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Abstract. We perform global three-dimensional simulations of accretion disks integrating the compressible, non-
viscous, but diffusive MHD equations. The disk is supposed to be isothermal. We make use of the ZEUS-3D
code integrating the MHD equations and added magnetic diffusivity. We measure the efficiency of the angular-
momentum transport. Various model simulations delivered transport parameters of αSS = 0.01 to 0.05 which are
consistent with several local numerical investigations. Two of the models reach a highly turbulent state at which
αSS is of the order of 0.1. After a certain stage of saturating of the turbulence, Reynolds stress is found to be
negative (inward transport) in many of the models, whereas Maxwell stresses dominate and deliver a positive
(outward) total transport. Several of the models yield strongly fluctuating Reynolds stresses, while Maxwell
stresses are smooth and always transport outwards. Dynamo action is found in the accretion disk simulations.
A positive dynamo-α is indicated in the northern hemisphere of the most prominent run, coming along with
negative kinetic and current helicities (all having the opposite sign on the southern side). The dipolar structure of
the magnetic field is maintained throughout the simulations, although indication for a decay of antisymmetry is
found. The simulations covered relatively thick disks, and results of thin-disk dynamo models showing quadrupolar
fields may not be compatible with the results presented here.
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1. Introduction

Accretion processes in astrophysical disks lead to enor-
mous luminosity and huge changes in disk structure dur-
ing astronomically short times. Efficient transport mech-
anisms are necessary to achieve such short time-scales.
Anisotropic turbulence appears to be a major physical
condition to provide astrophysical disks with strong trans-
port. As these disks generally exhibit increasing specific
angular momentum towards larger radii and thus fulfill the
stability criterion of Rayleigh, they do not give rise to an
instability leading to turbulence by themselves. Searches
for instabilities in disks with rotation profiles similar to
a Keplerian one unveiled several ways to turbulence be-
ing more or less favorable with respect to their prereq-
uisites for the disk configuration. Gravitational instabil-
ity needs the disk to be either cool or massive. Nonlinear
and nonaxisymmetric perturbations require a severe ad-
ditional perturber near the disk; conditions for instability
in a purely hydrodynamical disk were derived by Dubrulle
(1993). Hydrodynamic instability essentially comes down
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to violating the Rayleigh criterion saying that a rotation
profile with an increasing specific angular momentum with
radius is hydrodynamically stable, that is for ∂l2/∂r > 0.
Since the typical length of perturbations caused be ex-
ternal forces is supposed to be very large, the required
amplitude of the perturbations has to be considerable,
too, in order to violate the Rayleigh criterion locally. If
the length scale of the perturbation is comparable to the
radius, a strong alteration of the Keplerian velocity of sev-
eral per cent is needed. Convection was shown to deliver
either negligible transport (Stone & Balbus 1996) or in-
ward angular momentum transport (Kley et al. 1993).

The requirements for the magnetic shear-flow instabil-
ity (Balbus & Hawley 1991) do match astrophysical con-
ditions in accretion disks in many configurations. All it
needs is a radially decreasing angular velocity and a weak
magnetic field threading the rotating object. It can even be
shown that the temperature range applicable to the mag-
netic shear-flow concept is very broad; even very small
ionization fractions are sufficient to magnetize a disk in
many cases (Balbus & Hawley 1998).

First numerical approaches to the magnetic shear-flow
instability tackled the local problem; the linear analysis as
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described by Balbus & Hawley (1991) were immediately
followed by 2D simulations (Hawley & Balbus 1991) of
a small box-shaped domain which was cut out of the
disk. These computations confirmed the relation between
magnetic-field strength and wavenumber derived from the
linear analysis earlier, they showed that the maximum
growth rate of any wavenumber is independent from the
field strength and that the system is capable of trans-
porting angular momentum. Because of being restricted
to axisymmetric problems, they could not provide self-
sustained turbulence which needs dynamo-action, and
the slow decay of the turbulence is an indirect effect
of the Cowling theorem. Improved computations dealt
with a three-dimensional even though local configuration,
and particular care was taken for the radial boundary
conditions which are not simply periodic, but account
for the shear due to differential rotation (Hawley et al.
1995). These comprehensive computations indeed resulted
in magnetically sustained turbulence whose anisotropy
causes efficient outward angular momentum transport.
This work was followed up by stratified models (Stone
et al. 1996) covering more than 50 orbital periods of the
box cut-out. As the computational domain covered 2 den-
sity scale heights, this work was a first step towards global
simulations, followed up by similar approaches such as
Ziegler & Rüdiger (2000a,b).

Linear studies of global configurations of disks
threaded by magnetic fields in various directions were car-
ried out. Curry & Pudritz (1995) investigated the stability
for vertical and azimuthal fields threading the disk. They
found in detail that the actual initial field geometry does
not strongly depend on field topology as was suggested
by the numerical simulations of Hawley & Balbus (1991).
Rüdiger et al. (1999) particularly addressed the angular
momentum transport in their linear study. The first non-
linear global approach by numerical simulations with full
azimuthal coverage was presented by Armitage (1998) who
omitted the density stratification for the sake of a large
radial extent of the disk. A global approach with stratifi-
cation was then presented by Hawley (2000) following the
evolution of a thick torus under the influence of an exter-
nal magnetic field threading parts of the computational
domain. The magnetic shear-flow instability was found to
set in quickly causing enough turbulent viscosity to soon
form a Keplerian velocity profile. All the above mentioned
numerical studies integrate the ideal MHD equations omit-
ting magnetic diffusivity. Local simulations including dif-
fusivity were performed by Fleming et al. (2000) which
proved the onset of instability even for low conductivity.

