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ABSTRACT12

Advances in modern artificial intelligence (AI) have inspired a paradigm shift in human neuroscience,13

yielding large-scale functional magnetic resonance imaging (fMRI) datasets that provide high-resolution14

brain responses to tens of thousands of naturalistic visual stimuli. Because such experiments necessarily15

involve brief stimulus durations and few repetitions of each stimulus, achieving sufficient signal-to-noise16

ratio can be a major challenge. We address this challenge by introducing GLMsingle, a scalable,17

user-friendly toolbox available in MATLAB and Python that enables accurate estimation of single-trial18

fMRI responses (glmsingle.org). Requiring only fMRI time-series data and a design matrix as inputs,19

GLMsingle integrates three techniques for improving the accuracy of trial-wise general linear model20

(GLM) beta estimates. First, for each voxel, a custom hemodynamic response function (HRF) is identified21

from a library of candidate functions. Second, cross-validation is used to derive a set of noise regressors22

from voxels unrelated to the experimental paradigm. Third, to improve the stability of beta estimates for23

closely spaced trials, betas are regularized on a voxel-wise basis using ridge regression. Applying24

GLMsingle to the Natural Scenes Dataset and BOLD5000, we find that GLMsingle substantially improves25

the reliability of beta estimates across visually-responsive cortex in all subjects. Furthermore, these26

improvements translate into tangible benefits for higher-level analyses relevant to systems and cognitive27

neuroscience. Specifically, we demonstrate that GLMsingle: (i) improves the decorrelation of response28

estimates between trials that are nearby in time; (ii) enhances representational similarity between subjects29

both within and across datasets; and (iii) boosts one-versus-many decoding of visual stimuli. GLMsingle is30

a publicly available tool that can significantly improve the quality of past, present, and future31

neuroimaging datasets that sample brain activity across many experimental conditions.32

Keywords: fMRI preprocessing, GLM, large-scale datasets, denoising, voxel reliability33

INTRODUCTION34

Across many scientific disciplines, datasets are rapidly increasing in size and scope. These resources35

have kickstarted a new era of data-driven scientific discovery (Richards et al., 2019; Jumper et al.,36

2021; Iten et al., 2020; Ravuri et al., 2021; Schawinski et al., 2018; D’Isanto and Polsterer, 2018).37

In visual neuroscience, recent efforts to sample individual brains at unprecedented scale and depth38

have yielded high-resolution functional magnetic resonance imaging (fMRI) datasets in which subjects39

view thousands of distinct images over several dozen hours of scanning (see Naselaris et al., 2021 for40

a review). These exciting “condition-rich” datasets are large enough to propel the development of41

computational models of how humans process complex naturalistic stimuli. For example, resources42

such as the Natural Scenes Dataset (NSD, Allen et al., 2022), BOLD5000 (Chang et al., 2019), and43

THINGS (Hebart et al., 2019) may be useful for advancing our ability to characterize the tuning (Bao44

et al., 2020; Li and Bonner, 2021; Long et al., 2018; Kriegeskorte and Wei, 2021; Popham et al., 2021),45
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topography (Blauch et al., 2021; Doshi and Konkle, 2021; Zhang et al., 2021; Lee et al., 2020), and46

computations (Yamins et al., 2014; DiCarlo et al., 2012; Freeman et al., 2013; Marques et al., 2021;47

Horikawa and Kamitani, 2017) performed in visual cortex.48

The potential of large-scale datasets to reveal general principles of neural function depends critically on49

signal-to-noise ratio (SNR), which refers to one’s ability to reliably measure distinct neural signatures50

associated with different stimuli or experimental conditions. Diverse sources of noise affect fMRI data,51

and these noise sources limit the robustness and interpretability of data analyses (Liu, 2016; Kay et al.,52

2013). For example, subject head motion, scanner instabilities, physiological noise, and thermal noise53

all contribute unwanted variability to fMRI data. Noise is especially problematic in studies that sample54

a large number of conditions, since the number of repetitions of each condition is typically limited,55

resulting in noisy responses even after trial-averaging.56

The approach we have developed to mitigate the effects of noise comes in the context of general57

linear model (GLM) analysis of fMRI time-series data (Dale, 1999; Monti, 2011). We assume that58

the goal of the GLM analysis is to estimate beta weights representing the blood oxygenation level59

dependent (BOLD) response amplitude evoked by different experimental conditions. In this context,60

we define noise as variability observed across repeated instances of a given condition. Therefore,61

methods that decrease such variability are desirable. Our approach seeks to maximize data quality at62

the level of individual voxels in individual subjects (as opposed to data quality assessed only at the63

region or group level), and seeks to obtain response estimates for single trials. These desiderata are64

powerful; if achieved, they can flexibly support a wide range of subsequent analyses including relating65

brain responses to trial-wise behavioral measures and pooling data across trials, brain regions, and/or66

subjects.67

To realize these goals, we introduce GLMsingle, a user-friendly software toolbox (with both MATLAB68

and Python implementations) that performs single-trial BOLD response estimation. Given fMRI69

time-series data and a design matrix indicating the onsets of experimental conditions, GLMsingle70

implements a set of optimizations that target three aspects of the GLM framework (Figure 1):71

1. The choice of hemodynamic response function (HRF) to convolve with the design matrix72

2. The inclusion of nuisance regressors that account for components of the data that are thought to73

be noise74

3. The use of regularization to improve the accuracy of the final beta estimates75

Importantly, to enable fluid application to even the largest fMRI datasets, GLMsingle is fully automated76

(no manual setting of parameters) and can be executed efficiently even when gigabytes of fMRI data77

are passed as input.78

We previously used the GLMsingle algorithm to estimate BOLD responses in the NSD dataset (Allen79

et al., 2022). While the optimizations implemented in GLMsingle had a positive impact on data quality,80

it was not apparent whether the improvements would generalize to other datasets. The goal of this paper81

is to provide a standalone description of GLMsingle and to rigorously assess performance not only82

on NSD, but also on BOLD5000 (Chang et al., 2019), a distinct fMRI dataset acquired with different83

subjects, at different field strength, and with a different experimental design (see Methods). In both84

datasets, we show that the optimizations implemented in GLMsingle dramatically improve the reliability85

of GLM beta estimates. We also study the effect of these optimizations on downstream analyses that86

are of particular relevance to systems and cognitive neuroscience, including representational similarity87
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Figure 1: Overview of GLMsingle
GLMsingle takes as input a design matrix (where each column indicates the onset times for a given condition) and fMRI
time-series in either volumetric or surface space, and returns as output an estimate of single-trial BOLD response amplitudes
(beta weights). GLMsingle incorporates three techniques designed to optimize the quality of beta estimates: first, the use of a
library of hemodynamic response functions (HRFs), where the best-fitting HRF from the library is chosen for each voxel;
second, an adaptation of GLMdenoise (Kay et al., 2013) to the single-trial GLM framework, where data-derived nuisance
regressors are identified and used to remove noise from beta estimates; and third, an efficient re-parameterization of ridge
regression (Rokem and Kay, 2020) as a method for dampening the noise inflation caused by correlated single-trial GLM
predictors.

analysis (RSA) (Kriegeskorte et al., 2008) and multivoxel pattern analysis (MVPA) (Haxby et al.,88

2001, Norman et al., 2006, Poldrack et al., 2011). In all analyses, we observe improvements in key89

outcome metrics, suggesting that GLMsingle meaningfully improves the ability of researchers to gain90

insight into neural representation and computation. Our findings demonstrate that GLMsingle affords91

the neuroimaging community a clear opportunity for improved data quality. Online materials (code,92

documentation, example scripts) pertaining to GLMsingle are available at glmsingle.org.93

