from df's F( 1>, ... , p<c>, respectively. 

Let a kernel h(x\1>, ... , x~;; ... ; xfl, .. ., x~) mapping 1Rm1 + ... +m. to R be 

given, put f =(F<l), ... , p<cl), denote by HF the df of 

h(Xi1>, ... , Xl.:{; ... ; Xf>, ... , X~~. and define the relevant empirical df by 

yEJR, where !:!=(n1, ... , n,) and the sum is taken over all (n1)<m1>=n1(n1-l) ... (n1 

-m1+ 1) mrtuples (i11, ... , i1m) of distinct elements from {1, ... , ni}, 1 ~j~c. 
Finally, put k,,=min{[n1/m1], ... , [nc/m,J}. 

It turns out that Theorem 2.1 has the following extension. 

Theorem 2.1 *. There exists a finite constant Cf, not depending on F or h, such 

that 

(2.14) P{llH!!-HEll"" >d} ~(1 +4Cf k~ 12 d) exp{-2k!! d2 }, d>O, ~~11Z-

Proof Using an extension to generalized U-statistics by Serfling (1985a) of a 

representation given by Hoeffding (1963) for U-statistics, we have as an extension 

of (2.5) the representation 

(2.15) 

where each Hg> is a classical empirical df based on ka i.i.d. terms having df Hl. 
The remainder of the proof is analogous to that of Theorem 2.1. O 



Glivenko-Cantelli Properties and Strong Convergence 81 

However, getting an extension of Corollary 2.1 is somewhat more complicat­

ed when c may be > l. For this purpose, following Serfling (1985a) we introduce 

the following constraint on the array {(n1 , .. ., nc)}. 

Definition 2.1. An array {(n1 , •.• , nc)}eN" satisfies Condition A if 

(2.16) 
logmax(n1 , ... , nc) --+O • ( ) 

as m1n nl> .. ., nc --+ 00. 
min(n1, ... , nc) 

(This is trivially satisfied in the case c = l and in general is not very restrictive.) 

The notation "min(n1, .. ., nc) ~ CX) "shall denote restriction under Condition 

A. 

Corollary 2.1 *. There exists a finite constant C,,,, not depending on f or otherwise 
on h, such that with probability 1 -

(2.17) 

(Here TJJ=(m1 , ••• , me).) 

The proof is a straightforaard application of the Borel-Cantelli lemma. 

For weighted discrepancies, the proof of Theorem 2.2 carries over to the 

present situation and yields. 

Theorem 2.2*. Under the assumptions of Theorem l, we have with probability 1 

To extend Theorem 2.3, we must restrict attention to ordered elements from 

the partially ordered array fo}. We defineµ!!' µE and D!l(C, µl) i.n similar fashion 

as before, and we define A.!! to be the O'-algebra generated by A~J, i~j~c, where, 
· h xrn -(XUl xu1 ) h f d · · r xm x(j) Wlt (nJ) - nJ, l • .. ., ni, n1 t e vector 0 Or er StatISt.ICS 0 1 ,. .. , n;• 

Then it is known (see Sen (1977), p. 288) that for fixed BeB, the generalized 

U-statistic array {µ.!!(B)-µl(B)} is a reverse martingale w.r.t. the O'-field A!!, 

i.e., with probability 1, E{µ.1s(B)-µe(B)IA!!}=µ.n(B)-µl(B), for n~!f~TJJ. Hence 

we have 

Theorem 2.3*. {D.l.!(C, µ£)} is a reverse submartingale w.r.t. the O'-.field A!!, i.e., 

for w~~~rJ, with probability 1 

(2.19) 

Remark 2.1. In this section we have presented certain Glivenko-Cantelli results 

having general interest and application. Some further a.s. results of a more 

specialized nature are developed in the subsequent sections of this paper; see 

Lemmas 3.2 and 3.3. 
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3. A Strong Law for Generalized L-Statistics 

Let HF and Rn be defined as previously in terms of a kernel h: JR.m~.IR and 

X 1, .•. ,Xn i.i.d. F, and Jet Wn,i~·-·~i-Y,,.n<,,..) denote the ordered values of 

h(Xi 1 , ••• , X;J taken over the n<m> m-tuples (i1 , .•. , i,J of distinct elements from 

{l, ... , n}. A wide class of parameters of F can be represented usefully as T(HF), 

where T( ·) is a functional of the general form 

1 

(3.1) T(G)= J go T;(G)dK(t), Godf, 
0 

where g: JR~JR is Borel-measurable, K is a signed measure on (0, 1), and for 

each t in the support of K, 7;(·) is a classical L-functional: T;(G) 
1 

= J c- 1(s)dM,(s), where c- 1 (s)=inf{x: G(x)~s} and M 1 is a signed measure 
0 

on (0, 1). This functional was introduced by Janssen et al. (1984), who established 

asymptotic normality results for the corresponding statistics T(Hn) for estimation 

of T(Hp). 

