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1 Introduction

Let S(t) be the number of susceptible individuals, I(t) be the number of infective individuals,

and R(t) be the number of removed individuals at time t, respectively. After studying

the cholera epidemic spread in Bari in 1973, Capasso and Serio [2] introduced a saturated

incidence rate g(I)S into epidemic models, where g(I) tends to a saturation level when I

gets large, i.e.,

g(I) =
kI

1 + αI
, (1.1)

where kI measures the infection force of the disease and 1/(1 + αI) measures the inhibition

effect from the behavioral change of the susceptible individuals when their number increases

or from the crowding effect of the infective individuals. This incidence rate seems more

reasonable than the bilinear incidence rate

g(I)S = kIS, (1.2)

because it includes the behavioral change and crowding effect of the infective individuals and

prevents the unboundedness of the contact rate by choosing suitable parameters. Ruan and

Wang [12] studied an epidemic model with a specific nonlinear incident rate

g(I)S =
kI2S

1 + αI2
(1.3)

and presented a detailed qualitative and bifurcation analysis of the model. They derived

sufficient conditions to ensure that the system has none, one, or two limit cycles and showed

that the system undergoes a Bogdanov-Takens bifurcation at the degenerate equilibrium

which includes a saddle-node bifurcation, a Hopf bifurcation, and a homoclinic bifurcation.

The general incidence rate

g(I)S =
kIpS

1 + αIq
(1.4)

was proposed by Liu, Levin and Iwasa [10] and used by a number of authors, see, for

example, Derrick and van den Driessche [3], Hethcote and van den Driessche [7], Alexander

and Moghadas [1], etc. Nonlinear incidence rates of the form kIpSq were investigated by

Liu, Hethcote and Levin [9], Liu, Levin and Iwasa [10].

If the function g(I) is nonmonotone, that is, g(I) is increasing when I is small and

decreasing when I is large (see Figure 1.1), it can be used to interpret the “psychological”

effect: for a very large number of infective individuals the infection force may decrease as the

number of infective individuals increases, because in the presence of large number of infectives
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the population may tend to reduce the number of contacts per unit time. The recent epidemic

outbreak of severe acute respiratory syndrome (SARS) had such psychological effects on

the general public (see Leung et al. [8]), aggressive measures and policies, such as border

screening, mask wearing, quarantine, isolation, etc. have been proved to be very effective

(Gumel et al. [4] and Wang and Ruan [13]) in reducing the infective rate at the late stage

of the SARS outbreak, even when the number of infective individuals were getting relatively

larger. To model this phenomenon, we propose a incidence rate

g(I)S =
kIS

1 + αI2
, (1.5)

where kI measures the infection force of the disease and 1/(1 + αI2) describes the psycho-

logical or inhibitory effect from the behavioral change of the susceptible individuals when

the number of infective individuals is very large. This is important because the number of

effective contacts between infective individuals and susceptible individuals decreases at high

infective levels due to the quarantine of infective individuals or due to the protection mea-

sures by the susceptible individuals. Notice that when α = 0, the nonmonotone incidence

rate (1.5) becomes the bilinear incidence rate (1.2).

I0

g(I)

Figure 1.1: Nonmonotone incidence function g(I).

The organization of this paper is as follows. In the next section, we present the model

and derive the disease-free equilibrium and the endemic equilibrium. In section 3 we carry

out a qualitative analysis of the model. Stability conditions for the disease-free equilibrium

and the endemic equilibrium are derived, respectively. A brief discussion and some numerical

simulations are given in section 4.
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2 The Model

The model to be studied takes the following form

dS
dt

= b− dS − kSI
1 + αI2 + γR,

dI
dt

= kSI
1 + αI2 − (d + µ)I,

dR
dt

= µI − (d + γ)R,

(2.1)

where S(t), I(t) and R(t) denote the numbers of susceptible, infective, and recovered indi-

viduals at time t, respectively. b is the recruitment rate of the population, d is the natural

death rate of the population, k is the proportionality constant, µ is the natural recovery rate

of the infective individuals, γ is the rate at which recovered individuals lose immunity and

return to the susceptible class, α is the parameter measures the psychological or inhibitory

effect.

Because of the biological meaning of the components (S(t), I(t), R(t)), we focus on the

model in the first octant of IR3. We first consider the existence of equilibria of system

(2.1). For any values of parameters, model (2.1) always has a disease-free equilibrium E0 =

(b/d, 0, 0). To find the positive equilibria, set

b− dS − kIS

1 + αI2 + γR = 0,

kS

1 + αI2 − (d + µ) = 0,

µI − (d + γ)R = 0.