The full understanding of accretion disks implies self-
excited dynamo action as well as angular momentum
transport. Can positive angular momentum transport be
coupled with a suitable kinetic helicity providing the ex-
pected dynamo action according to the α-effect principle?
As the kinetic helicity in stratified, rotating disks is ex-
pected to be negative, a wrong sign (positive) would fol-
low for the dynamo-α-effect according to the conventional
α-theories. We present global three-dimensional diffusive

simulations and study the angular momentum transport
as well as dynamo action and the sign of αdyn as a conse-
quence of the correlation with the flow.

2. The simulation setup

The computations presented here make use of the ZEUS-
3D code developed for astrophysical problems of magne-
tohydrodynamics (see the key papers Stone & Norman
1992a,b, Stone et al. 1992 for numerical; Clarke et al. 1994
for technical details). We use cylindrical coordinates and
computational domains covering various annuli with a a
vertical extension of z = −1 to +1 and the full azimuthal
range of φ = 0 to 2π. See Table 1 for a list of models pre-
sented in this Paper. The notation ∆z, ∆r, and ∆φ will
refer to the extensions of the computational domain in
the vertical, radial and azimuthal directions, respectively.
In this approach, we assume an isothermal disk to save
computation time on the energy equation. The remaining
system for integration is

∂ρ

∂t
+ div(ρu) = 0 (1)

∂ρu

∂t
+ div(ρuu) = − gradp − ρ gradΦ + J×B + . . . (2)

∂B

∂t
= curl(u × B) + η△B, (3)

where ρ, u, and B are the density, velocity, and mag-
netic field resp.; p is the pressure relating to the density
by p = c2

acρ in our model, with the constant sound speed
cac, Φ is the gravitational potential (solely from a central
mass M), J is the current density, and η is the magnetic
diffusivity which is not an original ingredient to the ZEUS
code. It is constant in time and space. The computations
of the electromotive force in the routines emfs, mocemfs,
and hsmoc of ZEUS-3D are extended with the appropri-
ate −η curlB components. We chose η = 0.001 to 0.01.
The additional time-step criterion resulting from the dif-
fusivity is roughly 0.1 for the finest grid used here. It is
therefore irrelevant for the determination of the time-step
which is typically 10−4 or, in the case of strong fluctu-
ations of velocity and magnetic field, one or two orders
of magnitude lower. In physical units, this diffusivity is
large and in fact accounting for a subgrid turbulent diffu-
sivity which cannot be resolved. Yet it is small enough to
provide numerically sensible magnetic Reynolds numbers
of 103–104, the natural Reynolds numbers being orders of
magnitudes higher though.

The gravitational potential is spherically symmetric,
whence the z-component of the gravitation is retained
within the disk. We therefore obtain a density stratifi-
cation unlike the computations by Armitage (1998) who
omits the z-component of the gravitation and applies peri-
odic boundary conditions for the upper and lower bound-
aries. His approach allows much larger radial extents of
the computational domain as the numerical restrictions
from large density contrasts do not emerge.

The sound speed is always cac = 10 which is
roughly 7% of the average Keplerian velocity in the
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Table 1. Model parameter used for this study. Torb is the revolution period of the disk at the inner edge. The z-range is always
from −1.0 to +1.0; the φ-range always from 0 to 2π. If accretion boundary conditions occur, they refer to the outer boundary;
the inner boundary is “outflow” then.

Model Resolution (z, r, φ) Radial boundary condition r-range Torb η

Ia 31 × 61 × 351 inner outflow 5.0–6.0 0.222 0.001

Ib 31 × 61 × 351 all outflow 5.0–6.0 0.222 0.001

II 31 × 61 × 351 accretion uin = −0.001cac 4.0–6.0 0.159 0.001

III 31 × 61 × 351 accretion uin = −0.01cac 4.0–6.0 0.159 0.001

IV 31 × 31 × 351 accretion uin = −0.001cac 5.0–6.0 0.222 0.001

V 31 × 61 × 351 Gaussian accretion uin = −0.001cac 4.0–6.0 0.159 0.01

VI 31 × 61 × 351 Gaussian accretion uin = −0.01cac 4.0–6.0 0.159 0.01

VII 31 × 31 × 151 Gaussian accretion uin = −0.001cac 4.0–6.0 0.159 0.01

VIII 31 × 61 × 351 accretion uin = −0.001cac 3.0–7.0 0.103 0.001

simulated ring. The initial density distribution is Gaussian
with r-dependent density scale-height H, thus ρ(r, z) =
ρc exp(−z2/H(r)2) with a density in the equatorial plane
of ρc = 1000. The equilibrium hydrodynamic model set-
tles such that the z-extent of the domain covers 3H at
r = 4 and 1.5H at r = 6.

The magnetic field threads the disk vertically with a
mere z-component. We tried a homogeneous initial field
Bz(r) = const for the z-boundaries as well as a field

Bz(r, t = 0) = b0r
−1 sin[2π(r − ri)/(ro − ri)] (4)

– where ri and ro are the inner and outer boundary radii
resp. – which has zero total magnetic flux through the
z = const surfaces. The choice of the initial field will
have implications for the topology of the field later on. As
the magnetic flux through the surfaces is kept constant,
the first approach will always preserve a non-zero average
magnetic field through the vertical boundaries, whereas
the field penetrating the top and the bottom of the com-
putational domain can completely vanish in the second
choice of initial fields. The results presented here were ob-
tained with the second approach of vanishing average ini-
tial field Bz. The parameter b0 was chosen between 50
and 100 giving an amplitude of the initial magnetic field
of max(Bz) = 10 to 20 corresponding to maximum Alfvén
speeds at the upper and lower boundaries of uA = 13
to 26 or uA = 1.3 cac to 2.6 cac. The Alfvén velocity in
the equatorial plane is subthermal with uA = 0.32 to 0.63
or 0.032 cac to 0.063 cac.