RESULTS94

To assess the impact of GLMsingle, we evaluate four different types of single-trial response estimates95

(henceforth, beta versions). The first arises from a baseline procedure that reflects a typical GLM96

approach for fMRI analysis (beta version b1), and each subsequent beta version (b2-b4) incorporates an97

additional strategy for optimizing model fits and mitigating the effects of noise. The final beta version98

(b4) contains the complete set of optimizations provided by the GLMsingle toolbox. The GLMsingle99

algorithm consists of the following steps:100

1. A baseline single-trial GLM is used to model each stimulus trial separately using a canonical101

HRF. This provides a useful baseline for comparison (b1: AssumeHRF).102

2. An optimal HRF is identified for each voxel (Allen et al., 2022) by iteratively fitting a set103

of GLMs, each time using a different HRF from a library of 20 HRFs. For each voxel, we104
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identify the HRF that provides the best fit to the data (highest variance explained), and inherit the105

single-trial betas associated with that HRF (b2: FitHRF).106

3. GLMdenoise (Kay et al., 2013; Charest et al., 2018) is used to determine nuisance regressors to107

include in the model. Principal components analysis is applied to time-series data from a pool of108

noise voxels (see Methods for details), and the top principal components are added one at a time109

to the GLM until cross-validated variance explained is maximized on-average across voxels (b3:110

FitHRF + GLMdenoise).111

4. With the nuisance regressors determined, fractional ridge regression (Rokem and Kay, 2020) is112

used to regularize the single-trial betas, using a custom amount of regularization for each voxel,113

determined via cross-validation (b4: FitHRF + GLMdenoise + RR).114

GLMsingle improves the reliability of beta estimates115

We first examine the effect of GLMsingle on the test-retest reliability of voxels across relevant regions116

of visual cortex in NSD and BOLD5000 (Figure 2). Our reliability procedure measures the consistency117

of a voxel’s response profile (using Pearson r) over repeated presentations of the same stimuli, revealing118

areas of the brain containing stable BOLD responses. This straightforward approach enables direct119

comparison of data quality between different beta versions.120

Figure 2: Impact of GLMsingle on voxel test-retest reliability
To compute reliability for a given voxel, we measure the test-retest Pearson correlation of GLM beta profiles over repeated
presentations of the same stimuli (see Methods). (A) Differences in reliability between b1 (derived from a baseline GLM)
and b4 (the final output of GLMsingle) are plotted within a liberal mask of visual cortex (nsdgeneral ROI). Scatter plots
show reliability values for individual voxels. (B) Relative differences in mean reliability within the nsdgeneral ROI. For each
voxel, we computed the mean reliability value over all beta versions being considered (b1-b4), and then used this as the
basis for thresholding voxels (from Pearson r = −0.2 to 0.6). At each threshold level, for each beta version, we compute the
voxel-wise difference between the reliability of that specific beta version and the mean reliability value, and then average
these difference values across voxels within the nsdgeneral ROI. The traces in the first column indicate the mean (+/- SEM)
across subjects within each dataset. The bars in the second column indicate subject-averaged differences in reliability at
threshold r = 0.2. The relative improvement in reliability due to GLMsingle (b1 vs. b4) tends to increase when examining
voxels with higher reliability, and each optimization stage within GLMsingle (HRF fitting, GLMdenoise, ridge regression)
confers added benefit to voxel reliability.

We directly compared the b1 and b4 beta versions for each subject within a liberal mask of visual cortex121

(nsdgeneral ROI), finding widespread increases in reliability when comparing GLMsingle to baseline122
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(Figure 2a). The positive effect is nearly uniform across voxels in NSD. In BOLD5000, as in NSD,123

we see aggregate benefits when comparing b1 and b4, though results for individual voxels are more124

variable. A likely explanation for this is that reliability metrics are inherently noisier due to the smaller125

number of repeated stimuli in BOLD5000.126

To summarize the impact of GLMsingle in NSD and BOLD5000, we compared the performance127

of b1-b4 for individual subjects, across different voxel reliability thresholds (Figure 2b). We find128

that all subjects show clear improvement from b1 to b4 and the improvement in reliability due to129

GLMsingle tends to increase when examining voxels that respond more reliably to experimental stimuli.130

Furthermore, examining reliability in intermediate beta versions (b2 and b3) – which implement HRF131

optimization and GLMdenoise, respectively – reveals that each successive stage of processing in132

GLMsingle tends to confer added benefit to voxel reliability compared to baseline (b1).133

We next compared GLMsingle to Least-Squares Separate (LSS), a popular technique for robust signal134

estimation in rapid event-related designs (Mumford et al., 2012, 2014; Abdulrahman and Henson, 2016).135

The LSS procedure fits a separate GLM for each stimulus, where the trial of interest is modeled as one136

regressor, and all other (non-target) trials are collapsed into a second regressor. LSS provides a useful137

point of comparison for ridge regression, as both strategies seek to mitigate the instabilities in GLM138

estimation that can arise from having correlated single-trial predictors. To directly compare GLMsingle139

to LSS, we computed auxiliary GLMsingle beta versions that do not incorporate GLMdenoise. This140

allows us to isolate the effect of the GLM estimation procedure (i.e., LSS vs. fractional ridge regression).141

For both the case of an assumed HRF and the case of voxel-wise tailored HRFs, we find that fractional142

ridge regression yields more reliable signal estimates than LSS (Figure 3). These improvements143

are most pronounced in the most reliable voxels (Figure 3c). LSS can be viewed as applying heavy144

regularization uniformly across voxels, while our ridge regression approach is more flexible, tailoring145

the degree of regularization to the SNR of each voxel. Heavy regularization may actually degrade the146

quality of signal estimates in reliable voxels, and our approach avoids this possibility.147

We then performed a complete assessment of all auxiliary beta versions and the primary versions148

(b1-b4), in order to determine whether any other analysis strategy could achieve parity with b4 in the149

quality of GLM outputs. Reassuringly, when summarizing the relative quality of all 8 beta versions150

over a range of reliability thresholds, we observe superior performance from b4, the default output of151

GLMsingle (Figure 3a).152

GLMsingle relies on an internal cross-validation procedure through which key hyperparameters (the153

number of noise regressors and the voxel-wise levels of ridge regression regularization) are optimized to154

maximize the consistency of responses across condition repetitions. This raises a possible concern that155

our reliability estimates (e.g. Figure 2) are somewhat optimistic. As a strict assessment of reliability,156

we repeated the reliability quantification for each of the 8 beta versions, this time computing test-retest157

correlation values using only beta responses obtained from completely separate data partitions. We find158

that results are broadly unchanged using this more stringent evaluation procedure (Figure 3b).159

GLMsingle helps disentangle neural responses to neighboring trials160

Thus far, we have established that GLMsingle provides BOLD response estimates that have substantially161

improved reliability compared to a baseline GLM. In the remainder of this paper, we explore whether162

these improvements have tangible consequences for downstream analyses relevant for cognitive and163

systems neuroscience. We first examine whether GLMsingle is able to more effectively disentangle164

neural responses to proximal stimuli, as inaccurate single-trial GLM estimation may manifest as high165

similarity (temporal autocorrelation) between beta maps from nearby trials. We computed dataset-166
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Figure 3: Comparison between GLMsingle and LSS
(A) Left panel: relative differences in mean reliability between beta versions. 8 beta versions are compared: b1-b4, and the
4 auxiliary beta versions used to compare GLMsingle and Least-Squares Separate (LSS). LSS betas (dashed traces) are
compared to those estimated using fractional ridge regression (RR, solid traces), when using a canonical HRF (LSS, light gray
vs. RR, dark gray) and when performing HRF optimization (LSS, light purple vs. RR, dark purple). Right panel: Summary
of performance at threshold level r = 0.2. Error bars reflect the standard error of the mean, computed over the 8 subjects
analyzed from NSD and BOLD5000. Fractional ridge regression yields more reliable signal estimates than LSS across voxel
reliability levels. (B) Same as Panel (A), except that reliability computations occur only between image repetitions processed
in independent partitions of fMRI data. Qualitative patterns are unchanged. (C) Scatter plots comparing voxel reliability
between corresponding LSS and GLMsingle beta versions (top: AssumeHRF; bottom: FitHRF). We show results for an
example subject (NSD subj01, nsdgeneral ROI). The advantage of ridge regression over LSS is most apparent in the most
reliable voxels.