This yields

αd(d + µ)I2 + k
(
d + µ− γµ

d + γ

)
I + d(d + µ)− kb = 0. (2.2)

Define the basic reproduction number as follows

R0 =
kb

d(d + µ)
. (2.3)

From equation (2.2) we can see that

(i) if R0 ≤ 1, then there is no positive equilibrium;

(ii) if R0 > 1, then there is a unique positive equilibrium E∗ = (S∗, I∗, R∗), called the

endemic equilibrium and given by

S∗ =
1

d
[b− (d + µ− γµ

d + γ
)I∗], (2.4)
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I∗ =
−k(d + µ− γµ

d+γ
) +

√
∆

2αd(d + µ)
, (2.5)

R∗ =
µ

d + γ
I∗, (2.6)

where

∆ = k2
(
d + µ− γµ

d + γ

)2

− 4αd2(d + µ)2[1−R0].

In the next section, we shall study the property of these equilibria and perform a global

qualitative analysis of model (2.1).

3 Mathematical Analysis

To study the dynamics of model (2.1), we first present a lemma.

Lemma 3.1 The plane S + I + R = b/d is an invariant manifold of system (2.1), which is

attracting in the first octant.

Proof. Summing up the three equations in (2.1) and denoting N(t) = S(t) + I(t) + R(t), we

have
dN

dt
= b− dN. (3.1)

It is clear that N(t) = b/d is a solution of equation (3.1) and for any N(t0) ≥ 0, the general

solution of equation (3.1) is

N(t) =
1

d
[b− (b− dN(t0))e

−d(t−t0)].

Thus,

lim
t→∞

N(t) =
b

d
,

which implies the conclusion. ¤
It is clear that the limit set of system (2.1) is on the plane S + I + R = b/d. Thus, we

focus on the reduced system

dI
dt

= kI
1 + αI2 ( b

d
− I −R)− (d + µ)I

∆
= P (I, R),

dR
dt

= µI − (d + γ)R
∆
= Q(I, R).

(3.2)

We have the following result regarding the nonexistence of periodic orbits in system (3.2),

which implies the nonexistence of periodic orbits of system (2.1) by Lemma 3.1
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Theorem 3.2 System (3.2) does not have nontrivial periodic orbits.

Proof. Consider system (3.2) for I > 0 and R > 0. Take a Dulac function

D(I, R) =
1 + αI2

kI
.

We have
∂(DP )

∂I
+

∂(DQ)

∂R
= −1− 2α(d + µ)

k
I − 1 + αI2

kI
(d + γ)R < 0.

The conclusion follows. ¤
In order to study the properties of the disease-free equilibrium E0 and the endemic

equilibrium E∗, we rescale (3.2) by

x =
k

d + γ
I, y =

k

d + γ
R, τ = (d + γ)t.

Then we obtain
dx
dτ

= x
1 + px2 (A− x− y)−mx,

dy
dτ

= qx− y,
(3.3)

where

p =
α(d + γ)2

k2 , A =
bk

d(d + γ)
, m =

d + µ

d + γ
, q =

µ

d + γ
.

Note that the trivial equilibrium (0, 0) of system (3.3) is the disease-free equilibrium E0

of model (2.1) and the unique positive equilibrium (x∗, y∗) of system (3.3) is the endemic

equilibrium E∗ of model (2.1) if and only if m− A < 0, where

x∗ =
−(1 + q) +

√
(1 + q)2 − 4mp(m− A)

2mp
, y∗ = qx∗.

We first determine the stability and topological type of (0, 0). The Jacobian matrix of

system (3.3) at (0, 0) is

M0 =

[
A−m 0

q −1

]
.

If A−m = 0, then there exists a small neighborhood IN0 of (0, 0) such that the dynamics of

system (3.3) is equivalent to

dx
dτ

= −x2 − 2xy + O((x, y)3),

dy
dτ

= qx− y.
(3.4)

By Theorem 7.1 of Zhang et al. [14] (pp. 114) or Theorem 2.11.1 of Perko [11] (pp. 150),

we know that (0, 0) is a saddle-node. Hence, we obtain the following result.
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Theorem 3.3 The disease-free equilibrium (0, 0) of system (3.3) is

(i) a stable hyperbolic node if m− A > 0;

(ii) a saddle-node if m− A = 0;

(iii) a hyperbolic saddle if m− A < 0.

When m−A < 0, we discuss the stability and topological type of the endemic equilibrium

(x∗, y∗). The Jacobian matrix of (3.3) at (x∗, y∗) is

M1 =




x∗(px∗2 + 2pqx∗2 − 2Apx∗ − 1)

(1 + px∗2)2
−x∗

1 + px∗2

q −1


 .

We have that

det(M1) = −x∗(px∗2 + 2pqx∗2 − 2Apx∗ − 1)

(1 + px∗2)2
+

qx∗

1 + px∗2

=
x∗(1 + q + 2Apx∗ − (1 + q)px∗2)

(1 + px∗2)2
.

