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Abstract We present global analyses of effective Higgs

portal dark matter models in the frequentist and Bayesian

statistical frameworks. Complementing earlier studies of the

scalar Higgs portal, we use GAMBIT to determine the pre-

ferred mass and coupling ranges for models with vector,

Majorana and Dirac fermion dark matter. We also assess

the relative plausibility of all four models using Bayesian

model comparison. Our analysis includes up-to-date likeli-

hood functions for the dark matter relic density, invisible

Higgs decays, and direct and indirect searches for weakly-

interacting dark matter including the latest XENON1T data.

We also account for important uncertainties arising from the

local density and velocity distribution of dark matter, nuclear

matrix elements relevant to direct detection, and Standard

Model masses and couplings. In all Higgs portal models, we

find parameter regions that can explain all of dark matter and

give a good fit to all data. The case of vector dark matter

requires the most tuning and is therefore slightly disfavoured

from a Bayesianpoint of view. In the case of fermionic dark

a e-mail: ankit.beniwal@fysik.su.se
b e-mail: sanjay.bloor12@imperial.ac.uk
c e-mail: kahlhoefer@physik.rwth-aachen.de
d e-mail: sebastian.wild@desy.de

matter, we find a strong preference for including a CP-

violating phase that allows suppression of constraints from

direct detection experiments, with odds in favour of CP vio-

lation of the order of 100:1. Finally, we present DDCalc

2.0.0, a tool for calculating direct detection observables and

likelihoods for arbitrary non-relativistic effective operators.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 2

2 Models . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Constraints . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Thermal relic density . . . . . . . . . . . . . . 4

3.2 Higgs invisible decays . . . . . . . . . . . . . 5

3.3 Indirect detection using gamma rays . . . . . . 5

3.4 Direct detection . . . . . . . . . . . . . . . . . 6

3.5 Capture and annihilation of DM in the Sun . . . 7

3.6 Nuisance likelihoods . . . . . . . . . . . . . . 7

3.7 Perturbative unitarity and EFT validity . . . . . 8

4 Scan details . . . . . . . . . . . . . . . . . . . . . . 9

5 Results . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1 Profile likelihoods . . . . . . . . . . . . . . . . 10

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-6513-6&domain=pdf
http://orcid.org/0000-0003-4849-0611
http://orcid.org/0000-0001-5882-7615
mailto:ankit.beniwal@fysik.su.se
mailto:sanjay.bloor12@imperial.ac.uk
mailto:kahlhoefer@physik.rwth-aachen.de
mailto:sebastian.wild@desy.de


38 Page 2 of 28 Eur. Phys. J. C (2019) 79 :38

5.1.1 Vector model . . . . . . . . . . . . . . . 10

5.1.2 Majorana fermion model . . . . . . . . . 11

5.1.3 Dirac fermion model . . . . . . . . . . . 13

5.1.4 Goodness of fit . . . . . . . . . . . . . . 14

5.2 Marginal posteriors . . . . . . . . . . . . . . . 15

5.2.1 Vector model . . . . . . . . . . . . . . . 15

5.2.2 Majorana fermion model . . . . . . . . . 15

6 Bayesian model comparison . . . . . . . . . . . . . 18

6.1 Background . . . . . . . . . . . . . . . . . . . 18

6.2 CP violation in the Higgs portal . . . . . . . . 19

6.3 Scalar, vector, Majorana or Dirac? . . . . . . . 20

7 Conclusions . . . . . . . . . . . . . . . . . . . . . 20

Appendix A: New features in DDCalc . . . . . . . . . 21

A.1: Non-relativistic effective operators . . . . . . . 21

A.2: Extended detector interface . . . . . . . . . . . 22

A3: New experiments . . . . . . . . . . . . . . . . 22

Appendix B: Annihilation cross-sections . . . . . . . . 24

References . . . . . . . . . . . . . . . . . . . . . . . . 25

1 Introduction

Cosmological and astrophysical experiments have provided

firm evidence for the existence of dark matter (DM) [1–4].

While the nature of the DM particles and their interactions

remains an open question, it is clear that the viable candidates

must lie in theories beyond the Standard Model (BSM). A

particularly interesting class of candidates are weakly inter-

acting massive particles (WIMPs) [5]. They appear naturally

in many BSM theories, such as supersymmetry (SUSY) [6].

Due to their weak-scale interaction cross-section, they can

accurately reproduce the observed DM abundance in the Uni-

verse today.

So far there is no evidence that DM interacts with ordinary

matter in any way except via gravity. However, the generic

possibility exists that Standard Model (SM) particles may

connect to new particles via the lowest-dimension gauge-

invariant operator of the SM, H† H . It is therefore natural

to assume that the standard Higgs boson (or another scalar

that mixes with the Higgs) couples to massive DM particles

via such a ‘Higgs portal’ [7–27]. The discovery of the Higgs

boson in 2012 by ATLAS [28] and CMS [29] therefore opens

an exciting potential window for probing DM.

Despite being simple extensions of the SM in terms of

particle content and interactions, Higgs portal models have

a rich phenomenology, and can serve as effective descrip-

tions of more complicated theories [30–52]. They can pro-

duce distinct signals at present and future colliders, DM direct

detection experiments or in cosmic ray experiments. In the

recent literature, experimental limits on Higgs portal models

were considered from Large Hadron Collider (LHC), Circu-

lar Electron Positron Collider and Linear Collider searches,

LUX and PandaX, supernovae, charged cosmic and gamma

rays, Big Bang Nucleosynthesis, and cosmology [36,41,53–

76]. The lack of such signals to date places stringent con-

straints on Higgs portal models.

The first global study of the scalar Higgs portal DM model

was performed in Ref. [77]. The most recent global fits

[78,79] included relic density constraints from Planck, lead-

ing direct detection constraints from LUX, XENON1T, Pan-

daX and SuperCDMS, upper limits on the gamma-ray flux

from DM annihilation in dwarf spheroidal galaxies with the

Fermi-LAT, limits on solar DM annihilation from IceCube,

and constraints on decays of SM-like Higgs bosons to scalar

singlet particles. The most recent [79] also considered the Z3

symmetric version of the model, and the impact of requiring

vacuum stability and perturbativity up to high energy scales.

In this paper, we perform the first global fits of the effec-

tive vector, Majorana fermion and Dirac fermion Higgs portal

DM models using the GAMBIT package [80]. By employing

the latest data from the DM abundance, indirect and direct

DM search limits, and the invisible Higgs width, we system-

atically explore the model parameter space and present both

frequentist and Bayesian results. In our fits, we include the

most important SM, nuclear physics, and DM halo model nui-

sance parameters. For the fermion DM models, we present

a Bayesian model comparison between the CP-conserving

and CP-violating versions of the theory. We also carry out a

model comparison between scalar, vector and fermion DM

models.

In Sect. 2, we introduce the effective vector and fermion

Higgs portal DM models. We describe the constraints that we

use in our global fits in Sect. 3, and the details of our param-

eter scans in Sect. 4. We present likelihood and Bayesian

model comparison results respectively in Sects. 5 and 6, and

conclude in Sect. 7. Appendix A documents new features

included in the latest version of DDCalc. Appendix B con-

tains all the relevant expressions for the DM annihilation

rate into SM particles. All GAMBIT input files, samples and

best-fit points for this study are publicly available online via

Zenodo [81].

2 Models

We separately consider vector (Vμ), Majorana fermion (χ )

and Dirac fermion (ψ) DM particles that are singlets under

the SM gauge group. By imposing an unbroken global Z2

symmetry, under which all SM fields transform trivially but

(Vμ, χ, ψ) → −(Vμ, χ, ψ), we ensure that our DM candi-

dates are absolutely stable.

Before electroweak symmetry breaking (EWSB), the

Lagrangians for the three different scenarios are [51]
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LV = LSM −
1

4
WμνW μν +

1

2
μ2

V VμV μ −
1

4!
λV (VμV μ)2

+
1

2
λhV VμV μ H† H, (1)

Lχ = LSM +
1

2
χ(i /∂ − μχ )χ

−
1

2

λhχ

Λχ

(
cos θ χχ + sin θ χ iγ5χ

)
H† H, (2)

Lψ = LSM + ψ(i /∂ − μψ )ψ

−
λhψ

Λψ

(
cos θ ψψ + sin θ ψiγ5ψ

)
H† H, (3)

where LSM is the SM Lagrangian, Wμν ≡ ∂μVν − ∂νVμ

is the vector field strength tensor, λhV is the dimensionless

vector Higgs portal coupling, λhχ,hψ/Λχ,ψ are the dimen-

sionful fermionic Higgs portal couplings, and H is the SM

Higgs doublet. The fermionic Lagrangians include both CP-

odd and CP-even Higgs-portal operators, with θ controlling

their relative size. The choice cos θ = 1 corresponds to a

pure scalar, CP-conserving interaction between the fermionic

DM and the SM Higgs field, whereas cos θ = 0 corresponds

to a pure pseudoscalar, maximally CP-violating interaction.

We discuss a possible ultraviolet (UV) completion of such a

model in Sect. 3.7 (see also Refs. [12,23]).

Although all operators in the vector DM model have

mass dimension four, the model itself is fundamentally non-

renormalisable, as we do not impose a gauge symmetry to

forbid e.g. the mass term for the vector field. Processes with

large energies compared to the vector DM mass will vio-

late perturbative unitarity: for large momentum, longitudinal

modes of the vector propagator become constant and cross-

sections become divergent. In this study we remain agnostic

as to the origin of the vector mass term and the quartic vector

self-interaction, however we do consider perturbative unitar-

ity in Sect. 3.7.

After EWSB, the Higgs field acquires a non-zero vacuum

expectation value (VEV). In the unitary gauge, we can write

H =
1

√
2

(
0

v0 + h

)
, (4)

where h is the physical SM Higgs field andv0 = (
√

2G F )−1/2

= 246.22 GeV is the Higgs VEV. Thus, the H† H terms in

Eqs. (1–3) generate mass and interaction terms for the DM

fields. The tree-level physical mass of the vector DM is

m2
V = μ2

V +
1

2
λhV v2

0 . (5)

For the fermion DM models, the pseudoscalar term (pro-

portional to sin θ ) generates a non-mass-type term that is

purely quadratic in the DM fields (e.g., ψγ5ψ). Therefore

after EWSB, to eliminate this term, we perform a chiral rota-

tion of the fermion DM fields through

χ → eiγ5α/2χ, ψ → eiγ5α/2ψ , (6)

where α is a real, space-time independent parameter.1 Using

the details outlined in the appendix of Ref. [51], we arrive at

the following post-EWSB fermion DM Lagrangians

Lχ = LSM +
1

2
χ(i /∂ − mχ )χ

−
1

2

λhχ

Λχ

[
cos ξ χχ + sin ξ χ iγ5χ

](
v0h +

1

2
h2

)
,

(7)

Lψ = LSM + ψ(i /∂ − mψ )ψ

−
λhψ

Λψ

[
cos ξ ψψ + sin ξ ψiγ5ψ

] (
v0h +

1

2
h2

)
,

(8)

where ξ ≡ θ + α,

cos ξ =
μχ,ψ

mχ,ψ

(
cos θ +

1

2

λhχ,hψ

Λχ,ψ

v2
0

μχ,ψ

)
, (9)

and

mχ,ψ =

[(
μχ,ψ +

1

2

λhχ,hψ

Λχ,ψ

v2
0 cos θ

)2

+
(

1

2

λhχ,hψ

Λχ,ψ

v2
0 sin θ

)2
]1/2

. (10)

In particular, we note that a theory that is CP-conserving

before EWSB (cos θ = 1) is still CP-conserving after EWSB

(cos ξ = 1). Because the simplest UV completion leads to

cos θ = 1, this means the particular choice of cos ξ = 1

is also natural from the UV perspective.2 In light of this,

we compare the viability of a CP-conserving scenario to the

most general case with arbitrary ξ in Sect. 6.