averaged temporal similarity matrices, revealing the degree of temporal autocorrelation in each beta167

version (Figure 4). Temporal autocorrelation manifests as non-zero correlation values off the diagonal168

of the temporal similarity matrices, and is presumably undesirable.169

In a baseline GLM that uses a canonical HRF and ordinary least squares (OLS) fitting (b1), we observe170

striking patterns of temporal autocorrelation extending several dozen trials forward in time. This171

is true in both NSD, which has a rapid event-related design (a new stimulus presented every 4 s),172
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Figure 4: Impact of GLMsingle on temporal autocorrelation
For each dataset, we compute the degree of temporal autocorrelation in each beta version by averaging session-wise
representational similarity matrices over subjects. We plot results arising from analysis of voxels at two different reliability
thresholds (r = 0 and r = 0.3) for NSD (A) and BOLD5000 (B). Assuming that ground-truth neural responses to consecutive
trials should be uncorrelated on average, positive (or negative) Pearson r values off the diagonal imply sub-optimal estimation
of BOLD responses. In the right-most column, we plot mean autocorrelation between all pairs of timepoints. Applying
GLMsingle (b4) results in a substantial decrease in temporal autocorrelation compared to a baseline GLM approach (b1).

as well as in BOLD5000, where stimuli are spaced 10 s apart to alleviate issues relating to signal173

overlap. To quantify these effects, we compute mean temporal autocorrelation as a function of time174

post-stimulus for each beta version. In NSD, for the baseline GLM (b1), positive correlations are as175

high as r = 0.5 for consecutive trials, and gradually reduce to around r = 0 after around 100 s (Figure176

4a). In BOLD5000, b1 autocorrelation peaks as high as around r = 0.4 for consecutive trials, requiring177

nearly 160 s to reduce to r = 0 (Figure 4b). We speculate that the relatively long timescale of the178

correlations reflects the long timescale of hemodynamic responses (the post-undershoot can extend179

for 30 s or longer) and/or the slow nature of (low-frequency) physiological noise related to cardiac180

and respiratory variation. Notably, mean beta maps from successive trials in NSD are anticorrelated181
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for b1, a known artifact of OLS fitting in the case of high multicollinearity between GLM predictors182

(Mumford et al., 2014; Soch et al., 2020).183

When applying GLMsingle, these patterns of temporal autocorrelation change dramatically. In NSD184

b4, autocorrelation drops to r = 0 much more rapidly than in b1, and in BOLD5000, beta maps from185

successive trials in b4 are now nearly uncorrelated on average. This is an expected outcome, since186

the stimuli in NSD and BOLD5000 are ordered pseudorandomly. In both datasets, an intermediate187

beta version (b2) containing only HRF optimization confers marginal benefit over b1, but the most188

dramatic improvements come from the addition of both GLMdenoise and fractional ridge regression189

(b4). Overall, these results demonstrate the utility of GLMsingle for disentangling neural responses190

to nearby stimuli in event-related designs, even when events are presented relatively slowly (as in191

BOLD5000).192

GLMsingle improves between-subject representational similarity across datasets193

Large-scale datasets such as NSD and BOLD5000 are well-suited for representational analyses (e.g.,194

RSA) that compare evoked neural response patterns between individual subjects, across different exper-195

imental modalities, and against computational models (e.g., deep neural networks, see Kriegeskorte,196

2015, Serre, 2019 for review.) In almost all such studies, representational analyses presume that the197

same set of stimuli will evoke reasonably similar responses across subjects. As such, given the ubiquity198

of noise in fMRI, it is reasonable to expect that improving the accuracy of single-trial response estimates199

should yield representations that are more similar across individuals.200

To compare representations between subjects, we used the approach of RSA (Kriegeskorte et al.,201

2008). First, we isolated stimuli that overlap between BOLD5000 and the subset of NSD analyzed202

for this manuscript (the first 10 sessions from each subject). Using these 241 stimuli, we constructed203

representational dissimilarity matrices (RDMs) using repetition-averaged betas from each individual,204

and then correlated all pairs of subject RDMs within and between datasets. Note that GLMsingle is not205

designed to enhance or optimize cross-subject representational similarity; as such, it is informative to206

examine RSA correlations between subjects as a way of assessing methods for denoising (Charest et al.,207

2018). Strikingly, in comparing beta versions b1 and b4, we observe a consistent strengthening of RDM208

correspondence (Figure 5b). This trend held within NSD, within BOLD5000, and when comparing the209

RDMs of subject pairs between the two datasets. The latter result is especially striking given the many210

methodological differences between NSD and BOLD5000: fMRI data were collected at different sites211

on different scanners, at different field strengths (7T vs. 3T), with different behavioral tasks, and with212

different inter-stimulus intervals (4 s vs. 10 s).213

These results indicate that GLMsingle, through its multifaceted approach to mitigating the effects of214

noise, helps reveal meaningful shared variance in neural responses across individuals who viewed the215

same stimuli. The GLMsingle toolbox may therefore be a key resource for future fMRI studies seeking216

to stitch together data across subjects from different sites or cohorts.217

GLMsingle enables fine-grained image-level MVPA decoding218

As a final analysis, we assessed the effect of GLMsingle on the results of multivoxel pattern analysis219

(MVPA). In a “one-vs.-many” classification paradigm, we trained linear SVM models for each subject220

to predict image identity from neural response patterns. The baseline GLM (b1) classification accuracy221

was slightly above chance on average for the subjects in NSD and BOLD5000 when including all visual222

cortex voxels (Figure 6a, blue traces). Performing the same MVPA procedure using GLMsingle betas223

(b4), we observe that mean accuracy approximately triples in NSD and doubles in BOLD5000 (Figure224

6a, red traces). Moreover, in both datasets we observe a substantial increase in classification accuracies225
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Figure 5: Impact of GLMsingle on inter-subject RSA correlations
(A) Correlations of RDMs across all pairs of subjects and beta versions, at 3 different voxel reliability thresholds. We
compute RDMs for each subject and beta version using Pearson dissimilarity (1 - r) over repetition-averaged betas within the
nsdgeneral ROI. Grid lines separate beta versions from one another, an individual cell reflects the RDM correlation between
one pair of subjects, and cross-dataset comparisons occupy the top-right and bottom-left quadrants of the matrices. (B)
Mean inter-subject RDMs correlations within NSD (left), within BOLD5000 (center), and between the two datasets (right).
GLMsingle (b4) yields a considerable strengthening of RDM correspondence for each subject pair being considered, within
and between datasets.

with increasing voxel reliability threshold, with the most dramatic improvements achieved using b4 in226

NSD (Figure 6a, left panel, right-most bins).227

The level of performance that GLMsingle facilitates on this challenging multi-way decoding task228

highlights the ability of the technique to accurately identify and model the stable structure contained229

in noisy fMRI time-series. To illustrate this point, we performed 2D multidimensional scaling (MDS,230

Borg and Groenen, 2005) using NSD betas that were included in MVPA. Comparing results between231

beta versions b1 and b4, we observe improved clarity of an animacy division in the representational232

space of an example subject (Figure 6b).233
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Figure 6: Impact of GLMsingle on MVPA decoding accuracy
(A) Image-level linear SVM decoding accuracy by beta version. At each reliability threshold, we compute the mean decoding
accuracy over subjects within each dataset, as well as the standard error of the mean. Classifiers are trained on n − 1
available image repetitions, and tested on the held-out repetition, with accuracy averaged over cross-validation folds.
Applying GLMsingle (b4) yields dramatic increases in image decodability compared to a baseline GLM (b1). (B) The effect
of GLMsingle on animacy representation is shown in an example NSD subject (subj01) using multi-dimensional scaling.
GLMsingle clarifies the division in representational space between stimuli containing animate and inanimate objects. COCO
stimuli containing identifiable human faces are masked with a rectangle for the sake of privacy.