Our purpose here is to establish strong convergence, and in fact we shall 

let K (·)in (3.1) depend on n, thus considering the functional 

1 

(3.2) T,,(G)= J go 'I;(G) dKn(t). 
0 

We shall take the measures dK(t), dK.(t) and dM1(s) to be the differentials 

of 

t d 

(3.3) K(t)= J J(u)du+ I: aj 1{t~pi}, O<pi< l, j= 1, ... , d, 
0 j=l 

r d 

(3.4) K.(t)= J J,,(u)du+ L ai1{t~pi}, O<pi<l, j=l, ... ,d, 
0 j= l 

and 

s d, 

(3.5) M 1(s)= J fi(u)du+ L a 11 1{s~pti}, O<pti<l, j=l, ... , d" 
0 j= 1 

thus permitting both smooth and discrete weighting of quantiles a- 1 (s) in 7;( G) 

and of functionals go 'I;(G) in T(-). This covers essentially all cases of interest. 

Note that in the special case of (3.2) corresponding to 7;( G) = c- 1 (t), the statistic 

T,,(HJ may be expressed in the form 

n(m} 

(3.6) L Cni g(i-Y,,,). 
i=l 
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Conversely, any statistic of form (3.6) may be represented as Tn(H,.) with T;{G) 
=a- 1 (t} and some choice of dKn(t) (not necessarily unique) satisfying cni 

i/n(m) 

J dKn(t); e.g., take (3.4) with d=O and Jn(t)=n(m)Cni for (i-1)/n(ml<t 
(i l)/n(m) 

-;;,, i/n(m), 0 < t < 1. The class of statistics given by (3.6) may be termed "linear 
combinations of functions of generalized order statistics." For the case g(x) = x 
it gives the" generalized L-statistics" (which includes both U-statistics and classi­
ca.l L-statistics) introduced by Serfling (1984), who established asymptotic nonna­
lity results. For the special case m=l, h(x)=x, (3.6) gives the class of "linear 
combinations of functions of order statistics", for which van Zwet (1980) proved 
strong convergence results under very tight conditions, confining attention to 
the case that dKn(t)=Jn(t)dt. The present treatment extends van Zwet's by 
allowing limits dK(t) to have a discrete component (considering K(·) as a limit 
of K"( • )), and considering arbitrary kernels h and functionals T;(G) other than 
a- 1 (t), and retains van Zwefs general scope of allowing the transformation 
g( ·) to be an arbitrary Borel-measurable function. We establish a very general 
and far-reaching deterministic result (Theorem 3.1), which we apply in Corollaries 
3.1 and 3.2 to two broad classes of statistics: Examples 3.1, treating the general 
class given by (3.6), and Examples 3.2, treating some spread estimators of Bickel 
and Lehmann (1979). 

To obtain (under appropriate assumptions) that w p 1 

(3.7) 

and also that T,,(Hp)-+ T(Hp), we build upon the very insightful treatment of 
van Zwet (1980), but also separate the roles played by functional analysis and 
Glivenko-Cantelli theory. First we show that (3.7) holds deterministically with 
HF replaced by an arbitrary df G and {Hn} replaced by an arbitrary sequence 
{G.} converging weakly to G and satisfying other technical restrictions. This 
is the "functional analysis" part. Then we show that { H n} satisfies w p 1 the 
conditions imposed on { Gn}- This is the "Glivenko-Cantelli" part. The idea 
of separating the functional-analytic and probabilistic components of the strong 
convergence problem for L-statistics was introduced by Wellner (1977), who 
obtained a general strong law for L-statistics as a corollary of extended Gliven­
ko-Cantelli theorems which he developed for the empirical df Fn, such as we 
have extended in Sect. 2 to the empirical df's Rn and Hn. However, the assump­
tions of his theorem are not quite sharp, imposing for -example (1 +e)-moment 
conditions for the sample mean. The development by van Zwet (1980) leads 
to an appropriately sharp strong law but entails unseparated functional-analytic 
and Glivenko-Cantelli components. However the separation of these compo­
nents permits in a straightforward fashion important extensions to nonclassical 
versions of empirical df's such as our Hn. Therefore, we take special care to 
achieve this separation, without sacrificing sharpness. We shall first develop 
the functional-analytic theory for the functional T,.(G) given by (3.2), then treat 
the matter of substitution of an empirical df H" or H,.. 