3 Constraints

The free parameters of the Lagrangians are subject to vari-

ous observational and theoretical constraints. For the case of

1 Note that for the Majorana case, the 4-component spinor can be writ-

ten in terms of one two-component Weyl spinor. This transformation

simply corresponds to a phase transformation of this two-component

spinor.

2 This is not the case for the maximally CP-violating choice (cos θ = 0)

as EWSB induces a scalar interaction term with cos ξ ∝ v2
0 [82].
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Table 1 Likelihoods and

corresponding GAMBIT
modules/backends employed in

our global fit

Likelihoods GAMBIT modules/backends References

Relic density (Planck) DarkBit [4]

Higgs invisible width DecayBit [84]

Fermi-LAT dSphs gamLike 1.0.0 [85]

LUX 2016 (Run II) DDCalc 2.0.0 [86]

PandaX 2016 DDCalc 2.0.0 [87]

PandaX 2017 DDCalc 2.0.0 [88]

XENON1T 2018 DDCalc 2.0.0 [89]

CDMSlite DDCalc 2.0.0 [90]

CRESST-II DDCalc 2.0.0 [91]

PICO-60 2017 DDCalc 2.0.0 [92]

DarkSide-50 2018 DDCalc 2.0.0 [93]

IceCube 79-string nulike 1.0.6 [94]

vector DM, the relevant parameters after EWSB are the vec-

tor DM mass mV and the dimensionless coupling λhV .3 The

post-EWSB fermion Lagrangians contain three free parame-

ters: the fermion DM mass mχ,ψ , the dimensionful coupling

λhχ,hψ/Λχ,ψ between DM and the Higgs, and the scalar-

pseudoscalar mixing parameter ξ .

In Table 1, we summarise the various likelihoods used

to constrain the model parameters in our global fit. In the

following sections, we will discuss both the physics as well

as the implementation of each of these constraints.

3.1 Thermal relic density

The time evolution of the DM number density nX is governed

by the Boltzmann equation [95]

dnX

dt
+ 3HnX = −〈σvrel〉

(
n2

X − n2
X,eq

)
, (11)

where nX,eq is the number density at equilibrium, H is the

Hubble rate and 〈σvrel〉 is the thermally averaged cross-

section times relative (Møller) velocity, given by

〈σvrel〉 =
∫ ∞

4m2
X

ds
s

√
s − 4m2

X K1

(√
s/T

)

16T m4
X K 2

2 (m X/T )
σvcms

rel , (12)

where vcms
rel is the relative velocity of the DM particles in the

centre-of-mass frame, and K1,2 are modified Bessel func-

tions. In the case of non-self-conjugate DM, the right hand

side of Eq. (11) is divided by two.

3 The quartic self-coupling λV does not play any role in the DM phe-

nomenology that we consider, and can be ignored. However, it is vital if

constraints from electroweak vacuum stability and model perturbativity

are imposed [83]. For a global fit including vacuum stability of scalar

DM, see e.g., Ref. [79].

In the scenarios discussed above, the annihilation process

of DM receives contributions from all kinematically acces-

sible final states involving massive SM fields, including neu-

trinos. Annihilations into SM gauge bosons and fermions are

mediated by a Higgs boson in the s-channel; consequently,

near the resonance region, where m X ≃ mh/2, it is crucial

to perform the actual thermal average as defined in Eq. (12)

instead of expanding σvcms
rel into partial waves.4 Moreover,

we take into account the important contributions arising from

the production of off-shell pairs of gauge bosons W W ∗ and

Z Z∗ [97]. To this end, for 45 GeV ≤
√

s ≤ 300 GeV, we

compute the annihilation cross-section into SM gauge bosons

and fermions in the narrow-width approximation via

σvcms
rel = P(X)

2λ2
h Xv2

0√
s

Ŵh

(
m∗

h =
√

s
)

(
s − m2

h

)2 + m2
hŴ2

h (mh)
, (13)

where we employ the tabulated Higgs branching ratiosŴ(m∗
h)

as implemented in DecayBit [84]. For fermionic DM, the

dimensionful coupling is implied, λh X ∈ {λhV , λhψ/Λψ ,

λhχ/Λχ }. The pre-factor P(X) is given by

P(X) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

9

(
3 −

s

m2
V

+
s2

4m4
V

)
, X = Vμ,

s

2

(
1 −

4m2
X cos2 ξ

s

)
, X = ψ, χ .

(14)

4 We assume DM to be in a local thermal equilibrium (LTE) during

freeze-out. As pointed out in Ref. [96], this assumption can break down

very close to the resonance, thereby requiring a full numerical solution

of the Boltzmann equation in phase space. As this part of the parameter

space is in any case very difficult to test experimentally (see Sect. 5),

we stick to the standard approximation of LTE.
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In particular, we notice that for CP-conserving interactions

of a fermionic DM particle, the annihilation cross-section is

p-wave suppressed.

As shown in Ref. [97], for
√

s � 300 GeV the Higgs

1-loop self-interaction begins to overestimate the tabulated

Higgs boson width in Ref. [98]. Thus, for
√

s > 300 GeV

(where the off-shell production of gauge boson pairs is irrel-

evant anyway), we revert to the tree-level expressions for the

annihilation processes given in “Appendix B”. Moreover, for

m X ≥ mh , DM can annihilate into a pair of Higgs bosons,

a process which is not included in Eq. (13). We supplement

the cross-sections computed from the tabulated DecayBit

values with this process for m X ≥ mh . The corresponding

analytical expression for the annihilation cross-sections are

given in “Appendix B”.

Finally, we obtain the relic density of X by numerically

solving Eq. (11) at each parameter point, using the routines

implemented in DarkSUSY [99,100] via DarkBit.

In the spirit of the EFT framework employed in this work,

we do not demand that the particle X constitutes all of the

observed DM, i.e., we allow for the possibility of other DM

species to contribute to the observed relic density. Concretely,

we implement the relic density constraint using a likelihood

that is flat for predicted values below the observed one, and

based on a Gaussian likelihood following the Planck mea-

sured value �DMh2 = 0.1188 ± 0.0010 [4] for predictions

that exceed the observed central value. We include a 5% the-

oretical error on the computed values of the relic density,

which we combine in quadrature with the observed error on

the Planck measured value. More details on this prescription

can be found in Refs. [80,101].

In regions of the model parameter space where the relic

abundance of X is less than the observed value, we rescale

all predicted direct and indirect detection signals by frel ≡
�X/�DM and f 2

rel, respectively. In doing so, we conserva-

tively assume that the remaining DM population does not

contribute to signals in these experiments.

3.2 Higgs invisible decays

For m X < mh/2, the SM Higgs boson can decay into a pair

of DM particles, with rates given by [51]

Ŵinv(h → V V ) =
λ2

hV v2
0m3

h

128πm4
V

(
1 −

4m2
V

m2
h

+
12m4

V

m4
h

)

×

√
1 −

4m2
V

m2
h

, (15)

Ŵinv(h → χχ) =
mhv2

0

16π

(
λhχ

Λχ

)2
(

1 −
4m2

χ cos2 ξ

m2
h

)

×

√
1 −

4m2
χ

m2
h

, (16)

Ŵinv(h → ψψ) =
mhv2

0

8π

(
λhψ

Λψ

)2
(

1 −
4m2

ψ cos2 ξ

m2
h

)

×

√√√√1 −
4m2

ψ

m2
h

, (17)

for the vector, Majorana and Dirac DM scenarios, respec-

tively. These processes contribute to the Higgs invisible width

Ŵinv, which is constrained to be less than 19% of the total

width at 2σ C.L. [102], for SM-like Higgs couplings. We take

this constraint into account by using the DecayBit implemen-

tation of the Higgs invisible width likelihood, which in turn

is based on an interpolation of Fig. 8 in Ref. [102]. Beyond

the Higgs invisible width, the LHC provides only a mild con-

straint on Higgs portal models [63].

3.3 Indirect detection using gamma rays

Arguably, the most immediate prediction of the thermal

freeze-out scenario is that DM particles can annihilate today,

most notably in regions of enhanced DM density. In partic-

ular, gamma-ray observations of dwarf spheroidal galaxies

(dSphs) of the Milky Way are strong and robust probes of

any model of thermal DM with unsuppressed annihilation

into SM particles.5

As described in more detail in Ref. [101], the flux of

gamma rays in a given energy bin i from a target object

labeled by k can be written in the factorised form Φi · Jk ,

where Φi encodes all information about the particle physics

properties of the DM annihilation process, while Jk depends

on the spatial distribution of DM in the region of interest. For

s-wave annihilation, one obtains

Φi = κ
∑

j

(σv)0, j

8πm2
X

∫

ΔEi

d E
d Nγ, j

d E
, (18)

Jk =
∫

Δ�k

d�

∫

l.o.s.

ds ρ2
X . (19)

Here κ is a phase space factor (equal to 1 for self-conjugate

DM and 1/2 for non-self-conjugate DM), (σv)0, j is the

annihilation cross-section into the final state j in the zero-

velocity limit, and d Nγ, j/d E is the corresponding differen-

tial gamma-ray spectrum. The J -factor in Eq. (19) is defined

via a line of sight (l.o.s.) integral over the square of the DM

5 We do not include constraints from cosmic-ray antiprotons; although

they are potentially competitive with or even stronger than those from

gamma-ray observations of dSphs, there is still no consensus on the

systematic uncertainty of the upper bound on a DM-induced component

in the antiproton spectrum [68,103–105].
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density ρX towards the target object k, extended over a solid

angle Δ�k .

In our analysis, we include the Pass-8 combined analy-

sis of 15 dwarf galaxies using 6 years of Fermi-LAT data [85],

which currently provides the strongest bounds on the annihi-

lation cross-section of DM into final states containing gamma

rays. We use the binned likelihoods implemented in Dark-

Bit [101], which make use of the gamLike package. Besides

the likelihood associated with the gamma-ray observations,

given by

ln Lexp =
NdSphs∑

k=1

NeBins∑

i=1

ln Lki (Φi · Jk) , (20)

we also include a term ln LJ that parametrises the uncertain-

ties on the J -factors [85,101]. We obtain the overall likeli-

hood by profiling over the J -factors of all 15 dwarf galaxies,

as

ln L
prof.
dwarfs = max

J1...Jk

(
ln Lexp + ln LJ

)
. (21)

Let us remark again that for the case of Dirac or Majorana

fermion DM with CP-conserving interactions (i.e., ξ = 0),

the annihilation cross-section vanishes in the zero-velocity

limit. Scenarios with ξ �= 0 therefore pay the price of an

additional penalty from gamma-ray observations, compared

to the CP-conserving case.

3.4 Direct detection

Direct searches for DM aim to measure the recoil of a nucleus

after it has scattered off a DM particle [106]. Following the

notation of Ref. [101], we write the predicted number of

signal events in a given experiment as

Np = MTexp

∫ ∞

0

φ (E)
d R

d E
d E , (22)

where M is the detector mass, Texp is the exposure time and

φ (E) is the detector efficiency function, i.e., the fraction of

recoil events with energy E that are observable after apply-

ing all cuts from the corresponding analysis. The differential

recoil rate d R/d E for scattering with a target isotope T is

given by

d R

d E
=

2ρ0

m X

∫
v f (v, t)

dσ

dq2

(
q2, v

)
d3v . (23)

Here ρ0 is the local DM density, f (v, t) is the DM

velocity distribution in the rest frame of the detector, and

dσ/dq2(q2, v) is the differential scattering cross-section

with respect to the momentum transfer q =
√

2mT E .

