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1 Introduction

Axion electrodynamics has been widely investigated from particle physics and cosmology
to condensed matter physics. In particle physics, the axion has been introduced to resolve
the strong CP problem, and it is a candidate of cold dark matter [1-7] (see also refs. [8—
11] as a review). In condensed matter physics, the axion electrodynamics can describe
magneto-electric responses in topological matter [12-14] (see also ref. [15] as a review).

One of the characteristic features of the axion electrodynamics is a topological cou-
pling between the axion and photon. This coupling originates from the chiral anomaly
of massive Dirac fermions coupled with them, which modifies the electric Gauss law and
the Maxwell-Ampere law [12-14, 16, 17]. Furthermore, this topological coupling leads to
non-trivial effects on extended objects in the axion electrodynamics. There are spatially or
temporally extended objects such as magnetic monopoles, axionic domain walls, and ax-
ionic strings [18-21]. One of the characteristic effects is the Witten effect [22] for the axion
due to the modification of the electric Gauss law [16]. If an axionic domain wall encloses a
magnetic monopole, electric charges are induced on the axionic domain wall [12, 17]. This
domain wall enclosing the magnetic monopole is called a monopole bag [23, 24].

Another characteristic effect is the so-called anomalous Hall effect for the axion due
to the modification of the Maxwell-Ampere law [12-14, 17, 25-29]. If a domain wall is
placed in the electric flux background, electric currents are induced on the domain wall
whose direction is perpendicular to the electric flux. This effect also arises in the presence
of the axionic strings in the electric flux background [13, 21, 30]. There are induced electric
currents whose directions are perpendicular to both of the electric flux and the gradient of
the axion. Since the electric current flows to the axionic strings, this effect is related to the
so-called anomaly inflow mechanism of axionic strings [31, 32] (see also refs. [33-36]). By
these non-trivial phenomena of extended objects due to the topological coupling, the axion
electrodynamics has also been investigated as a simple model of string theory [37—39].



What are the underlying structures for the above peculiar effects for the extended
objects? One of the candidates is the notion of symmetries, giving us non-perturbative,
model-independent, and universal understandings of physical phenomena. In fact, the
chiral symmetry and its anomaly in the axion electrodynamics are essential notions to
understand these effects. However, its symmetry transformation acts on only local fields
rather than extended objects. If we try to understand the effects on extended objects
by symmetries, it is plausible to consider symmetries whose transformations act on ex-
tended objects.

Recently, the notion of symmetries has been generalized to ones for extended objects,
called higher-form symmetries [40-42] (see also related topics [43-51]). For p-form symme-
tries (p = 0,1,..., D), charged objects are p-dimensional, where D is the spacetime dimen-
sions. Symmetry generators acting on the charged objects are (D —p—1)-dimensional topo-
logical objects, while the conventional symmetries can be understood as 0-form symmetries,
since they act on local 0-dimensional objects, i.e., local fields. Such higher-form symme-
tries give us new aspects of modern physics. For example, we can understand photons in
the pure Maxwell theory as Nambu-Goldstone bosons [42, 52, 53]. Such an interpretation
has been generalized to non-relativistic cases as well [26, 54-56]. Here, a charged object
is a 1-dimensional Wilson loop whose vacuum expectation value is finite in the Coulomb
phase. Another application of higher-form symmetries is that Abelian topologically ordered
phases [57-60] can be regarded as broken phases of higher-form symmetries [42, 47, 49],
in which the charged object is a worldline of an anyon. One can further classify phases of
gauge theories based on those symmetries [61-73]. Thus, it becomes possible to understand
phenomena of extended objects in terms of higher-form symmetries.

A more elegant description of higher-form symmetries can be given by so-called higher-
groups [74], which are extensions of conventional groups describing ordinary (0-form) sym-
metries. Here, higher n-groups are given by a set of n groups with maps between them.
For example, a 2-group is given by a set of two groups (G, H), a map H — G, and actions
of G on G and H. The higher-groups have been recently applied to various aspects of the-
oretical physics, such as higher gauge theories where charged objects are extended [75-88],
effective theories of gapped or gapless topological matter [89-98], deformation of current
algebra for tensorial currents [99] and quantum chromodynamics [100]. Therefore, higher-
form symmetries and higher-group structures may provide us with new understandings of
the effects in the axion electrodynamics.

In the previous paper by the present authors [101], it was shown that the axion elec-
trodynamics possesses a 0-form symmetry, an electric 1-form symmetry, a magnetic 1-form
symmetry, and a 2-form symmetry. Here, the O-form symmetry is a shift symmetry of the
axion. The electric and magnetic 1-form symmetries are related to conservation laws of
electric and magnetic fluxes, respectively. The 2-form symmetry is the conservation law
of the winding number of axionic strings. Furthermore, we found that the higher-form
symmetries can have a semistrict 3-group (or 2-crossed module) structure by analyzing the
correlation functions of the symmetry generators. We hereafter abbreviate the semistrict
3-group to the 3-group for simplicity. The 3-group is a set of three groups (G, H, L) with
maps between them [102]. One of the particular properties of the 3-group is the presence of



actions of G on G, H, L. Another property is that there must be a map from two elements
in H to L, which is called the Peiffer lifting.

In this paper, we investigate the higher-group structure in the (3+1)-dimensional axion
electrodynamics in more detail by introducing background gauge fields corresponding to
the higher-form symmetries. The background gauging enables us to describe the 't Hooft
anomalies, which are obstructions to dynamical gauging of global symmetries [103-105].
Since the 't Hooft anomalies constrain possible phase structure of a given theory [61, 62, 106]
and describe anomalous phase factors in correlation functions of symmetry generators [42,
107], it is important to determine the 't Hooft anomalies for the axion electrodynamics.

There are at least two methods to establish the background gauging. One is to es-
tablish gauged actions with couplings between background gauge fields and symmetry
generators [42, 99, 100]. We show that a naive gauging violates the invariance under the
transformations of the axion and photon, which should be avoided [99, 107]. The absence
of apparent inconsistencies requires modifications of the gauge transformation laws corre-
sponding to the 3-group structure. We should note that this gauging procedure is based
on the higher-form symmetries and the gauge invariance, but it does not a priori assume
the 3-group structure.

Next, we show that the above background gauging with the modified gauge transforma-
tions can be sufficiently described by a 3-group gauge theory formulated in refs. [79, 82, 83].
To this end, we establish the 3-group gauge theory for the axion electrodynamics. Here,
we assume the global 3-group structure in the axion electrodynamics. The gauge transfor-
mation laws of the background gauge fields are determined by the basic quantities of the
3-group rather than the gauge invariance of the axion and photon. By comparing the gauge
transformation laws and field strengths, we confirm that these two independent methods
result in the same physics.

As a consequence of the background gauging, we determine 't Hooft anomalies of the
higher-form symmetries. We find that there are three kinds of the 't Hooft anomalies. One
is a mixed 't Hooft anomaly for the axion, which prevents us from a simultaneous gauging of
the 0- and 2-form symmetries. The second is for the photon, which forbids a simultaneous
gauging of the two 1-form symmetries. These two anomalies are extensions of previously
known anomalies for the axion and photon in the absence of the topological coupling [42].
The third is a cubic 't Hooft anomaly, that is so-called 2-group anomaly [107], which implies
the obstruction to the simultaneous gauging of the O-form and the 1-form symmetries.

This paper is organized as follows. In section 2, we review the axion electrodynamics
and higher-form symmetries in this system in detail. In section 3, we consider the back-
ground gauging of the higher-form symmetries that are consistent with the gauge invariance
for the dynamical fields. We further determine the 't Hooft anomalies of the higher-form
symmetries. In section 4, we discuss the other gauging procedure, which is based on the
3-group gauge theory. We show that both of the gauging methods give rise to the same re-
sults in the axion electrodynamics. Finally, we summarize this paper in section 5. We give
four appendices. In appendix A, we give explicit forms of the 't Hooft loop and worldsheet
of the axionic strings which are charged objects of the magnetic 1-form symmetry and the
2-form symmetry, respectively. We show detailed derivations of correlation functions used



in this paper in appendix B. In appendix C, we review the notions of the 3-group, the
Lie algebra of the 3-group, and the 3-group gauge theories. We also give an intuitive and
diagrammatic expression of the 3-group in appendix D.

2 Higher-form symmetries in axion electrodynamics

In this section, we review the higher-form symmetries in (3 4 1)-dimensional axion electro-
dynamics [101] in detail. In particular, we carefully discuss the symmetry groups for the
higher-form symmetries. After giving an action of the massless axion electrodynamics, we
show the existence of the higher-form symmetries by the equations of motion (EOM) and
Bianchi identities of the axion and photon. We also present the charged objects, symmetry
generators, and symmetry groups for the higher-form symmetries.

2.1 Action

Here, we give an action of the massless electrodynamics, in which we regard the photon as
a gauge field of U(1) gauge symmetry, and the axion as a circle valued pseudo-scalar field.
The action has the form [12]

2
v 9 1 9 N )
= — — — - — . 2.1
S /4 ( 5 |do|* + 262|cla| 87r2d>da/\da (2.1)

Here, ¢ is the axion, a the photon, v a decay constant of the axion, e a coupling constant
of the photon, and N an integer. |d¢|? and |da|?> denote d¢ A xdé and da A xda, where * is
the Hodge star operator. We refer to My as a (3+ 1)-dimensional spacetime manifold, e.g.,
the Minkowski spacetime. Throughout this paper, we assume that My is a spin manifold
such that the axion photon coupling term is well-defined. The axion has a 27 periodicity
at each point P in the spacetime:

d(P) + 21 ~ ¢(P). (2.2)

We have assumed that the mass-dimension of the scalar field is normalized as 0. We regard
the periodicity as a redundancy of the axion. In other words, the redundancy can be
understood as a (—1)-form gauge symmetry [41, 108, 109]. An invariant operator under
the redundant transformation in eq. (2.2) is a point operator,

I(gg, P) = "m0, (2.3)

rather than ¢(P) itself. Here, the invariance requires that ¢4p is an integer. Although
I(g¢E, P) is a single-valued function, ¢(P) can be a multi-valued function on a closed loop
C with the winding number,

/c db € 2. (2.4)

Physically, the nonvanishing winding number implies the existence of a string object with
a topologically quantized charge.
The photon is described by a U(1) 1-form gauge field a, which is transformed as

a— a+d\ (2.5)



Here, A is a U(1) gauge parameter, which satisfies A(P) + 27 ~ A(P). Since the gauge
parameter is circle valued rather than R valued, the gauge parameter can have a winding
number [,d\ € 27Z. Such a transformation with a nonvanishing winding number is
called a large gauge transformation. An operator that is invariant under the large gauge
transformation is a Wilson loop,

W(qug,C) := ¢ldar fca, (2.6)

where a charge ¢,p should be an integer. When C is a boundary of a surface S¢, we can
rewrite the Wilson loop by using the Stokes theorem as

W (gar, C) = eian fasc a_ eian fsc da _ eiquE fsc f’ (2.7)

where f = da is the field strength. In general, the field strength is a globally well-defined
closed two-form that may not be the exact form, and it is quantized on a closed surface S as

/S f € 2nZ. (2.8)

It physically means that there can be a magnetic monopole in the interior of S. This is
nothing but the Dirac quantization condition. Throughout this paper, we simply denote
the field strength as da and use the Dirac quantization condition on a closed surface as

/ da € 277, (2.9)
S

bearing in mind that a is not globally well-defined.

2.2 Higher-form symmetries

Here, we review higher-form symmetries in this system [101]. In the following, we show
that there are four kinds of the higher-form symmetries: Zy O-form, electric Zy 1-form,
magnetic U(1) 1-form, and U(1) 2-form symmetries. They are associated with the EOM
or Bianchi identities of the axion and photon.

2.2.1 Zpn 0-form symmetry

First, we consider the Zy 0-form symmetry, which is a shift symmetry of the axion. The
EOM of the axion, v2d x d¢ — %da A da = 0 lead to the following closed current 3-form
and conserved charge,

, N ,
JoE ‘= —U2 *dgb - @a A da, Q¢E(V) = /de)E. (2.10)

Here, V is a 3-dimensional closed subspace. The charge Q4 (V) is topological: it is invariant
under a small deformation V — V U 00y with a four-dimensional subspace €2y, because of
the Stokes theorem. A gauge invariant observable given by the current jyg is the following
unitary object,

27rin¢

U¢E(62mn¢/N,V) — oW Q¢>E(V)7 (2.11)



where e?™"¢/N ¢ 7, parameterizes the topological object. This object is topological
meaning that
U¢E(62mn¢/N,V UBQ()) = U¢E(62mn¢/N,V). (2.12)

Therefore, Uy is a topological unitary object.