The initial velocity field is a merely Keplerian motion
following uφ = uK =

√

GM/r, where G is the gravita-
tional constant and M is the central mass which is 105 in
our computational units. Times are henceforth measured
in orbital periods which convert by Torb as given in Table 1
from the arbitrary units of the code.

The number of cells in each coordinate direction was
typically 31 × 61 × 351 for the z-, r-, and φ-directions.
The aspect ratio of the grid cells is not unity. Finest reso-
lution is achieved in radial direction, lowest in azimuthal
direction: δz/δr = 2, rδφ/δr = 2.18 for the most often
used inner radius r = 4 and rδφ/δr = 3.28 for r = 6

(Models II, III, V, VI, and VII), where δr refers to the
mesh width in radial direction and so on. Tests with up
to 621 cells in φ-direction have been carried out, but the
increased computation time does not allow reasonable pe-
riods to be covered by the simulation.

The fastest growing mode of the magneto-rotational
instability has a wavelength of λinst = 2π

√

16/15uA/Ω.
With the angular velocity of Ω = 28.2 for r = 5 which
is the middle of most of the radial ranges used, we ob-
tain wavelengths between 0.4 and 0.9 with the above given
Alfvén velocities of the initial field strength. These wave-
lengths are upper limits as they refer to the sites of maxi-
mum field and minimum density which need not coincide
necessarily. Yet, they are well resolved by the computa-
tion domain covering z-ranges of 2.0 and two different
r-intervals of 1.0 and 2.0.

The integration of the magnetic fields was done with
the evolution of the electromotive forces by the Constraint
Transport scheme (CT, Evans & Hawley 1988) which
preserves a divergence-free configuration. The advection
scheme of velocity and density involves the second-order
van-Leer interpolation.

Two terms adding a source of viscosity to the hydro-
dynamic equations extend the above Navier-Stokes equa-
tion as indicated by dots in Eq. (2). The von Neumann-
Richtmyer artificial viscosity depends on the square of
velocity gradients and acts only on decreasing velocity
in the direction of propagation, i.e. compression. The
strength of this term is denoted by qcon in the imple-
mentation of the ZEUS-3D code. The second term de-
pends linearly on the velocity gradient and acts on both
compression and expansion; the strength is represented by
qlin. Tests with a stable Keplerian flow found the choice of
qcon = 0.1 and qlin = 1.0 to be suitable. These values were
used throughout all the runs described here. The Courant
number determining the “safety” of a certain maximum
allowed time step derived from the velocities, magnetic
fields, and the artificial viscosities, is set to 0.5.

Occasionally, pockets of extremely low density may
emerge coupled with extraordinarily high speeds exceed-
ing the Keplerian velocity. We suppress the existence of
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such pockets by a mass replenishment as soon as the
density of a certain cell drops below 10−4 the central den-
sity. The actual mass being thus added to the total disk
mass is found to be negligible. The mass replenishment
thus acts like a lower limit for the time step.

2.1. Boundary conditions

The vertical boundary condition on the z = const-faces
of our computational domain are closed for the flow, i.e.
uz = 0. The boundary condition is stress-free in the sense
of ∂ur/∂z = 0 and ∂uφ/∂z = 0. The magnetic field
has to fulfill the “opposite” boundary condition as it is
only allowed to cross the boundary perpendicularly, which
is actually implemented affecting the electromotive force
E = u × B − η curlB such that Ez = 0, ∂Er/∂z = 0, and
∂Eφ/∂z = 0.

Computations were carried out with two choices of ra-
dial boundary conditions regarding the velocity. The first
does not allow flow through the top, bottom and outer
radial boundaries. The inner boundary was chosen to be
“outflow”, that is, the physical arrays are constantly ex-
trapolated into the ghost zones of the computational do-
main. The only exception is an inflow, in our case a ur > 0
at the inner boundary. This velocity component is reset
to zero then. All radial velocities ur < 0 are copied to
the ghost zones beyond the computational domain. The
same holds for the density and the magnetic-field compo-
nents. We will henceforth refer to these models as Model Ia
(only inner boundary has “outflow”) and Ib (inner and
outer radial and lower and upper vertical boundaries have
“outflow”).

Since the outflow condition is likely to empty the disk
on the viscous time-scale, the second choice tries to ac-
count for the accreted matter and feeds the disk at the
outer radial boundary. We sum up the mass loss rate at
the inner boundary Ṁ = rmin∆φ∆z

∑

i

∑

k ρik(ur)ik for
the total mass loss. The indices i and k run along the
vertical and azimuthal directions, respectively.

A constant, small inflow velocity uin is assumed for
the outer boundary. Accordingly, the density at the outer
boundary is determined to account for the mass flux at
the inner boundary. Since we use the average influx, its
z-dependence (nor even the φ-dependence) is not used
for a z- (nor even φ-) dependent inflow from far radii.
The boudary conditions for the outer radial face are thus
ur = uin and ρ = Ṁ/(Aoutuin) where Aout is the surface
of the outer boundary. The magnetic-field conditions are
Br = 0, ∂Bz/∂r, and ∂Bφ/∂r = 0. Note that this is not
consistent with the actual inflow of matter, but the uin is
extremely small, less than 10−4uK(ro) for the slow-inflow
models and less than 10−3uK(ro) for the fast-infall models
(see third column of Table 1). Upon expanding curl(u×B)
we find Bφ∂ur/∂r to be the relevant term generating a
contribution to Bz. The field in the last three zones in
Fig. 2 is an effect of this.

Fig. 1. Vertical cut through the disk of Model II after 6.3 or-
bital revolutions, excluding the high-velocity coronal compo-
nent of the disk. The shading represents the azimuthal com-
ponent, the arrows are the velocity vectors projected onto the
(r, z)-plane.