The sign of det(M1) is determined by

S1
∆
= 1 + q + 2Apx∗ − (1 + q)px∗2.

Note that mpx∗2 + (1 + q)x∗ + m− A = 0. We have

mS1 = (2Amp + (1 + q)2)x∗ + (1 + q)(2m− A)

= (2Amp + (1 + q)2)
[
x∗ +

(1 + q)(2m− A)

2Amp + (1 + q)2

]
.

Substituting

x∗ =
−(1 + q) + ∆1

2mp
, where ∆1 =

√
(1 + q)2 − 4mp(m− A),

into S1 and using a straightforward calculation, we have

S1 = −∆1

m

[
(1 + q)∆1 − (2Amp + (1 + q)2)

]

=
(1 + q)∆1

m

[(
1 + q +

2mpA

1 + q

)
−∆1

]
.

Since (
1 + q +

2mpA

1 + q

)2

−∆2
1 =

4m2p2A2

(1 + q)2
+ 4m2p > 0,

it follows that S1 > 0. Hence, det(M1) > 0 and (x∗, y∗) is a node or a focus or a center.

Furthermore, we have the following result on the stability of (x∗, y∗).
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Theorem 3.4 Suppose m − A < 0, then there is a unique endemic equilibrium (x∗, y∗) of

model (3.3), which is a stable node.

Proof. We know that the stability of (x∗, y∗) is determined by tr(M1). We have

tr(M1) =
−p2x∗4 + (1 + 2q)px∗3 − 2(1 + A)px∗2 − x∗ − 1

(1 + px∗2)2
.

The sign of tr(M1) is determined by

S2 = −p2x∗4 + (1 + 2q)px∗3 − 2(1 + A)px∗2 − x∗ − 1.

We claim that S2 6= 0. To see this, note that mpx∗2 + (1 + q)x∗ + m − A = 0. Then we

have

m3pS2 = (B1A + B2)x
∗ + (B3A + B4),

where

B1 = mp(2 + 3m + 2q + 4mq),

B2 = (1 + q)[(1 + q)2 + m(1 + q)(1 + 2q)− 2m3p],

B3 = −(1 + q)2 −m(1 + q)(1 + 2q) + 2m3p,

B4 = m[(1 + q)2 + m(1 + q)(1 + 2q)− p(1 + 2m)A2].

When m− A < 0, we can see that B1A + B2 > 0.

Let ξ = mpx∗2 + (1 + q)x∗ + m− A. Similarly, we have

(B1A + B2)
2ξ = m3pPS2 + S3,

where P is a polynomial of x∗ and

S3 = m3p(1 + A2p + 2q + q2)[(A + 2Am− 2m2)2p + (1 + A−m + q)(1 + m + q + 2mq)].

Assume that S2 = 0. Since ξ = 0, it follows that S3 = 0. However, when m − A < 0, we

have S3 > 0. Therefore, S2 6= 0 for any positive value of the parameters p, q and A, that

is, tr(M1) 6= 0. Thus, m − A < 0 implies that (x∗, y∗) does not change stability. Take

m = 1, A = 2, p = 1, q = 1. Then x∗ = −1 +
√

2, y∗ = −1 +
√

2, tr(M1) = −1.64645 < 0. By

the continuity of tr(M1) on the parameters, we know that tr(M1) < 0 for m − A < 0. This

completes the proof. ¤
Summarizing Theorems 3.2-3.4, we have the following results on the dynamics of the

original model (2.1).
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Theorem 3.5 Let R0 be defined by (2.3).

(i) If R0 < 1, then model (2.1) has a unique disease-free equilibrium E0 = (b/d, 0, 0), which

is a global attractor in the first octant.

(ii) If R0 = 1, then model (2.1) has a unique disease-free equilibrium E0 = (b/d, 0, 0), which

attracts all orbits in the interior of the first octant.

(iii) If R0 > 1, then model (2.1) has two equilibria, a disease-free equilibrium E0 = (b/d, 0, 0)

and an endemic equilibrium E∗ = (S∗, I∗, R∗). The endemic equilibrium E∗ is a global

attractor in the interior of the first octant.