For the vector DM model, the DM-nucleon scattering pro-

cess is induced by the standard spin-independent (SI) inter-

action, with a cross-section given by [51]

σ V
SI =

μ2
N

π

λ2
hV f 2

N m2
N

4m2
V m4

h

, (24)

where μN = mV m N /(mV +m N ) is the DM-nucleon reduced

mass and fN is the effective Higgs-nucleon coupling. The

latter is related to the quark content of a proton and neutron,

and is subject to (mild) uncertainties. In our analysis we treat

the relevant nuclear matrix elements as nuisance parameters;

this will be discussed in more detail in Sect. 3.6.

In the case of fermionic DM X ∈ {χ,ψ}, the pseudoscalar

current Xiγ5 X induces a non-standard dependence of the dif-

ferential scattering cross-section on the momentum transfer

q (see e.g., Ref. [107]):

dσ X
SI

dq2
=

1

v2

(
λh X

ΛX

)2 A2 F2(E) f 2
N m2

N

4πm4
h

×

(
cos2 ξ +

q2

4m2
X

sin2 ξ

)
, (25)

where A is the mass number of the target isotope of interest,

and F2(E) is the standard form factor for spin-independent

scattering [108]. As the typical momentum transfer in a scat-

tering process is |q| ≃ (1 − 100) MeV ≪ m X , we note that

direct detection constraints will be significantly suppressed

for scenarios that are dominated by the pseudoscalar inter-

action, i.e., for ξ ≃ π/2. For both the vector and fermion

models, the spin-dependent (SD) cross-section is absent at

leading order. Loop corrections are found not to give a rel-

evant contribution to direct detection in the EFT approach,

although they may lead to important effects in specific UV-

completions [109–111].

For the evaluation of Np in Eq. (22), we assume a

Maxwell-Boltzmann velocity distribution in the Galactic rest

frame, with a peak velocity vpeak and truncated at the local

escape velocity vesc. We refer to Ref. [101] for the conversion

to the velocity distribution f (v, t) in the detector rest frame.

We discuss the likelihoods associated with the uncertainties

in the DM velocity distribution in Sect. 3.6.

We use the DarkBit interface to DDCalc 2.0.06 to calcu-

late the number of observed events o in the signal regions for

each experiment and to evaluate the standard Poisson likeli-

hood

L (s|o) =
(b + s)o e−(b+s)

o!
, (26)

6 http://ddcalc.hepforge.org/

http://github.com/patscott/ddcalc/.
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where s and b are the respective numbers of expected sig-

nal and background events. We model the detector efficien-

cies and acceptance rates by interpolating between the pre-

computed tables in DDCalc. We include likelihoods from the

new XENON1T 2018 analysis [89], LUX 2016 [86], PandaX

2016 [87] and 2017 [88] analyses, CDMSlite [90], CRESST-

II [91], PICO-60 [92], and DarkSide-50 [93]. Details of these

implementations, as well as an overview of the new features

contained in DDCalc 2.0.0, can be found in “Appendix A”.

3.5 Capture and annihilation of DM in the Sun

Similar to the process underlying direct detection, DM parti-

cles from the local halo can also elastically scatter off nuclei

in the Sun and become gravitationally bound. The result-

ing population of DM particles near the core of the Sun can

then induce annihilations into high-energy SM particles that

subsequently interact with the matter in the solar core. Of

the resulting particles, only neutrinos are able to escape the

dense Solar environment. Eventually, these can be detected

in neutrino detectors on the Earth [112–114].

The capture rate of DM in the Sun is obtained by integrat-

ing the differential scattering cross-section dσ/dq2 over the

range of recoil energies resulting in a gravitational capture, as

well as over the Sun’s volume and the DM velocity distribu-

tion. To this end, we employ the newly-developed public code

Capt’n General,7 which computes capture rates in the Sun

for spin-independent and spin-dependent interactions with

general momentum- and velocity-dependence, using the B16

Standard Solar Model [115] composition and density distri-

bution. We refer to Refs. [116,117] for details on the capture

rate calculation. Notice that similar to direct detection, the

capture rate is also subject to uncertainties related to the local

density and velocity distribution of DM in the Milky Way. As

mentioned earlier, these uncertainties are taken into account

by separate nuisance likelihoods to be discussed in Sect. 3.6.

Neglecting evaporation (which is well-justified for the DM

masses of interest in this study [118–120]), the total popula-

tion of DM in the Sun NX (t) follows from

d NX (t)

dt
= C(t) − A(t) , (27)

where C(t) is the capture rate of DM in the Sun, and A(t) ∝
〈σvrel〉NX (t)2 is the annihilation rate of DM inside the Sun;

this is calculated by DarkBit. We approximate the thermally

averaged DM annihilation cross-section, which enters in the

expression for the annihilation rate, by evaluating σv at v =√
2T⊙/m X , where T⊙ = 1.35 keV is the core temperature

of the Sun.

7 https://github.com/aaronvincent/captngen.

At sufficiently large t , the solution for NX (t) reaches a

steady state and depends only on the capture rate. How-

ever, the corresponding time scale τ for reaching equilib-

rium depends also on σv, and thus changes from point to

point in the parameter space. Hence, we use the full solu-

tion of Eq. (27) to determine NX at present times, which in

turn determines the normalization of the neutrino flux poten-

tially detectable at Earth. We obtain the flavour and energy

distribution of the latter using results from WimpSim [121]

included in DarkSUSY [99,100].

Finally, we employ the likelihoods derived from the 79-

string IceCube search for high-energy neutrinos from DM

annihilation in the Sun [94] using nulike [122] via DarkBit;

this contains a full unbinned likelihood based on the event-

level energy and angular information of the candidate events.

3.6 Nuisance likelihoods

The constraints discussed in the previous sections often

depend on nuisance parameters, i.e. parameters not of direct

interest but required as input for other calculations. Exam-

ples are nuclear matrix elements related to the DM direct

detection process, the distribution of DM in the Milky Way,

or SM parameters known only to finite accuracy. It is one of

the great virtues of a global fit that such uncertainties can be

taken into account in a fully consistent way, namely by intro-

ducing new free parameters into the fit and constraining them

by new likelihood terms that characterise their uncertainty.

We list the nuisance parameters included in our analysis in

Table 2, and discuss each of them in more detail in the rest

of this section.

Following the default treatment in DarkBit, we include

a nuisance likelihood for the local DM density ρ0 given

by a log-normal distribution with central value ρ0 =
0.40 GeV cm−3 and an error σρ0 = 0.15 GeV cm−3. To

reflect the log-normal distribution, we scan over an asym-

metric range for ρ0. For more details, see Ref. [101].

Table 2 Nuisance parameters that are varied simultaneously with the

DM model parameters in our scans. All parameters have flat priors. For

more details about the nuisance likelihoods, see Sect. 3.6

Parameter Value (± range)

Local DM density ρ0 0.2−0.8 GeV cm−3

Most probable speed vpeak 240 (24)km s−1

Galactic escape speed vesc 533 (96)km s−1

Nuclear matrix element σs 43 (24)MeV

Nuclear matrix element σl 50 (45)MeV

Higgs pole mass mh 124.1–127.3 GeV

Strong coupling αM S
s (m Z ) 0.1181 (33)
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For the parameters determining the Maxwell-Boltzmann

distribution of the DM velocity in the Milky Way, namely

vpeak and vesc, we employ simple Gaussian likelihoods. Since

vpeak is equal to the circular rotation speed vrot at the posi-

tion of the Sun for an isothermal DM halo, we use the

determination of vrot from Ref. [123] to obtain vpeak =
240 ± 8 km s−1.8 The escape velocity takes a central value

of vesc = 533 ± 31.9 km s−1, where we convert the 90%

C.L. interval obtained by the RAVE collaboration [126],

assuming that the error is Gaussian.

As noted already in Sect. 3.4, the scattering cross-section

of DM with nuclei (which enters both the direct detection

and solar capture calculations) depends on the effective DM-

nucleon coupling fN , which is given by [101]

fN =
2

9
+

7

9

∑

q=u,d,s

f
(N )
T q . (28)

Here f
(N )
T q are the nuclear matrix elements associated with

the quark q content of a nucleon N . As described in more

detail in Ref. [127], these are obtained from the following

observable combinations

σl ≡ ml〈N |uu + dd|N 〉, σs ≡ ms〈N |ss|N 〉 , (29)

where ml ≡ (mu + md)/2. We take into account the

uncertainty on these matrix elements via Gaussian likeli-

hoods given by σs = 43 ± 8 MeV [128] and σl = 50 ±
15 MeV [129]. The latter deviates from the default choice

implemented in DarkBit as it reflects recent lattice results,

which point towards smaller values of σl (see Ref. [129]

for more details). Furthermore, we have confirmed that the

uncertainties on the light quark masses have a negligible

impact on fN . Thus, for simplicity, we do not include them

in our fit.

We also use a Gaussian likelihood for the Higgs mass,

based on the PDG value of mh = 125.09 ± 0.24 GeV [130].

In line with our previous study of scalar singlet DM [78],

we allow the Higgs mass to vary by more than 4σ as the

phenomenology of our models depends strongly on mh , most

notably near the Higgs resonance region. Finally, we take into

account the uncertainty on the strong coupling constant αs ,

which enters the expression for the DM annihilation cross-

section into SM quarks (see “Appendix B”), taking a central

value αM S
s (m Z ) = 0.1181 ± 0.0011 [130].

8 Reference [124] argues that the peculiar velocity of the Sun is some-

what larger than the canonical value v⊙,pec = (11, 12, 7)km s−1 [125],

leading to vrot = 218 ± 6 km s−1. In the present study we do not con-

sider uncertainties in v⊙,pec and therefore adopt the measurement of

vrot from Ref. [123].

3.7 Perturbative unitarity and EFT validity

The parameter spaces in which we are interested are limited

by the requirement of perturbative unitarity. First of all, this

requirement imposes a bound on any dimensionless coupling

in the theory. Furthermore, as neither the vector or fermion

Higgs portal models are renormalisable, we must ensure that

the effective description is valid for the parameter regions to

be studied.

The dimensionless coupling λhV in the vector DM model

is constrained by the requirement that annihilation processes

such as V V → hh do not violate perturbative unitarity.

Determining the precise bound to be imposed onλhV is some-

what involved, so we adopt the rather generous requirement

λhV < 10 with the implicit understanding that perturba-

tivity may become an issue already for somewhat smaller

couplings.

For small DM masses, an additional complication arises

from the fact that theories with massive vector bosons are

not generally renormalisable. In that case cross-sections do

not generally remain finite in the mV → 0 limit and a sig-

nificant portion of parameter space violates perturbative uni-

tarity [131]. However, by restricting ourselves to the case of

μ2
V , λhV ≥ 0 we can safely tackle both issues due to the fact

that mV → 0 implies λhV → 0. Using Eq. (5), this condition

translates to

0 ≤ λhV ≤
2m2

V

v2
0

. (30)

A more careful analysis might lead to a slightly larger valid

parameter space, but as we will see in Sect. 5.1.1, those

regions would be excluded by the Higgs invisible width any-

way.

The EFT validity of the fermion DM models depends on

the specific UV completion. To estimate the range of validity,

we consider a UV completion in which a heavy scalar medi-

ator field Φ couples to the fermion DM X and the Higgs

doublet as [12]

L ⊃ −μgH ΦH† H − gXΦ X (cos θ + i sin θγ5) X , (31)

where X ∈ {χ,ψ} and μ has mass dimension 1.9 For this

specific UV completion, we assume that the mixing between

Φ and the Higgs field is negligible and can be ignored. The

heavy scalar field can be integrated out to give a dimensionful

coupling in the EFT approximation as

L ⊃ −
μgX gH

m2
Φ

H† H X (cos θ + i sin θγ5) X . (32)

9 Note that the γ5 term can be generated by a complex mass term m̃ X in

the original fermion Lagrangian and performing a chiral rotation. Thus,

full CP conservation (cos θ = 1) is equivalent to having a real mass

term.
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Thus, by comparing Eq. (32) with the fermion DM

Lagrangians in Eqs. (2) and (3), we can identify μgX gH /m2
Φ

with λh X/ΛX . As μ should be set by the new physics

scale, we take it to be roughly mΦ , implying gX gH /mΦ ∼
λh X/ΛX . In addition, we require the couplings to be pertur-

bative, i.e., gX gH ≤ 4π .