We now state for the case of continuous g our key fonctional-analytic theorem 
for the functional T,.( ·) defined by (3.2), (3.4) and (3.5), and the functional T( ·) 
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given by (3.1), (3.3) and (3.5). (Extension to the general case of arbitrary Borel­

measurable g requires some additional details and development, which we dis­

cuss briefly at the conclusion of Sect. 4.). The relevant functions {Jn(t), 0<t<1 }, 

{Ji(s), 0<s<1} for fixed t, and {J;(G), O<t<l} will be viewed as functions 

f: (0, 1) ~R and we shall denote the Lp((O, 1), B10, 1i, .A.) norms off by /If llP 

=(j /f (t)JP d t)1'p in the case 1 ~ p < oo and = ess sup If/ in the case p = oo, where 

.A. denotes Lebesgue measure on ((0, 1), B10, 1>). For the functionals 7;(G), O<t< 1, 
it will be convenient to use the notation mG(t)= 7;(G), O<t< 1. Due to the 

complexity of the functional T,,(G) as well as of the restrictions on the sequence 

{ Gn} approaching G, it will be convenient to state the corresponding sets of 

assumptions prior to the formulation of the theorem. 

The conditions to be met by the functional T,,(G) are 

Assumptions (3.8). Consider the sequence of functionals {T,,(·), n~ 1} given by 

"' 
(3.2), (3.3) and (3.4), put A 0 = LJ An, with A,,={t: O<t<l, J,,(t)=i=O} and A 1 

n=l 

={s: O<s<l, J1(s)=i=O}, O<t<l, and let G be a given df We assume, with l~p 

;;;. oo, p- 1 +q- 1 =1, 1 ;[:p ~ oo, p- 1 +q- 1 =1, that 

(3.8.a) 

(3.8.b) 

[/Jr!l,<oo, each tEAou{p 1 , ... ,Pd}; 

supl/J,,JIP<oo if1<p~oo; 
n 

or {J,,(·),n;f;l} is uniformly integrableifp=l; 

(3.8.c) 0- 1 is continuousats=Pti• l;[:j~dt>for all teA0 

except for t in a A.-null set, and fort= Pi.· .. , Pd. D 

For a sequence of df's { G,,} for which T,,(G,,)-T,,(G)-0 is to be established, 

we will require 

Assumptions (3.!>). Let { Gn} and G be df's and q, ij, A 0 and A 1 as in Assumptions 

{3.8). We assume G,,=>G and 

(3.9.a) {(G; 1)q, n~l} is uniformly integrable on A1, 

each teA0 u{p1 , ••• ,p4}, if l~q<oo; or 

sup II G,;- 1 1.t.ll 00 < oo, each teAo u {P1, ... , Pd}, if q = oo; 

" 
(3.9.b) {(go mGjq, n ~ 1} is uniformly integrable on A 0 if 1 ~ q < oo; or 

sup l/(gomGJ IA0 lloo if q= 00. D 
n 

Theorem 3.1. (i) Assume g continuous. Suppose that the sequence of functionals 

{T,,( · ), n ~ 1} given by (3.2), (3.4) and (3.5) satisfies Assumptions (3.8) for a df G, 

and that the sequence of df's {G.,} satisfies Assumptions (3.9) for G. Then 

{3.10) 
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(ii) Suppose that the conditions of part (i) are satisfied and that there exists 

a function 

(3.11) 

such that 

t t 

(3.12) J Jn(s)ds-+ J J(s)ds, all te(O, 1). 
0 0 

Then, for T( ·) given by (3.1), (3.3) and (3.5) we have, assuming ll(g 0 m6 ) 1 .. 0 liq< oo, 

(3.13) T,,(G)-+T(G), n-+oo. 