DISCUSSION234

As scientific datasets grow in scale and scope, new techniques for data processing will help to unlock235

their potential. This is especially true in human neuroscience where data remain both expensive and236

time-consuming to collect (Naselaris et al., 2021). This paper has introduced GLMsingle, a publicly237

available toolbox for analyzing fMRI time-series data that leverages data-driven techniques to improve238

the accuracy of single-trial fMRI response estimates. We have tested GLMsingle extensively using NSD239

and BOLD5000, two of the largest fMRI datasets that densely sample responses within individuals.240

For both datasets, analyses of the response estimates provided by GLMsingle indicate substantial241

improvements in several key metrics of interest to neuroscientists: (i) enhanced test-retest reliability of242

voxel response profiles, a straightforward metric of data quality; (ii) reduced temporal autocorrelation,243
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a common fMRI effect that is presumably undesirable and especially prominent in rapid event-related244

designs; (iii) increased representational similarity across subjects both within and across datasets; and245

(iv) improved multivariate pattern classification performance when discriminating responses evoked by246

individual images.247

Principles underlying GLMsingle248

GLMsingle incorporates three optimization procedures to improve the estimation of fMRI responses:249

1. HRF fitting. GLMsingle uses a “library of HRFs” technique to select the most appropriate HRF250

to use for each voxel in a given dataset (Allen et al., 2022). This library consists of a set of251

20 HRFs that were derived from experimental data (specifically, the first NSD scan session252

acquired in each of the 8 NSD subjects). It is well known that variations in HRFs exist across253

voxels, brain areas, and subjects, and that mismodeling the timecourse of a voxel may lead to254

suboptimal analysis outcomes (Handwerker et al., 2004, 2012). Imposing constraints on HRF255

selection by choosing from a fixed set of HRFs avoids the instability (high variance) associated256

with more flexible timecourse modeling approaches, such as finite impulse response modeling257

(Kay et al., 2008; Bai and Kantor, 2007). Variations in timecourse shapes in the HRF library258

reflect a continuum between short-delay, narrow-width timecourses to long-delay, broad-width259

timecourses, and are likely caused by variations in the contribution of large vessels to the BOLD260

response observed in a voxel (Kay et al., 2020).261

2. Data-driven denoising. Incorporating an adaptation of the GLMdenoise technique (Kay et al.,262

2013), GLMsingle uses principal components analysis to calculate potential nuisance regressors263

from fMRI time-series data observed in voxels that are deemed unrelated to the experimental264

paradigm. These regressors are incorporated into the GLM using a cross-validation procedure to265

determine the optimal number of nuisance regressors to add. A key aspect of our approach is266

the acknowledgement that including increasing numbers of nuisance regressors will, at some267

point, cause overfitting and degradation of results (Kay et al., 2013); this motivates the use of268

cross-validation to determine the optimal level of model complexity.269

3. Regularization of GLM weights. To improve the accuracy of single-trial GLM response estimates,270

GLMsingle uses fractional ridge regression (Rokem and Kay, 2020), with an optimal degree of271

regularization identified for each voxel, again using cross-validation. The improvements afforded272

by this procedure are due to the substantial amount of overlap of the fMRI response across273

successive trials, unless very long (> 30 s) inter-stimulus intervals are used. It is well known274

that, in the context of ordinary least squares estimation, two predictors that are correlated (or275

anti-correlated) will have reduced estimation precision compared to the scenario in which the276

predictors are uncorrelated (Mumford et al., 2012; Soch et al., 2020). For rapid event-related277

designs, predictors for consecutive trials are typically correlated, and ordinary least-squares278

estimates will suffer from high levels of instability. Ridge regression imposes a shrinkage prior279

(penalizing the sum of the squares of the beta estimates), which can, in principle, dampen the280

effects of noise and improve out-of-sample generalizability of the beta estimates.281

Ideal use-cases for GLMsingle282

GLMsingle is designed to be general in its application. It uses data-driven procedures that automatically283

adapt to the signal-to-noise characteristics of a given dataset. For example, in datasets where structured284

noise is prevalent, appropriate nuisance regressors will automatically be included, whereas in datasets285

with very little structured noise (e.g., low head motion), fewer (or no) nuisance regressors will be286
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included. As another example, for experimental designs with high temporal overlap between consecutive287

trials or high levels of noise, relatively strong levels of shrinkage regularization will likely be selected.288

GLMsingle is a general technique that can be fruitfully applied to nearly any fMRI experiment involving289

discrete events (including block designs). However, we recognize that integrating a new tool into290

an analysis workflow requires effort. Therefore, we anticipate that the most consequential impact of291

GLMsingle will be observed for study designs with low sensitivity (such as condition-rich designs).292

Potential limitations to consider when applying GLMsingle293

GLMsingle relies on cross-validation to determine two key hyperparameters: (i) the number of nuisance294

regressors to use in the GLM as derived by applying PCA to data from the noise pool voxels; and (ii)295

the amount of ridge-regression shrinkage to apply for each voxel. Although the data-driven nature of296

the technique is one of its strengths (since it adapts to the characteristics of each dataset), it is also a297

potential limitation. First, a prerequisite for application of GLMsingle is the existence of at least some298

repeated trials in a given dataset. A dataset consisting only of experimental conditions with a single299

occurrence each cannot be used in conjunction with the cross-validated procedures for determining300

the optimal number of nuisance regressors and the voxel shrinkage fractions. Second, since data are301

invariably noisy, the determination of hyperparameters is subject to noise, and it is not guaranteed that302

hyperparameter estimates will be accurate in all possible data situations. It remains an open question for303

further investigation what the minimum data requirements are for reasonably accurate hyperparameter304

estimation.305

Given the requirement of repeated discrete events, GLMsingle is not applicable to resting-state data,306

since they contain no explicit task structure. Similarly, GLMsingle is not suitable for experiments that307

involve continuous event structures – for example, movie watching, storytelling, dynamic exploration,308

game-playing — unless certain events within the task are coded as discrete, repeated instances. For309

example, the appearance on-screen of a particular character could be treated as a repeated “event” in310

constructing a design matrix. Or, as another example, certain words or parts of speech could be treated311

as “events” within a continuous auditory or linguistic experiment.312

It is important to consider whether denoising comes at the potential cost of introducing bias (Kay,313

2022). Considering each component of GLMsingle, we believe that the risk of bias is minimal for most314

use cases. First, considering the library-of-HRFs approach, we note that the conventional approach315

of using a fixed canonical HRF actually incurs more risk of biasing response estimates than does an316

approach that attempts to flexibly capture variations in HRFs. Nonetheless, we acknowledge that the317

library may not necessarily capture all HRF shapes, and this represents one possible source of bias318