One might think that the group parameterizing the symmetry is a continuous group
such as U(1) since there is a conserved current. However, the symmetry group is restricted
to Zy by the large gauge invariance or the Dirac quantization condition of the U(1) gauge
field. This is due to the fact that the current is not gauge invariant, and the conserved
charge is not large gauge invariant. Let us consider this problem in detail. We consider

a topological unitary object Uyp(e'®E,V) = ¢i@s2Q(Y) with a real parameter agp. We
iNa OE

focus on the gauge variant term e s« 2 Jyanda in Ugg(e ‘asE V) and try to define it by
using a gauge invariant integrand [110, 111]. We define this term by using an auxiliary
4-dimensional subspace 0y with a boundary 0y =V as

zNad)E

va anda _ fﬂ danda

e (2.13)

However, the integral has an ambiguity of the choice of €). We can also define

iNa E
e Jyanda by using another 4-dimensional subspace €2y, satisfying 0§}, =V as

iNa 1NO¢¢E
¢>E —— daNda
fv aNda — e fQ’

e (2.14)

The difference should be invisible, so that we require the following condition,

iN«
¢E
fQ daNda

e =1, (2.15)

where Q = Q) U (—€),) is the 4-dimensional closed subspace, and —), is the 4-dimensional
subspace ()], with an opposite orientation. By the Dirac quantization condition, the integral
is [odaAda € 2-(27)*Z on a spin manifold. Therefore, the parameter ap should satisfy
€ia¢E S ZN.l

The charged object for the symmetry is the 0-dimensional point object in eq. (2.3),
and therefore this symmetry is a Zy 0-form symmetry. The symmetry transformation is
generated by the topological unitary object and is expressed by the correlation function,

<U¢E(e2m’n¢/N7 V)I(q¢>E7 73)) _ 627rin¢q¢E Link (V,P)/N <I(Q¢E7 73)> (2.16)

Here, the symbol ‘()’ denotes a vacuum expectation value (VEV), and Link (V,P) € Z is
a linking number of ¥V and P. In appendix B.1, we show the derivation in detail.
2.2.2 Electric Zxn 1-form symmetry

Second, we show a Zy 1-form symmetry originated from the EOM of the photon, — 12d *
da + 2dq§ A da = 0, which would imply the conservation of electric fluxes modified by

!This requirement is the same as the quantization of the Chern-Simons term in (2+ 1) dimensions [112].



the axion. The closed current 2-form, conserved charge, and topological unitary object are
given by

3 1 N 3 . 2ming

uk = g wda— 50da, Qus(S) = [[Jum, Usp(e/,8) = K0 (217)
respectively. The topological unitary object U, g is parameterized by a Zy group instead
of a U(1) group due to the gauge variant integrand ¢da. The restriction on the group can

ia, g N
be shown as follows. We try to define the integral of the gauge variant term e i Js oda

in a gauge invariant way, where a,p is a real parameter that will be determined by the
large gauge invariance. We define the integral by using a 3-dimensional subspace Vs as

iag N _iaaEN
o B [soda _ R Jyg donda (2.18)

The condition that the integral does not depend on the auxiliary subspace Vs leads to

iag g N
¢ i Jydenda _ g (2.19)

where V is a 3-dimensional closed subspace. Since [, d¢ Ada € (2r)?Z, the parameter aqp
should be chosen as e'®® € Z .

The charged object for the symmetry is a Wilson loop in eq. (2.6). The transformation
law is given by

(Uap(e¥™ma/N SYW (gop,C)) = e¥Tnadan Link (SO/N (yy7 (4.0 C)). (2.20)

The derivation is shown in appendix B.2. Since the charged object is a 1-dimensional
object, the symmetry is a Zy 1-form symmetry. We refer to this 1-form symmetry as
the electric Zy 1-form symmetry, since the symmetry is related to a conservation of the
electric fluxes.

2.2.3 Magnetic U(1) 1-form symmetry

Third, we discuss a 1-form symmetry due to the Bianchi identity of the photon, dda = 0.
The corresponding closed current 2-form, conserved charge, and symmetry generator are

given by

1 . .

—da, Quu(S) = / Jonts Unnp(€i®e, 8) = ¢i2aQS), (2.21)
T S

respectively. The charged object is an 't Hooft loop T'(guar,C), which is a closed worldline

jaM =

of a magnetic monopole. Here, ¢, is an integer by the Dirac quantization condition. Note
that the explicit form of the 't Hooft loop is shown in appendix A.

If the worldline of the monopole C is linked with a surface S of the charge Quns(S),
the charge detects the monopole charge gunr as Qunr(S) = i Jsda = gan Link (S,C). In
terms of the correlation function of the 't Hooft loop and the symmetry generator, this
property can be expressed as a U(1) transformation of the 't Hooft loop by Ugas:

(Uani (€, 8)T (qarr, C)) = e@atadt LKLl (g0 C)). (2.22)

Since the charged object is a 1-dimensional object, the symmetry is a U(1) 1-form symmetry.
Hereafter, we refer to this U(1) 1-form symmetry as the magnetic U(1) 1-form symmetry,
since it is related to the conservation law of the magnetic fluxes.



Form Symmetry generator Charged object | Group
O-form Uy egﬂjV% (v rdo—gizanda) '8¢ (P) Zn
1-form U, g e% Js (G rda=gZ5 6da) ¢'deP Jeo 7N
1-form U, e Jsda T(qan,C) U(1)
9-form Uy o7 Jo o Vigerr,S) | U(L)

Table 1. Higher-form symmetries of the massless axion electrodynamics.

2.2.4 U(1) 2-form symmetry

Finally, we consider a U(1) 2-form symmetry originated from the Bianchi identity of the
axion, dd¢ = 0. The corresponding current 1-form, conserved charge, and symmetry
generator are given by

. 1 . (16} 1o’
Jom = 5-dd,  Quem(C) = /CJ¢M, Usn (€', C) = 290, (2.23)

2T

respectively. Here, e® € U(1) parameterizes the symmetry generator. The charged object
for the symmetry generator is a worldsheet of the axionic string denoted as V(ggnr,S),
where § is a 2-dimensional closed subspace. In the presence of the axionic string, the
winding number of the axion becomes [,d¢ = 2mgypr Link (C,S). Note that the explicit
form of the worldsheet of the axionic string is shown in appendix A.

We can regard this as a symmetry transformation of the worldsheet of the axionic
string, since the axionic string is a source of a topological object Qg (S). In terms of the
correlation function, the transformation law is given by

(Usnr (€9, C)V (qgar, S)) = e™@odom Link (€8) (7 (g1 S)). (2.24)

We summarize the higher-form symmetries of the massless axion electrodynamics intro-
duced in this section in table 1.

3 Background gauging and ’t Hooft anomalies

In this section, we consider the background gauging of the higher-form symmetries. We
couple the action of the axion electrodynamics with the background gauge fields corre-
sponding to the higher-form symmetries following ref. [42]. We show that the invariance of
the gauged action under the gauge transformations of the axion and photon (up to 27Z)
leads to modifications of the gauge transformation laws of the background gauge fields.

3.1 Gauging Zn 0-form symmetry

First, we couple a background gauge field of the Zy 0-form symmetry, which is introduced
as a U(1) gauge field with a constraint [40]. Although this constraint is already known, we
here show the derivation of the constraint explicitly in our case for self-containedness. We
also note a relation between the background gauge field and the symmetry generator.



3.1.1 Constraint on background gauge field

First, let us derive the constraint on the background gauge field. The constraint is required
by the invariance under the U(1) gauge transformation of the photon, or equivalently, by the
fact that the global symmetry is not U(1) but Zy. At the linearized level, the background
gauging could be done by adding a coupling of the conserved current with a background
1-form gauge field A‘fE,

N
Sotin. = S+ / o NAYE =5 — (& *d + —5a A da> A ADE (3.1)
My M,y 8

to the action in eq. (2.1). Here, A“fE is a U(1) gauge field that is transformed as
APE 5 AP L dng”, (3.2)

where AgE is a U(1) O-form gauge parameter that satisfies [, dAgE € 27Z on a closed
one-dimensional manifold C. However, the coupling in eq. (3.1) is not invariant under the
gauge transformation of the photon a in eq. (2.5). Since the gauge transformation of a
leads to the term proportional to [ A, AANda /\A?E, the gauge invariance may be preserved
if we impose the flat condition dA(fE = 0, in which A‘fE is locally expressed as adAgE.
Here, « is a parameter that will be determined below.

The gauge transformation of the coupling [ My JoE N A‘fE becomes a total deriva-
tive under the condition, but this total derivative may not vanish under a large gauge
transformation. This problem is caused by the presence of the gauge variant integrand
a A da in Spjin.. In order to discuss the large gauge invariance, we would like to define
the term 8% I} M, @A da A A‘fE by using gauge invariant integrand. We define the term
% Ja, a Nda A AfE on an auxiliary 5-dimensional manifold X5 satisfying 0 X5 = My as

Nao

N N
— aAdaNADF = = dandan APP = —— dandandASE  mod 2. (3.3)
82 Ju, ! 82 Jx, ! 8712 Jx; 0

Hereafter, we omit “mod 27” when we discuss the definitions of actions by using 5-
dimensional manifolds. Note that this definition is a natural extension of the definition
of the (2 + 1)-dimensional Chern-Simons term by using (3 + 1)-dimensional integral [110],
which we have already discussed in eq. (2.13). While the integrand is manifestly invariant
under the gauge transformation of the photon a in eq. (2.5), we have chosen the auxiliary
space X5. The ambiguity of the choice of the auxiliary space does not exist if the following

condition is satisfied:
Na

o2 | dandan dASE € 27, (3.4)
Zs

where Zs is a 5-dimensional manifold without boundaries. Under the normalization
Je dAgE € 2nZ, we have the condition @ = 1/N. Therefore, the gauge field A‘fE
should satisfy

NAYE = dAg”. (3.5)

As a consequence, the field strength of A‘fE vanishes:

FPF = dA?F =o. (3.6)



We refer to the 1-form gauge field with this condition as the Zy 1-form gauge field. This
construction is consistent with the fact that the 0-form global symmetry is a finite group
Zyn, whose gauge field need to be a flat connection.

We have explained the gauging the Zy O-form symmetry at a linearized level of A‘fE,
and derived the condition of A‘fE in eq. (3.5). We can further gauge the Zy 0-form
symmetry at a non-linear level, which can be done as in ordinary gauge theories. We can
couple the background gauge field to the action by replacing d¢ with d¢ — A‘fE. Here, the
axion is shifted under a gauge transformation of A‘fE as

APE 5 A L angE, AZE S AP L NASE ¢ — o+ ASE. (3.7)

We can confirm that the action with the background gauge field is invariant under the
gauge transformations of the axion and photon. In order to make the gauge invariance
manifest, we define a gauged action by using the 5-dimensional action as

2
_ v aeE2 Lo N/ _ A9F
So = /M4 ( 5 |dp — AY™|° + 2e2|da\ ) + 52 Xs(dqb A7) Nda Ada mod27. (3.8)

The action, in particular the last term, does not depend on the choice of X5, as a conse-
quence of

N
~ [ ddAdaAndac2rNZ, and —s / AE A da A da € 2. (3.9)
87-(2 Zs 87T2 Zs
Therefore, the gauged action is invariant under the gauge transformations of dynami-
cal fields.

3.1.2 Background gauging as insertion of symmetry generators

We can interpret the background gauging as a network of the symmetry generator in
the spacetime [42], and the configuration of the symmetry generators is expressed by
the background gauge field AfE. In particular, we can obtain the symmetry generator
Uyr(e2™ms/N V) by choosing APE = 275\745 01(V). Here, we have introduced the delta func-
tional p-form such that, in D-dimensional spacetime Mp,

T NGy(Vp_p) = / J (3.10)

Mp VD—p

for a (D — p)-form J and a (D — p)-dimensional manifold Vp_,. In the viewpoint of
the symmetry generator, the gauge transformation A‘fE — A‘fE + dAgE corresponds to a
topological deformation V — V U 9 in eq. (2.12) by choosing AgE = 27%”’ 90(920), since
ddo(Qo) = 61(9€Q). Note that the condition in eq. (3.5) implies AS)E = 2mnyd0(Qy), since

N A‘fE = 2mngddo(dy). Here, Qy is a 4-dimensional subspace whose boundary is V.