The proof of Theorem 3.1 is deferred to Sect. 4. 

Turning now to the stochastic component of our development, we put {Hn} 
and HF for {Gn} and G. The main issue, then, with Assumptions (3.8) assumed 
with respect to HF, is to verify that with probability 1 {Hn} is a sequence 
of df's satisfying Assumptions (3.9) and thus to conclude that T(Hn)-+ T(HF) 

wpl. Besides the probability space ((0, 1), B(o, 1i, .A.) which is central to the func­
tional-analytic treatment, we now also have a probability space (Q, A, IP) on 

which our basic r.v.'s {Xi} are defined. Thus we shall be speaking of almost 
sure convergence in two possible senses, a.s. [lP] or a.s. [A.]. Our goal is to 
establish that T,.(H,J-+ T(HF) a.s. [IP]. 

We shall use the property of empirical df's that the support of Hn must 
belong to that of HF. The support of a df G is defined to be S(G)={x: G(x+e) 

> G(x-e), all e>O}. The following is easily checked. 

Lemma 3.1. If G0 and G1 are (right-continuous) df's with S(G 1)cS(G0 ), then 

(3.14) 

In verifying conditions (3.9.a) or (3.9.b), it is convenient (and unrestrictive 
from a practical standpoint) to assume that the sets A 0 and A0 0<t<1, are 

intervals in (0, 1). The results we give below will be specific to the cases that 
the interval in question is either the open interval (0, 1) or (contained in) a 
closed interval [a, b] in (0, 1). 

Lemma 3.2. Let l~q~co. If, for all tEA 0 u{pi, ... ,pd}, either all A,=(0, 1) 
and llHF" 1 11 11 <co or all A1 c[a,b], then a.s. [lP] the sequence {Rn} satisfies 
(3.9.a); i.e., for n sufficiently large {(H;- 1 )'1, k~n} is uniformly integrable on A0 

each teA0u{p1, ... ,pd} if l~q<co, and suplJH; 1 tA..ll<XJ<oo, each 
k:?!n 

tEAou{PI>-··•Pd}ifq=oo. -

Proof. First consider the case A1=(0, 1), teA0u{p1, ... ,Pd}· For q=oo, we have 
by Lemma 3.1 that 

IJH; 1 1lco=sup JH; 1 (t)I =sup IH.F 1 0 HF 0 H; 1 (t)l~ llH.F 1 ll<(l" 
I t 
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For q<oo, we have 

l 

!IH; 111g= J IH; 1(t)!q dt= f IYl11 dHn(y)=n<;,f Llh(Xit, ... , X;J!q. 
0 lR. 

so that llH; 1 111 is a U-statistic with kernel lhl 11 and a.s. [IP] converges to 

l/Hi 1 1/3< co by the SLLN for U-statistics. Hence, by a standard result, a.s. 

[IP] the functions {(Hk" 1)1l, k~n} are uniformly integrable on (0, 1), for n suffi­

ciently large. 

If A1 c:[a,b], for all teA0u{p1,. . .,pd}, take O<a-e, b+e<l continuity 

points of Hi 1• Then a.s. [IP] suplH; 1 (t)lA,l~IH.F 1 (a-e)l+IH.F 1 (b+e)I for all 
t 

n sufficiently large. Therefore in this case (3.9.a) is immediate. D 

Verification of (3.9.b) in general form is rather troublesome, but in practice 

it can be checked ad hoe for typical cases of the functionals {'J;(G), teA0 }, 

under effective restrictions on g and A0 which do not preclude the motivating 

applications for this investigation. For such purposes the following result is 

useful. 

Lemma 3.3. Assume g continuous. Suppose that (3.8.a), (3.8.c) and the conditions 

of Lemma 3.2 are satisfied. Assume that a.s. [P] 

(3.15) limsup supj'I;(H,.)I <co. 
n .... a> teAo 

Let l~q~oo be given. Then a.s. [P] the sequence {Hn} satisfies (3.9.b); i.e., 

for n sufficiently large {(gomH,l• k~n} is uniformly integrable on A0 if1 ~q< co; 

or sup ll(g 0 mH,) lA0 lla> < oo if q=oo. 
kil:;n 

Proof. We have a.s. [P] 

(3.16) 

where B(Hn)={7;(Hn), teA0}. By (3.15), for all but a finite number of n's, B(HJ 
is contained in a compact set, whence by continuity of g the term on the right 

in (3.16) is bounded for n sufficiently large. Thus for q= oo the conclusion of 

the lemma follows from (3.16). If 1 ~q< oo (3.16) implies for s>O a.s. [P] boun­

dedness of ll(goH; 1) 1A0 llq(I+•) for n sufficiently large. This is sufficient for the 

desired uniform integrability. D 

With these tools, we now can give two very general convergence results. 