(though likely minor). Second, considering the GLMdenoise procedure, we note that data-derived319

nuisance regressors are not blindly removed from the time-series data prior to modeling, as this would320

pose a clear risk of removing experimentally-driven signals, thereby leading to bias (Liu et al., 2001).321

Rather, by including both task-related regressors and nuisance regressors in the GLM, the model can322

appropriately partition variance between signal and noise sources. Third, considering ridge regression,323

we note that shrinkage can be viewed as a form of temporal smoothing, in the sense that beta weights324

from temporally adjacent trials are biased to be more similar in magnitude. While this is indeed a325

source of bias, this should be concerning only for investigations where relative responses for nearby326

trials are of specific interest (e.g., studies of repetition suppression). For other investigations, and327

especially for experiments where condition ordering is pseudorandom, it is unlikely that this form of328

temporal regularization and its associated bias would lead to incorrect scientific inferences.329
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Online example scripts and tutorials330

To enable easy adoption of GLMsingle, we provide extensive documentation and example scripts for331

common neuroimaging use-cases (glmsingle.org). Publicly available online resources include code332

implementation of GLMsingle in both MATLAB and Python, example scripts and notebooks, technical333

documentation, and answers to frequently asked questions. The GLMsingle pipeline is designed to334

be easy to implement in different neuroimaging pipelines. The example scripts we provide illustrate335

typical GLMsingle usage for both event-related and block designs. These scripts guide the user through336

basic calls to GLMsingle, using representative, small-scale example datasets. We hope these practical337

resources facilitate the application of GLMsingle to existing and future neuroimaging datasets.338

Conclusion339

Our results suggest that GLMsingle represents a methodological advancement that will help improve340

data quality across different fMRI designs. While improvements in MR hardware (e.g. magnetic field341

strength, RF coil, pulse sequences) and experimental design (e.g. optimized study design and trial342

distributions) may contribute to improved data quality, the benefits of GLMsingle demonstrated in343

this paper make clear that data processing techniques are another critical factor that can profoundly344

impact SNR and overall experimental power. As an analogy, we observe that the rapid (and annual)345

improvement in cell phone cameras has been driven in large part by advances in image analysis346

algorithms. As summarized by an Apple executive, “[while sensor quality has improved], increasingly,347

what makes incredible photos possible aren’t just the sensor and the lens but the chip and the software348

that runs on it” (Wilson, 2018). We suggest that GLMsingle represents a similar advance in signal349

processing for fMRI.350

MATERIALS AND METHODS351

Description of GLMsingle352

353

Inputs to GLMsingle354

GLMsingle expects that input fMRI data have been preprocessed with motion correction at minimum,355

and ideally slice time correction as well. Additional common preprocessing steps such as compensation356

for spatial distortion, spatial smoothing, or registration to an anatomical space (or atlas space) are357

all compatible with GLMsingle without any complications. Detrending or high-pass filtering the358

time-series data is not necessary, as low-frequency fluctuations are modeled as part of the GLM fitting359

procedure. The input fMRI data can be supplied in either volumetric or surface format. Besides fMRI360

data, the other user-provided input to GLMsingle is an array of design matrices corresponding to each361

run of the time-series data, indicating the sequence of events that occurred during the runs. GLMsingle362

expects that these are matrices with dimensions (time x conditions), where each column corresponds to363

a single condition and consists of 0s except for 1s indicating the onset times for that condition. Further364

details about data formats are provided in the online code repository.365

GLMsingle overview366

GLMsingle consists of three main analysis components. The first component is the use of a library of367

hemodynamic response functions (HRFs) to identify the best-fitting HRF for each voxel. This simple368

approach for compensating for differences in hemodynamic timecourses across voxels (Handwerker369

et al., 2004) has several appealing features: it invariably provides well-regularized HRF estimates, and370

it is efficient and can be executed with reasonable computational cost. The second component is an371

adaptation of GLMdenoise to a single-trial GLM framework. GLMdenoise is a previously introduced372

technique (Kay et al., 2013) in which data-derived nuisance regressors are identified and used to remove373
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noise from—and therefore improve the accuracy of—beta estimates. The third analysis component is an374

application of ridge regression (Hoerl and Kennard, 1970) as a method for dampening the noise inflation375

caused by correlated single-trial GLM predictors. To determine the optimal level of regularization for376

each voxel, we make use of a recently developed efficient re-parameterization of ridge regression called377

“fractional ridge regression” (Rokem and Kay, 2020).378

Derivation of the library of HRFs379

The HRF library incorporated into GLMsingle was previously used for signal estimation in analyzing380

the Natural Scenes Dataset. Complete details on the derivation procedure for the HRF library can be381

found in the NSD dataset paper (Allen et al., 2022). In brief, empirically-observed BOLD timecourses382

were subject to principal components analysis, projected onto the unit sphere, and parameterized using a383

path consisting of 20 regularly-spaced points through the area of greatest data density. The timecourses384

corresponding to the resulting set of 20 points were fit using a double-gamma function as implemented385

in SPM’s spm hrf.m, yielding a fixed library of 20 HRFs. This library is the default in GLMsingle,386

and was used for all analyses of the NSD and BOLD5000 datasets described here. In future work, it is387

possible to refine or expand the HRF library (e.g., by deriving it from a larger pool of subjects, or by388

restricting estimation to individual subjects).389

Cross-validation framework for single-trial GLM390

The GLMdenoise and ridge regression analysis components of GLMsingle both require tuning of391

hyperparameters (specifically, the number of nuisance regressors to include in GLM fitting and the392

regularization level to use for each voxel). To determine the optimal setting of hyperparameters, we393

use a cross-validation approach in which out-of-sample predictions are generated for single-trial beta394

estimates. Performing cross-validation on single-trial betas, as opposed to time-series data, simplifies395

and reduces the computational requirements of the cross-validation procedure. Note that because of396

cross-validation, although GLMsingle produces estimates of responses to single trials, it does require397

the existence of and information regarding repeated trials (that is, trials for which the experimental398

manipulation is the same and expected to produce similar brain responses). This requirement is fairly399

minimal, as most fMRI experiments are designed in this manner.400

The first step of the cross-validation procedure is to analyze all of the available data using a generic401

GLM. In the case of GLMdenoise, this amounts to the inclusion of zero nuisance regressors; in the case402

of ridge regression, this amounts to the use of a shrinkage fraction of 1, which corresponds to ordinary403

least-squares regression. In both cases, the generic analysis produces a full set of unregularized single-404

trial betas (e.g., in one NSD session, there are 750 single-trial betas distributed across 12 runs, and in405

one BOLD5000 session, there are either 370 or 333 single-trial betas distributed across either 10 or 9406

runs). The second step of the procedure is to perform a grid search over values of the hyperparameter407

(e.g., number of GLMdenoise nuisance regressors; ridge regression shrinkage fraction). For each408

value, we assess how well the resulting beta estimates generalize to left-out runs. By default, for all409

cross-validation procedures, GLMsingle implements the following leave-one-run-out routine: (1) one410

run is held out as the validation run, and experimental conditions that occur in both the training runs411

and the validation run are identified; (2) squared errors between the regularized beta estimates from412

the training runs and the unregularized beta estimates from the validation run are computed; (3) this413

procedure is repeated iteratively, with each run serving as the validation run, and errors are summed414

across iterations.415

GLMsingle algorithm416

Having described the essential aspects of the estimation framework above, we now turn to the steps in417

the GLMsingle algorithm. GLMsingle involves fitting several different GLM variants. Each variant418
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includes polynomial regressors to characterize the baseline signal level: for each run, we include419

polynomials of degrees 0 through round(L/2) where L is the duration in minutes of the run.420