3.2 Gauging electric Zy 1-form symmetry and U(1) 2-form symmetry

Next, we gauge the Zy electric 1-form symmetry. As we see below, we need to gauge
the U(1) 2-form symmetry simultaneously in order to preserve the gauge invariance for
the axion.
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3.2.1 Gauging electric Zxn 1-form symmetry

Here, we consider the gauging of the electric Zy 1-form symmetry, which can be done by
introducing a 2-form gauge field B$¥. Since the global symmetry is parameterized by the
Zy group, there is a similar constraint on Bé‘E . At the linearized level, the coupling would
be written as | My JaE N B$¥. However, this is generally not invariant under the 27 shift
of ¢ due to the term [, %gbda A BSF, and the deviation is 2 Jar, da A BSE . In order to
derive the condition for B$¥ such that the coupling | M, JaE N B$¥ is gauge invariant, we
define the term % / A, Pda A B$F by using a 5-dimensional space as

N

N

— do A da N BSE. 3.11
472 2 Jxs ¢ ndah By (3.11)

The ambiguity of the choice of X5 is absent if NB$F = dB$¥ with the normalization
Is dB$¥ € 27Z. Therefore, we require that the 2-form gauge field is constrained by the

1-form gauge field as
NBSF = dBe¥, (3.12)

which means that the field strength vanishes,
HYE .= dBSE = . (3.13)

At the nonlinear level, the gauging could be done by replacing da with da — B$¥. The
gauged action would be

N

V2 1
=— —|dé* + = |d —B2> —
Si /M4(2\¢r+2€2\a o) + o

/ ¢(da — BSEY A (da — BSE).  (3.14)
My

The gauge transformation laws of B$¥, B¢¥, and a are
BSE 5 BSE 1 aA$E, B{E — B{EF 4+ NASY, a0 — a+ A, (3.15)

Here, AP is a 1-form gauge parameter with the normalization Is dA$F € 27Z. This
action can lead to the coupling at the linearized level. However, the non-linear term
% 1) My ¢BSE A B$F is not invariant under the 27 shift of ¢ up to 27. In fact, the deviation
is o+ [ag, BSE A B3E = 5 [y, dBF N dBYE € %7

We can discuss the problem by using the 5-dimensional action whose integrand is
manifestly gauge invariant (see, e.g., recent refs. [113-115]). We can define the gauged
topological term in a 5-dimensional spacetime X5 as

N

) " ¢(da — BgE) A (da — B(QIE) =
4

=57 [, 0N (da — BSF) A (da — BSF).  (3.16)
5

This action is manifestly invariant under the 27 shift of ¢, but we have chosen an auxiliary
5-dimensional spacetime X5. The gauged action suffers from the ambiguity of the choice

of the spacetime:

N ol aFE 27

Therefore, we cannot gauge the 1-form symmetry by itself.
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3.2.2 Gauging U(1) 2-form symmetry

This problem can be resolved by gauging the U(1) 2-form symmetry simultaneously. This
is because the problematic term 8% Jx, do A (da — B$F) A (da — B$F) is associated to a
closed current 1-form jgnr = %d¢ of the U(1) 2-form symmetry.

Before discussing the resolution, we consider the gauging of the U(1) 2-form symmetry
independently. We introduce a 3-form gauge field Cg) M, which couples to the closed current
of the U(1) 2-form symmetry jgrs as

1

d oM 1
2 ¢ A CS (3.18)

52:S+/ Jonr ANCIM =S +
My
Here, the 3-form gauge field is normalized by the Dirac quantization condition
/ dCs € 2nZ, (3.19)
Q

where () is a 4-dimensional closed subspace. The gauge transformation law of the 3-form
gauge field is
cgM - oM 4 ang™, (3.20)

where AgM is a 2-form gauge parameter that is normalized as [, dAgM € 2nZ. Since the
gauge transformation of the coupling [ My JoM N Cg) M i a total derivative, the large gauge
invariance of the coupling is nontrivial. In order to show the large gauge invariance, we
define the coupling on a 5-dimensional manifold as

1
Sp=5-o— [ don dcgM, (3.21)

T Jxs
The gauged action does not depend on the choice of X5:
1
— | do ndcM e 2n7. (3.22)
7w Jzs
We now resolve the problem of the gauging of the Zy 1-form symmetry. We can cancel
the problematic term 8% Jx, do N BSF A B$F in eq. (3.14) by modifying the field strength
dCfM in eq. (3.21) as
N
dog™ — GNP = dcg™ + B3P A BSE. (3.23)
T

The modification requires an additional gauge transformation law of C?? M ynder BgF —
B§® + g,

N N
CIM s CPM 4 dASM — NG A BYF — ST NGE A NG (3.24)
27 47
Note that the additional transformation does not violate the normalization of Cg) M,

N N
/ d (dAgM — AP ABYE - AP A dA‘fE> € 2nZ. (3.25)
Q 27 4
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Eventually, the gauged action can be defined on the 5-dimensions as

v? 1 1
s :—/ Y del? + —|d —Ba“)—/dAGW“E
12 M4(2’¢‘ +262’a 2| 27 Jx, o NG

N
+— [ dpA(da— Bs") A (da — B5P).
8 J x5

(3.26)

This gauged action has no ambiguity since the problematic term 8% / x5 dp A B$F A BSF
is canceled out as

N 1
v d da — BaE da — B(ZE - d dMaFE
572 /. ¢ A (da 57) A (da 57) o /s ¢ NGy

N . . (3.27)
— (d¢ Ada A da— —d¢ A da dBF — 2o N dcg’M> € 21Z.
s ™ Y

872
3.3 Gauging all symmetries

We now gauge the Zy 0O-form, electric Zy 1-form, and U(1) 2-form symmetries. We
show that we should simultaneously gauge the magnetic U(1) 1-form symmetry in order to
preserve the invariance under the gauge transformation of the photon. In other words, the
simultaneous gauging of the Zy O-form and Zy 1-form symmetries requires the gauging
all of the higher-form symmetries.

Let us try to gauge the Zy 0-form, electric Zy 1-form, and U(1) 2-form symmetries.
We deform the action Sig2 by gauging the Zy O-form symmetry. The gauged action

would be

2
v B2, 1 aE|2 1/ OB SMaE

= —|d¢ — A? —_|da — B —— | (dp — ALE) A

Soama=— [ (Gl — APP 4 oplda— B3P ) - o [ (o - AT 06
N

+ o3 [ (40— AP) A (da— B5®) A (da - B5P) (3.28)

5

However, this gauging depends on the choice of X5, or equivalently, the violation of
the gauge invariance in the 4-dimensional action. In terms of the 4-dimensional action,
the violation of the gauge invariance may be seen as follows. The problematic term is
% S, A(fE Aa A B$F in eq. (3.28) after the partial integration. The deviation under the
large gauge transformation of the photon a — a + dA with [, d\ € 277 is

N 1

[ AP AdA A BYE =
Ar2 Jor, Ot 2 7 4r2N

2
/ dAPE N dA N dBSF € 7, (3.29)
My N

On the other hand, in the 5-dimensional action, the ambiguity of the choice of the
5-dimensional space can be expressed as
N

1
8—2/ (dp—ALE) A (da—BSF) A (da—BSP) —/ (dp—ALE) A GPM™F mod 27
™ J 7 Zs

Con

N E 1 E a
=/, (87r2(dd)—A(f )AdaAda—m(dgb—Af ) Ada A dBYP

1
— 5o (do - APEY A dc;f’M> mod 27
s
1 1
- / (%A‘fE AdCIM + e dASE A dB%E> mod 21 . (3.30)
Zs

~13 -



The first term [, %A?E A ng M e 277 in the last line a mixed *t Hooft anomaly of the
axion, which just expresses the fact that we cannot regard AfE and C;S M as dynamical
variables simultaneously [42]. However, the second term,

1
Zs A2 N

is problematic since it depends on the dynamical field (g-number) a. We expect that

2
da A dASE A dBIE € N”z, (3.31)

we can eliminate the term by gauging the magnetic U(1) 1-form symmetry, since the
problematic term is proportional to the closed 2-form current of the magnetic U(1) 1-form
symmetry jon = %da.

Before gauging the magnetic U(1) 1-form symmetry in Sp g2, we gauge it in the
original action S for simplicity. We introduce a U(1) 2-form gauge field B¢M that is coupled
to Jars as Siy =95+ i Jar, da N B$M . Here, the gauge transformation law of B$M is

BSM — BSM 4 dnsM, (3.32)

where A{M is a U(1) 1-form gauge parameter normalized as [qdA{™ € 27Z. The nor-
malization of BM is I dB$M ¢ 277 by the Dirac quantization condition. In order to
make S1js manifestly invariant under the large gauge transformations, we again define the
coupling in the 5-dimensional space as
Sip =S+ L[ dan dBg™M. (3.33)
21 J x5
Now, we gauge the magnetic U(1) 1-form symmetry in Sp1g,2 to eliminate the prob-
lematic term in eq. (3.30). Since we have already gauged the electric U(1) 1-form symmetry
in Sp 1E,2, the photon a is shifted under the gauge transformation of BgE . Thus, the field
strength da in eq. (3.33) should be replaced with da — B$¥. Including the term canceling
the problematic term in eq. (3.31), we gauge the magnetic 1-form symmetry by introducing
the following term,

1 N
So1e1Mm2 = So01E2 + 7/ (da — BSE) A (ngM — —A?E A B§E>
2m J x5 2m

2
v B2, 1 4B 2 1/ O SM
= - Y |dp — ASE12 + —|da — B — Y
[, (o= At + gplda = B3P ) = 5 [ (a0 - 47%) nac

N N
- do — A’y A d d——/d da N B¢
+87T2/X5(¢ 17)NdaNda 2 ), o A da N BS

1 1
+— da N BSM — —

N
BAE A (dB“M — LA A BaE). 3.34

In order to make the gauged action gauge invariant, the gauge transformation law B$M
should be modified as

N N
BEM — BIM 4+ dAPM 4 AGEBSE — —(ATT 4 dAGT) A ATE (3.35)
™

2
with A‘fE — A(fE + dAgE and B$¥ — B$F + dA$F. Note that the modified gauge trans-
formations of B$™ preserve the Dirac quantization condition of B§M:

N N
/V d (dA‘fM + %AESEBSE - %(A‘fE + dASE) A A‘{E> € 2nZ. (3.36)
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Accordingly, the gauge invariant field strength for B$M is identified as
N
Hg" 0% = BN — AP A B, (3.37)

By adding the term, the problematic operator-valued ambiguity in eq. (3.30) is now absent,

N 1
o3 [ (@0 = AY") A (da— B3F) A (da - B3P) — o [ (do— APP) AGPM
87T2 Zs5 27 X5

1
+ —/ (da — BEEY A H§M7¢E mod 27
2m Jz,

1 1
= o APE pdegM — o BF A dBIM
™ JZ5 ™ JZ5
N
a2 / APE A BSE A BSF mod 2. (3.38)
s s

The remaining ambiguity in the right-hand side represents the 't Hooft anomalies.

In summary, we have introduced the background gauge fields (A‘fE, B$F BM, C?? M),
whose action is given in eq. (3.34). The gauge transformation laws are given by
egs. (3.7), (3.15), (3.35), and (3.24), respectively. The field strengths are determined
by egs. (3.6), (3.13), (3.37) and (3.23), respectively. In the next section, we derive the
above gauge transformation laws and field strength from the viewpoint of the 3-group
gauge theory.

Thus, we have successfully gauged the higher-form symmetries. Furthermore, we have
obtained the 't Hooft anomalies for the higher-form symmetries. The first term in eq. (3.38)
is the mixed 't Hooft anomalies of the axion, which has been discussed previously. The
second term is that of the photon, which prohibits the simultaneous dynamical gauging
of the pair of the electric 1-form and magnetic 1-form symmetries. The third one can be
identified as the so-called 2-group anomaly [107]. This anomaly means the obstruction to
the simultaneous gauging of the Zy 0-form symmetry and the electric Zy 1-form symmetry.