We first deal in Corollary 3.1 with strong convergence of T,.(H,J, with T,.( ·) 
given by (3.2), for the important special case 'I;(G)= 0- 1 (t). Secondly, Corollary 

3.2 deals with the strong convergence of T,,(H,.), with 'l;(G) an L-functional. 

Both results are specializations of Theorem 3.1 to the stochastic sequence {Hn}· 
Note also, that, with Hp and {Hn,n~1} for G and {Gn,n!1;;1}, we have 

by our Glivenko-Cantelli result (Corollary 2.1) that Hn=>Hy a.s. [P]. 
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Corollary 3.1. Assume g continuous. Let T( ·) and { T,,( · ), n ~ 1} be given by (3.1) 

and (3.2) with 'J;(G) = G- 1 (t) and dK (t), dK,.(t) as in (3.3) and (3.4). Suppose 

{Jn(·), n~l} satisfies (3.8.b), Hy satisfies (3.8.c) and that either A 0 =(0, 1) and 

\\g 0 Hi 1 \\q< oo or A0 c: [a0 , b0] c(O, 1), where 1 ;;;;;p;;;;; oo, p- 1 +q- 1 =1. Also let 

J( ·)be determined by (3.11) and (3.12). Then a.s. [JP] 

(3.17) 

Proof To apply Theorem 3.1, we verify that Assumptions (3.8) and (3.9) hold 

a.s. [IP] for {Hn}· Since 'J;(G)= G- 1 (t), we have J,(s)=O, each teA0 u {p1 , •• ., P.1}, 
so A1 =<P and (3.8.a) and (3.9.a) are vacuous. Since, mG=G-1, (3.9.b) simply 

means that a.s. [IP] {(goH; 1 ~, k~n} is uniformly integrable on A0 for n suffi­
ciently large if l;;;;;q<oo; or supl\(goH; 1)lA0 1\ 00 <00 if q=oo. For the case 

k~n 

A0 =(0, 1), (3.9.b) follows by repeating the first part of the proof of Lemma 
3.2 with H;; 1 replaced by g 0 H;; 1 and Hi 1 replaced by goHi 1• If A0 c[a0 , b0] 

we argue as in the proof of Lemma 3.3. D 

00 

Remark 3.1. Note that our corollaries remain valid if we take A0 = U An for 

someNelN. 

Examples 3.1 

Linear combinations of functions of generalized order statistics. Corollary 3.1 
essentially covers the class of statistics (3.6), which includes some classical collec­
tions of statistics as well as new varieties of recent interest in the literature. 
We present several examples. 

(i) Linear combinations of functions of order statistics. Here m=l, h(x)=x. For 
this specific choice and taking A0 =(0, 1) Corollary 3.1 reduces to Corollary 

2.1 of van Zwet (1980), specialized to the case g continuous. (Following the 
proof of Theorem 3.1, in Sect. 4, we discuss extension to the case of arbitrary 

Borel-measurable functions g( · ).) Confining attention to the case g(x)= x, we 

mention the sample mean (take J"(t)= 1, d=O, and assume \IF- 1 1\ 1 < oo, i.e., 
F has finite mean), the sample median (take Jn(t):=O, d= 1 =ai. p1 =1, and assume 
that F- 1 is continuous at ·h i.e., that! is the unique solution of F(x-)~t~ F(x)), 

trimmed means (Jn(t)=(n/(n-2[ixn])) l{[ixn]/n;;;;;t;;;;;(n-[ixn])/n}, d=O}, Gini's 

mean difference (Jn(t)=(n/(n-1))(4t-2), d =0 and assume l\F- 1 \1 1 < oo), etc. 