We need to consider the viable scales for which this

approximation is valid. We require that the mediator mass

mΦ is far greater than the momentum exchange q of the

interaction, i.e., mΦ ≫ q such that Φ can be integrated out.

For DM annihilations, the momentum exchange is q ≈ 2m X .

Thus, the EFT approximation breaks down when mΦ < 2m X

and our EFT assumption is violated when

λh X

ΛX

≥
4π

2m X

. (33)

As the typical momentum transfer in a direct detection exper-

iment is roughly on the order of a few MeVs, the EFT validity

limit requires mΦ ≫ O (MeV), which is always satisfied by

the previous demand mΦ > 2m X for the mass ranges of inter-

est. In this case, we assume that the couplings saturate the

bound from perturbativity, i.e., gX gH = 4π ; the constraint

would be stronger if the couplings were weaker.

For parameter points close to the EFT validity bound, the

scale of new physics is expected to be close to or even below

2mχ . In this case, the annihilation cross-section σvrel, used

in predictions of both the relic density and indirect detec-

tion signals, may receive substantial corrections from inter-

actions with Φ, which are not captured in the EFT approach.

The likelihoods computed for these points should hence be

interpreted with care.

Note that this prescription is only the simplest and most

conservative approach; additional constraints can be obtained

by unitarising the theory (e.g. [132]).

4 Scan details

We investigate the Higgs portal models using both Bayesian

and frequentist statistics. The parameter ranges and priors

that we employ in our scans of the vector and fermion

DM models are summarised in Tables 3 and 4, respectively.

Whilst the likelihoods described in the previous sections are

a common ingredient in both our frequentist and Bayesian

analyses, the priors only directly impact our Bayesian analy-

ses. We discuss our choice of priors in Sect. 5.2. For a review

of our statistical approaches to parameter inference, see e.g.,

Ref. [80].

There are two main objectives for the Bayesian scans:

firstly, producing marginal posteriors for the parameters

of interest, where we integrate over all unplotted param-

eters, and secondly, computing the marginal likelihood

Table 3 Parameter ranges and priors for the vector DM model

Parameter Minimum Maximum Prior type

λhV 10−4 10 Log

mV (low mass) 45 GeV 70 GeV Flat

mV (high mass) 45 GeV 10 TeV Log

Table 4 Parameter ranges and priors for the fermion DM models. Our

choice for the range of ξ between 0 and π reflects the fact that only

odd powers of cos ξ appear in the observables that we consider, but

never odd powers of sin ξ , which cancel exactly due to the complex

conjugation. Thus, the underlying physics is symmetric under ξ → −ξ

Parameter Minimum Maximum Prior type

λhχ,hψ/Λχ,ψ 10−6 GeV−1 1 GeV−1 Log

ξ 0 π Flat

mχ,ψ (low mass) 45 GeV 70 GeV Flat

mχ,ψ (high mass) 45 GeV 10 TeV Log

(or Bayesian evidence). We discuss the marginal likelihood

in Sect. 6. We use T-Walk, an ensemble Markov Chain

Monte Carlo (MCMC) algorithm, for sampling from the pos-

terior, and MultiNest [133–135], a nested sampling algo-

rithm, for calculating the marginal likelihood. We use T-Walk

for obtaining the marginal posterior due to the ellipsoidal

bias commonly seen in posteriors computed with MultiNest

[136].

For the frequentist analysis, we are interested in mapping

out the highest likelihood regions of our parameter space. For

this analysis we largely use Diver, a differential evolution

sampler, efficient for finding and exploring the maxima of

a multi-dimensional function. Details of T-Walk and Diver

can be found in Ref. [136].

Due to the resonant enhancement of the DM annihilation

rate by s-channel Higgs exchange at m X ≈ mh/2, there is

a large range of allowed DM-Higgs couplings that do not

overproduce the observed DM abundance. When scanning

over the full mass range, it is difficult to sample this reso-

nance region well, especially with a large number of nuisance

parameters. For this reason, we perform separate, specific

scans in the low-mass region around the resonance, using

both T-Walk and Diver. When plotting the profile likeli-

hoods, we combine the samples from the low- and high-mass

scans.

In addition, as part of the Bayesian analysis, we per-

form targeted T-Walk and MultiNest scans of the fermion

DM parameter space where the interaction is wholly scalar

(ξ = 0), using the same priors for the fermion DM mass

and its dimensionful coupling as in Table 4. This allows us

to perform model comparison between the cases where ξ is

fixed at zero, and where it is left as a free parameter.
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Table 5 Conversion criteria used for various scanning algorithms in

both the full and low mass regimes. The chain_number chosen for

T-Walk varies from scan to scan; we use the default T-Walk behaviour

of chain_number = NMPI + Nparams + 1 on 1360 MPI processes. For

more details, see Ref. [136]

Scanner Parameter Value

T-Walk chain_number 1370 (1)

sqrtR − 1 < 0.01

timeout_mins 1380

MultiNest nlive 20,000

tol 10−2

Diver NP 50,000

convthresh 10−5

The convergence criteria that we employ for the different

samplers are outlined in Table 5. We carried out all Diver

scans on 340 Intel Xeon Phi 7250 (Knights Landing) cores.

As in our recent study of scalar singlet DM [79], we ran T-

Walk scans on 1360 cores for 23 h, providing us with reliable

sampling. The MultiNest scans are based on runs using 240

Intel Broadwell cores, with a relatively high tolerance value,

which is nevertheless sufficient to compute the marginal like-

lihood to the accuracy required for model comparison. We

use the importance sampling log-evidence from MultiNest

to compute Bayes factors.

For profile likelihood plots, we combine the samples from

all Diver and T-Walk scans, for each model. The plots are

based on 1.46 × 107, 1.70 × 107 and 1.73 × 107 sam-

ples for the vector, Majorana and Dirac models, respec-

tively. We do all marginalisation, profiling and plotting with

pippi [137].

5 Results

5.1 Profile likelihoods

In this section, we present profile likelihoods from the com-

bination of all Diver and T-Walk scans for the vector, Majo-

rana and Dirac models. Profile likelihoods in the vector model

parameters are shown in Fig. 1, with key observables rescaled

to the predicted DM relic abundance in Fig. 2. Majorana

model parameter profile likelihoods are shown in Figs. 3 and

4, with observables in Fig. 5. For the Dirac model, we sim-

ply show the mass-coupling plane in Fig. 6, as the relevant

physics and results are virtually identical to the Majorana

case.

5.1.1 Vector model

Figure 1 shows that the resonance region is tightly con-

strained by the Higgs invisible width from the upper-left

when mV < mh/2, by the relic density constraint from

below, and by direct and indirect detection from the right.

Nevertheless, the resonant enhancement of the DM annihi-

lation at around mh/2, combined with the fact that we allow

for scenarios where Vμ is only a fraction of the observed

DM, permits a wide range of portal couplings. Interestingly,

the perturbative unitarity constraint (shown as dark grey) in

Eq. (30) significantly shortens the degenerate ‘neck’ region

that appears exactly at mh/2. Most notably, this is in contrast

with the scalar Higgs portal model [78,79] where no such

constraint exists.

The high-mass region contains a set of solutions at mV ≃
10 TeV and λhV � 1, which are constrained by the relic

density from below and direct detection from the left. This
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Fig. 1 Profile likelihood in the (mV , λhV ) plane for vector DM. Con-

tour lines show the 1 and 2σ confidence regions. The left panel gives

an enhanced view of the resonance region around mV ∼ mh/2. The

right panel shows the full parameter space explored in our fits. The

greyed out region shows points that do not satisfy Eq. (30), the white

star shows the best-fit point, and the edges of the preferred parame-

ter space along which the model reproduces the entire observed relic

density are indicated with orange annotations
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second island is prominent in both our previous studies of

the scalar Higgs portal model [78,79] as well as other stud-

ies of the vector Higgs portal [51]. The precise extent of this

region depends on the upper bound imposed on λhV to reflect

the breakdown of perturbativity. While the constraint that we

apply ensures that perturbative unitarity is not violated [131],

higher-order corrections may nevertheless become impor-

tant in this region. The perturbative unitarity constraint from

Eq. (30) excludes solutions that would otherwise exist in a

separate triangular region at mχ ≃ mh , λhV ≃ 1.

In Table 6, we show a breakdown of the contributions to

the likelihood at the best-fit point, which lies on the lower

end of the resonance region at λhV = 4.9 × 10−4 and mV =
62.46 GeV. If we demand that vector singlet DM constitutes

all of the observed DM, by requiring �V h2 to be within 1σ

of the observed Planck relic abundance, the best-fit point

remains almost unchanged, at λhV = 4.5 × 10−4 and mV =
62.46 GeV. We give details of these best-fit points, along with

the equivalent for fermion models, in Table 7.

In Fig. 2, we show the relic density of the vector model

(top), as well as the cross-sections relevant for direct (cen-

tre) and indirect detection (bottom), all plotted as a function

of mass. Only models along the lower-λhV edge of the two

likelihood modes have relic densities equal to the observed

value. Larger values of λhV result in progressively larger

annihilation cross-sections and therefore more suppression

of the relic density, cancelling the corresponding increase in

σ SI
p and resulting in an essentially constant rescaled cross-

section f ·σ SI
p ∼ 10−45 cm−2 in the remaining allowed high-

mass region. Future direct detection experiments such as LZ

[138] will be able to probe the high-mass region in its entirety.

However, the best-fit point – near the bottom of the resonance

region – will remain out of reach. Future indirect searches,

such as the Cherenkov Telescope Array (CTA)10 [139] will

also be able to probe large amounts of the high-mass region;

however it does not have the exclusion power that direct

detection does for Higgs portal models. Again, the best-fit

point remains out of reach.

5.1.2 Majorana fermion model

We show profile likelihoods in the (mχ , λhχ/Λχ ) plane in

Fig. 3, with the low-mass region in the left panel and the full

mass region in the right panel. Here, there are no longer two

distinct solutions: the resonance and high mass regions are

connected. From the left panel in Fig. 4, where we plot the

profile likelihood in the (mχ , ξ) plane, we can see that these

regions are connected by the case where the portal interac-

10 The CTA projections plotted in Fig. 2 assume an Einasto density pro-

file, and are based on 500 h of observations of the Galactic centre [139],

with no systematic uncertainties. They should therefore be considered

optimistic [140,141].
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Fig. 2 Profile likelihoods for vector DM in planes of observable quan-

tities. Top: relic density. Centre: spin-independent WIMP-proton cross-

section, where solid lines show exclusions from PandaX 2017 [88] and

XENON1T 2018 [89], and the dashed line shows the expected sensi-

tivity of LZ [138]. Bottom: present-day DM annihilation cross-section,

where solid lines show published exclusions from Fermi-LAT [85],

and dashed lines show projections from CTA [139] (see footnote 10 for

more details). Contour lines in each panel show the 1 and 2σ confidence

regions, while the white star shows the best-fit point. Cross-sections are

rescaled by the fraction of predicted relic abundance f ≡ �V /�DM

123



38 Page 12 of 28 Eur. Phys. J. C (2019) 79 :38

GAMBIT v1.2.0

G
A M B I T

Ω
χ h 2

=
0.119

−5

−4

−3

−2

−1

lo
g
1
0

λ
h

χ
/
Λ

χ
/
G

eV
−

1

P
ro

fi
le

lik
elih

o
o
d

ra
tio

Λ
=

L
/
L

m
a
x

50 55 60 65
mχ (GeV)

0.2

0.4

0.6

0.8

1.0

Majorana DM

Prof. likelihood

GAMBIT v1.2.0

G
A M B I T

Ωχh2 = 0.119

−5

−4

−3

−2

−1

lo
g
1
0

λ
h

χ
/Λ

χ
/G

eV
−

1

P
ro

fi
le

lik
elih

o
o
d

ra
tio

Λ
=

L
/
L

m
a
x

2.0 2.5 3.0 3.5

log10 (mχ/GeV)

0.2

0.4

0.6

0.8

1.0

Majorana DM

Prof. likelihood

Fig. 3 Profile likelihood in the (mχ , λhχ/Λχ ) plane for Majorana

fermion DM. Contour lines show the 1 and 2σ confidence regions.