The existence of the 't Hooft anomalies forbids a trivial gapped vacuum. In our case,
this requirement is satisfied by the existence of the massless axion and photon. The ex-
istence of the massless axion corresponds to the existence of the mixed anomaly between
the O-form and 2-form symmetries. Likewise, the existence of the massless photon corre-
sponds to the existence of the mixed anomaly between the electric and magnetic 1-form
symmetries. If we deform the system with preserving these higher-form symmetries, any
trivial gapped vacuum is still forbidden. For example, if a gapped vacuum is realized while
preserving the symmetries, we can have topologically ordered phases, whose ground states
can be degenerated on a compact spatial manifold.

Further, the existence of the 2-group anomaly implies the existence of a fractionally
charged particle where A‘fE A B$F is non-zero. Physically, it means that we have a fraction-
ally charged particle on the domain wall if we add the magnetic field through the domain
wall, which was proposed in ref. [17].

In order to see this effect, we consider the following partition function given by the
gauged action in eq. (3.34),

21407, Bg®, BgM, C§M  X5) = N / Dlp, a)eiSoapanmald.aal” BEE BIM.CIN X5 (3 39)
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Here, N is a normalization factor such that (1) = 1. By setting A‘fE — 27;\7;45 51(V), BgF =
27]\7“ 52(8), B§M =0, and C';?M = 0, we obtain

2 _fnang o .
z ””%1(1;),2”"“52<s>,o,o,Xs} N [ Dlg,ale” Jasy o001V o

N N | (3.40)
_ <e_aT¢ fM4 andy (V)/\(SQ(S)>7
27T7’L¢

N 00(Qy) = pand a+ 2104 51 (Vs) — a in the path integral.
_% fM4 and1 (V)N62(S)

where we have redefined ¢ —

On the right-hand side, we have the term e which is given by the
term related to the 2-group anomaly - Jx, (da — B$EY A (dBM — %A?E A B$F). Since
01 (V) A d2(S) is a delta function 3-form on the closed line VNS, the right-hand side implies
the existence of the Wilson loop on VNS with the fractional charge —n‘;\?‘f’. Note that this
fractionally charged particle does not arise as long as we do not consider the intersection

of the background fields i.e., the symmetry generators.

4 Global 3-group symmetry and its gauging in axion electrodynamics

In this section, we derive the background gauging by a different approach based on the
3-group gauge theory. First, we review the global 3-group symmetry by the structure of
the correlation functions of the symmetry generators [101]. The correlation functions give
us ingredients of the 3-group. Next, we establish the 3-group gauge theory, which can be
formulated for a given 3-group. We should remark that this 3-group gauge theory is based
on a mathematical procedure, independent of the gauging based on the gauge invariance
of dynamical fields in the previous section. We confirm that the gauging of this section
coincides with the one in the previous section.

4.1 Correlation functions of symmetry generators

We review the correlation functions of the symmetry generators [101], which give us the
group structure in the higher-form symmetries. This is a natural generalization of current
algebra in ordinary quantum field theories. The details of the derivations are summarized
in appendix B.3. Note that we only consider the correlation functions of the symmetry
generators which are not intersected to each other. Therefore, we do not have to con-
sider fractionally charged objects due to the intersection of the symmetry generators in
section 3.3.

It has been shown that the correlation functions of the symmetry generators are not
independent, but related to each other. First, the correlation functions of the O-form and
electric 1-form symmetry generators induce a magnetic 1-form symmetry generator:

(Usp(e2™me/N VYU, (> /N S))

= (Uap(e?™™a/N 8)U,pr(e 2™ mome/N 01,0 S)), (4.1)
(U (>N VYU, (2mme/N | S))

= (Uypp (> /N V)Uqps (e 2" Meme/N (=Vs) NV)), (4.2)
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where €2y and Vg are 4- and 3-dimensional subspaces satisfying 02y =V and dVs = S, re-
spectively. Here, we have eliminated the O-form and electric 1-form symmetry generators by
redefining the integral variables of the path integral in eq. (4.1) and eq. (4.2), respectively.
The minus sign in —Vs in eq. (4.2) is due to the minus sign in J3(S) = —dd1(Vs). This sign
matches the choice of the background gauge fields By = 2”%52 (8) and By = —2mn.01(Vs,)
in eq. (3.34).

A physical meaning of these relations in eqs. (4.1) and (4.2) is that the electric flux can
be induced by the axionic domain wall in the presence of the magnetic monopole inside the
axionic domain wall. Therefore, the correlation functions can be interpreted as the Witten
effect of the axion [101]: if the domain wall encloses a magnetic monopole, the domain wall
induces the electric flux [12, 17, 23, 24].

Second, we consider the correlation function of the 1-form symmetry generators, which
leads to a 2-form symmetry generator:

(UaE(e2“m“/N,Sl)UaE(ez’”";/N, 82)) _ <U¢M(e27rin,1nfl/N’ (—Vsl) N SQ)UQE(GQTFin:‘/N, 82)>
(4.3)

Here, we have eliminated UaE(eQ”m“/ N S1) by the same procedure. The minus sign in
—Vs, is due to the minus sign in 62(S1) = —ddi1(Vs,). This sign matches the choice of
the background gauge fields By = 27 (n,02(S1) + nf62(S2)) and By = —2m(ngd2(Vs,) +
n,01(Vs,)) in eq. (3.34).

Physically, the relation in eq. (4.3) means that the magnetic field can be induced by
the electric field in the presence of the axionic string. The correlation function represents
the anomalous Hall effect for the axion [101]. In the presence of the axionic string and the
electric field, the electric current is induced [13, 21, 30]. By the Maxwell-Ampére law, the
electric current induces the magnetic field.

Other correlation functions induce no further symmetry generators. For example, one
can evaluate the correlation function of the 0-form and 2-form symmetry generators,

(U (e2™¢/N VYUgar(%,C)) = (Uppr(e'**,C)). (4.4)

We would like to discuss a mathematical structure behind these correlation functions.
One candidate is a 2-group, which is roughly given by two groups and maps between them.
In terms of a 2-group, we may describe the correlation function of 0- and 1-form symmetry
generators. However, the correlation function of the 1-form symmetry generators that
generate a 2-form symmetry generator cannot be described by a 2-group, since there is
no such a structure in a 2-group. Fortunately, we can find an appropriate structure by
extending the 2-group to a 3-group, which we explain below.

4.2 Global 3-group symmetry for axion electrodynamics

Here, we review the global 3-group symmetry for the axion electrodynamics [101]. The
detail of the axioms of the 3-group is explained in appendix C. Here, we summarize the
ingredients of the 3-group (L Ly s G,>,{—,—}) are as follows:

1. Three groups G, H, and L: they are not necessarily Lie groups.
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2. Maps 01 and 0y between the three groups: 9 : H — G, 0o : L — H. These maps
are group homomorphism, i.e., they are compatible with group compositions. The
composition of the maps satisfies 01 o 05(1) = 1¢ for all [ € L, where 1g € G is the
identity element in G.

3. Action > of G on G, H, L by automorphism: the actions are denoted as g ¢’ € G,
g>bhe H,and gl € L for g, € G, h € H, and | € L. In particular the action of
G on G is defined by conjugation: g ¢’ := gg’g~'. The actions are compatible with
the group compositions.

4. Peiffer lifting {—,—} : H x H — L. In terms of the elements, the Peiffer lifting is
written as {h, h'} € L for h, ' € H. The action 1> is compatible with the Peiffer lifting:

g {h,h'} = {gv>h,g>h'}. (4.5)

By the discussion in section 4.1, let us specify the 3-group for the axion-photon system.
First, we identify the three groups G, H, and L as the 0-, 1-, 2-form symmetry groups,
respectively:

G=Zny, H=ZnyxU(Q), L=TU(1). (4.6)

Next, we define the maps 0; and Js for the axion electrodynamics. In the correlation
function, there are no maps which relate the 1-form symmetry generators to O-form symme-
try generators, or 2-form symmetry generators to 1-form symmetry generators. Therefore,
we define these maps as follows,

Ay (2mm/IN iy =1, 9pe’® = (1,1) (4.7)

for all (e2™/N ¢i@) ¢ H and e € L. Note that the requirement & o 9y = 1 is triv-
ially satisfied.
Third, we consider the action > of G on G, H, and L. Since G = Zy is Abelian, the

L' = ¢. Therefore, the action of G on itself is defined by a

conjugation is trivial: gg'g~
trivial one: g ¢ = ¢. However, the action of G on H should be nontrivial, since the
correlation function in eq. (4.1) implies that G can act on H. We define the action of G on
H following the correlation function in eq. (4.1). For e*™/N ¢ G = Zy, (e2™™/N eio) ¢

H =Zy x U(1), the action > is given by

e?ﬂ'in/N > (627rim/N7 eia) _ <6271'im/N7 e—27‘rinm/Neia). (48)

Since the action of the O-form symmetry generator on the 2-form symmetry generator is
trivial as in eq. (4.4), we define the action of G on L as

e2min/N | 1B _ 1B (4.9)

Finally, we identify the Peiffer lifting. Since the Peiffer lifting generates an element of
L from the two elements of H, we can relate the Peiffer lifting to the correlation function
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in eq. (4.3). The diagrammatic expression in eq. (D.48) and the correlation function in
eq. (4.3) suggest that we define the Peiffer lifting such that it satisfies

{(627rim/N7 eia)’ (627rim’/N’ eio/)}{(e%rim’/N’ eio/)’ (627rim/N’ eia)} _ e2m’mm’/N e L. (410)
Since L = U(1) is Abelian and the right-hand side is symmetric under m <> m/, we may

introduce the Peiffer lifting as?

{(627rim/N’ eia)7 (eZWim’/N, eia’)} _ e27rimm’/2N_ (4‘11)
Although this definition has ambiguities under the shift m — m + N and m’ — m’ + N,
eq. (4.10) is unambiguous. As we discuss later, we can show that the gauge transformation
law and field strength of the 3-form gauge field in the 3-group gauge theory match the one
obtained by the background gauging procedure in eq. (3.23) by this definition.?

We have defined the three groups, actions, and Peiffer lifting. We should confirm that
these satisfy the axioms of the 3-group, summarized in C.1. In particular, it is nontrivial
is to confirm the compatibility between the action and Peiffer lifting in eq. (4.5). The
right-hand side of eq. (4.5) can be evaluated as

/

{627rin/N > (eZWim/N7 eia), eZﬂ’in/N > (627rim’/N’ el )}
_ {(eQWim/N’ e—27rinm/Neio<)’ (627rim’/N, e—27rinm’/N€ia’)} (4‘12)

_ e271'z'mm’/2N

Meanwhile, the left-hand side of eq. (4.5) is

. . / . /
627rm/N > g2mimm /2N _ e2mimm /ZN’ (413)

where we have used eq. (4.9). Therefore, we have confirmed that the compatibility in
eq. (4.5) is satisfied.

We can understand that the correlation functions between the symmetry generators
in egs. (4.1)—(4.4) as a 3-group generalization of the current algebra, which imply that a
conserved current can be a source of another current. Note that the correlation functions
between symmetry generators, but not between the conserved currents, are physically
meaningful in our case. This is because the conserved currents jsr and j,r are not gauge
invariant. For the detailed discussion, see appendix B.3 and the previous paper of the
present authors [101].

4.3 (Gauging 3-group symmetry

Here, we consider the gauging the 3-group symmetry in terms of the 3-group gauge theory,
and show that the gauging based on the 3-group gauge theory is consistent with the gauging
which avoids the operator shifts in section 3.3.

2We choose that a different definition of the Peiffer lifting from our previous paper to be consistent with
the background gauging, although the previous definition, {(eQmm/N7 e'*), (e%im//N, em/)} = ezmmm//N,
is also consistent with the axiom of the 3-group [101].

3In order to define the Peiffer lifting itself in an unambiguous way, we may need to treat the spin

structure explicitly. We leave this issue as future work.
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In order to establish the 3-group gauge theory, we need the Lie algebra of the 3-group in
the axion electrodynamics. The Lie algebra of U(1) is iR, but the Lie algebra of Zxy does not
exist since Zy is a discrete group. However, we can introduce a Zy p-form gauge field w, by
embedding Zy to U(1), in which a p-form gauge field satisfies the condition NA, = dA, 1
with the normalization pr_l dAp_1 € 27Z for a (p — 1)-dimensional subspace ¥,_1.