1. Fit a simple ON-OFF GLM. In this model, all trials are treated as instances of a single experi-421

mental condition, and a canonical HRF is used. Thus, there is a single “ON-OFF” predictor that422

attempts to capture signals driven by the experiment. The utility of this simple model is to pro-423

vide variance explained (R2) values that help indicate which voxels carry experimentally-driven424

signals.425

2. Fit a baseline single-trial GLM. In this model, each stimulus trial is modeled separately using a426

canonical HRF. This model provides a useful baseline that can be used for comparison against427

models that incorporate more advanced features (as described below).428

3. Identify an HRF for each voxel. We fit the data multiple times with a single-trial GLM, each429

time using a different HRF from the library of HRFs. For each voxel, we identify which HRF430

provides the best fit to the data (highest variance explained), and inherit the single-trial betas431

associated with that HRF. Note that the final model for each voxel involves a single chosen HRF432

from the library.433

4. Use GLMdenoise to determine nuisance regressors to include in the model. We define a pool of434

noise voxels (brain voxels that have low ON-OFF R2, according to an automatically determined435

threshold) and then perform principal components analysis on the time-series data associated436

with these voxels (separately for each run). The top principal components (each of which is a437

timecourse) are added one at a time to the GLM until cross-validation performance is maximized438

on-average across voxels. The inclusion of these nuisance regressors is intended to capture439

diverse sources of noise that may be contributing to the time-series data in each voxel.440

5. Use fractional ridge regression to regularize single-trial betas. With the nuisance regressors441

determined, we use fractional ridge regression to determine the final estimated single-trial betas.442

This is done by systematically evaluating different shrinkage fractions. The shrinkage fraction443

for a given voxel is simply the ratio between the vector length of the set of betas estimated444

by ridge regression and the vector length of the set of betas returned by ordinary least-squares445

estimation, and ranges from 0 (maximal regularization) to 1 (no regularization). For each voxel,446

in the context of a GLM that incorporates the specific HRF chosen for that voxel as well as the447

identified nuisance regressors, cross-validation is used to select the optimal shrinkage fraction.448

The default behavior of GLMsingle is to return beta weights in units of percent signal change by449

dividing by the mean signal intensity observed at each voxel and multiplying by 100. To preserve450

the interpretability of GLM betas as percent signal change even after applying shrinkage via ridge451

regression, we apply a post-hoc scaling and offset on the betas obtained for each given voxel in order to452

match, in a least-squares sense, the unregularized betas (shrinkage fraction equal to 1) obtained for that453

voxel.454

To give a sense of the computational requirements of GLMsingle, we report here results for an example455

scenario. We ran the MATLAB version of GLMsingle with default parameters on the first NSD scan456

session for subj01 (1.8-mm standard-resolution version of the data). The scan session involved 750457

trials and a data dimensionality of (81 voxels × 104 voxels × 83 voxels) = 699,192 voxels and (12458

runs × 226 volumes) = 2,712 time points. The code was run on an 32-core Intel Xeon E5-2670 2.60459

GHz Linux workstation with 128 GB of RAM and MATLAB 9.7 (R2019b). The data were loaded in460
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single-precision format, resulting in a base memory usage of 8.4 GB of RAM (the data alone occupied461

7.6 GB). Code execution (including figure generation and saving results to disk) took 4.8 hours (average462

of 2 trials). The maximum and mean memory usage over the course of code execution was 38.0 GB463

and 18.5 GB of RAM, respectively.464

GLMsingle outputs465

The default output from GLMsingle includes the different GLM beta estimates that are progressively466

obtained in the course of the algorithm (e.g. the single-trial betas with voxel-wise tailored HRFs; the467

single-trial betas incorporating GLMdenoise, etc.). The pipeline also outputs several metrics of interest,468

such as a map of the HRF indices chosen for different voxels, the R2 values from the ON-OFF GLM, a469

map of the voxels identified as “noise”, a summary plot of the cross-validation procedure used to select470

the number of noise regressors, and a map of the amount of ridge regression shrinkage applied at each471

voxel. These outputs are displayed in a set of convenient figures.472

Flexibility of GLMsingle473

Although GLMsingle provides default settings for the parameters that control its operation, the toolbox474

is flexible and allows the user to adjust the parameters if desired. Modifying the parameters allows the475

user to achieve a range of different behaviors, such as expanding the HRF library to include additional476

candidate HRFs; changing the maximum number of nuisance regressors tested during GLMdenoise477

(default is 10); modifying the range of shrinkage fractions evaluated for ridge regression (default is478

0.05 to 1 in increments of 0.05); and running different flavors of GLM models that omit HRF fitting,479

GLMdenoise, and/or ridge regression. For complete documentation, please refer to the GLMsingle480

function descriptions and example scripts available at glmsingle.org.481

Application of GLMsingle to NSD and BOLD5000482

483

In order to assess the efficacy of GLMsingle for large-scale fMRI datasets, we tested GLMsingle on484

the NSD (Allen et al., 2022) and BOLD5000 (Chang et al., 2019) datasets. Both datasets involve485

presentation of many thousands of natural images. NSD and BOLD5000 share an overlapping subset of486

stimuli from the Microsoft Common Objects in Context (COCO) database (Lin et al., 2014), enabling487

direct comparison between the brain responses observed in the two datasets. However, there are a488

number of differences between the datasets: the two datasets were collected at different field strengths,489

with different event timings, and at different spatial and temporal resolution. In addition, while NSD490

contains many repeated stimuli within each scan session, BOLD5000 contains very few. As such,491

processing BOLD5000 requires grouping of input data across scan sessions to facilitate the cross-492

validation procedures used in GLMsingle. This challenging processing scheme with respect to image493

repetitions provides a strong test of the robustness of the GLMsingle technique.494

NSD Dataset495

For complete details of the NSD study, including scanning parameters, stimulus presentation, and496

experimental setup, refer to the Methods section of the corresponding dataset paper (Allen et al., 2022).497

In brief, a total of 8 subjects participated in the NSD experiment, each completing between 30-40498

functional scanning sessions. For the full experiment, 10,000 distinct images from the Microsoft COCO499

dataset were designed to be presented 3 times each over the course of 40 sessions. For computational500

convenience and to make comparisons across subjects easier, only the first 10 NSD sessions from501

subjects 1–4 are used for the analyses contained in this manuscript. Functional data were collected at502

7T, with 1.8-mm isotropic resolution, and with a TR of 1.6 s. Each trial lasted 4 s, and consisted of the503

presentation of an image for 3 s, followed by a 1-s gap. A total of 12 NSD runs were collected in one504

session, containing either 62 or 63 stimulus trials each, for a total of 750 trials per session.505
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The fMRI data from NSD were pre-processed by performing one temporal resampling to correct506

for slice time differences and one spatial resampling to correct for head motion within and across507

scan sessions, EPI distortion, and gradient nonlinearities. This procedure yielded volumetric fMRI508

time-series data in subject-native space for each NSD subject. In this paper, we analyze the standard-509

resolution pre-processed data from NSD which has 1.8-mm spatial resolution and 1.333-s temporal510

resolution (the time-series data are upsampled during preprocessing).511

BOLD5000 Dataset512

For complete details of the BOLD5000 study and methodology, refer to the corresponding dataset paper513

(Chang et al., 2019). A total of 4 subjects participated in the BOLD5000 dataset (CSI1-4). A full dataset514

contained 15 functional scanning sessions; subject CSI4 completed only 9 sessions before withdrawing515

from the study. BOLD5000 involved presentation of scene images from the Scene UNderstanding516

(SUN) (Xiao et al., 2010), COCO (Lin et al., 2014), and ImageNet (Deng et al., 2009) datasets. A total517

of 5,254 images, of which 4,916 images were unique, were used as the experimental stimuli. 112 of the518