(ii) U-statistics. Apply Corollary 3.1 with g(x)=x, J,.(t);;: 1, d=O, assuming 

11Hi 1 1\ 1 <oo, i.e., E\hl<co. Hence the corollary reduces to the strong law of 
large numbers for U-statistics, obtained by Hoeffding (1961). 

(iii) 'Jrimmed U-statistics. Apply Corollary 3.1 with g(x)=x, 

Jn(t)=(n<m/(n<m>-2[ixn<miJ)) 1 {[ixn<m>J;;;;; ncm> t;;;;; nc111>-[ixnc111>]}, d=O. 

In particular, a "trimmed variance" is given by taking m=2, h(x1 , x 2)=Hx1 

-X2)2. 
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(iv) Another spread measure. Apply Corollary 3.1 with g(x) = x, Jn (t) = 0, d = 1 

=a1 , p 1 =±,and m=2, h(x1 , x 2)=lx1 -x2 ]. This yields a spread measure consid­

ered by Bickel and Lehmann (1979), the relevant parameter being the median 

of the distribution of IX 1 - X 2 1. 

(v) Generalized Hodges-Lehmann location estimators. Apply Corollary 3.1 with 

g(x)=x, Jn(t)=O, d= 1 =a1 and h(xi. ... , Xm)=m- 1 (x 1 + ... +xm). (Form= 1 this 

gives the sample median and for m=2 the classical Hodges-Lehmann estima­

tor.). D 

Corollary 3.2. Assume g continuous. Let T(·) and {T,.(·), nGl} be given by (3.1) 

and (3.2) with dK(t), dKn(t) and dMr(s) as in (3.3)--{3.5). Suppose that the weight 

functions satisfy (3.8.a) and (3.8.b) and that HF satisfies (3.8.c), and 

ll(g 0 mHF)lA0 llq<oo. Further suppose for all tEA0u{p1, ... ,pd} either A,=(0, 1) 

and 11Hi 1 llii<oo or Arc[a,b]; where 1;:;i;p;:;i;ro, p- 1 +q- 1 =1, l;&p;:;i;oo, p- 1 

+ q_- 1 =1. If a.s. [IP] T,JHn), tEA0 , satisfies (3.15), then a.s. [IP] 

(3.18) 

Proof We only have to verify that Assumptions (3.9) hold a.s. [F] for {Hn}· 

For (3.9.a) we use Lemma 3.2 and (3.9.b) is immediate from Lemma 3.3. D 

Examples 3.2 

Some spread estimators of Bickel and Lehmann. We consider here some function­

als T( ·) for which T(HJ gives statistics of the type proposed by Bickel and 

Lehmann (1979) as measures of spread for a df F not necessarily symmetric 

about any known point, and for which asymptotic normality has been proved 

by Janssen, Serfling and Veraverbeke (1984). 

(i) Consider the functional 

1 

T(F)= f IF- 1 (t)-F- 1 (l-t)IY dK(t). 

0 

Bickel and Lehmann (1979) suggest the case y = 2 and K (·)uniform on [fJ, 1-p], 
where 0</J<t, giving 

1 -jJ 

(3.19) Tp(F)=(l-2ft)- 1 f [F- 1(t)-F- 1(1-t)] 2 dt. 
p 

The corresponding statistic is given by 

n-[Jln] 

(3.20) Tpn(.F..)=(n-2[.Bn])- 1 L (X,.,k-Xn,n-k)2. 
k=[pnJ+l 

Then (3.20) is of form (3.2) with the specializations h (x) == x (making HF= F 

and Hn=Fn); g(x) =x2 ; J,,(t)=(n/(n-2[,Bn]))1 {[j3n]/n~ t ~(n-[/Jn])/n}; 
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A0 c[f1-11, l-.B+11]c(O, 1) for some 11>0; d=O; and for each tEA 0 , li(s)=O, 
Ai=</J, di=2, at1=1=-a12 , p11 =t=l-p72 , i.e., 7;(G)=G- 1(t)-G- 1 (1-t). To 
apply Corollary 3.2 we take p= oo, q= 1 and need only verify the assumptions 

llmF llfl- 11, 1-P+rr1ll 1 < oo and (3.15). 
Now in the present case mp(t)=F- 1 (t)-F- 1 (1-t), and we trivially have 

llmF lep- 11• 1-p+,, 1 111~2(/F- 1 (.6-11)! + IF- 1 (1-,8 +17)1) < oo. 