By using Zy gauge fields as well as U(1) gauge fields, we now establish the back-
ground gauging of the 3-group. The 1-, 2-, 2-, and 3-form gauge fields Ay, B¥, BY,
and C3 denote the gauge fields of Zy, Zy x U(1), and U(1) of the 3-group (U(1) —
Zy x U(1) — Zn,>,{—,—}), respectively. Here, the gauge fields A; and BJ are con-
strained by NA; = dAg and NBY = dB¥ for the 0- and 1-form gauge fields Ag and B
with proper normalization, respectively. The action > and the Peiffer lifting {—, —} de-
termine the gauge transformation laws and field strengths. For the gauge transformation
laws, they are given in eqs. (C.44)—(C.46) as

A1 — A1+ dAy, (4.14)
57 57 + dAY A 57 + (Ay + dAy) IAY
— — > >
BM M) " \aaM) 0T\ gy PR aam
(4.15)

BY + dAY
BM 4 dAM 4+ NAGBE — X(A; +dhg) AAE)
Cy — Cs3 +dAy — {BY +dAT, AT} — {A, BY}

N N (4.16)
= C3+dhy — —AFP ABY — —AF AdAT.
2T 47

We note that it is necessary to treat the two-form gauge fields as a pair of gauge fields
(B¥, BM) because Ag > (BY, B)) does not act on BY and B}, independently. The field
strengths are given in egs. (C.55)—-(C.57) as

Fy = dA, =0, (4.17)
1y AT ; (4.18)
= > = s .
HM apM) "\ BM dBM — XA, A BE
N
Gy =dC3 + {BY,BY} = dCs + EBQE A BE. (4.19)

By the above structure of the gauge transformation laws and field strengths, the gauge
fields coincide with the gauging that avoids operator-valued shifts.

The gauge fields (A1, BY, B} C3) correspond to (A(fE, B$F BM| C’g) M) given in sec-
tion 3.3, since the gauge transformation laws and field strengths coincide with each other.
Therefore, we have confirmed that the higher-form symmetries of the axion electrodynam-
ics possess the 3-group structure in the viewpoint of the background gauging of the 3-group
symmetry. We also have the same gauged action as the one in eq. (3.34): the coupling of
A; and B¥ with the axion and photon are give by the combinations d¢ — A; and da — B¥,
respectively. Furthermore, the coupling of B} and Cs with da — By and da — B¥ are
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described as five dimensional actions, 5= Jx,(da — B2) A Hy and — Jx,(do — A1) A Gy,
respectively. Since this gauging procedure gives the same action, the 't Hooft anomalies of
the higher-form symmetries is also the same.

One comment is in order. As we have seen in section 3.1.2, the gauge invariance of the
background fields corresponds to the invariance under the topological deformations, i.e., the
conservation laws of the conserved currents. The deformation of the gauge transformation
laws corresponds to the deformation of the conservation laws of the conserved currents. In
our case, the deformation of the gauge transformation laws can be understood by the cor-
relation functions of the symmetry generators in eqs. (4.1)—(4.4), which are generalizations
of the ordinary current algebra. For example, the correlation function in eq. (4.1) implies
that the conservation law of jsg in the presence of another current j,r is deformed. Note
that the conserved currents jsr and j,g themselves are not physical observable, and we
have discussed the correlation functions of the gauge invariant symmetry generators.

5 Summary and discussion

In this paper, we have studied the higher group structure of the higher-form symmetries
and 't Hooft anomalies in the (3 + 1)-dimensional axion electrodynamics in detail by using
the background gauging. We have found that the axion electrodynamics offers a simple
model exhibiting the 3-group structure and 't Hooft anomalies of the 3-group.

We have discussed two independent gauging procedures. One is to formulate the
gauged action where the background gauge fields are coupled with the symmetry generators.
This procedure does not rely on the existence of a 3-group structure. We have determined
the gauge transformation laws and gauge invariant field strengths by the requirement that
the gauged action preserves the gauge invariance for the dynamical fields. The other is the
gauging based on the 3-group gauge theories. This gauging can be established by using a
global 3-group structure in ref. [101] and a mathematical procedure in the 3-group gauge
theory. By comparing the gauge transformation laws and field strengths of the background
gauge fields, we have then shown that the above two independent gauging procedures
give the same result. Furthermore, we have determined the 't Hooft anomalies of the
global 3-group symmetry. In particular, we have found a 2-group anomaly, which forbids
a simultaneous gauging of the Zy 0-form and electric Zy 1-form symmetries.

There are several avenues for future work. One is to analyze physics in the background
magnetic field, spatially varying axion field, and so on. It has been shown that in non-trivial
backgrounds, mass spectra of the axion and photon are deformed [26, 54, 55, 116]. We may
understand such deformations of the phase structure by using higher-form symmetries, 3-
group, and their 't Hooft anomalies (see e.g., ref. [117] for recent discussion). Another
important direction is to discuss what happens for higher-form symmetries when the axion
becomes massive, while in this work we have assumed that the axion is massless. When
the axion becomes massive by non-perturbative effects, there can be axionic domain walls,
which have a topological domain wall charge. In the absence of the photon, it has been
shown that there can be a discrete 3-form symmetry whose charged object is a worldvolume
of the axionic domain wall [118]. Therefore, the higher-group structure may be deformed
in the presence of the 3-form symmetry.
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A ’t Hooft loop and worldsheet of axionic string

Here, we summarize the expressions of the 't Hooft loop and the worldsheet of the axionic
string in terms of local fields by using dual transformations. The 't Hooft loop and the
worldsheet of the axionic string can be expressed as line and surface integrals of a 1-form
and a 2-form gauge fields, which are dual of a and ¢, respectively.

A.1 ’t Hooft loop

First, we express the 't Hooft loop in terms of local fields. In the original formulation based
on a and ¢, the configuration of the 't Hooft loop T'(¢anr,C) can be expressed as a singular
part of a [119]. We decompose a into the singular part ag and the regular part ar as

a = aR + as. (A1)
Here, we require the configuration of the a due to the monopole is expressed by ag:
/ da = / d(ag + ag) = / dag = 2mqaps Link (S, C). (A.2)
S S S
The singular part ag can be understood as the 1-form that breaks the Bianchi identity,
dda = ddag = 27q.p193(C), (A.3)

which represents the existence of the magnetic monopole current. In the path integral
formalism, we can express the 't Hooft loop as

(4o, C)) = [ Dl ag]eSoentesl (Ad)

Now, we consider the explicit form of the 't Hooft loop in terms of a local field. This
can be done by the dual transformation of the photon a [120]. We can rewrite eq. (A.4)
by using the Fourier transformation,

(T(garr,C)) = /D[Qﬁ, ag, ', gle' St ontos Sl (A.5)

where Sg15t[¢, ar + as, f’, g] is a first order derivative action for a:

1 / / v? N / /
salstz——/ fA*f——/ d¢A*d¢+—/ oF A f
’ 2e2 My 2 Jmy 872 My

- 217T/M g A (f —dar — dag). (A.6)
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Here, we have introduced new dynamical valuable f’ and g, which are 2-form fields inde-
pendent of a and ¢.

We can go back to the original action in eq. (2.1) by integrating out g and f’, where the
integral of g gives us the delta function §[f" — d(ar + ag)]. Instead, we can go to the dual
action as follows. By integrating out agr, we have the delta function §[dg|, which implies
that g can be locally given by a 1-form gauge field w,

g = dw, (A.7)
with a gauge transformation by a 0-form gauge parameter A,
w = W+ dAy. (A.8)
Therefore, (T'(¢anr,C)) can be written as

(522 [y, Faxf—2 Sy st 2y [y OF N5 [, dwn(f'~das))

(Tgurr, €)= [ Dlovo, )

(A.9)
We find that the term given by the singular part, 6_% J dw/\das, can be expressed by a line
integral of w along C:

e—i fM4 dwAdag _ eian fM4 wAdI3(C) _ ez’an fcw’ (A.lO)

where we have used eq. (A.3) and then eq. (3.10). This is the expression of the desired 't
Hooft loop in terms of the local field.

A.2 Worldsheet of axionic string

Similarly, we can express the worldsheet of the axionic string in terms of a local field. In
the original formulation, the configuration of V' (ggas, S) can be expressed as a singular part
of ¢. We again decompose ¢ into the singular part ¢g and the regular part ¢r as

¢ = ¢r + ¢s, (A.11)
where we have assumed that ¢g have non-trivial winding number,
/C do = /c d(on + s) = /c dips = 2rqr Link (C, ). (A.12)

The singular part ¢g can be understood as the function that breaks the Bianchi identity
of the axion,
dd¢ = ddps = 2mqen62(S). (A.13)

In the path integral formalism, we can express V(ggnr,S) as

(V(ggnr,S)) = / D[r, ale’S1ortosal, (A.14)

Now, we consider an alternative expression of V' (ggas,S) by the dual transformation
of the axion ¢ to a 2-form gauge field [121]. We can again rewrite eq. (A.14) by using the
Fourier transformation,

(V(qorrs S)) = / D[¢, ar, (, h]e'Sestlortos,athl (A.15)
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Here, Sy 1st[¢Rr + ¢s,a,(, h] is a first order derivative action for ¢:

2

v N
—@ M4da/\*da—§ M4C/\*C_871'2/M4</\a/\f

1
5 B (€~ dor — dés). (A.16)

S¢,1st =

We have introduced new dynamical valuable ¢ and h, which are 1-form and 3-form fields
independent of a and ¢. Note that the 3-form h should be shifted under the gauge trans-
formation of the 1-form field as

N
a — a+d\, h—>h—4—d/\/\da (A.17)
m

in order to make the action to be gauge invariant. As in the case of Sg 15, we can go back
to the original action in eq. (2.1) by integrating out ¢ and h, where the integral of h gives
us the delta function 6[¢ — d(¢r + ¢s)]. Instead, we can again go to the dual action. By
integrating out ¢r, we have the delta function 6[dh] implying that h can be locally given
by a 2-form gauge field b,

h = db, (A.18)

with a gauge transformation by a 1-form gauge parameter A,
b— b+ d, (A.19)

in addition to the one corresponding to eq. (A.17),

N
b—b— —X\da. (A.20)
47

Substituting the condition h = db, (V (gg¢rr, S)) can be written as

N

, 22
(V(gem,S)) = /D[b, a, C]el(fﬁ Juay darsda=25 [\ CNC=gls [y, Shanft s [y, dbA(C—des))
(A.21)

-5k dbAdgs
5 Jusy , can be expressed by a

We find that the term given by the singular part, e
surface integral of b along S:

e_ﬁ fM4 dbAdgs _ eian IM4 bAG2(S) — ¢iaM fs b, (A.22)

where we have again used eq. (A.13) and eq. (3.10). This is the expression of the worldsheet
of the axionic string.

We remark that this expression of the axionic string is not invariant under eq. (A.20).
Therefore, the gauge invariance for the photon seems to be violated on the axionic string.
The inconsistency can be resolved by taking into account the chiral mode on the axionic
string. The chiral mode charged under the U(1) gauge symmetry cancels the violation.
This mechanism is nothing but the anomaly inflow mechanism [31, 32]. Note that we do
not need to consider the contribution from the chiral modes in the discussion in this paper,
since we focus on the bulk physics around the axionic string.

— 24 —



B Correlation functions

Here, we summarize detailed calculations of the correlation functions.