We tested inflow conditions with homogeneous and
Gaussian and density distribution. It was supposed that
an average influx of mass will establish according to the
current viscosity (either numerical or turbulent) in the
disk. These models are referred to as Model II-VIII in
the following.

The azimuthal velocity, uφ, is extrapolated into the ra-
dial boundary zones by a power law r−1.5 based on the last
zone of the computational domain. The velocities are thus
not Keplerian, they just follow the same radial power law.
Since we cover the full azimuthal range in φ, the bound-
aries at the φ = const surfaces are periodic, naturally.

3. Patterns, transport, spectra

3.1. Glancing at the solutions

Typical vertical slices from a run of Model II are shown in
Figs. 1 and 2. The central mass is located on the left side,
outside the computational domain. The shadings repre-
sent the azimuthal components of the magnetic and ve-
locity fields, while the arrows are the (r, z)-projections
of the actual vectors. Shaded areas near the equatorial
plane of the disk show the typical Keplerian velocity pro-
file. However, at high altitudes above the equator, a strong
super-rotation emerges coupled with relatively high infall
velocities. (These high radial velocities have been cut in
Fig. 1 to better show the velocities in the disk.)

The computational domain thus covers part of the
corona of the disk where the density falls below 10−3

times the equatorial density. The infall velocity in the
corona is of the same order of magnitude as the Keplerian
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Fig. 2. Vertical cut through the disk of Model II after 6.3 or-
bital revolutions with an azimuthal-component shading and
poloidal magnetic-field vectors.

velocity, whereas the non-orbital velocities within the disk
are much smaller. The actual flow in the disk as shown in
Fig. 1 is limited by 0.35cac.

After saturation of the turbulence, the temporal be-
havior of αSS changes. The fairly smooth function turns
into an oscillatory behavior. The typical feature of this
moment is the zero-crossing of the Reynolds stress which
is essentially negative all through the saturation parts of
the simulations. It is expected that the infall of matter
at the outer radial boundary tends to perform relaxation
motions, in particular for Models II–IV where matter falls
in homogeneously. The exclusion of the outermost six cell
planes from the computation of the spatially average αSS

does not alter the result (the actual relaxation motions
are observed only in the outermost three cell planes).
Relaxation motions will consist mainly of uz components
which do not affect radial angular-momentum transport
directly.

A problem connected with the homogeneous feeding
of the disk from the outer boundary is the appearance
of a “density front”. This is the reason why the density
at the outer boundary is highest which may look odd in
the context of an accretion disk. This incoming density
enhancement can be partly leveled by the presumed infall
velocity at the outer boundary.

3.2. Angular momentum transport

According to the standard model of a turbulent disk as
essentially worked out by Shakura & Sunyaev (1973), the

rφ-element of the stress tensor of velocity and magnetic-
field fluctuations,

Wrφ =

〈

ρur′u′

φ − 1
4π Br′B′

φ

〉

〈ρ〉
, (5)

scales like the speed of sound such as

Wrφ = αSSc2
ac, (6)

parameterized by an unknown αSS which is smaller than
unity in the case of subsonic turbulence. We normalize the
stress by the average density in the computational domain;
other authors used the density averaged in the equatorial
plane leading to lower limits for αSS. This stress measures
the angular momentum transport in the disk; positive val-
ues mean outward transport. We average this quantity
over the entire computational domain according to
∫

ρur′u′

φrdφdzdr
∫

rdφdzdr
(7)

for the velocity and

1

4π

∫

Br′B′
φrdφdzdr

∫

rdφdzdr
(8)

for the magnetic field fluctuations. As the azimuthal veloc-
ity contains a large supersonic axisymmetric mode – the
Keplerian flow – we adopt u′

φ = uφ−uK for the azimuthal
velocity fluctuations and ur

′ = ur for the other compo-
nent. The averaging is in fact carried out on a discrete
computational mesh by
∑

j rj

∑

i

∑

k ρur′u′

φ

nink

∑

j rj
(9)

for the velocity part and

1

4π

∑

j rj

∑

i

∑

k Br′B′

φ

nink

∑

j rj
(10)

for the magnetic part.

The time series of the outflow model Ia is shown in
Fig. 3. Model Ia in particular shows a short-lived occur-
rence of strong angular-momentum transport; a similar
but less pronounced behavior is found in Model Ib. This
period is the only time in both Models Ia and Ib when
Reynolds stresses dominate the Maxwell stresses. A sim-
ilarity to the transient channel solution as described by
Hawley et al. (1995) is likely, although that was found for
uniform initial Bz.

Time series for long runs of Models II and Model III
are shown in Figs. 5 and 7. Generally, the accretion model
shows stronger angular momentum transport than the the
simpler inner-outflow Model Ia. Models Ia and Ib run
out of matter after about 8 orbital revolutions with en-
abled magnetic fields, and the αSS values are no longer
meaningful.
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Fig. 3. Angular momentum transport by Reynolds (dashed)
and Maxwell (dotted) stresses as derived from a run of Model
Ia, that is with outflow boundary condition at the inner radial
face and a closed boundary for flow and magnetic fields at
the outer radial face. The total transport (thick solid line) is
positive and of the order of 0.0005.

Fig. 4. Energy in individual velocity components of Model Ia.

A striking feature of the accretion Models II and III
is the change of sign in the Reynolds stress after about
4–6 orbits. We find that, in a long run, the outward an-
gular momentum transport is a sole consequence of the
magnetic stresses. Additionally, the Reynolds part shows
strong amplitude variations unlike the Maxwell stress.

Figures 4 and 6 show the respective temporal evolu-
tion of the fluctuative kinetic energies. For the z- and
r-components, the zero mode is subtracted such as 〈u′2

z 〉 =
〈u2

z〉− 〈uz〉
2; the azimuthal fluctuative energy is found by

Fig. 5. Angular momentum transport by Reynolds (dashed)
and Maxwell (dotted) stresses as derived from a run of Model
II. The total transport (thick solid line) is positive and of the
order of 0.01.