4 Discussions

Several nonlinear incidence rates have been proposed by researchers, see, for example, Ca-

passo and Serio [2], Liu, Levin and Iwasa [10], Derrick and van den Driessche [3], Hethcote

and van den Driessche [7], etc. Complex dynamics have been observed in epidemiological

models with nonlinear incidence rate, such as the existence of multiple equilibria and limit

cycles, various types of bifurcations including Hopf, saddle-node, homoclinic and Bagdanov-

Takens bifurcations, etc., see Ruan and Wang [12] and references cited therein.
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Figure 4.1: When b = 1.0, d = 0.2, k = 0.2, α = 4.0, γ = 0.3, µ = 0.15, R0 = 6/7 < 1, S(t)
approaches to its steady state value while I(t) and R(t) approach zero as time goes to infinity,
the disease dies out.
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In this paper we proposed a nonmonotone and nonlinear incidence rate of the form

kIS/(1+ αI2), which is increasing when I is small and decreasing when I is large. It can be

used to interpret the “psychological” effect: the number of effective contacts between infective

individuals and susceptible individuals decreases at high infective levels due to the quarantine

of infective individuals or the protection measures by the susceptible individuals. The recent

epidemic outbreak of severe acute respiratory syndrome (SARS) had such psychological

effects on the general public (see Leung et al. [8], Gumel et al. [4] and Wang and Ruan [13]).
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Figure 4.2: When b = 1.0, d = 0.2, k = 0.2, α = 4.0, γ = 0.3, µ = 0.15, R0 = 20/7 > 1, all
three components, S(t), I(t) and R(t), approach to their steady state values as time goes to
infinity, the disease becomes endemic.

We have carried out a global qualitative analysis of an SIR model with this nonmonotone

and nonlinear incidence rate and studied the existence and stability of the disease-free and

endemic equilibria. Interestingly, this model does not exhibit complicated dynamics as other

epidemic models with other types of incidence rates reported in Liu, Levin and Iwasa [10],

Derrick and van den Driessche [3], Hethcote and van den Driessche [7], Ruan and Wang

[12], etc. In terms of the basic reproduction number R0 = kb/(d(d + µ)), our main results

indicate that when R0 < 1, the disease-free equilibrium is globally attractive (see Figure

4.1). When R0 > 1, the endemic equilibrium exists and is globally stable (see Figure 4.2).

Biologically, these indicate that when the proportionality (infection) constant (k) and/or

the recruitment rate (b) is sufficiently large and removal rate (death rate (d) plus recovery

rate (µ)) is sufficiently small such that R0 > 1,, then the disease persists. On the other
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hand, if the proportionality (infection) constant (k) and/or the recruitment rate (b) is small

enough and removal rate (death rate (d) plus recovery rate (µ)) is large enough such that

R0 < 1, then the disease dies out. The aggressive control measures and policies, such as

border screening, mask wearing, quarantine, isolation, etc., helped in reducing the infection

rate and increasing the removal rate and in the eventual eradication of SARS (Gumel et al.

[4] and Wang and Ruan [13]).

Recall that the parameter α describes the psychological effect of the general public toward

the infectives. Though the basic reproduction number R0 does not depend on α explicitly,

numerical simulations indicate that when the disease is endemic, the steady state value I∗

of the infectives decreases as α increases (see Figure 4.3). From the steady state expression

(2.5) we can see that I∗ approaches zero as α tends to infinity.
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References

[1] M. E. Alexander and S. M. Moghadas, Periodicity in an epidemic model with a gener-

alized non-linear incidence, Math. Biosci. 189 (2004), 75-96.

[2] V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic

epidemic model, Math. Biosci. 42 (1978), 43-61.

11



[3] W. R. Derrick and P. van den Driessche, A disease transmission model in a nonconstant

population, J. Math. Biol. 31 (1993), 495-512.

[4] A. B. Gumel et al., Modelling strategies for controlling SARS outbreaks, Proc. R. Soc.

Lond. B 271 (2004), 2223-2232.

[5] H. W. Hethcote, The mathematics of infectious disease, SIAM Review 42 (2000), 599-

653.

[6] H. W. Hethcote and S. A. Levin, Periodicity in epidemiological models, in “Applied

Mathematical Ecology”, eds. by L. Gross, T. G. Hallam and S. A. Levin, Spriger-Verlag,

Berlin, 1989, pp. 193-211.

[7] H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear

incidence, J. Math. Biol. 29 (1991), 271-287.

[8] G. M. Leung et al., The impact of community psychological response on outbreak control

for severe acute respiratory syndrome in Hong Kong, J. Epidemiol. Community Health

57(2003), 857-863.

[9] W. M. Liu, H. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological

models with nonlinear incidence rates, J. Math. Biol. 25 (1987), 359-380.

[10] W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the

behavior of SIRS epidemiological models, J. Math. Biol. 23 (1986), 187-204.

[11] L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York,

1996.

[12] S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear

incidence rate, J. Differential Equations 188 (2003), 135-163.

[13] W. Wang and S. Ruan, Simulating the SARS outbreak in Beijig with limited data, J.

Theoret. Biol. 227 (2004), 369-379.

[14] Z.-F. Zhang, T.-R. Ding, W.-Z. Huang and Z.-X. Dong, Qualitative Theory of Differen-

tial Equations, Transl. Math. Monogr. Vol. 101, Amer. Math. Soc., Providence, 1992.

12