Condition (3.15) reduces to a.s. [IP] that 

limsup sup 1Fn- 1(t)-Fn- 1(1-t)l<oo, 
n-oo te[/l-rr, 1-P+rr] 

which follows easily by arguments used above. Finally note that the difference 
between 

n-[pn] 

Tpn =(n-2[,Bn])- 1 L (Xn, k-Xn, n-k+ 1)2 , 

k=[pn]+1 

the spread estimator for (3.19) proposed by Bickel and Lehmann (1979), and 
Tpn(Fn) tends a.s. to zero. Therefore, we obtain, without any assumption on F, 
that a.s. [1P] Tpn-> T(F), n-> oo. 

(ii) Consider the functional 

( 1 ) 1 
- /1 [ (t + 1)]2 

T,,p(G)= T"=;;-p I c- 1 ~ 2 dt, 

where 0<t;t.<t<1 - P < 1. Bickel and Lehmann (1979) introduced another 
spread statistic which is given by T,,p(Hn), for the kernel h(x 1 , x2)=x 1 --x2 • 

In this case HF is the symmetric (about 0) df of X -X', for X and X' independent 
r.v.'s with df F. The functional 7;,.p(·) is of form (3.l) with g(x)==x2 , J(t) 
=1A0 (t)/(l-a-,8), A0 =[a, 1-,B], d=O; and for each tEA0 , Jr(s):=O, A1=</J, 

dt 1 =1=~ 1 , P1 1 =!(t+l), i.e., T;(G)=a- 1(:._1!} To apply Corollary 3.2, we 

take p = oo, q = 1 and we have 

Condition (3.15) reduces to a.s. [1P] limsup sup \H; 1 (_t_+ 1)1 <cc, which 
n -~ ao te[~, 1 - Pl 2 

again follows by previously used arguments. Thus we conclude, without any 

assumptions on For HF, that a.s. [1P] T,,p(Hn)-" T~p(HF), n-> oo. O 

Extensions to the multi-sample case are straightforward, now that the func­
tional-analytic and "Glivenko-Cantelli" parts of the problem have been sepa­
rated. The relevant basic Glivenko-Cantelli theorem giving llH,!!-Hfll->0, and 
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thus Hn=:;.HF a.s. [IP], is available in Corollary 2.1* of Sect. 2. The SLLN for 

U-statiStics used in Lemma 3.2 becomes replaced by the one for "generalized" 

U-statistics (Sen (1977) and McConnell (1987)). Introducing other appropriate 

notions regarding convergence with multi-dimensional indices, and imposing 

appropriate restrictions, one can obtain for the functional given by (3.1) that 

a.s. [IP] T(HJ-+ T(Hf) as min(n1, ... , n 0 )~00. The detailed treatment of the 

multi-sample case will be pursued elsewhere. D 

4. Proof and Extensions 

In the proof of Theorem 3.1 the following basic convergence lemma will be 

instrumental. 

Lemma 4.1. Let 1 ~ r & oo and r- 1 + s- 1 = 1. Let the r.v.'s e, gn} and { 'ln} on 

a probability space (Q, A, i>) satisfy en~e and either 

(i) 1 ~r< cD, {le,.I'} is uniformly integrable and sup 1117.lls< <X:l, 
n 

or 

(ii) r = oo, sup 11e,.11"' < oo and { 'ln} is uniformly integrable. 
n 

Then ll(i; 11 -~)1'f 11 ll 1 -+O, n-Hn. D 

Proof of Theorem 3.1. We first consider convergence of mG,.(t)=1;(GJ, n-+oo, 

for a fixed teA0 u {Pt> .. ., Pd}· Note that 

1 dt 

mG..(t)= f G;; 1(s)Jr(s)ds+ 2: ariG;; 1 (p1). 

0 j= 1 

Note that the convergence Gn~ G implies (see Lemma 1.5.6 of Serfling (1980) 

and its proof) that 

(4.1.a) G;; 1 (t)-+G- 1 (t), all continuity points t of G- 1, 

and hence 

(4.1.b) 

i.e., G;; 1 converges to G- 1 a.s. [A.] and hence in A.-measure. We apply Lemma 

4.1 with (Q, A, IP) =((0, 1), B(o, ll> A.) and f = G- 1 lA,• '"= G; 1 lA,• rJn=ft, r= ij, 
s=p. The hypotheses of the lemma are verified using (3.8.a), (3.9.a) and (4.1). 