Fig. 6. Energy in individual velocity components of Model II.

〈u′2
φ 〉 = 〈(uφ−uK)2〉. All three models show a clear energy

“sorting” of the z-, r-, and φ-components in this order.

A particularly long run was performed with a compu-
tational domain only half as large as Models II and III and
is denoted by IV. The initial and boundary conditions are
like in Model II. The long-term behavior is not too sim-
ilar to that of Model II with very strong oscillations of
Reynolds versus Maxwell stresses. A behavior comparable
with Model II may be spotted during the first 8 orbital
periods. After that time, the energy sorting of the radial
and vertical components is given up. All models from Ia
to IV appear to be not fully saturated with respect to the
ever-growing kinetic energies.
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Fig. 7. Angular momentum transport by Reynolds (dashed)
and Maxwell (dotted) stresses as derived from a run of
Model III. The homogeneous inflow velocity is ten times higher
in this simulation that in Fig. 5.

We should note that a homogeneous infall might be
suitable for a realistic disk in the sense that the in-
falling matter does not “know” the structure of the disk.
Nevertheless, numerical problems may occur when the
incoming homogeneous “matter front” meets the near-
Gaussian density structure. Models V and VI apply an
inflow with pre-defined Gaussian infall profile over z. The
respective αSS-profiles are shown in Figs. 8 and 10, the
first having an infall velocity of uin = −0.01, the second
uin = −0.1. The initial behavior is similar to the respec-
tive Models II and III including the change of sign of the
Reynolds stress after a couple of orbits. After as many as
10 orbital periods, the disk turns into a significantly dif-
ferent regime with enhanced outward transport in both
models.

The respective kinetic energies are given in Figs. 9
and 11. In contrast to the above studied models, energies
do not develop in an ever-growing way, but appear to fluc-
tuate about an average. The only exception is the regime
change near t = 12.5 Torb (Model V) and t = 10.5 Torb

(Model VI) when the average (essentially of 〈u′2
z 〉) changes,

but the stationary appearance remains.

The distribution of αSS versus time and the z-direction
is shown in Fig. 12 for Models V. Outward angular mo-
mentum transport is marked with white areas, inward
transport by dark areas. Strong transport is observed at
large distances from the equator shortly after the onset
of the instability. Regions of outward transport migrate
towards the equator. This is particularly marked in the
Model V plot for which we found a development into

Fig. 8. Angular momentum transport by Reynolds (dashed)
and Maxwell (dotted) stresses as derived from a run of
Model V. Density is not falling in homogeneously, but with a
predefined Gaussian vertical distribution; the (homogeneous)
inflow velocity is −0.001cac.

Fig. 9. Energy in individual velocity components of Model V.

a strong-transport regime (cf. Fig. 8). Positive angular
momentum transport is not restricted to high altitudes
anymore.

The temporal development of the accretion rate mea-
sured at the inner radial boundary is given in Fig. 13.
As we were free to choose a central disk density, the
computation of the accretion rate in physical units will
not provide much information, whence the arbitrary units
in Fig. 13. Choosing the rough dimensions of an inner pro-
tostellar system of 100 AU radius for scaling the mass flux
through our models, one would obtain an accretion rate
of about 10−5 M⊙/yr for Model II shown in the figure.
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Fig. 10. Angular momentum transport by Reynolds (dashed)
and Maxwell (dotted) stresses as derived from a run of
Model VI. The inflow velocity is ten times higher than in
model V, Fig. 8.

Fig. 11. Energy in individual velocity components of
Model VI.

3.3. Limits of the simulations

The application of accreting boundary conditions allows
relatively long durations of the simulations at constant to-
tal mass. Yet, the influence of the inconsistent outer radial
boundary becomes important after approximately 15 or-
bital periods. The major part of the mass concentrates
near the outer boundary, while the rest of the disk ap-
pears to run empty with strong inward radial velocities of
ur = 2cac to 3cac. At this point, our adjustment of the in-
flow density to sustain the total mass does not match the
actual process going on, and a strong pile-up of density
at the inlow boundary will be observed. The disruption is

Table 2. Results of the models given in Table 1. The duration
is the total period of the run with enabled magnetic fields. The
last column gives the period from which the αSS-average was
obtained. Times are in units of orbital revolutions of the inner
edge.

Mod. Resolution Duration 〈αSS〉 during time

Ia 31 × 61 × 351 8.3 0.0003 4.0– 8.9

Ib 31 × 61 × 351 12.2 0.01–0.02 3.5– 9.0

II 31 × 61 × 351 14.7 0.014 3.6–14.6

III 31 × 61 × 351 9.7 0.041 2.8– 9.7

IV 31 × 31 × 351 41.5 0.014 8.2–43.0

V 31 × 61 × 351 11.9 0.038 3.4–11.9

” ” 0.12 12.4–15.9

VI 31 × 61 × 351 16.1 0.037 3.1–10.1

” ” 0.14 11.1–16.1

VII 31 × 31 × 151 36.8 0.080 15.9–27.9

VIII 31 × 61 × 351 22.4 0.07 4.3–22.4

Fig. 12. Distribution of the total stress αSS versus time and
vertical coordinate for Model V. Light areas represent inward
transport, dark areas outward transport.

particularly sudden for Models V, VI, and VII which are
specific in that they have a higher magnetic diffusivity
than the other models.