B.1 Zpn O-form transformation

We first evaluate the O-form transformation law in eq. (2.16). The transformation can be
written by the following correlation function:

. . . 2min . i
<U¢E(€2ﬂ-ln¢/N, V)ezq¢E¢>(73)> — N/D[¢7 a]eZSJriN s fv J¢E+Z‘I¢E¢(P)_ (Bl)

Here, N is the normalization factor such that (1) = 1. In order to evaluate the correlation
function, we rewrite the point operator and symmetry generator in term of spacetime
integral by using delta-function forms. The point operator €'4E?(P) can be rewritten as

¢itsm0(P) — 1968 [oy, #0(P), (B.2)
Here, the delta-function form is defined in eq. (3.10). Suppose V can be expressed as the

boundary of a 4-dimensional subspace 2y,. In general, it may not be taken as a boundary,
but it is necessary for discussing the transformation law. The symmetry generator can be

g — ':d‘:/d'éﬁ. B.3
/VME /aQVME /Qv oe = |, liprdo(2v) (B.3)

We can eliminate the symmetry generator by using

rewritten as

27Tn¢ .
S[¢, a] + N /M4 djprdo(Qy)

(B.4)
_ 2mng v? [(2mng\?
= S[¢ - N (50(9]}), a] + ? (N) /M4 (51 (V) A *(51 (V),
and the redefinition ¢ — 27;\7;‘*5 5o(Qy) — ¢ as
27 n
<U¢E ((327'1'1‘1“L¢/N7 V)eiq¢Ed>(73)> —e q(ﬁrE ¢ fM4 60(22v)04(P) <eiq¢E¢>(P)>. (B5)

Here, we have regularized the trivial divergence [}, 01(V)Axd1(V) by adding a local counter
term. The integral [}, 0(€21)04(P) in eq. (B.5) is the intersection number of y, and P,
which is equal to the linking number of ¥V and P,

50(9\))54(73) = Link (V,P) SYA (B.G)
My
Therefore we have
<U¢E(€2Trin¢,/N’ V)eiq¢E¢(7D)> _ e%n‘ngn(b Link (V,P) <6iq¢E¢(P)>. (B?)
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B.2 Zn 1-form transformation

Second, we consider the correlation function, which represents the Zy electric 1-form
transformation:

27

<UaE(e2m"“/N,S)eiq“ fc (l> _ /D[d)v a]eis‘i‘ &na fsjaE+iQa fca‘ (BS)

The Wilson loop e'% Je® can be rewritten as

¢l Jor = oM Jag anea(©) (B.9)
Similarly, the symmetry generator can be rewritten as
/jaE =/ JaE =/ djor = |  djap N 01(Vs), (B.10)
S Vs Vs My

where we have assumed that S can be written as the boundary of a three dimensional
subspace Vs. We can eliminate the symmetry generator by using

S(d, a] + 27;\7;“ /M4 djug A 61(Vs) = S[gb, ot 27;\7;“ 51(1}5)}
_ 87];; (27;\’7%)2/% $6a(S) A 62(S)  (B.11)
722 (T)Z [, 52(8) A wba(s),
and the redefinition a + 22§ (Vs) — a as
(Ung(e2mima/N pygita Jooy — o5 Jur, 85OPR0S) iga [ ay. (B.12)

2
Here, we have again regularized the trivial divergence 51y (275\?“) Jaz, 62(S) Ax62(S) by the

local counter term. Furthermore, the term [y, #02(S)Ad2(S) in eq. (B.11) is equal to zero
if we consider a closed surface without self-intersections. The integral [, d3(C) A 61(Vs)
in eq. (B.12) is the intersection number of Vs and C, which is equal to the linking number

of S and C,
53(C) A 51(V5) = 53(6) = Link (S,C) € 7. (B.13)
My VS
Therefore, we have
2ming /N iqa [,a\ _ 2T9ana Link (S,C)/ ida [,
(Uar(e ,S)e'le)e®y =eT N (e Jc ™. (B.14)
B.3 Correlation functions of symmetry generators

We here show the derivations of the correlation functions of symmetry generators.
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B.3.1 Correlation function of 0-form and 1-form symmetry generators

First, we consider the correlation function of 0- and 1-form symmetry generators

J¢E+

(U (e*™e/N VYU, p(e*™ /N 8)) = N / D[¢, a)e™® ¥ Jsder (B.15)

which corresponds to the Witten effect [101]. We first eliminate the O-form symmetry

generator Uyp(e2™™¢/N V). By the same procedures as egs. (B.3) and (B.4), we obtain

<U¢E(627rin¢/N’ V)UaE(eQWina/N S)>

n $Na

_ (UaE(e%m“/N, S)e_ fs 50(Qy)da> (B.lﬁ)
_ <UaE(627rina/N7 S)UGM(E_QWW‘Z’R“/N, QV N S)>

Alternatively, one can eliminate the 1-form symmetry generator as follows. Here, we assume
that V and S are not intersected to each other. By using egs. (B.10) and (B.11), we obtain

<U¢E(627rin(;>/N7 V) UaE(e27rina/N’ S))

’L‘rrn n¢

(V)61 (Vs)—

. nena
= <U¢E(62’TZ”¢/N, Ve N Jo1(vs /\d51(Vs)A51(V))>

17Tn2n
_ <U¢E(€2mn¢/N, V)UGM(S_and’na/N, YN VS)> _Ta¢ f&l (Vs)Add1 (Vs)/\61(V)
(B.17)

alar n¢ f(51(VS /\d51(V$)/\(51(V)

The last term e is equal to zero, since we have assumed that V

and S do not intersect. Therefore, we obtain

Uy (2™ mo/N VYU, p(e2™Me/N 8)) = (Ugp(e2™me/N VYU,py (e~ 2 meme/N Y 0 Ys)).
(B.18)
The correlation function implies that the EOM of the photon, i.e., the conservation law
of jur is deformed in the presence of the current jyr. Here, the EOM of the photon
corresponds to the finite redefinition which has been applied in eq. (B.22). Note that we
have discussed the deformation in terms of the gauge invariant symmetry generators, since
the currents jsr and j,g are not gauge invariant.

B.3.2 Correlation function of 1-form symmetry generators

Similarly, we can evaluate the correlation function between 1-form symmetry generators,

2min
: a
J;ljaE+’ N

2mwing

(Uap(e™ /N S U p(e™ /N | Sy)) :N/D[éb, a1y

j;QjaE’

(B.19)
which corresponds to the anomalous Hall effect [101]. We eliminate U,p(e?™/N S;) by
the same procedures as egs. (B.10) and (B.11), and obtain

<UaE (eQWina/N’ Sl)UaE(eQﬂinfz/N, 82)>

_ <UaE(62m’nfl/N7 82)6_% fsz d¢A61(V51)> (B.QO)
_ <UaE(€27Tle/N, 82)U¢M(627rinanfl/N’ —V$1 N 52)>
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We can consider another property of the correlation function. Remarking the following re-
lation,

. - 27 j Na n,
Uap (277N, 81)Uap (277N, S3) = e Jasy JamN(nad2(S1)+ “62(32)), (B.21)

we can simply evaluate the 1-form symmetry generators by the redefinition a+27r%51 (Vs,)+
2mn!,

N n(Vs,) = a as

<UaE(€2mna/N, Sl)UaE (627rinfl/N’ 52)>

. ! : /
2mingng 2mingng

= <U¢M(€ 2N ,—Vgl N 82)U¢M(6 2N ,—V$2 N Sl)> (B.22)

This result coincides with eq. (B.20) after eliminating U, p(e?™"/N Sy) by a topological
deformation. The second line of eq. (B.22) shows that the correlation function of two 1-
form symmetry generators linking with each other leads to two 2-form symmetry generators,
which is consistent with the diagrammatic expression in eq. (D.48). Note that the linking
of surfaces is called a surface link [122, 123].

The correlation functions in egs. (B.20) and (B.22) again imply that the conservation
law of j,r is deformed in the presence of another j,p. Note again that we have discussed
the deformation in terms of the gauge invariant symmetry generators.

B.3.3 Correlation function of 0-form and 2-form symmetry generators
We also show the correlation function of the 0-form and 2-form symmetry generators:

27

(Ui (277N V)Upni(€4,0)) = N [ Dl ale’S " hodert 52 Jete (323

The redefinition ¢ — 27;\1;“5 5o(Qy) — ¢ leads to

ia¢ 2m

(Up(@ /N V) Ugar (€, C)) = (Upar(ee,C))e 7 5 Je 1), (B.24)

(1% 27Tn¢
The integral [, d1(V) in the numerical factor e 2= ¥ Je ™) is the transversally intersect-
ing number of C and V, which is equal to zero since both of C and V are closed. Therefore,
we obtain

Uy (2™ mo/N VYUypr (€0, C)) = (Ugpr (€2, C)). (B.25)

Note that the resulting correlation function implies that the EOM of the axion, i.e., the
conservation of jsr is not deformed in the presence of U¢M(ei0‘¢, C).4

4Technically, the correlation between djgr and jear is non-zero, but the correlation between Uyp and
Ugwmr is zero due to the integration of 01(V) over C. Since jsr is not gauge invariant, the correlation of the
symmetry generators is physically meaningful.
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C 3-group gauge theory

In this section, we review the semistrict 3-group or 2-crossed module. Hereafter, we simply
refer to the semistrict 3-group as the 3-group. We first present the axiom and a simple
example of the 3-group. Next, we show a Lie algebra of the 3-group, and the 3-group
gauge theory based on it. Since the axioms of the 3-group are complicated compared to
that of ordinary groups, we give a diagrammatic explanation of the axiom of the 3-group
in appendix D.

C.1 Axiom of 3-group

A 3-group (L BH% G,>,{—, —}) satisfies the following axioms [102] (see also [79, 82,
83, 88, 124]):

1. G, H, and L are groups.

2. The maps
Oh:H—G, O0:L—H (C.1)

are group homomorphisms 0;(hih2) = (01h1)(01h2) and 02(l1l2) = (02l1)(02l2) for
hi2 € H and l; 2 € L, respectively. They satisfy

81 9] 62(1) == 1G’ (02)
for all | € L, where 1g € G is the identity element in G.

3. The symbol > is an action of g € G on ¢’ € G, h € H, and | € L by automorphisms,
g>g € G,grh € H,and g1 € L. In particular, the action g ¢’ is defined by
conjugation,

g9 =gg'g " (C.3)

4. The maps 0; 2 are G-equivalent, that is, for all g € G, h € H,and l € L,
g (01h) = 01(g>h), g (02l) = D2(g ). (C.4)
5. The Peiffer lifting {—, —} is a map H x H — L. In terms of the elements,
{h1,h2} € L, (C.5)

for hi o € H. The Peiffer lifting satisfies

0o{h1, ha} = hihohy ' (81h1) b by, (C.6)
g>{hi,ha} ={g>hi,g> ha}, (C.7)
{Daly, Dala} = lylaly 5, (C.8)

{h1hg, h3} = {h1, hahghy '} (O1h1) > {ha, hs}, (C.9)

{h1, hohs} = {h1, ho}{h1, h3}{Da{h1, h3} 1, (B1h1) > ho}, (C.10)

{0o1, R}{h, Bol} = 1(O1h) > 171, (C.11)

for h17273 € H and 1172 e L.
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We note that the 3-group contains a 2-group (L % g ,b') as the subgroup, where the
actions >’ : H — H and >’ : H — L are defined as h>'h/ := hh/h=1 and ho'1 := 1{02171, h}
for h,h' € H and | € L, respectively. The (strict) 2-group (L % H,v') is a set of two
groups H and L, a group homomorphism 0y : L — H, and an action >’ of H on H and
L. The map 0s is compatible with the action, h> 02(l) = 02(h>1) for h € H and [ € L.
The action of do(l) € H on I € L satisfies do(1) o' I’ = 1I'l~!, which is called the Peiffer

identity. One can easily check that (L %[ ,>') satisfies these axioms. On the other hand,
(H 9 G,>) is generally not a 2-group. From eq. (C.6), (91h) > h' = hh'h=10:{h,h'~1}
follows. In this sense, the Peiffer lifting measures the failure of the Peiffer identity.

C.2 Example of 3-group

Before explaining the 3-group gauge theory, we give a simple and non-trivial example of
the 3-group. It is given by an n-dimensional Euclidean group (or isometry group) ISO(n),

1SO(n) = {(6‘} ‘f) e M(n+1,R)|A € O(n),ac R"} : (C.12)

and we show that we can decompose the Euclidean group as a 3-group. Hereafter, we
abbreviate 07 to 0. Note that the product of two elements h1, ho € ISO(n),

A1 al A2 an
hi = ho = 1
1 ( 0 1 > ) 2 ( 0 1 ) ) (C 3)
is
hihg = (A10A2 A1a21+ "‘1> € I1SO(n). (C.14)

The Euclidean group can be decomposed into the orthogonal group O(n) and transla-
tion group R™. In other words, there are a projection map 9; and an embedding map 05,

R"™ -2, 1SO(n) 25 O(n). (C.15)

The actions of 2 and 9; on a; € R™ and he € ISO(n) are

1, a;
Oh(ay) == <O 1> , (C.16)
and
01(h2) := Aa, (C.17)
respectively. These maps are compatible with products. In fact, the embedding map 0,
satisfies
Oa(a1 + az) = 0a(a1)02(az) = d2(az)d2(ay), (C.18)
and 0 satisfies
O1(h1hg) = 01(h1)01(he). (C.19)
The maps 01 2 satisfy
010 0s2(a) = 1,. (C.20)
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Note that we would decompose ISO(n) as O(n) — ISO(n) — R, but this decomposition
is not compatible with the product.