The left panel gives an enhanced view of the resonance region around

mχ ∼ mh/2. The right panel shows the full parameter space explored

in our fits. The greyed out region shows where our approximate bound

on the validity of the EFT is violated, white stars show the best-fit point

for each mass region, and the edges of the preferred parameter space

along which the model reproduces the entire observed relic density are

indicated with orange annotations
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Fig. 4 Profile likelihood in the (mχ , ξ) and (ξ, λhχ/Λχ ) planes of the Majorana fermion model. Contour lines show the 1 and 2σ confidence

regions. The white star shows the best-fit point

tion is purely pseudoscalar, ξ = π/2, leading to an almost

complete suppression of constraints from the direct detection

experiments, as given in Eq. (25).

The high mass region prefers ξ ∼ π/2, with a wider

deviation from π/2 permitted as mχ is increased, due to

direct detection constraints, which become less constrain-

ing at higher WIMP masses. There is an enhancement in the

permitted range of mixing angles at mχ � mh , due to the

contact term (∝ χχhh), where DM annihilation to on-shell

Higgses reduces the relic density, providing another mecha-

nism for suppressing direct detection signals, thus lifting the

need to tune ξ .

The results are roughly symmetric about ξ = π/2, how-

ever due to odd powers of cos ξ in the annihilation cross-

section (see “Appendix B”), there is a slight asymmetry for

masses above mh . This is most clearly seen in the triangular

‘wings’ at mχ � mh in Fig. 4 where there are more solutions

for ξ > π/2 than for ξ < π/2.

In the resonance region, we see the same triangular region

as in the vector DM case: bounded from below by the relic

density, and from the upper-left by the Higgs invisible width.

However, in contrast to the vector DM case where direct

detection limits squeeze the allowed region from the upper

right, the addition of the mixing angle ξ as a free parameter

allows for the fermionic DM models to escape these con-

straints. As the pseudoscalar coupling is increased and the

scalar coupling is correspondingly decreased, the SI cross-

section becomes steadily more q2-suppressed, as seen in
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Fig. 5 Same as Fig. 2 but for Majorana fermion DM. Again, f ≡
�χ/�DM. For illustration, as there is a q2-suppression in the spin-

independent cross-section (see Eq. 25), we show σSI computed at a

reference momentum exchange of q = 50 MeV

Eq. (25). Noting that, the neck region at mχ = mh/2 is less

well-defined than in the vector and scalar DM cases above

the triangle region. Notably however, as the SI cross-section

becomes steadily more q2-suppressed, the annihilation cross-

section becomes less p-wave suppressed (Eq. 14), and indi-

rect detection comes to dominate the constraint at the edge

of the allowed parameter space just above the resonance.

In the low-mass resonance region, virtually all values of

the mixing angle are permitted, seen clearly in the left panel

of Fig. 4, as even purely scalar couplings are not sufficient for

direct detection to probe the remaining parameter space. The

right panel also shows this in the lower ‘bulb’: couplings

between 10−3 and 10−5 GeV−1 are only permitted in the

resonance region, without any constraint on the mixing angle.

In the high-mass region, we see that unlike the vector DM

case, a wide range of WIMP masses between 100 GeV and

10 TeV are acceptable, with degenerate maximum likelihood.

This is again due to the q2-suppression of the direct detection

constraints when considering all possible values of ξ . The

large triangular high-mass region is constrained by the EFT

validity constraint from above (highlighted in dark grey) and

the relic density constraint from below.

In Fig. 5, we show the relic density (top) and scaled

cross-sections for direct (centre) and indirect detection (bot-

tom). For plotting purposes, we compute σSI at a reference

momentum exchange of q = 50 MeV, typical of direct detec-

tion experiments. Substantial fractions of allowed parameter

space lie close to current limits, but unsurprisingly, large por-

tions of the parameter space will not be probed by future

direct detection experiments, due to the momentum suppres-

sion. This is also true for indirect detection, where cross-

sections are velocity suppressed. However, given that the

two suppressions have opposite dependences on the mix-

ing parameter, the two probes will be able to compensate for

each others’ weaknesses to a certain extent.

Table 6 shows a breakdown of the contributions to the

likelihood at the best-fit point, which lies in the high mass

region at mχ = 138.4 GeV, λhχ/Λχ = 4.5 × 10−2 GeV−1

and ξ = 1.96 rad (Table 7). When we demand that χ saturates

the observed DM relic abundance, the best-fit point shifts to

the lower end of the resonance region at mχ = 61.03 GeV,

λhχ/Λχ = 6.3 × 10−6 GeV−1 and ξ = 1.41 rad.

5.1.3 Dirac fermion model

The results from our low- and high-mass scans of the Dirac

fermion model are very similar to those for the Majorana

model. We therefore only show results in the (mψ , λhψ/Λψ )

plane in Fig. 6.

In Table 6, we show a breakdown of the contributions to

the likelihood at the best-fit point. This point lies towards the

upper end of the high mass region, where λhψ/Λψ = 6.3 ×
10−4 GeV−1, mψ = 9.95 TeV and ξ = 2.06 rad. If ψ makes
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Fig. 6 Profile likelihood in the (mψ , λhψ/Λψ ) plane for Dirac fermion

DM. Contour lines show the 1 and 2σ confidence regions. The left panel

gives an enhanced view of the resonance region around mψ ∼ mh/2.

The right panel shows the full parameter space explored in our fits. The

greyed out region shows where our approximate bound on the validity of

the EFT is violated, the white stars show the best-fit point for each mass

region, and the edges of the preferred parameter space along which the

model reproduces the entire observed relic density are indicated with

orange annotations

Table 6 Contributions to the

delta log-likelihood (Δ ln L) at

the best-fit point for the vector,

Majorana and Dirac DM,

compared to an ‘ideal’ case,

both with and without the

requirement of saturating the

observed relic density (RD).

Here ‘ideal’ is defined as the

central observed value for

detections, and the

background-only likelihood for

exclusions. Note that many

likelihoods are dimensionful, so

their absolute values are less

meaningful than any offset with

respect to another point (for

more details, see Sect. 8.3 of

Ref. [80])

Log-likelihood contribution Ideal Δ ln L

Vμ Vμ + RD χ χ + RD ψ ψ + RD

Relic density 5.989 0.000 0.106 0.000 0.107 0.000 0.242

Higgs invisible width 0.000 0.000 0.000 0.000 0.001 0.000 0.000

γ rays (Fermi-LAT dwarfs) −33.244 0.105 0.105 0.102 0.120 0.129 0.134

LUX 2016 (Run II) − 1.467 0.003 0.003 0.020 0.000 0.028 0.028

PandaX 2016 −1.886 0.002 0.002 0.013 0.000 0.018 0.017

PandaX 2017 −1.550 0.004 0.004 0.028 0.000 0.039 0.039

XENON1T 2018 −3.440 0.208 0.208 0.143 0.211 0.087 0.087

CDMSlite −16.678 0.000 0.000 0.000 0.000 0.000 0.000

CRESST-II −27.224 0.000 0.000 0.000 0.000 0.000 0.000

PICO-60 2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DarkSide-50 2018 −0.090 0.000 0.000 0.002 0.000 0.005 0.005

IceCube 79-string 0.000 0.000 0.000 0.000 0.000 0.001 0.001

Hadronic elements σs , σl −6.625 0.000 0.000 0.000 0.000 0.000 0.000

Local DM density ρ0 1.142 0.000 0.000 0.000 0.000 0.000 0.000

Most probable DM speed vpeak −2.998 0.000 0.000 0.000 0.000 0.000 0.000

Galactic escape speed vesc −4.382 0.000 0.000 0.000 0.000 0.000 0.000

αs 5.894 0.000 0.000 0.000 0.000 0.000 0.000

Higgs mass 0.508 0.000 0.000 0.000 0.000 0.000 0.000

Total 86.051 0.322 0.428 0.308 0.439 0.307 0.553

up all of the DM, the best-fit point shifts slightly to the bottom

of the high mass triangle at λhψ/Λψ = 3.6 × 10−4 GeV−1,

mψ = 9.9 TeV and ξ = 2.07 rad. We compare the locations

of these best-fit points to those from the vector and Majorana

models in Table 7.

5.1.4 Goodness of fit

In Table 6, we show the contribution to the log-likelihood

for the best-fit points of the vector, Majorana and Dirac DM

models. By equating Δ ln L to half the “likelihood χ2” of

Baker and Cousins [142], we can compute an approximate

p-value for each best-fit point against a null hypothesis. We
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Table 7 Details of the best-fit parameter points for vector, Majorana

and Dirac DM Higgs portal models, both with and without the require-

ment that the predicted relic density is within 1σ of the Planck observed

value. Here, X ∈ {V, χ, ψ} and the dimensionful nature of the coupling

is implied for the fermion cases. We do not include the values of nui-

sance parameters, as they do not differ significantly from the central

values of their likelihoods

Model Relic density condition λh X m X (GeV) ξ (rad) �X h2 Δ ln L

Vector �V h2 � �DM h2 4.9 × 10−4 62.46 – 9.343 × 10−2 0.322

�V h2 ∼ �DM h2 4.5 × 10−4 62.46 – 1.128 × 10−1 0.428

Majorana �χ h2 � �DM h2 4.5 × 10−2 GeV−1 138.4 1.96 6.588 × 10−8 0.308

�χ h2 ∼ �DM h2 6.3 × 10−6 GeV−1 61.03 1.41 1.128 × 10−1 0.439

Dirac �ψ h2 � �DM h2 6.3 × 10−4 GeV−1 9.950 × 103 2.06 3.813 × 10−2 0.307

�ψ h2 ∼ �DM h2 3.6 × 10−4 GeV−1 9.895 × 103 2.07 1.155 × 10−1 0.553

take this null to be the ‘ideal’ case, which we define as the

background-only contribution in the case of exclusions, and

the observed value in the case of detections.

For the vector DM model, using either one or two effective

degrees of freedom, we find a p-value between roughly 0.4

and 0.7. Requiring the relic density of Vμ to be within 1σ

of the Planck value, the p-value becomes p ≈ 0.35–0.65.

For both the Majorana and Dirac fermion models, we also

find p ≈ 0.4–0.7, falling to 0.35–0.65 with the relic density

requirement. All of these are completely acceptable p-values.

5.2 Marginal posteriors

The marginal posterior automatically penalises fine-tuning,

as upon integration of the posterior, regions with a lim-

ited ‘volume of support’ over the parameters that were inte-

grated over are suppressed.11 As usual, the marginal poste-

riors depend upon the choice of priors for the free model

parameters, which are summarised in Tables 3 and 4. We

choose flat priors where parameters are strongly restricted

to a particular scale, such as the mixing parameter and the

DM mass in scans restricted to the low-mass region. For

other parameters, in order to avoid favouring a particular

scale we employ logarithmic priors. Note that in this treat-

ment for the fermionic DM models we have not chosen priors

that favour the CP-conserving case. We instead present pos-

teriors for this well motivated case separately, and later in

Sect. 6 we perform a Bayesian model comparison between

a CP-conserving fermionic DM model and the full model

considered here.