3.4. Spectral decomposition

Power spectra resulting from Fourier transforms of the
magnetic field of Model V over the the azimuthal
and radial directions are shown in Figs. 14 and 15, re-
spectively. The azimuthal decomposition of the velocity
field is shown in Fig. 16. The individual azimuthal spec-
tra for all points in the (z, r)-plane were averaged, as were
the points of the (φ, z)-plane for the radial spectra. In the
azimuthal spectra, we observe slight maxima in power at
k = 5 and k = 8, followed by a strong, roughly power-
law decline between k ∼ 20 and k ∼ 100. The magnetic
spectrum is steeper than the kinetic one. The underly-
ing power-laws would be E ∝ k−3 to E ∝ k−4 which is
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Fig. 13. Variability of the accretion rate of Model II in an
arbitrary scale.

Fig. 14. Azimuthal Fourier decomposition of the magnetic-
field components after 8.15 orbital periods in Model V. The
dotted line shows a Kolmogorov power law with exponent
−5/3.

significantly steeper than a Kolmogorov spectrum, and is
similar to what Armitage (1998) found for a global sim-
ulation in the far-k range. The Kolmogorov spectrum of
isotropic turbulence would exhibit a wavenumber expo-
nent of −5/3; here we face MHD turbulence which im-
plies an effect of Alfvén waves impeding the transfer of
energy towards smaller scales. The energy spectrum of
isotropic MHD turbulence is E ∝ k−3/2. Contrasting with
the azimuthal decomposition, the radial spectrum matches
the Kolmogorov spectrum over the entire range of modes
as can be seen in Fig. 15.

3.5. Comparison with other studies

Among stratified local simulations, we find a number of
very similar results as regards the magnitude of αSS, such
as in Stone et al. (1996) who obtained 0.01, Hawley et al.
(1996) where an average of 0.016 was found, with typi-

Fig. 15. Radial Fourier decomposition of the magnetic-field
components after 8.15 orbital periods in Model V.

Fig. 16. Azimuthal Fourier decomposition of the velocity com-
ponents after 8.15 orbital periods in Model V.

cal values of 0.01. The largest box used delivered 0.02,
the smallest, 0.003. Upon studying the dependence of the
turbulence on the rotation law Ω ∝ r−q, Hawley et al.
(1999) found 10−2 for q = 1.5. A most recent local-box
simulation by Ziegler & Rüdiger (2000b) covering 288 or-
bital periods resulted in a space-time average of 0.015,
where the Reynolds part was 2.8× 10−3 and the Maxwell
part was 1.2 × 10−2. The stress was normalized with the
averaged equatorial-plane pressure and thus provides a
lower limit for αSS. The early stratified-box simulations
by Brandenburg et al. (1995) provided αSS an order of
magnitude lower between 0.001 and 0.005. All the mod-
els agree upon the dominance of Maxwell stresses over
Reynolds stresses.

It is most interesting to note that other global simu-
lations such as performed by Armitage (1998) or Hawley
(2000) result in an order of magnitude higher values of 0.2
to 0.3. Contrasting with this, the global spherical, but un-
stratified simulation by Drecker (2000) gives again an αSS
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which is an order of magnitude lower than shown here,
i.e. 10−3. Those simulations alone included a physical vis-
cosity. The simulations of Hawley (2000) – and with some-
what different objectives, those of Machida et al. (2000) –
had open boundaries in radial and vertical directions. This
fact limits the run-time of the models which are prone to
running out of matter.

4. Dynamo effect

The amplification of the total magnetic energy by a factor
of roughly 103 from the initial magnetic-field perturbation
to the state of strong angular-momentum transport indi-
cates considerable dynamo action in the disk. In the fol-
lowing we will investigate the characteristics of magnetic-
field generation in our simulations.

The local-box simulations by Hawley et al. (1996)
impose severe constraints on the growth of an average
magnetic field because of the periodicity of the boundary
conditions. A non-zero term of the average magnetic-field
growth is due to the shear and requires the presence of an
average radial component, in the local nomenclature 〈Bx〉.
We follow their derivation of the averages by replacing the
volume curl integral by a vector-product surface integral
of (3). The average

∂〈B〉

∂t
=

1

π(∆r)2∆z

∫

V

curl(u × B − η curlB)dV (11)

is equivalent to

∂〈B〉

∂t
=

1

π(∆r)2∆z

∫

S

dS × (u × B − η curlB) (12)

and delivers average components as

∂〈Bz〉

∂t
= −

〈

∂

∂r
urBz

〉

(13)

∂〈Br〉

∂t
=

〈

∂

∂z
urBz

〉

+ η

〈

∂

∂z

∂Bz

∂r

〉

(14)

∂〈Bφ〉

∂t
=

〈

∂

∂z
uφBz

〉

− η

〈

1

r

∂

∂z

∂Bz

∂φ
−

∂2Bφ

∂z2

〉

−

〈

∂

∂r
uφBr

〉

+ η

〈

∂

∂r

1

r

∂rBφ

∂r

〉

· (15)

These considerations show that slight initial fluctuations
in B are able to create non-zero average magnetic fields at
any time, even if their 〈B′〉 vanishes, as a consequence of
shear and radial accretion through uin. In particular, the
non-constant vertical profile of the orbital velocity pro-
duces a Bφ from the initial perturbation Bz. Fluctuations
in the accretion flow generate Br and Bz. The actual radial
differential rotation then quickly produces Bφ from even
very small Br, and toroidal fields are prone to dominate
the disk fields.

4.1. Sketching mean-field dynamos

Kinematic dynamos have been extensively examined in
numerous previous publications concerning various types
of geometries. A widely used mean-field approach circum-
navigates the difficulties with resolving the small scales
in a model. We address the applicability of the mean-field
theory to accretion disk dynamos by extracting character-
istic quantities from the simulations.