The elements of R", ISO(n), and O(n) are transformed under an action generated by
O(n). We denote and define the action as

Al >ag = Alag, (C.21)
-1 -1
A1 l>h2 — A1 0 hg Al 0 _ A1A2A1 A1a2 7 (022)
01 0 1 0 1
and
Ajp Ay = Aj AR AT (C.23)

One can check that the actions are compatible with 0 2,
82(141 > CLQ) = Al > 82(&2), (C.24)

and

01(A1 > hg) = A1 > 81(h2) (025)

Finally we determine the Peiffer lifting. Since we can obtain an element of O(n) from
ISO(n) by 01, we can construct an action of ISO(n) itself by using 0; as

A1 0 ATt o A1 A ATY Ajasy
= = . .2
81(h1) > hg ( 0 1) h2 ( 0 1) < 0 1 (C 6)

On the other hand, the element of ISO(n) can act on itself as

_ A1 a A2 a A_l —A_lal
h1h2h11:<0 1)(0 1)((1) i

B <A1A2A11 —A1A2AT ay + Aras + a1>
- ; 1 :

(C.27)

Therefore, two actions hq hghfl and 0;(h1) > hy are different. The difference is the lack of
a1 due to the projection 9;. We can measure the difference by

_ -1
hihohy ' (O1(hy) > he) ™" = (1(? AlAQAi at a1> ) (C.28)
which can be an image of 0o. Therefore, we can define the Peiffer lifting,
{—,=}:ISO(n) x ISO(n) — R" (C.29)
as
{hl, hg} = —A1A2A1_1a1 +aq, (CSO)
which satisfies
82({h1, hz}) = hlhghl‘l(&(hl) > hQ)_l. (0.31)

One can explicitly check that these definitions satisfy other axioms of the 3-group (C.7)—
(C.11).
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C.3 Lie algebra of 3-group

We consider the (background) gauging of the 3-group. In order to introduce the gauge fields
and their gauge transformation laws, we need the Lie algebra of the 3-group. We denote
the Lie algebra of G, H, and L as g, b, and [, respectively. The Lie 3-group (differential
2-crossed module) is defined by the following axioms:

1. g, b, and [ are Lie algebras.

2. The maps
81:@—)9, (92:[—>h (C32)

are g-equivalent homomorphisms
O1[hy, hy] = [01hy, O1hs],  Oo[ly, Lo] = [Oaly, Oals], (C.33)
for hy o € h and [, 5 € [, respectively. They satisfy

81 o (921 =0. (C.34)

3. > is an action of g € gon ¢’ € g, h € h, and [ € [ by automorphisms, g> g’ € g,
g>heb,and gl €l The action g ¢’ is defined by the commutator,

grg =lg.dl (C.35)

4. 012 are g-equivalent, that is,

g> (01h) = 01(g>h), g>(02l) = Da(g 1) (C.36)

5. The Peiffer lifting {—, —} is a map h x h — [. In terms of the elements,
{hi by} €1 (C.37)

for hy o € I. The Peiffer lifting satisfies

o{hy, ho} = [hy, ho] — (O1hy) > hy, (C.38)
g {hy, ho} = {g> hy, ho} +{hy, g ho}, (C.39)
{0al1, Oalo} = [11, o], (C.40)
{lh1, by, s} = { By, [hy, hs]} + (O1hy) > {hy, hs} (C.A1)
— {hy, [hy, hs]} = (O1hy) > {hy, hs},
{ha, o, hs]}, = {02{ s, ho}, ha} — {02{ s, h3}, B}, (C.42)
{Oal1, by} + {hy, Oaly } = —(01R) > Ly, (C.43)

for b1,2 eH and ll,? e L.
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C.4 3-group gauge theory

Now, we formulate a 3-group gauge theory [79, 82, 83]. We introduce 1-, 2-, and 3-form
gauge fields, A1, Bs, and C3, which are g-, h-, and I[-valued differential forms, respectively.
If we write the basis of the Lie algebras g, h, and [ as {ua}, {vs}, and {w,}, respectively,
the gauge fields can be written as A; = A’f‘u A, Ba = B%,, and C3 = C§w,, respectively.

By the structure of the Lie algebra, the gauge transformation laws are given as follows.
Let g, h1 = h{v,, and la = [§w, be the G-, h-, and [-valued 0-, 1-, and 2-form gauge
parameters, respectively. Then the gauge transformations are given by

A — All =g> A+ gdg_l + 01hq, (C.44)
BQ—)Bé:gDBQ+dh1*hl/\hleAlll>h1+82l2, (045)
C; — Cé =g>Cs3+dls + All >y + {8212, hl} — {Bé, hl} — {hl,gfl > BQ}. (0.46)

Here, we have used the following notations:

g A = Algrug = AMguag™h), (C.47)
g> By = Bi(g>v,), (C.48)
g>C3 = C5(g>wa), (C.49)
hi A hy = h A RSvgu, = %h‘f A B8 vg, vp), (C.50)
Ay hy = (ADA ARG (ug v vg), (C.51)
Orhy = K (D1v,), (C.52)
Baly = 13 (Dowy), (C.53)
{Bs,h1} = (B3)® AR {ve, vp}. (C.54)

The field strengths are defined by

F:=dA + A1 N Ay, (055)
H :=dBs + A1 > B, (056)
G:=dCs+ A1 Cs+ {BQ, BQ}. (C.57)

Note that the 3-group gauge theory for the axion electrodynamics can be obtained by
substituting ug = —i, v, = —i, Wo = —1, g = eiAO, hi1 = —iAq, and Iy = —iAs.

D Diagrammatic expression of 3-group

Here, we explain the 3-group diagrammatically. The definition of the 3-group based on the
axioms seems abstract, but we show that the axioms of the 3-group can be understood in
a more intuitive way. In particular, we show that all of the axioms of the 3-group can be
translated to the only one simple statement “the group elements are topological” in the
viewpoint of the higher-form symmetries.
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D.1 Elements of groups as topological objects

We identify the elements of groups G, H, and L as (D—1)-, (D—2)-, and (D—3)-dimensional
topological objects respectively. By the identification, we may relate the groups G, H, and
L as symmetry groups of 0-, 1-, and 2-form symmetries. Unlike ordinary higher-form
symmetries, the topological objects may exit as the boundaries of one-dimensional higher
topological objects. Hereafter, we take D = 3 for simplicity, which is sufficient to describe
all of their objects. In this case, the group elements of G, H, and L are expressed by
surfaces, lines, and points, respectively. Note that we can easily have the D = 4 case by
extending the objects such as worldvolumes, worldsurfaces, and worldlines along the fourth
direction, e.g., temporal direction.
The elements g € G, h € H, and | € L can be graphically expressed as follows:

g = —— = —|— (D 1)
g g
h = +=— = +—— (D.2)
h
h
L= = (D.3)

Here, the right-hand sides of the above equations are projections of the diagrams. The
black left arrows represent the order of the products. We require that the elements of the
groups can freely move as long as they intersect with the left arrow.

By using the left arrow, the group operations can be expressed as follows:

’
99’ g g ¢
/
W' = 4=— = === = ——— (D.5)
hh' h h
h K
Il = 4—t—— = g—or—— (D.6)

i -
The identity elements, 15 € G, 1y € H, and 1, € L are represented as a dotted surface,
line, and point, respectively. Frequently, we abbreviate these identity elements to nothing.
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They are explicitly described as follows:

lo = —— = < = ¢ (D.7)
la lg
1y = 4—— = < = < (D.8)
1
H .
1, = +—f— = — (D.9)
1

Finally, we express the inverses of the elements, g~' € G, h™! € H, and ! € L as

objects which annihilate g, h and [, respectively. One of the properties of the inverses is

1

that we can connect the object g and h with the inverses ¢~' and h~! as intermediate

states of the annihilation, respectively:

g g ' g g !
—1
h ht h hot
ut = 4—;—;: = — (D.12)

D.2 05 and 8s: taking interior of topological objects

Next, we consider diagrammatic expression of the maps 01 2. Since we have regarded the
elements of the groups as generally extended objects, the elements can be boundaries of the
other objects. The maps 0; 2 give the elements of the interior from the boundary elements:

h ! !
—l - —— = ——
(D.13)
h ok 0ol
ok ! Oal
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The right-hand sides of the above equations are projected diagrams. By the expression,
the axiom 0; 0 02l = 1¢ in eq. (C.20) is manifest, since an interior of an interior is nothing
(conversely, the boundary of a boundary is nothing). The property of group homomorphism
is just saying that the product of the elements is compatible with the product of the interior
of the elements:

hi ho hihs
—— = —
(D.14)
Or1h1 0O1hs (01h1)(01h2) = 01(hi1hg)
li I l1lo
O = (D.15)
82[1 82l2 (82l1)(8212):82(l1l2)

While the elements should intersect with the left arrow, we allow [ € L to move
vertically as long as 0ol € H intersects with the left arrow:

l A
— = (D.16)
05l 05l

This property implies that L and H have a 2-group structure, which we use in section D.5.
As an application, we can deform [ and [~! as follows:

I [~!
l l*l ® ®
“«— z = <4 = (D.17)
Dol D9l ! Dol Dol 1 Dyl

D.3 Action of G: enclosing elements by surfaces

Third, we express the actions of G on G, H, and L, following the above diagrammatic

expressions. The action > of g € G on ¢’ € G, h € H and | € L can be simply described as

the enclosing by g and g~

(D.18)
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(D.19)
g>h g hn 9!
gl [
g g

In particular, the axiom g > ¢ = gg’g~! given in eq. (C.3) is manifest in our dia-
gram. Furthermore, the G-equivalence of 9; 2 in eq. (C.4) can be simply understood as the
compatibility of 02 with the action:

h g>h
< = & (D.21)
g O1h g! g (Ohh) = Oi(gr h)
l gl
“ * = (D.22)
L Y GY) )

D.4 Peiffer lifting: braiding of elements of H

Finally, we express the Peiffer lifting diagrammatically. We determine the expression of it
as a braid of two elements in H such that the axiom in eq. (C.6) is satisfied:

{h, W}
D e = T (D.23)
hh'h=Y(01h) > A1 h B hTH(O1h) >R

In the right-hand side, the line of h braids with the line of h’. Since I’ intersects with
O1h, the surface of d1h acts on the line h’. Therefore, the line of A’ ends on (O1h)>h' 1 =
((O1h) > h')~L. For the relation between the 3-group and braids, see, e.g., refs. [125, 126].