4,916 distinct images were shown four times and one image was shown three times to each subject.519

Functional data were collected at 3T, with 2-mm isotropic resolution, and with a TR of 2 s. Each trial520

lasted 10 s, and consisted of the presentation of an image for 1 s, followed by a 9-s gap. A total of521

either 9 or 10 runs were collected in one session, containing 37 stimulus trials each, for a total of either522

333 or 370 trials per session.523

The fMRI data from BOLD5000 were preprocessed using fMRIPrep (Esteban et al., 2019). Data524

preprocessing included motion correction, distortion correction, and co-registration to anatomy (or525

further details, please refer to the BOLD5000 dataset paper (Chang et al., 2019). This yielded volumetric526

fMRI time-series data in subject-native space for each BOLD5000 subject.527

Because GLMsingle requires condition repetitions in order to perform internal cross-validation proce-528

dures, and because BOLD5000 contains a limited number of within-session repetitions, we concatenated529

data from groups of 5 sessions together before processing using GLMsingle. To account for differences530

in BOLD signal intensity across different sessions, we performed a global rescaling operation to the531

data within each session to roughly equate the time-series mean and variance across the 5 sessions532

comprising one batch of data. Specifically, we first computed the global mean fMRI volume across all533

5 sessions, and then, for each session, computed a linear fit between the mean volume from a single534

session and the global mean volume. This yielded a multiplicative scaling factor applied to each session535

in order to roughly equate signal intensities across sessions.536

Applying GLMsingle to NSD and BOLD5000537

We used GLMsingle to estimate single-trial BOLD responses in the NSD and BOLD5000 datasets.538

For NSD, GLMsingle was applied independently to each scan session. For BOLD5000, groups of539

5 sessions were processed together, following the rescaling procedure described above. The default540

GLMsingle parameters were used for processing both NSD and BOLD5000, except that we evaluated541

up to 12 nuisance regressors in GLMdenoise (default: 10).542

Four different versions of single-trial GLM betas were computed and saved. The first beta version (b1,543

AssumeHRF) is the result of Step 2 of the GLMsingle algorithm, and reflects the use of a canonical544

HRF with no extra optimizations. We treat these generic GLM outputs as a baseline against which545

beta versions are compared; estimating BOLD responses using a canonical HRF and ordinary least546

squares (OLS) regression reflects an approach that has been commonly applied in the field of human547

neuroimaging. The second beta version (b2, FitHRF) is the result of Step 3, and reflects the result of548

voxel-wise HRF estimation. The third beta version (b3, FitHRF + GLMdenoise) is the result of Step 4,549

incorporating GLMdenoise, and the final beta version (b4, FitHRF + GLMdenoise + RR) arises from550
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Step 5, and reflects the additional use of ridge regression. For comparisons between GLMsingle and551

Least-Squares Separate (LSS) signal estimation (Figure 3), 4 auxiliary beta versions were computed.552

LSS betas were compared to those estimated using fractional ridge regression in the scenario of using553

the canonical HRF (AssumeHRF + LSS vs. AssumeHRF + RR) and in the scenario of performing554

HRF optimization using the GLMsingle library (FitHRF + LSS vs. FitHRF + RR). Our validation555

analyses involve comparing optimized GLMsingle betas (b2, b3, b4) against those estimated using the556

baseline GLM approach (b1), and performing an 8-way comparison incorporating both b1-b4 and the557

4 auxiliary beta versions used for comparisons with LSS. Prior to all analyses, the responses of each558

voxel were z-scored within each experimental session in order to eliminate potential nonstationarities559

arising over time, and to equalize units across voxels.560

Assessing the impact of GLMsingle561

562

Analysis of voxel reliability563

Computing test-retest reliability – To compute reliability, we repeated the following procedure for564

each beta version. We first extracted the betas from trials that correspond to repetitions of the same565

stimuli (NSD: 3 instances per stimulus; BOLD5000: 4 instances for subjects CSI1-3, and 3 for CSI4).566

For each voxel, this yielded a matrix of dimensions (repetitions x images). To compute reliability,567

Pearson correlation was computed between the average voxel response profiles for each possible unique568

split-half of the data. Therefore, in the case of 4 available repetitions, the reliability for a voxel was569

the average of 3 correlation values, with image repetitions grouped as follows: corr(mean(1, 2) vs.570

mean(3, 4)); corr(mean(1, 3) vs. mean(2, 4)); corr(mean(1, 4) vs. mean(2, 3)). In the case of 3571

repetitions, the reliability was the average of: corr(mean(1, 2) vs. (3)); corr(mean(1, 3) vs. (2));572

corr(mean(2, 3) vs. (1)).573

ROI analysis within visual cortex – To summarize reliability outcomes for each beta version, we used a574

liberal mask containing voxels in visual cortex. Specifically, we used the ‘nsdgeneral’ ROI from the575

NSD study, which was manually drawn on fsaverage to cover voxels responsive to the NSD experiment576

in the posterior aspect of cortex (Allen et al., 2022). To achieve a common reference ROI in volumetric577

space for each subject, we first transformed the nsdgeneral ROI to MNI space, and then mapped this578

ROI from MNI space to the space of each subject in NSD and each subject in BOLD5000.579

Composite voxel reliability scores – In comparing different beta versions output by GLMsingle, we580

sought to understand whether the optimizations tended to affect all voxels equally, or whether the impact581

was mediated by voxel reliability. We therefore measured how different beta versions differed in our582

key outcome metrics (e.g. mean voxel reliability) as a function of the reliability of included voxels. To583

achieve fair comparisons, we ensured that the same groups of voxels were compared at each reliability584

threshold across beta versions. We achieved this by computing composite voxel reliability scores: the585

mean reliability value in each voxel over beta versions b1-b4. We then subselected groups of voxels586

by applying varying threshold levels to the composite reliability scores. For analyses incorporating587

the 4 auxiliary beta versions, composite reliability scores were computed as the mean across all 8 beta588

versions.589

Effect of reliability on beta quality – To quantify the performance of different beta versions as a function590

of voxel reliability, composite scores were thresholded at increasing values (from Pearson r = −0.2 to591

0.6, in steps of 0.05) to determine the included voxels at each reliability level. At each threshold, we592

computed the difference between the reliability achieved by a given beta version and the composite593

reliability (i.e. the average across beta versions). This difference was averaged across voxels, producing594
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traces that reflect the relative quality of data from each beta version compared to the group average,595

across different levels of voxel reliability (Figure 2b).596

Out-of-sample reliability analysis – GLMsingle makes use of all of the data that it is presented with, via a597

series of internal cross-validation operations. As such, there is some degree of dependence between runs.598

Note that this does not pose a significant “circularity” problem with respect to downstream analyses,599

as GLMsingle has no access to any scientific hypotheses and it is unlikely that GLMsingle could bias600

the single-trial beta estimates in favor of one hypothesis over another. However, when the primary601

analysis outcome is to establish that responses to the same condition are reliable across trials (e.g.602

Figures 2, 3), then that outcome is exactly what the GLMsingle algorithm is trying to achieve during603

hyperparameter selection. For a stringent quantification of reliability, we performed additional analyses604

in which quantification of reliability is restricted to responses estimated in completely independent605

calls to GLMsingle (Figure 3b). Specifically, we identify all instances where a condition is repeated606

within the same partition of data processed by GLMsingle (partition size: 1 session for NSD, 5 sessions607

for BOLD5000), and remove these instances from the calculation of reliability. The results show that608

even with strict separation, the patterns of results are essentially the same.609