The mean-field dynamo applies the likely amplifica-
tion of a magnetic field through a fluctuative electromo-
tive force parallel to the actual large-scale magnetic field.
This effect is generally expressed by the term “α-effect”
and can be thoroughly studied in e.g. Krause & Rädler
(1981). In a model splitting large and small scales, the
induction equation extends beyond the large-scale elec-
tromotive force such as

∂〈B〉

∂t
= curl (〈u〉 × 〈B〉 + E) . (16)

The α-effect is part of the development of the small-scale
electromotive force as

Ei = αdyn
ij 〈Bj〉 − ηijk〈Bk〉,j + . . . , (17)

where αdyn
ij and ηijk are tensors in general. If written in

components, the induction equation shows that the es-
sential component of the αdyn tensor is the αdyn

φφ compo-
nent which converts azimuthal fields into radial and verti-
cal fields, whereas the differential rotation converts radial
and vertical fields back into the toroidal component by the
large-scale part curl(〈u〉 × 〈B〉) of Eq. (16). This approx-
imation is usually referred to as an αΩ-dynamo.

Second-order correlation approximation leads to a re-
lation of αdyn with the helicity of the flow,

αdyn = −
1

3

∞
∫

0

〈

u
′(t) · curlu′(t − τ)

〉

dτ, (18)

which is, when approximated by a typical time-scale τcorr,

αdyn ∼ −〈u′ · curlu′〉 τcorr. (19)

The same principle is applicable to the current helicity
(Keinigs 1983) giving

αdyn ∼ −
η

B2
〈B′ · curlB′〉· (20)

Among other issues, the evolution of these quantities for
the helicity will be subject of the following sections.

4.2. Symmetry of magnetic fields

Special attention is pid to the symmetry of the magnetic
fields of the solutions. In general, the preference of a cer-
tain symmetry is a tool to check the consistency with
mean-field dynamo models. Additionally, dipolar (anti-
symmetric) fields are supposed to support the launch of
winds forming jets from the disk better than quadrupolar
(symmetric) fields, with the latter rather providing closed
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field lines within the disk. The mean-field disk dynamo of
Rekowski et al. (2000) produced dipolar magnetic fields
for negative αdyn in the northern hemisphere.

A number of mean-field dynamo models in one to three
dimensions delivered varying symmetry of the solutions
with a major influence of the boundary conditions – vac-
uum versus perfectly conducting. Three-dimensional in-
vestigations of stability by Meinel et al. (1990) and Elstner
et al. (1992) found quadrupolar solutions for the condition
of low-conductivity surroundings of the disk, whereas per-
fectly conducting boundaries delivered dipolar solutions.
A local model with periodic boundaries will thus not be
able to answer the question of the final symmetry of the
solutions. An ideal global model would comprise the entire
investigated object and is less depending on the surround-
ings (which will be vacuum in very good approximation).

The parity of a the toroidal magnetic field is
measured by

P =
Es − Ea

E
, (21)

where Es and Ea are the symmetric and antisymmetric
energy parts resp., and E is the total energy of in toroidal
field component. Figures 17 and 18 show the temporal
development of parity of the toroidal magnetic fields in
the Models II and V along with a repeated plot of αSS.

We should emphasize that the initial perturbation of
the magnetic field had dipolar symmetry. Since the to-
tal flux through the vertical surfaces, however, vanishes,
field configurations with either symmetry may arise from
the evolution of the model. The dipolar initial perturba-
tion may not have been fully re-organized as the diffusive
time-scale

τdiff = H2/η (22)

is 1600 rotation periods for the low-diffusivity model II
and 160 revolutions for the high-diffusivity model V. The
latter covered 0.12 τdiff. An additional experiment used a
completely mixed initial magnetic-field perturbation ac-
cording to a distribution which has zero parity in Bz, and
the toroidal component immediately emerging from the
slight vertical shear has zero parity, too. Again, the mag-
netic flux through the vertical surfaces is zero. Such initial
conditions have been applied to Models II and V. The runs
lasted roughly 10 revolution resulting in parity variations
with a slight tendency towards quadrupolar (symmetric)
solution (P from +0.1 to +0.2).

4.3. The dynamo of the disk model

Average kinetic helicities were computed based on a layer
slightly below one density scale-height in both hemi-
spheres. The average is taken in φ- and r-direction. There
is a considerable scatter in the time series of the helicity,
but temporal averages are all negative on the northern
side for all models. The only exception is the northern
part of Model II with a near-zero value. Negative sign

Fig. 17. Total αSS and parity for Model II with η = 0.001.
A parity of −1 denotes fully antisymmetric. (dipolar) solutions.

Fig. 18. Total αSS and parity for Model V with η = 0.01.

also holds for the two test models with mixed-parity ini-
tial perturbation. Average current helicities are also neg-
ative on the northern side (and positive on the southern
one) throughout almost all models. The only exceptions
are the mixed-parity models which show a current helicity
with opposite sign compared with the kinetic helicity in
both hemispheres.

Since the angular momentum transport is dominated
by magnetic stresses, we also ask about the energy in the
flow fluctuations and the magnetic field. The temporal
evolutions of these two quantities in Figs. 19 and 20 show
a clear difference between the Models II and V. Kinetic-
energy dominance holds for Model II, whereas magnetic
dominance is found for Model V.

In order to evaluate the applicability of the αdyn ap-
proach, we compute the average toroidal field 〈Bφ〉 and
compare it with the actual average electromotive force
Eφ = (〈u〉 × 〈B〉)φ derived directly from the simulated



1046 R. Arlt and G. Rüdiger: Global simulations of accretion disks

Fig. 19. Temporal evolution of kinetic (solid line) and mag-
netic (dashed line) energies of Model II with η = 0.001. The
energy is measured as a radial and azimuthal total in a hori-
zontal layer at z = +0.39 which is – measured in density scale-
heights H – near 1.2H at the inner radial boundary and near
0.6H at the outer boundary, due to the variable disk height
along radius.

