
Global Analysis of Standard Prolog Programs

F. Bueno D. Cabeza M. Hermene~ildo G. Puebla
{bueno, dcabeza, herme, german jr @f i . upm. es

Computer Science Department

Technical University of Madrid (UPM)
Campus de Montegancedo, 28660, Boadilla del Monte, Spain

Abstract. Abstract interpretation-based data-flow analysis of logic pro-
grams is, at this point, relatively well understood from the point of view
of general frameworks and abstract domains. On the other hand, compar-
atively little attention has been given to the problems which arise when
analysis of a full, practical dialect of the Prolog language is attempted,
and only few solutions to these problems have been proposed to date.
Existing proposals generally restrict in one way or another the classes
of programs which can be analyzed. This paper attempts to fill this gap
by considering a full dialect of Prolog, essentially the recent ISO stan-
dard, pointing out the problems that may arise in the analysis of such a

dialect, and proposing a combination of known and novel solutions that

together allow the correct analysis of arbitrary programs which use the
full power of the language.

Keywords: Logic Programming, Abstract Interpretation, Optimization

1 Introduct ion

Global program analysis, generally based on abstract interpretation [11], is be-
coming a practical tool in logic program compilation, in which information about
calls, answers, and substitutions at different program points is computed stat-
ically [18, 26, 23, 27, 4, 13, 1, 12, 22, 6]. Most proposals to date have concen-
trated on general frameworks and suitable abstract domains. On the other hand,
comparatively little attention has been given to the problems which arise when
analysis of a full, practical language is attempted. Such problems relate to deal-
ing correctly with all builtins, including meta-logical, extra-logical, and dynamic
predicates (where the program is modified during execution). Often, problems
also arise because not all the program code is accessible to the analysis, as is the
case for some builtins (meta-calls), some predicates (multifile and/or dynamic),
and some programs (multifile or modular).

Implementors of the analyses obviously have to somehow deal with such
problems, and some of the implemented analyses provide solutions for some
problems. However, the few solutions which have been published to date [26, 14,
18, 23, 7] generally restrict the use of builtin predicates in one way or another
(and thus the class of programs which can be analyzed).

This paper at tempts to fill this gap. We consider the correct analysis of a full
dialect of Prolog. For concreteness, we essentially follow the recently accepted
ISO standard [19]. Our purpose is to review the features of the language which
pose problems to global analysis and propose alternative solutions for dealing
with these features. The most important objective is obviously to achieve correct:
ness, but also as much accuracy as possible. Since arguably the main problem in

109

static analysis is having dynamic code, which is not available at compile-time, we
first propose a general solution for solving the problems associated with features
such as dynamic predicates and meta-predicates, and consider other alternative
solutions. The proposed alternatives are a combination of known solutions when
they are useful, and novel solutions when the known ones are found lacking. The
former are identified by giving references.

One of the motivations of our approach is that we would like to accommodate
at the same time two types of users. First, the naive user, which would like
analysis to be as transparent as possible. Second, we would also like to cater
for the advanced user, which may like to guide the analysis in difficult places
in order to obtain better optimizations. Thus, for each feature, we will propose
solutions that require no user input, but we will also propose solutions that
allow the user to provide input to the analysis process. This requires a clear
interface to the analyzer at the program text level. Clearly, this need also arises
when expressing the information gathered by the different analyses supported.
We solve this by proposing an interface, in the form of annotations, which is
useful not only for two-way communication between the user and the compiler,
but also for the cooperation among different analysis tools and for connecting
analyses with other modules of the compiler.

After neccessary preliminaries in Section 2, we propose several novel general
solutions to deal with the analysis of dynamic programs in Section 3. A set of
program annotations which can help in this task is then proposed in Section
4. We then revise our and previous solutions to deal with each of the language
features in Section 5, except for modules and multifile programs, which are dis-
cussed in Section 6. There we propose a solution based on incremental analysis,
and another one based on our program annotations. We conclude with Section 7.

We argue that the proposed set of solutions is the first one to allow the
correct analysis of arbitrary programs which use the full power of the language
without input from the user (while at the same time allowing such input if so
desired). Given the length limitations and the objective of addressing the full
language the presentation will be informal. Details can be found in [2].