While we have expressed the Peiffer lifting diagrammatically, it is non-trivial whether
the other axioms are satisfied in terms of the diagram or not. We confirm that our diagram
of the Peiffer lifting satisfies all of the axioms of the Peiffer lifting as follows:
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e Equation (C.7):

— I > ~
g {h,h'} (Y \ . YEa\ TR
—r— = 44—+ = N
L P N L L R N
!/ - / -
9 h h g gh 9h 9 99 (D.24)
0 Y ) {g>h,goh'}
- —— =
T T
goh goh

Here, we have used the property in eq. (D.10) for the third expression.

e Equation (C.8):

Ll bt Lol 7Yy e T

— i, o o o

6211 82l2 (92l1_1 (81 o] 82l2_1) > (92l2_1
{0201, 0012}
—— —

(D.25)
Here, we have used 62l2_1 = (01 00201)> 82l2_1, since 01 0 Oal1 = 1.
e Equation (C.9):
{htha h’3} {h1h27 h3}
—— — = ——
(hiho)hs(hiha)™'  (hiho)hs(hiho)™"  (B1(hihe)) b hyt
X(al(hlhg)) > h;l
{hiha, hs} {h1, hahshy '} (O1h1) > {ha, h3}
g D = < - s
hi(hohshy )R} (O1h1) > (O1he) > h3t
(O1h1) > hohz thyt  (O1hy) > hohshy
(D.26)

Here, we have used (91(h1h2)) > hg' = ((O1h1)(d2ha)) > hy't = (91hy) > (2he) > hat.
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e Equation (C.10):

{h1,hoh3}
——_—— = t—m————.— = t—————— -
h1 hg h3 hl hg hl h3
81h1l>h2
1y
{1, ha} | {h1, h3} {h1,hat{ha, hg} o
= e — ——— — < ® - ——
—1
81h1 > hg a2{h1’ h3}
81h1Dh2

{h1, ho}{h1, h3}{O2{h1, h3} ™1, 01h1 > ha}

(D.27)
e Equation (C.11):
{051, h}{h, 821}
< s e e e
Al b h™lh Oyl
[ Ft l Oy h>1"1
= —— = Em———— = e °
Al h A h>yl ! Dol h Osl  O1h> 0ol !
(D.28)

In order to obtain the last equation, we have used eq. (D.16).
D.5 (L,H) as 2-group

We have shown that the 3-group can be diagrammatically expressed. By using them, we
can also describe the fact that the set (L % g ,b’) is a 2-group (see appendix C.1). Here,
the action >’ of H on H and L are defined by conjugation h ' A’ = hh’h~! and by the
Peiffer lifting h>'1 = 1{02171, h}, respectively. In order to reproduce the 2-group structure,
we should diagrammatically show the action >/, the compatibility of do with >/, and the
Peiffer identity I1lol; " = (daly) > lo.

One of the advantages of the diagrammatic expression is that we can straightforwardly
reproduce them, in particular the action ', which may be complicated. Let us express the
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definition of the action /. As in the definition of the action > for the 3-group, we can
describe the action h'h' and h'[ by enclosing h € H and | € L with h € H, respectively.
First, we consider the action of h € H on b’ € H defined by conjugation h ' ' = hh/h ™1,
which can be expressed as follows:

T =TT T (D.29)

ho' b h n ht hh/h~t

Second, we can simply reproduce the definition h ' [ = {0211, h} by using the following
the deformations:

ho'l l A
t—— = —————— = O m— ) — —
Oo(h' 1 h =t h !
2(h o) (D.30)
l l {0071 b} {02171, h}
= S4—t—_————— = 4O a = d——
Ol h ol (Ol M R(Da1)R ™1 he' (0a1)

Here, we have used eq. (D.17) in order to have the fourth expression. The above defor-
mations automatically show the compatibility of 9y with the action of H: do(h ' 1) =
h ' (82l) = h(agl)h_l.

The 2-group should satisfy the Peiffer identity l;l2l] b= 9yl o l5, which can now be
shown as follows:

Lol It lo ;M Iy Iy
< = = - = G m— —— — ) m—— ——
dol4 Doly Doy (D.31)
lg {82[2_1, 62[1} 8211 N lg
= <49 = = G ——

Here, we have used eq. (D.17) in the first line.

D.6 Global 3-group symmetry and symmetry generators

Finally, we consider how to relate the above diagrammatic expressions to the symmetry
generators of the higher-form global symmetries given by the 3-group. In the following,
we identify G, H, and L as symmetry groups which parameterize the 0-, 1-, and 2-form
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symmetries, respectively. In the following, we discuss symmetry generators for the higher-
form symmetries which do not have interiors, and are not boundaries of other objects. The
assumptions restrict the symmetry group that non-trivially parameterizes the symmetry
generators. Further, we assume that the restricted group also has a 3-group structure. As
we will show in appendix D.6.5, the assumptions require that the symmetry groups G, H,
and L are reduced to

Ggl. = G/ Imal, Hgl. = HAb./Imag, Lgl. = Ker 82, (D32)

respectively. Here, Hpy, is the Abelian part of Kerdy € H. This assumption is sufficient
to consider the symmetry generators of the axion electrodynamics.

D.6.1 Symmetry transformations

Let us recall the symmetry transformations in the higher-form symmetries. For elements
of the groups g € Gg., h € Hg and [ € Ly, the corresponding symmetry generators
are expressed by topological objects Uy(g,S), Ui(h,C), and Us(l,(P,P’)), respectively.
Here, S, C, and (P, P’) are a closed surface, a closed line and two points. The symmetry
generators can act on the 0-, 1-, and 2-dimensional charged objects ®(Ps), W (Cw ), and

V(Sy) as unitary representations:
(Uo(g, S)®(Pa)) = Ro(9)(®(Pa)) if Link(S,Pe) =1, (D.33)
(Ui (h,C)W (Cw)) = Ri(h)(W(Cw)) if Link (C,Cw) =1, (D.34)
(UL, (P, P))V(Sy)) = Ro()(V(Sv)) if Link ((P,7'),Sv)=1,  (D.35)

respectively. Here, Pg, Cy, and Sy are a point, a closed line, and a closed surface. We
denote Ry(g), Ri(h), and Ra(l) as unitary representation matrices (c-number) of g, h, and
[, respectively.

D.6.2 Diagrammatic expressions of symmetry transformations

We now show the diagrammatic expressions of the symmetry generators and their symmetry
transformations. The charged objects can be diagrammatically expressed as follows.

(Pa) (D.36)
CI)(’P@) = <«
W(Cw) W(Cw)
W(Cw) I g (D.37)
V(Sv) ‘I/(SV)
V(Sy) = 4l e (D.38)

The right-hand sides of egs. (D.37) and (D.38) are projected diagrams.
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As in the ordinary quantum mechanics, the symmetry generators can be unitary repre-
sentations of the symmetry groups which preserve the group structures. This implies that
we can simply replace the diagrammatic expressions of the Gy, Hg., and Ly with the 0-,
1-, and 2-form symmetry generators. For the 0-form symmetry, the unitary representation
in eq. (D.33) can be described as follows:

Uo(9) B(P) Uo(9™") Uo(g.S) ®(Ps)
) 4 Ro(g)e

P —
< — < — W

(D.39)

Here, we have enclosed ®(Pg) by surfaces Up(g) and Up(g~!) parameterized by g and g1,

respectively. Since Up(g) are topological, we can deform Up(g) and Up(g~!) to Uy(g,S)
given by a surface §. The projections of the diagram can be shown as follows:

Uo(9) ®(Ps) UO(g_l) ®(Po)

. Uo(g,S5): e Ro(g)e (D.40)
< = <« = <«

For the 1-form symmetry, the diagram for the unitary representation in eq. (D.34) and
the projection of the diagram are respectively given as follows:

Ui(h) W(Cw) Ui(h™Y) W(Cw) W(Cw)
| Uy (h,0) Rl(h>| (D.41)
— = — =
| | |
UL(h) W (cw) Ur(h™1) W (Cw)
<+ = <« = <

For the 2-form symmetry, the unitary representation in eq. (D.35) can be visualized by the
following diagram and its projection:

V(Sy) Us(1, (P, P")) V(Sv)

Us(1) Uz(l_l) B ‘PJA \o P’ B (1) (D.43)
V(Sy) Ua(l, (P, P")) V(Sv)

U2 (1) (D.44)

Here, the P’ has an orientation opposite to the point P.
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D.6.3 Diagrammatic expression of actions

Now we consider the diagrammatic expression of the symmetry generators parameterized
by the action . For the O-form symmetry, the symmetry generator Uy(g > ¢',S) is equal
to Ug(gg'g™',S), and the diagram is reduced to eq. (D.39). The symmetry generators
Ui(g>h,C) and Us(g>1, (P, P")) can be respectively expressed as follows:

Ui(h Up(h™t -
Ui(g>h) Ui(geh™t) ﬂ() 1§ ) >Uo(9,S)
® ® ®,/)5~Uy(h,C)
—-— = -4 = < (D.45)

/N /N
Uo(g) Uo(g™") Uolg) Uolg™)

Us (1) Us(17) Ux(1, (P, P"))

O—

Uo(gel) Up(gr1™h)

I I
. —— : — = (D.46)
I I

A
[

7N AN
Uo(g) Un(g™)  Uolg) Us(g™h)  Uol9:S)

In the diagram in eq. (D.45), S is a set of two cylinders, and the orientation of the cylinder
inside Uy (h,C) is opposite to the one outside Uj(h,C). Note that this diagram can express
the Witten effect for the axionic domain walls [101], which has been discussed in eq. (4.1).

D.6.4 Diagrammatic expression of Peiffer lifting

Here, we show the diagrammatic expression of the Peiffer lifting for the symmetry gen-
erators. We can describe the symmetry generator Us({h,h'}, (P, P’")) for the elements
h,h' € Hg = Hap/Im 01 by using egs. (D.43) or (D.44).

As we discussed in appendix D.4, the Peiffer lifting is related to the braiding of the
elements h, h' € Hy . In the case of the symmetry generators, the Peiffer lifting is related to
the linking of two 1-form symmetry generators. Before discussing the symmetry generators,
we consider the linking of group elements. For the elements h,h' € Hy, we can construct
linking of h and b’ from the Peiffer lifting {h, h'}{h/, h}:

{0} B}

h Wh'h='h h
(D.47)

h h'
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Now, we discuss the linking of the symmetry generators. By the diagram in eq. (D.47),
we find that the linking of the 1-form symmetry generators leads to 2-form symmetry
generators, which can act on V(Sy):

{]1(h,6)\ UQ({?7hI}7(7:17,P2))

I
| by (D.48)

[ J
Al s

A — P A
] I .
\I ‘ ‘

Ul(hlac/) U2({h/>h}7 (P37P4))

Note that the diagrammatic expression can describe the anomalous effect around the ax-
ionic strings [101], which has been discussed in eq. (4.3).

D.6.5 Symmetry groups parameterizing symmetry generators

Here, we show that the groups which parameterize the symmetry generators are not the
groups G, H, and L themselves but subgroups of them. The subgroups are specified as
G/Im 0y, Hap./Im 02 and Ker 02, where Hpy, is an Abelian part of Kerd; C H.

We require three assumptions for the symmetry generators. One is that the non-trivial
symmetry generators are not boundaries of other objects. Another is that the non-trivial
symmetry generators do not have boundaries. The last one is that the restricted groups
also have the 3-group structure.

Let us specify the subgroups by using the assumptions. By the first assumption,
the symmetry generators are parameterized by the elements of L, H, and G satisfying
02l = 1y and 01h = 1¢. Therefore, the symmetry groups are reduced to G, Kerd; C H,
Kerdy C L. Note that we can consistently define the actions of G on G, Kerd; and
Ker 09, since the elements h € Ker 9y and | € Ker 9 satisfy 01(g>h) = g 01h = 1 and
Da(g>1) =g 0ol = 1g, and da(h ' 1) = h' Oal = 1y for g € G.

The axiom of the Peiffer lifting gives us some properties of the subsets. In particular,
the subset Ker 9, must be Abelian by the axiom in eq. (C.8). The last assumption requires
that the Peiffer lifting {h, h'} for the elements h, h’ € Ker 9; should belong to Ker 09, i.e.,
02{h,h'} = 1g. By the axiom in eq. (C.6), we have hh' = h’h. Therefore, the Abelian
part of Ker 01 contributes to the higher-form symmetries. In the following, we denote the
Abelian part of Kerd; as Hay. Note that these restrictions are consistent with the fact
that the p-form symmetries (p > 0) must be Abelian (except for theories on manifolds with
non-trivial topology) [42].

The second assumption implies that the images of 01 and J» cannot parameterize non-
trivial symmetry generators. The reason can be simply understood by using our diagrams:
the symmetry generators given by 01h and 02l can be annihilated by pair creations of h
and [. For example, the annihilation of U;(9sl,C) can be seen as follows:

Ua(l, (P, P"))

¥, (D.49)
U (1,C) (® UL (8a1,C") (@ ®
< =

A
|
A
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Here, C’' is a line whose boundaries are P and P’. The groups parameterizing the sym-
metry generators are therefore G/Im9; and Hap /Imdy, Kerds. Note that G/Im oy
and Hap /Imdy are groups, since Imd; and Imdy are normal subgroups of G and H,
g(1h)g™!t = Gi(g>h) € Tmdy and h(l)h™t = Oy(h ' 1) € ITm, for ¢ € G and
h € H, respectively.

In summary, the 0-, 1-, and 2-form symmetry generators are parameterized by
G/Im 0y, Hap./Im 02 and Ker 0s.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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