Fig. 20. Temporal evolution of kinetic (solid line) and mag-
netic (dashed line) energies of Model V with η = 0.01. The
energy is measured as a radial and azimuthal total in a hori-
zontal layer at z = +0.39.

vector fields. A correlation between the two quantities
may justify the α-effect for dynamo generation of mag-
netic fields. As a meaningful αdyn must change its sign at
the equator, we plot the correlation for both hemispheres
of the disk separately; the result is given in Fig. 22. As
the temporal fluctuations are strong, we plot the time-
averages of Bφ and (u×B)φ in Fig. 21 only with their re-
sulting sign. The quantities are also averaged in azimuthal
direction and plotted in the (r, z)-plane. White areas de-
note a negative sign; the dominance of negative averaged
electromotive forces indicates a positive αdyn in the north-
ern hemisphere in accordance with Fig. 22.

Fig. 21. Time-average toroidal magnetic field (TOP) and
the toroidal electromotive force (BOTTOM) shown in spatial
distribution.

The classical understanding of the Coriolis force giving
preference to left-handed helicity on the northern hemi-
sphere (whence positive αdyn) appears not applicable for
the correlation plots of Models II and III. The fluctua-
tions were strong, and no meaningful sign of αdyn can be
derived. However, Models Ia, V, and VI show a mostly
negative averaged EMF for both hemispheres, while 〈Bφ〉
changes its sign. An indication for positive αdyn is thus
found from these simulations.

In fact, Models V and VI are those which show satu-
rated kinetic energies. The other significant difference to
the indefinite Models II and III is the 10 times higher dif-
fusivity, η = 0.01. Notwithstanding, an indication for a
negative αdyn was already found in simulations of a lo-
cal box cut out of the disk by Brandenburg et al. (1995).
The same sign is found by Ziegler & Rüdiger (2000b) from
long runs of local simulations, although a clear influence of
resistivity on the evolution was found there. Lowest mag-
netic Reynolds numbers are Rem = 1450 for Model V in
this Paper, calculated with the velocity difference between
inner and outer radial boundary, just as Ziegler & Rüdiger
did for the local box.
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Fig. 22. Correlation of the average electromotive force versus the mean Bφ, averaged for the northern and southern hemisphere
separately. The quantities were derived, from top to bottom, from the runs of Models Ia, V, and VI. The sign of the correlation
gives an indication for the sign of the dynamo α-effect.

These considerations are somewhat limited, since a
straight-forward regression line in Fig. 22 will have a sig-
nificant offset from the origin of the graph; a vanish-
ing 〈Bφ〉 does apparently not coincide with a vanishing
(〈u〉 × 〈B〉)φ. The effect of the other field components is
considered small though; while the average hemispheri-
cal 〈Bφ〉 are of the order of 100, the 〈Br〉 is of order 10
and 〈Bz〉 of order unity. A considerable contribution is
suspected from the current density through the ηijk-term
in Eq. (17), and it appears to be quite natural that an off-
set in the correlation graphs in Fig. 22 is found. For this
reason, we did not plot such regression lines in the figure.

Additionally, the sole consideration of the induction
equation in the “classical” dynamo theory leads to the
omission of the Lorentz force, which is not only essential

for the onset of the magneto-rotational instability but for
the maintenance of the turbulence and the transport of
angular momentum as well. It is thus obvious that the
neglect of the back-reaction of magnetic fields on the flow
need not lead to representative models of Keplerian disks.

5. Conclusions

Three-dimensional global simulations have shown, that
the magnetic shear-flow instability is a fast mecha-
nism to generate a turbulent flow in a Keplerian disk.
We presented models with a computational domain cov-
ering the full azimuthal range, accounting for accretion
of matter. The Shakura-Sunyaev parameter αSS increases
rapidly during the first revolutions after switching on the
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magnetic field and reaches 10−2–10−1 at this stage of the
computations, though it appears not yet fully saturated in
several of the models. Maxwell stresses exceed Reynolds
stresses almost entirely. The latter undergo strong fluctu-
ations and are partly negative.

Indications for a dynamo action in the disk are found,
the corresponding dynamo-αdyn tending to be positive
north of the equatorial plane and negative south of the
equatorial plane. The generated magnetic fields may main-
tain the turbulence even if the external field ceases. The
strong excitation of low-order azimuthal modes in the
magnetic field is another promising fact for dynamo ac-
tion with respect to the Cowling theorem.

5.1. The dynamo of Model V

For various reasons, a representative example for an ac-
cretion disk dynamo is provided by Model V (and nearly
as well by the similar Model VI with higher inflow ve-
locity). The time series is sufficiently long covering more
than 18 revolution periods. The angular momentum trans-
port reaches a saturated level of high efficiency during
the last four orbital periods. The magnetic diffusivity is
roughly two orders of magnitude higher than the numer-
ical diffusivity. The striking dominance of one sign of the
averaged EMF in Fig. 21 indicates a physically evolved,
relevant state of the system.

The results connected with the outcomes of mean-field
dynamo theory include the following facts: (i) A negative
average toroidal magnetic field is found for the northern
hemisphere, a positive on the southern one. The averaged
EMF is negative in both hemisphere indicating a positive

αdyn-effect on the northern side (negative on the southern
side). (ii) The correlation plot of average toroidal field and
EMF gives the same picture. (iii) Negative kinetic and
current helicities on the northern hemisphere (positive on
the southern one) are also consistent with a positive αdyn.
(iv) The dipolar structure of the solution contrasts with
the results from mean-field dynamo models of disks which
yield quadrupolar solutions for positive αdyn. We have to
add though that the disks of our Paper are not thin. Mean-
field simulations by Covas et al. (1999) show a transition
from quadrupolar to dipolar fields when the opening angle
of the disk is enlarged, rather representing a torus than a
disk.

The extension of the run-times of such simulations
exceeding the order of diffusion times promises further
results about dynamo action in accretion disks. The
connection with mean-field concepts are most interesting
as well as the implications for jet-launch models.
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