5.2.1 Vector model

To obtain the marginal posterior distributions, we perform

separate T-Walk scans for the low and high mass regimes,

11 By ‘volume of support’, we mean the regions of the parameter space

that have a non-negligible likelihood times prior density.

shown in Fig. 7. Within each region we plot the relative pos-

terior probability across the parameter ranges of interest.

In the left panel of Fig. 7, the scan of the resonance region

shows that the neck region is disfavoured after marginalising

over the nuisance parameters, particularly mh , which sets

the width of the neck. This dilutes the allowed region due to

volume effects.

In the full-mass-range scan, the fine-tuned nature of the

resonance region is clearly evident. Although the best-fit

point in the profile likelihood lies in the resonance region,

the posterior mass is so small in the entire resonance region

that it drops out of the global 2σ credible interval.

5.2.2 Majorana fermion model

As already seen in the profile likelihoods, for the case of

Majorana fermion DM, the presence of the mixing parame-

ter ξ leads to a substantial increase in the preferred parameter

region (see Fig. 8). In the resonance region (left panel), there

is now a thin neck-like region at mχ ≈ mh/2. This neck

region is the same one seen in both the scalar and vector

profile likelihoods, but falls within the 2σ credible region

of the Majorana posterior, as the admittance of ξ reduces

direct detection constraints (Eq. 25), softening the penali-

sation from integrating over nuisance parameters. When we

compute the posterior over the full mass range, we once again

find the resonance region to be somewhat disfavoured, but

now there are large parameter regions with high posterior

probabilities for mχ > mh .

Nevertheless, direct detection does have a significant

impact on the high-mass region, in spite of the mixing param-

eter ξ . While the 2σ contour is roughly triangular, the points

with highest posterior probability (i.e. within the 1σ con-

tours) are split into two smaller triangles. The approximately

rectangular region that separates these two triangular regions

is disfavoured by the combination of volume effects and

direct detection, which requires ξ to be tuned relatively close

to π/2.
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Fig. 7 Marginalised posterior distributions in the (mV , λhV ) plane for

vector DM. Contour lines show the 1 and 2σ credible regions. The left

panel gives the result of a scan restricted to the resonance region around

mV ∼ mh/2. The right panel shows a full-range parameter scan. The

low-mass mode is sufficiently disfavoured in the full-range scan that it

does not appear in the righthand panel. The greyed out region shows

points that do not satisfy Eq. (30). The posterior mean is shown by a

white circle, while the maximum likelihood point is shown as a white

star. The edges of the preferred parameter space along which the model

reproduces the entire observed relic density are indicated with orange

annotations
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Fig. 8 Marginalised posterior distributions in the (mχ , λhχ/Λχ ) plane

for Majorana fermion DM. Contour lines show the 1 and 2σ credible

regions. The left panel gives the result of a scan restricted to the reso-

nance region around mχ ∼ mh/2. The right panel shows a full-range

parameter scan. The greyed out region shows where our approximate

bound on the validity of the EFT is violated. The posterior mean is

shown by a white circle, while the maximum likelihood point is shown

as a white star. The edges of the preferred parameter space along which

the model reproduces the entire observed relic density are indicated

with orange annotations

To better understand the role of tuning in ξ in the pro-

cess of marginalisation, we show the marginalised posterior

in the (mχ , ξ) and (ξ, λhχ/Λχ ) planes in Figs. 9 and 10,

respectively. Figure 9 provides a clear understanding of the

differences between the marginalised posteriors in Fig. 8 and

the profile likelihood in Fig. 3. In the resonance region (left

panel), the neck region is less prominent in the marginalised

posterior because direct detection limits become very con-

straining as soon as mχ > mh/2 and the mixing parameter

is forced to be very close to π/2. In the full-range scan (right

panel) we see the annihilation channel χχ → hh open up,

thus allowing a greater range of values for ξ , leading to an

enhancement in the marginalised posterior probability. This

clearly corresponds to the 1σ triangular region in the mass-

coupling plane at mχ ≈ mh , in the right hand panel of Fig. 8.

In the left panel of Fig. 10, which focuses on the reso-

nance region, we see two separate solutions for the mixing

angle and coupling: the larger island at lower coupling cor-

responds to the triangular region at mχ < mh/2, permitting

all values of ξ , and the thinner solution at larger couplings

reflects the solution at mχ > mh/2, where the scalar coupling

between the Higgs and the Majorana DM needs to be suffi-
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Fig. 9 Marginalised posterior distributions in the (mχ , ξ) plane for

Majorana fermion DM. Contour lines show the 1 and 2σ credible

regions. The left panel gives the result of a scan restricted to the reso-

nance region around mχ ∼ mh/2. The right panel shows a full-range

parameter scan. The posterior mean is shown by a white circle, while

the maximum likelihood point is shown as a white star
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Fig. 10 Marginalised posterior distributions in the (λhχ/Λχ , ξ) plane

for Majorana fermion DM. Contour lines show the 1 and 2σ credible

regions. The left panel gives the result of a scan restricted to the reso-

nance region around mχ ∼ mh/2. The right panel shows a full-range

parameter scan. The posterior mean is shown by a white circle, while

the maximum likelihood point is shown as a white star

ciently small (i.e. ξ ∼ π/2) to evade direct detection limits.

The two regions appear disconnected because the interme-

diate parameter points require so much tuning that they fall

outside of the 2σ credible regions upon marginalisation. Con-

sidering the full mass range (see the right panel in Fig. 10),

we find that the lower ‘bulb’ seen in the profile likelihood

in Fig. 4 is hardly visible in the marginalised posterior when

integrating over the nuisance parameters, due to a lower pos-

terior volume in the resonance region.

We can condense the information from Figs. 9 and 10

further by marginalising over all parameters except for ξ ,

thus obtaining a 1D posterior probability. The result is shown

in Fig. 11, where the preference for ξ ≈ π/2 becomes clear.

In other words, for the case of Majorana fermion DM, there is

a strong preference for permitting an increased admixture of

pseudoscalar-type couplings to suppress the constraints from

direct detection and the relic density, due to a momentum and

velocity suppressed cross-section respectively.

For comparison, we consider the CP-conserving case with

fixed ξ = 0 in Fig. 12. As expected from the discussion

above, we find that the permitted parameter space shrinks

vastly with respect to the case where the mixing parame-

ter is allowed to vary (see Fig. 8). In the resonance region

(left panel), we see that direct detection, the invisible Higgs

width and relic density impose strong constraints from the

left, upper-left and below, respectively. No neck region exists

because the direct detection constraints are too strong, over-

lapping with constraints on the invisible width of the Higgs

boson. In the full-range scan (right panel), we find that the

only surviving parameter space is split into the resonance
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Fig. 11 Marginalised posterior distribution for the mixing angle ξ for

Majorana fermion DM in the full-mass-range scan. The posterior mean

is shown by a blue circle, while the maximum likelihood point is shown

as a red star

region, and two small islands, at mχ ∼ mh and mχ ∼ 5 TeV.

These islands are constrained by direct detection and the EFT

validity requirement. Both will be ruled out by the next gen-

eration of direct detection experiments, if no DM signal is

observed.

Our analysis of the Dirac fermion model parameter space

is identical to the Majorana fermion one, whether ξ is fixed

or left as a free parameter, so to avoid repetition we omit

those results.

It should be clear from the comparison between Figs. 8

and 12 that the CP-conserving case (ξ = 0) is strongly

disfavoured relative to the case where ξ is allowed to vary.

We will make this qualitative observation more precise in the

following section.

6 Bayesian model comparison

6.1 Background

To be able to comment on the relative plausibility of the

different Higgs portal models, we must also perform a quan-

titative model comparison. To do this, we compute Bayes

factors for pairs of models, say M1 and M2 as [143–145],

B ≡
Z(M1)

Z(M2)
, (34)

where Z(M) is the evidence of a model M. This is the

integral of the likelihood of the observed data L(D|θ) over

the possible parameter values θ in that model, weighted by

the prior on the parameters P(θ),

Z(M) ≡
∫

L(D|θ)P(θ) dθ . (35)

We perform this integration using MultiNest [133,134],

which is designed to calculate the Bayesian evidence. The

final odds ratio (of the probability that M1 is correct to the

probability that M2 is correct) is the product of the Bayes

factor and the ratio of any prior beliefs P(M1)/P(M2) that

we might have in these models,

P(M1|D)

P(M2|D)
= B

P(M1)

P(M2)
. (36)
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Fig. 12 Marginalised posterior distributions for Majorana fermion DM

with fixed ξ = 0. Contour lines show the 1 and 2σ credible regions.

The left panel gives the result of a scan restricted to the resonance

region around mχ ∼ mh/2. The right panel shows a full-range param-

eter scan. The posterior mean is shown by a white circle, while the

maximum likelihood point is shown as a white star. The edges of the

preferred parameter space along which the model reproduces the entire

observed relic density are indicated with orange annotations
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In our analysis, we take the prior probability of every model

to be equal such that the factor,

P(M1)/P(M2) = 1 (37)

for all pairs of models. Thus, the odds ratio is simply given

by the Bayes factor. Note that even when computing the evi-

dence for or against CP violation in the fermionic model

below, we do not apply any further prior in favour of CP

conservation. The volume integrals involved in the Bayes

factor automatically implement the concept of naturalness

via Occam’s razor, penalising models with more free param-

eters if they do not fit the observed data any better than models

with less parameters.

From Eq. (35), we can see that the evidence of a model

depends on the prior choices for its parameters. This prior on

the model parameters (along with the priors on the models

themselves) makes the results of Bayesian model comparison

inherently prior-dependent. However, the influence of com-

mon parameters treated with identical priors in both models

approximately cancels when taking the ratio of evidences,

as in Eq. (34). The overall prior dependence of the Bayes

factor can thus be minimised by minimising the number of

non-shared parameters between the models being compared.

The best case is where one model is nested inside the other,

and corresponds simply to a specific choice for one of the

degrees of freedom in the larger model. In this case, the lead-

ing prior dependence is the one coming from the chosen prior

on the non-shared degree of freedom. Thus, we first investi-

gate the question of CP violation in the Higgs portal, which

we can address in this manner, before going on to the more

prior-dependent comparison of the broader models.

6.2 CP violation in the Higgs portal

We perform Bayesian model comparison for the fermionic

Higgs portal DM, and nested variants of it, by comparing

the CP-conserving case (ξ = 0) to the model where the CP

phase of the portal coupling is allowed to vary freely. Due to

the similarity of the likelihood for the Dirac and Majorana

fermion models, we do this for the Majorana fermion model

only. We carry out this exercise for two different parametri-

sations of the model, corresponding to two different priors

on the larger parameter space in which the CP-conserving

scenario is nested:

1. Assuming the parametrisation that we have discussed

thus far for the Majorana model, taking a uniform prior

for ξ and a logarithmic prior for λhχ/Λχ . This corre-

sponds to the assumption that some single mechanism

uniquely determines the magnitude and phase of both

couplings.

2. Assuming that the scalar and pseudoscalar couplings

originate from distinct physical mechanisms at unrelated

scales, such that they can be described by independent

logarithmic priors. The post-EWSB Lagrangian in this

parametrisation contains the terms

Lχ ⊃ −
1

2

(
gs

Λs
χχ +

gp

Λp
χ iγ5χ

) (
v0h +

1

2
h2

)
.

(38)

In this case, the parameters ξ and λhχ/Λχ from the first

parametrisation are replaced by gs/Λs and gp/Λp. In

this parametrisation, the Bayes factor may be sensitive

to the range of the prior for the couplings, as the nor-

malisation factor does not cancel when computing the

Bayes factor for the CP-conserving scenario. We choose

−6 ≤ log10(g/Λ) ≤ 0 for the couplings when comput-

ing the Bayes factors in this parametrisation, in line with

the prior that we adopt for λhχ/Λχ in parametrisation

1.