Comparison to LSS - Least-Squares Separate (LSS) is a popular technique for robust signal estimation610

in rapid event-related designs (Mumford et al., 2012, 2014; Abdulrahman and Henson, 2016). The LSS611

procedure fits a separate GLM for each stimulus, where the trial of interest is modeled as one regressor,612

and all other (non-target) trials are collapsed into a second regressor. An implementation of LSS is613

included in the GLMsingle toolbox.614

Analysis of temporal autocorrelation615

A commonly used strategy to increase fMRI statistical power is to increase the number of experimental616

trials by allowing them to be presented close together in time. However, given the sluggish nature617

of BOLD responses and the existence of temporal noise correlations, this strategy tends to yield618

correlations in GLM beta estimates for nearby trials (Mumford et al., 2014; Olszowy et al., 2019;619

Woolrich et al., 2001; Kumar and Feng, 2014). In general, we expect that such correlations are largely620

artifactual and unwanted. Given that GLMsingle attempts to reduce noise levels, we sought to explore621

whether GLMsingle has a noticeable impact on temporal autocorrelation.622

Average temporal autocorrelation by dataset – For each beta version, the following procedure was623

used to assess the degree of temporal autocorrelation in the data. For visual cortex data from each624

experimental session (nsdgeneral ROI, Allen et al., 2022), we computed the Pearson correlation625

between the spatial response patterns from each pair of trials in the session, yielding a representational626

similarity matrix (RSM) where the temporal ordering of trials is preserved. This process was repeated627

for all sessions, yielding a total of 10 RSMs for each NSD subject and 15 RSMs for each BOLD5000628

subject (9 for subject CSI4, who did not complete the full study). To assess autocorrelation in the data –629

relationships arising due to temporal proximity of different trials – we then took the average of all RSMs630

within each dataset. Note that in both NSD and BOLD5000, the order of stimulus presentation was631

essentially unstructured (pseudorandom). Thus, in terms of signal content (stimulus-driven responses632

in the absence of noise), we expect that trials should be uncorrelated, on average, and that any non-zero633

correlations are indicative of the effects of noise that persist following GLM fitting. The extent to which634

non-zero r values extend forward in time from the RSM diagonal indicates the timescale of the noise635

effects in a given beta version.636

Computing the autocorrelation function – For quantitative summary, we computed a temporal autocor-637

relation function from the dataset-averaged RSM for each beta version (Figure 4). For a given RSM,638

we computed the average similarity value between all trials k and k + x, where x varies from 1 to639
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n, where n is the dimensionality of the RSM. Intuitively, at x = 1, autocorr(x) equals the average640

of all values falling 1 index below the diagonal of the RSM; at x = 5, it equals the average of all641

values falling 5 indices below the diagonal, etc. This procedure outputs a succinct summary of the642

average correlation in neural response between all pairs of time-points within a session, allowing643

for easy comparison between the beta versions in a single plot (Figure 4, right-most column). The644

theoretical desired outcome is autocorr(x) = 0; thus, beta versions whose autocorrelation functions645

are “flatter” (e.g. less area under the curve) presumably contain more accurate GLM estimates. Because646

the temporal interval between trials differed between NSD (4 s) and BOLD5000 (10 s), we express the647

autocorrelation functions in terms of seconds post-stimulus for plotting, to allow for straightforward648

comparison between the datasets.649

Effect of reliability on temporal autocorrelation – The effect of temporal autocorrelation in GLM betas650

may vary depending on the relative responsiveness of different voxels to the experimental stimuli.651

As such, we repeated the autocorrelation analyses several times, varying the expanse of voxels that652

were included. We again relied on the aggregate reliability scores (computed previously) as a measure653

of voxel quality, which are the average voxel reliabilities taken across all the beta versions under654

consideration. This avoids biasing the voxel selection procedure. In Figure 4, we compare temporal655

autocorrelation trends arising from analysis of voxels at two different reliability thresholds (r = 0 and656

r = 0.3).657

Analysis of between-subject representational similarity658

Another way to assess the quality of beta estimates is to examine the similarity of BOLD response659

estimates across subjects. The underlying logic is that noise is expected to be stochastic in the660

data acquisition for each subject, and thus, should on average increase the dissimilarities of BOLD661

response estimates across subjects. A method that accurately removes noise would then be expected662

to increase the similarity of BOLD responses across subjects. To quantify response similarity, we663

use representational similarity analysis (RSA), a commonly used approach in systems and cognitive664

neuroscience (Kriegeskorte et al., 2008; Nili et al., 2014; Diedrichsen and Kriegeskorte, 2017; Kaniuth665

and Hebart, 2021).666

Between-subject RSA correlations – For comparisons between subjects across NSD and BOLD5000,667

we identified a subset of 241 images that overlapped between BOLD5000 and the portion of NSD being668

analyzed for this manuscript. Once overlapping images were identified, the corresponding GLM betas669

for each version were isolated, and averaged over all available repetitions within subject (3 for NSD, 4670

for BOLD5000). Then, we used Pearson dissimilarity (1 − r) to compute RDMs over the averaged671

betas for each subject, in each dataset. To assess the impact of voxel reliability on cross-subject672

RDM correlations, this procedure was repeated across a range of voxel reliability inclusion levels673

r = [−1, 0, 0.05, 0.1, 0.15, 0.2, 0.25], using the beta version-averaged aggregate reliability scores674

computed previously. Voxels inside the nsdgeneral ROI were used in this analysis. Once RDMs675

were computed for each subject, using responses from the sets of stimuli detailed above, within- and676

across-dataset RSA correlations were computed using the vectorized lower-triangular portions of each677

RDM (Figure 5b).678

Analysis of MVPA decoding accuracy679

Multivoxel pattern analysis (MVPA) investigates the information contained in distributed patterns of680

neural activity to infer the functional role of brain areas and networks. Pattern decoding tools like681

MVPA have been deployed extensively in systems and cognitive neuroscience to study the function of682

neural ROIs (Haxby et al., 2001; Norman et al., 2006; Naselaris et al., 2011; Charest et al., 2018). To683

further assess the practical impact of GLMsingle, we tested the efficacy of MVPA decoding using the684

different beta versions output by the toolbox.685
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Image-level decoding paradigm – We implemented a challenging “one-vs-many” decoding task to686

assess whether data quality was sufficiently high to characterize the distinct neural patterns associated687

with individual naturalistic images in the NSD and BOLD5000 datasets. Within each dataset, we688

identified the set of images that all subjects viewed at least 3 times, and then performed multiclass689

linear support vector machine (SVM) decoding via leave-one-repetition-out cross-validation. In NSD,690

a total of 82 classes were used, representing the images that overlapped across the 10 available sessions691

from subj01-04. In BOLD5000, the subset of these 82 stimuli overlapping between all subjects of both692

datasets were used (a total of 20 classes). We then assessed the degree to which relative differences in693

decoding accuracy between b1 and b4 changed depending on the reliability of the included voxels. We694

conducted the above decoding procedure iteratively, each time increasing the voxel reliability inclusion695

threshold for data within the nsdgeneral ROI (range r = 0 to 0.35). BOLD5000 subject CSI4, having696

completed only 9 of 15 experimental sessions, was excluded from MVPA procedures due to insufficient697

stimulus repetitions.698

Multidimensional scaling – To gain insight into the representational changes due to GLMsingle that699

may support improvements in MVPA decoding, we performed multidimensional scaling (MDS) over700

repetition-averaged NSD betas from a baseline GLM (b1) and the final betas from GLMsingle (b4),701

within the nsdgeneral ROI of an example subject (NSD subj01). In Figure 6b, we compare the 2-702

dimensional MDS embeddings between these beta versions, coloring COCO stimuli based on whether703

they contain animate or inanimate objects according to the image annotations.704
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