This yields 
1 1 

f G;; 1 (s)Jr(s)ds-+ J G- 1(s)Jr(s)ds 
0 0 
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for all teA 0 u{p 1, •.. ,pd}- The same is true, by (3.8.c) and (4.La) for the other 
part of 7;(Gn) and hence also for 'I'i(Gn) itself for all tEA 0 u {p1, .. ., Pd}, except 
for t in a A.-null set not including {PI> .. ., Pd}- Thus we have proved that for 
t=Pi. ... ,Pd and almost all tin A 0 , 

(4.2) 

Whence, by the continuity of g, 

(4.3) 

Now we apply Lemma 4.1 again, with the same probability space as above 

but ~ = (g 0 mG)l Ao' ~n =(go rnGJ 1 Ao> 11n =Jn, r = q, s = p. The hypotheses of the 
lemma are verified using (3.8.b), (3.9.b) and (4.3), and we thus have proved 

1 

(4.4) J [go 7;(Gn)-go 'J;(G)] ln(t)dt-+0, n-+oo. 
0 

Applying continuity of gin connection with (4.2) fort= p 1, .•• , pd, and combining 
with (4.4), we obtain (3.10), completing the proof of part (i) of the theorem. 

Regarding part (ii) we use the assumptions (3.8.b), (3.11), (3.12) and the fact 
that go J;(G) is assumed to be in Lq in combination with Sects. IV.8.11, IV,13.23, 
IV.13.25 and IV.13.27 of Dunford and Schwartz (1958) to obtain 

1 1 

J gc'J;(G)Jn(t)dt-+ J goJ;(G)J(t)dt, n-+oo, 
0 0 

and hence (3.13). O 

Remark 4.1. (i) Theorem 3.1 is a deterministic version and generalization, for 
g continuous, of Theorem 2.1 and Corollary 2.1 of van Zwet (1980). 

(ii) As mentioned already in Example 3.1 (i), our Corollary 3.1 with m = l, 
h(x)=x and A 0 =(0, 1) reduces to Corollary 2.1 of van Zwet (1980), except that 
for simplicity of presentation we have restricted g to be continuous (note that 
we do not require Hi 1 to be continuous). Following van Zwet's approach in 
spirit this condition can be removed by an application of Luzin's theorem, 
giving the following extension. 

Corollary 4.1. Corollary 3.1 remains valid for arbitrary Borel-measurable g satisfy­

ing 

(4.5) g is continuous at Hi 1(pi), j = 1, ... , d 

and, for the case A 0 c: [a0 , b0 ] c(O, 1), 

(4.6) g is bounded on [Hi 1 (a0)-e, Hi 1 (b0 )+e], for some s>O. 

Proof To prove Corollary 3.1 the continuity of g is used to show, in the case 
7;(G)=G- 1 (t), the validity of(4.3) and the boundedness of the r.h.s. in (3.17). 
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The latter is still valid by (4.6). To show that (4.3) is still valid, it suffices to 

prove that a.s. [IP] 

lim J,{teA 0 : jgoH; 1(t)-go Hi 1(t)I >o} =0, every b>O. 
n->co 

By Luzin's theorem we have for any s > 0 the existence of a Borel set B and 

a continuous function g with H F(B) < e and such that g = g on JR. \B. Therefore, 

with Bn= {t: H;; 1{t)eB}, 

(4.6) limsup ).{ teA0 : lg 0 H,,- 1(t)-g 0 H; 1(t)j > b} ~HF(B)+limsup Hn(B) 

+limsup A.{teA0 : Jg o H; 1(t)-g a H; 1(t)i ><5}. 
n~ca 

Since Hn- 1(t)-+Hi 1(t), n-40C>, a.s. [IP] for all continuity points t of Hi 1 (·), 

the last term in the r.h.s. of (4.6) equals zero. The sum of the first two terms 

is less than 2e. Hence the proof is complete. D 

(iii) We finally note that our general deterministic result, Theorem 3.1, can 

also be stated without the continuity assumption on g. This development 

involves formulation of additional convergence concepts for sequences { Gn, n 

;;:;; 1} and is omitted for brevity here. Complete details can be found in Helmers 

et al. (1985) and Serfling (1985b). 
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