The CP-conserving model is nested within both of these mod-

els, as ξ = 0 in the first, and as gp/Λp = 0 in the second

(although the exact limit of ξ = 0 is not contained within

our chosen prior for the second parameterisation, seeing as

we choose a logarithmic prior on gp). As stated in Eq. 37, the

ratio of the prior probabilities for these models is taken to be

1 here, and is not related to priors of parameters discussed

above. We are comparing two separate models: one with a

pure CP-even coupling between the DM fermion and the

Higgs and another model where there is also a pseudoscalar

coupling, which a priori is very unlikely to be zero.

In Table 8, we give the odds ratios against the CP-

conserving case in each of these parametrisations. The value

given in the final column of this table is the ratio of the evi-

dence for the CP-violating model to the CP-conserving case.

Depending on the choice of parametrisation, we see that there

is between 140:1 and 70:1 odds against the CP-conserving

version of the Majorana Higgs portal model. The similarity in

order of magnitude12 between these two results is expected,

as it reflects the relatively mild prior-dependence of the Bayes

factor when performing an analysis of nested models that

differ by only a single parameter. Given the similarity of the

likelihood functions in the Majorana and Dirac fermion mod-

els, the odds against the pure CP-conserving version of the

Dirac fermion Higgs portal model can also be expected to be

very similar.

The odds ratio tells us the relative plausibility of one

model relative to the other. According to the standard scale

frequently used for interpreting Bayesian odds ratios (the

12 Odds ratios are best conceived of in a logarithmic sense, so a factor

of 2 difference is of negligible importance.
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Table 8 Odds ratios for CP violation for the singlet Majorana fermion

Higgs portal model. Here the odds ratios are those against a pure CP-

even Higgs portal coupling, as compared to two different parametrisa-

tions (and thus priors) of the model in which the CP nature of the Higgs

portal can vary freely

Model Comparison model and priors Odds

ξ = 0 mχ : log λhχ/Λχ : log ξ : flat 70:1

gp/Λp = 0 mχ : log gs/Λs: log gp/Λp: log 140:1

Jeffreys scale; [143,144]), this constitutes strong evidence

against pure CP-even coupling in fermionic Higgs portal

models. The preference for a CP-violating coupling can also

be seen in Fig. 11, where there is a clear preference for

ξ = π/2, whereas the CP-even coupling falls outside of

the 2σ credible region.

6.3 Scalar, vector, Majorana or Dirac?

We also carry out model comparison between the different

Higgs portal models: scalar, vector, Majorana and Dirac. As

these models are not nested, they each have unique parame-

ters. This means that there is no a priori relationship between

their respective parameters that would allow the definition of

equivalent priors on, e.g., masses or couplings in two different

models. The prior dependence of the Bayes factor is there-

fore unsuppressed by any approximate cancellations when

taking the ratio of evidences in Eq. (34). We caution that the

resulting conclusions are consequently less robust than for

the nested Majorana models. For this exercise, we update

the fit to the scalar model from Ref. [78] to incorporate the

likelihood function and nuisances that we use in the current

paper.

We find that the scalar Higgs portal model has the largest

evidence value in our scans, but is comparable to the fermion

DM models. In Table 9, we give the odds ratios against each

of the Higgs portal models, relative to the scalar model. The

data have no preference between scalar and either form of

fermionic Higgs portal model, with odds ratios of 1:1. The

vector DM model is disfavoured with a ratio of 6:1 compared

to the scalar and fermion models; this constitutes ‘positive’

evidence against the vector DM model according to the Jef-

freys scale, though the preference is only rather mild. Overall,

there is no strong preference for Higgs portal DM to trans-

form as a scalar, vector or fermion under the Lorentz group.

As we find no strong preference between the different

Higgs portal DM models using logarithmic priors, we omit a

dedicated prior sensitivity analysis. If different assumptions

on priors were to yield a stronger preference for any of the

models under consideration, the only conclusion would be

that such a preference is not robust to changes in the prior. The

situation is hence different from the one in Sect. 6.2, where

Table 9 Odds ratios against each singlet Higgs portal DM model with

Z2 symmetry, relative to the scalar model

Model Parameters and priors Odds

S mS : log λhS : log 1:1

Vμ mV : log λhV : log 6:1

χ mχ : log λhχ/Λχ : log ξ : flat 1:1

ψ mψ : log λhψ/Λψ : log ξ : flat 1:1

we did find a strong preference against the CP-conserving

model, which we showed to be largely independent of the

assumed prior.

7 Conclusions

In this study we have considered and compared simple

extensions of the SM with fermionic and vector DM par-

ticles stabilised by a Z2 symmetry. These models are non-

renormalisable, and the effective Higgs-portal coupling is the

lowest-dimension operator connecting DM to SM particles.

Scenarios of this type are constrained by the DM relic den-

sity predicted by the thermal freeze-out mechanism, invisible

Higgs decays, and direct and indirect DM searches. Pertur-

bative unitarity and validity of the corresponding EFT must

also be considered.

We find that the vector, Majorana and Dirac models are all

phenomenologically acceptable, regardless of whether or not

the DM candidate saturates the observed DM abundance. In

particular, the resonance region (where the DM particle mass

is approximately half the SM Higgs mass) is consistent with

all experimental constraints and challenging to probe even

with projected future experiments. On the other hand, larger

DM masses are typically tightly constrained by a combina-

tion of direct detection constraints, the relic density require-

ment and theoretical considerations such as perturbative uni-

tarity. Our results show that with the next generation of direct

detection experiments (e.g., LZ [138]), it will be possible to

fully probe the high-mass region for both the vector and CP-

conserving fermion DM model. Future indirect experiments

such as CTA [139] will be sensitive to parts of viable param-

eter space at large DM masses, but will have difficulty in

probing the resonance region.

An interesting alternative is fermionic DM with a CP-

violating Higgs portal coupling, for which the scattering rates

in direct detection experiments are momentum-suppressed.

By performing a Bayesian model comparison, we find that

data strongly prefers the model with CP violation over the

CP-conserving one, with odds of order 100:1 (over several

priors). This illustrates how increasingly tight experimental

constraints on weakly-interacting DM models are forcing
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us to abandon the simplest and most theoretically appealing

models, in favour of more complex models.

We have also used Bayesian model comparison to deter-

mine the viability of the scalar Higgs portal model relative

to the fermionic and vector DM models. We find a mild

preference for scalar DM over vector DM, but no particu-

lar preference between the scalar and the fermionic model.

This conclusion may however quickly change with more

data. Stronger constraints on the Higgs invisible width will

further constrain the resonance region and the combination

of these constraints with future direct detection experiments

may soon rule out the vector model.

Our study clearly demonstrates that, in the absence of pos-

itive signals, models of weakly-interacting DM particles will

only remain viable if direct detection constraints can be sys-

tematically suppressed. This makes it increasingly interest-

ing to study DM models with momentum-dependent scatter-

ing cross-sections. A systematic study of such theories will

be left for future work. Conversely, Higgs portal models pro-

vide a natural framework for interpreting signals in the next

generation of direct and indirect detection experiments. An

advanced framework for such a reinterpretation using Fisher

information will be implemented in future versions of GAM-

BIT.
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Appendix A: New features in DDCalc

In this appendix, we discuss the new features of DDCalc

2.0.0, namely the treatment of general non-relativistic

effective operators and the extended interface for imple-

menting new analyses. For a more detailed illustration of

the new features, we refer to the example programs in

DDCalc/examples/, which are provided in bothC++ and

Fortran90.13 For an introduction into the basic structure

of DDCalc, we refer to Ref. [101].

A.1: Non-relativistic effective operators

Up to second order in velocity and momentum transfer, elas-

tic scattering of DM particles off nucleons via the exchange of

a heavy mediator can be fully described by a set of 18 effec-

tive operators. These operators are conventionally denoted

by O1, O3, …, O15, O17, O18 (note that O2 and O16 are

commonly omitted), as well as q2O1 and q2O4 [146–148].

Each of these operators can arise independently for scatter-

ing off protons and neutrons or, equivalently, for the isoscalar

(τ = 0) and the iso-vector (τ = 1) current. As the interpre-

tation of these operators also depends on the total spin sχ of

the DM particle, the interactions of DM are fully specified

by a total of 37 parameters.

In order to consider a WIMP with general coupling struc-

ture, the user first initialises a generic WIMP object and then

passes this object to specialised functions that define the cou-

pling structure. For example, the following code initialises a

WIMP with mass 50 GeV and spin 1/2, and sets the isoscalar

and iso-vector coefficients of the operator O3 to 0.1 GeV−2

and 0.2 GeV−2, respectively:14

The second argument of the final function corresponds to

the index of the operator to be set, with q2O1 and q2O4 being

denoted by −1 and −4, respectively.

DDCalc then automatically performs the matching onto

the appropriate nuclear response functions, which are eval-

uated based on the parametrisation and the tabulated values

provided in Ref. [147]. These tables are provided in the sub-

folder DDCalc/data/Wbar/ for a range of relevant iso-

13 Note that DDCalc 2.0.0 no longer maintains a command line inter-

face, so that the example files are in fact the only executables that are

generated when compiling DDCalc.

14 The normalisation of the non-relativistic operators corresponds to

a DM particle that is not self-conjugate. Hence, for a self-conjugate

particle all operator coefficients have to be multiplied by a factor of

two.
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topes. Additional files can be provided to implement addi-

tional isotopes, and existing files can be replaced to study

form factor uncertainties.

Of course, it is still possible to specify the WIMP coupling

structure in the traditional way, e.g. by providing the effec-

tive couplings for spin-independent (SI) and spin-dependent

(SD) interactions with protons and neutrons. In this case,

DDCalc 2.0.0 will by default use the conventional form

factors (i.e. the Helm form factor for SI interactions and the

form factors from Ref. [149] for SD interactions, which can

be found in DDCalc/data/SDFF/). In order to use the

form factors from Ref. [147] also for standard interactions,

one can set the global option PreferNewFF contained in

DDCalc/src/DDConstants.f to true.

Let us finally emphasize that for general non-relativistic

operators, the differential event rate depends not only on the

conventional velocity integral
∫

f (v)/v d3v but also on the

second velocity integral
∫

v f (v) d3v. As before, these veloc-

ity integrals are by default evaluated using the Standard Halo

Model (SHM) with parameters that can be set externally. It is

however also possible to provide tabulated velocity integrals

in order to study velocity distributions that differ from the

SHM. An illustration of this feature is provided in the exam-

ple files DDCalc/examples/DDCalc_exclusionC.

cpp andDDCalc/examples/DDCalc_exclusionF.

f90, which demonstrates how to calculate an exclusion limit

for a given WIMP model and a given velocity distribution.

A.2: Extended detector interface

The need to implement increasingly complex direct detec-

tion experiments has led to substantial extensions of how

experiments can be defined in DDCalc 2.0.0. The details

of this new interface are described in DDCalc/src/

DDDetectors.f, but we review the most important new

features here.

First of all, it is now possible to define a number of dif-

ferent signal regions for each experiment and to specify the

number of observed events and expected background events

for each signal region. The simplest application is the imple-

mentation of a binned analysis, but it is also possible to define

more complex signal regions, provided they can be charac-

terised by a simple acceptance function ǫ(ER), which quan-

tifies the probability that a nuclear recoil with physical recoil

energy ER will lead to a signal within the signal region.

DDCalc 2.0.0 will then determine the expected signal in

each signal region and calculate the binned Poisson likeli-

hood. If the expected background in a signal region is set

to zero, DDCalc 2.0.0 will interpret this to mean that the

background level is unknown. In this case, the bin will only

contribute to the total likelihood if the predicted number of

signal events exceeds the number of observed events.

The example files DDCalc/examples/DDCalc_

exampleC.cpp and DDCalc/examples/DDCalc_

exampleF.f90 illustrate how the predicted number of

events in each signal region, as well as the resulting like-

lihoods, can be evaluated for specific parameter points.

Alternatively, one can also analyse experiments with

unknown backgrounds using the optimum interval method

by specifying the bins in such a way that their boundaries

correspond to the energies of the observed events. Note that

this means that it is typically not possible to use the binned

Poisson method and the optimum interval method for the

same choice of binning. A user wishing to compare these

two analysis strategies should therefore implement them as

separate experiments.

A related new feature is that it is now possible in DDCalc

2.0.0 to specify separate efficiency functions for each ele-

ment (or indeed each isotope) in the target material. This

is necessary for example if the efficiency of analysis cuts

depends on the type of recoiling nucleus (as in CRESST) or

if the low-energy threshold differs for different elements (as

in PICO). For experiments with several different elements

and several different signal regions, the number of efficiency

functions that need to be specified can potentially be quite

large. The preferred way to specify efficiency functions in

DDCalc 2.0.0 is to provide external files with tabulated val-

ues, which by default are stored in DDCalc/data/. An

illustration of this new structure can be found in the defini-

tion of the CRESST-II experiment (see below).

It is important to emphasize that the grid used to define

the efficiency functions is also used to evaluate the other

contributions to the differential event rate (i.e., form fac-

tors and velocity integrals). The number of grid points used

in the definition of the efficiency functions directly influ-

ences the computation time and the precision of the result.

In particular, it is essential to also provide a sufficiently

large number of grid points in energy ranges where the effi-

ciency is approximately constant. The function Retabula-

teEfficiency in DDCalc/src/DDDetectors.f can be

used to generate a fine efficiency grid from a coarse one,

using linear interpolation between the provided values.

A3: New experiments

DDCalc 2.0.0 ships with a broad range of new experimen-

tal analyses. In particular, there are now a number of low-

threshold experiments, so that DDCalc 2.0.0 can now also

be used to reliably calculate constraints on light DM. More-

over, we have implemented a number of planned experi-

ments, which can be used to derive projected sensitivities.

CRESST-II The CRESST-II results [91] are based on

52.2 kg days using the Lise detector module. Our implemen-

tation follows Refs. [150,151], i.e., we assume an energy

resolution of σE = 62 eV and take the cut survival probabil-
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ities from Ref. [150]. To avoid unnecessarily fine binning in

energy ranges where the expected signal rates are small, we

divide the energy range between 0.3 and 5.0 keV into 10 bins

of increasing size. In the absence of a background model, we

treat all observed events as potential signal events.

CDMSlite The analysis of CDMSLite is based on an expo-

sure of 70.14 kg days [90,152]. The energy-dependent signal

efficiency is taken from Ref. [90], which also describes the

procedure for converting nuclear recoil energies into electron

equivalent energies (eVee). We follow the same approach as

in Ref. [151] to determine the detector resolution, divide the

energy range from 60 to 500 eVee into 10 bins of increasing

size and assume no background model.

DarkSide-50 We implement the results from a search for

heavy DM particles in the DarkSide-50 detector based on a

total exposure of 19.6×103 kg days [93], taking the energy-

dependent acceptance function from Ref. [93].

PandaX-II Since the most recent data taking period of the

PandaX-II experiment (Run 10) has substantially lower back-

ground levels than previously analysed data sets [87,88],

we implement it as an independent experiment (called Pan-

daX_2017) rather than simply combining all runs. We use

the same detector efficiency for the new data set as for our

previous implementation of PandaX-II (see Ref. [101]) and

assume a background expectation of 1.55 events.15 It is then

straight-forward to perform a combination of the different

data sets by multiplying the individual likelihood functions.

XENON1T We use the same implementation of XENON1T

[89] as described in detail in Ref. [79]. To reduce background

levels, we focus on the central detector region with a mass of

0.65 t, and consider only events between the median of the

nuclear recoil band and the lower 2σ quantile. We further-

more divide this signal region into two energy bins, which

correspond to S1 ∈ [3 PE, 35 PE] and S1 ∈ [35 PE, 70 PE].
We estimate the expected backgrounds in the two bins to

be 0.46 and 0.34 events, respectively, compared to 0 and 2

observed events.

LZ Our implementation of the LZ experiment [153] fol-

lows Ref. [154]. In particular, we assume an exposure of

5.6 · 106 kg days with a resolution of σE/ER = 0.065 +
0.24 (1 keV/ER)1/2 and an acceptance of 50% for nuclear

recoils. We consider 6 evenly-spaced bins in the range from

6 to 30 keV and assume a background of 0.394 events per

bin.

PICO-500 Our implementation of PICO-500 follows the

information provided in Ref. [155]. PICO-500 plans to

15 The expected number of background events is quoted as 1.8 ± 0.5.

Assuming the uncertainty in this estimate to be Gaussian, the likelihood

is maximized for a background expectation of 1.8−0.52 = 1.55 events.

employ a C3F8 target with 250 L fiducial volume. Six live-

months of data will be taken with a low threshold of 3.2 keV,

which we implement using the same acceptance function as

for PICO-2L [156], while 12 live-months will be taken with

a threshold of 10 keV. We treat the two thresholds as two

separate bins, in which case the expected backgrounds are 3

and 0.85 events, respectively.

DARWIN The DARWIN experiment aims for a total expo-

sure of 7.3 · 107 kg days with 30% acceptance for nuclear

recoils and 99.98% rejection of electron recoils [157].

We assume an energy resolution of σE/ER = 0.05 +
(0.05 keV/ER)1/2 [158] and consider 5 equally-spaced bins

between 5 and 20 keV. The dominant background is due

to coherent neutrino-nucleus scattering, which we estimate

from Fig. 3 in Ref. [158].

DarkSide-20k We assume a total exposure of 3.65 · 107

kg days and estimate the energy resolution to be σE/ER =
0.05 + (2 keV/ER) [159]. To model the detector threshold,

we implement the acceptance function for the f200-cut from

Fig. 92 in Ref. [159]. We divide the energy range between 30

and 80 keV into 10 equally-spaced bins, and assume a back-

ground of 0.04 events per bin from instrumental background,

as well as a total of 1.6 events (with non-trivial energy depen-

dence) from coherent neutrino scattering, which we obtain

by rescaling the results from Ref. [160].

Note that the number of observed events in each bin must

be an integer in DDCalc, so it is typically not possible to set

the observed number of events equal to the expected number

of events in order to calculate the expected sensitivity of a

future experiment. By default, the observed number of events

is set to the integer closest to the background expectation, but

this introduces a bias for example if there is a large number of

bins with less than 0.5 expected background events. To accu-

rately calculate expected sensitivities, one should simulate

Poisson fluctuations in each bin, calculate the corresponding

exclusion limits, and then construct the median exclusion.

For an alternative approach, using Fisher information, we

refer to Ref. [161].

Lastly, in Fig. 13 we show a comparison of the upper

bounds on the spin-independent scattering cross-section

determined using DDCalc with the official limits obtained

by the respective collaborations. In all cases we find good

agreement, validating our implementions of the experimen-

tal likelihoods in DDCalc. Also for the planned experiments

described earlier we have confirmed that our sensitivity esti-

mates are in sufficient agreement with the expectations pub-

lished by the collaborations [153,155,157,159].
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Fig. 13 90% C.L. upper limits on the spin-independent DM-nucleon

scattering cross-section from CRESST-II, CDMSlite, DarkSide-50,

PandaX-II and XENON1T. The solid curves show the limits obtained

using DDCalc, while the dashed curves correspond to the limits derived

by the collaborations [88–91,93]. Note that close to threshold the exclu-

sion limits depend sensitively on the detector response and an accurate

modeling in DDCalc is very challenging

Appendix B: Annihilation cross-sections

In our study, the final states from the DM annihilation include

W +W −, Z Z , τ+τ−, t t̄ , bb̄, cc̄ and hh. For all final states

except hh, the DM annihilation proceeds solely via an s-

channel Higgs exchange. For massive gauge bosons, the anni-

hilation cross-section is

σvcms
rel = P(X)

s

8π
δiviλ

2
h X |Dh(s)|2

(
1 − 4xi + 12x2

i

)
,

(B.1)

where P(X) is defined in Eq. (14), i = {W, Z}, λh X ∈
{λhV , λhχ/Λχ , λhψ/Λψ }, δW = 1, δZ = 1/2, xi ≡ m2

i /s,

vi =
√

1 − 4xi , and |Dh(s)|2 is the full squared Higgs prop-

agator given by

|Dh(s)|2 =
1

(
s − m2

h

)2 + mhŴh(
√

s)
. (B.2)

For fermion final states, the annihilation cross-section is

given by

σvcms
rel = P(X)

m2
f

4π
C f v

3
f λ

2
h X |Dh(s)|2 , (B.3)

where C f is a colour factor. For leptons, C f = 1, whereas

for quarks, it includes an important 1-loop vertex correction

given by [162]

C f = 3

{
1 +

[
3

2
log

(
m2

f

s

)
+

9

4

]
4αs

3π

}
. (B.4)

For the hh final state, additional contributions appear from

the 4-point contact interaction as well as DM exchange in t-

and u-channels. The annihilation cross-section for V V →
hh is

σvcms
rel (V V → hh)

=
λ2

hV vh

2304πsx4
V

|Dh(s)|2
[

8βv2
0λhV

1 − 2x2
h

coth−1 β

×
{

2s (2xh − 1) xV

(
(xh − 1) (2xh + 1) − x2

Ŵ

)

×
(

x2
h + 24x3

V + 2 (xh − 1)2 − 4 (2xh + 1) x2
V

)

− v2
0λhV

[(
3x4

h − 8x3
h xV − xh(xh − 4xV )(8x2

V + 1)

− 2xV (24x3
V − 2xV + 1))(xh − 1)2 + x2

Ŵ)
)]}

+ 4s2x2
V (4xV (3xV − 1) + 1)

(
(2xh + 1)2 + x2

Ŵ

)

− 4sxV λhV v2
0 (2xh (2xV + 1) + 1 − 6xV )

×
(

xh (2xh − 1) − 1 − x2
Ŵ

)

+
λ2

hV v4
0

(
(xh − 1)2 + x2

Ŵ

)

x2
h − 4xV xh + xV

×
(

6x4
h + 4x3

h (1 − 8xV ) + x2
h (12xV (4xV − 1) + 1)

−64x3
V xh + 96x4

V + xV

)]
, (B.5)

where the dimensionless quantities β = (1 − 2xh)/(vhvV )

and xŴ = Ŵhmh/s, and vh and vV are the lab-frame velocities

of the Higgs and vector DM, respectively.

Similarly, the annihilation cross-section for χχ → hh

(and equivalently for χ ↔ ψ) is given by

σvcms
rel (χχ → hh)

=
(

λhχ

Λχ

)2
vh

32πs

[ (
s − 4 cos2 ξsxχ − 8 cos ξv2

0

λhχ

Λχ

mχ

)

+
4βs2|Dh(s)|2v2

0 coth−1 β

(1 − 2xh)2

λhχ

Λχ

×
{

2mχ cos ξ (2xh − 1)
(
xh (2xh − 1) − x2

Ŵ − 1
)

×
(
8 cos2 ξ xχ − 2xh − 1

)

+ v2
0

λhχ

Λχ

(
1 − 4xh + 6x2

h − 16xχ cos2 ξ (xh − 1)

−32 cos4 ξ x2
χ

) (
(xh − 1)2 + x2

Ŵ

)}

+ 3s2|Dh(s)|2xh

(
8 cos ξv2

0 (xh − 1)
λhχ

Λχ

mχ

−s (xh + 2)
(
4 cos2 ξ xχ − 1

))

−
(

λhχ

Λχ

)2 2v4
0

(
2xχ

(
8 cos4 ξ xχ + 1

)
− 8

(
1 + cos2 ξ

)
xh xχ + 3x2

h

)

x2
h + xχ − 4xh xχ

]
,
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where β = (1−2xh)/(vhvχ ), with vχ the lab-frame χ veloc-

ity.
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