2 P r e l i m i n a r i e s a n d N o t a t i o n

For simplicity we will assume that the abstract interpretation based analysis
is constructed using the "Galois insertion" approach [11], in which an abstract
domain is used which has a lattice structure, with a partial order denoted by E,
and whose top value we will refer to by T, and its bottom value by _L. We will
refer to the least upper bound (lub) and greatest lower bound (glb) operators in
the lattice by U and R, respectively. The abstract computation proceeds using
abstract counterparts of the concrete operations, the most relevant ones being
unification (mgu ~) and composition (oa), which operate over abstract substi-
tutions Ca). Abstract unification is however often also expressed as a function
unify ~ which computes the abstract mgu of two concrete terms in the presence
of a given abstract substitution.

Usually, a collecting semantics is used which attaches one or more (abstract)
substitutions to program points (such as, for example, the point just before or
just after the call of a given literal - - the call and success substitutions for that
literal). A goal dependent analysis associates abstract success substitutions to
specific goals, in particular to call patterns, i.e. pairs of a goal and an abstract call
substitution which expresses how the goal is called. Depending on the granularity
of the analysis, one or more success substitutions can be computed for different
call patterns at the same program point. Goal independent analyses compute
abstract success substitutions for generic goals, regardless of the call substitution.

110

In general we will concentrate on top-down analyses, since they are at present
the ones most frequently used in optimizing compilers. However, we believe the
techniques proposed are equally applicable to bottom-up analyses. In the text,
we consider in general goal dependent analyses, but point out solutions for goal
independent analyses where appropriate (see, e.g., [16, 15, 8]).

The pairs of call and success patterns computed by the analysis, be it top-
down or bottom-up, goal dependent or independent, will be denoted by AOT ~ (P)
for a given program P. A most general goal pattern (or simply "goal pattern,"
hereafter) of a predicate is a normalized goal for that predicate, i.e. a goal whose
predicate symbol and arity are those of the predicate and where all arguments are
distinct variables. In goal dependent analyses, for every call pattern of the form
(goal_pattern, call_substitution) of a program P there are one or more associated
success substitutions which will be denoted hereafter by AOT ~ (P, call_pattern).
The same holds for goal independent analysis, where the call pattern is simply
reduced to the goal pattern. By program we refer to the entire program text that
the compiler has access to, including any directives and annotations.

3 S t a t i c A n a l y s i s o f D y n a m i c P r o g r a m T e x t

A main problem in statically analyzing logic programs is that not all of the code
that would actually be run is statically accesible to the analysis. This can occur
either because the particular calls occuring at some places are dynamically con-
structed, or because the code defining some predicates is dynamically modified.
The following problems appear: (1) How to compute success substitutions for
the calls which are not known; we call this the success substitution problem, and
(2) How to determine calls and call substitutions which may appear from the
code which is not known; we call this the extra call pattern problem.

Consider the following program, to be analyzed with entry point goal. The
predicate p/2 is known to be dynamic, and may thus be modified at run-time.

g o a l : - . . . , X=a p(X,Y)

:- dynamic p/2.
p(X,Y) :- q(X,Y).

q(X,V).
l (a , b) .

Assume that the call pattern of the goal p (X, Y) in the analysis indicates that X is
ground and Y free. If we do not consider the possibility of run-time modifications
of the code, the success pattern for p(X,Y) is the same as the call pattern. Also,
since no calls exist to 1/2, its definition is dead code. Assume now that a clause
"p (X, Y) : - 1 (X, Y)." is asserted at run-time. The previous analysis information
is not correct for two reasons. First, the success pattern of p(X,Y) should now
indicate that Y is ground (success substitution problem). Second, a call for 1/2
now occurs which has not been considered in the previous analysis (extra call
pattern problem).

The first problem is easier to solve: using appropriate topmost substitutions.
We call an abstract substitution a topmost w.r.t, a tuple (set) of variables x iff
vats(a) = x and for all other substitution cd such that vars(a ~) = x, a ~ ___ a. An
abstract substitution a referring to variables x is said to be topmost of another
substitution a~, referring to the same variables, iff a --- a~ o a a" , where a" is
the topmost substitution w.r . t .x. Therefore, for a given call substitution, the
topmost abstract substitution w.r.t, it is the most accurate approximation which

111

solves the success substitution problem. This is in contrast to roughly considering
T or just giving up in the analysis. Topmost substitutions are preferred, since
they are usually more accurate for some domains. For example, if a variable is
known to be ground in the call substitution, it will continue being ground in the
success substitution.

Note that this is in fact enough for goal independent analyses, for which
the second problem does not apply. However, for goal dependent analyses the
second problem needs to be solved in some way. This problem is caused by the
impossibility of statically computing the subtree underlying a given call, either
because this call is not known (it is statically undetermined), or because not all
of the code defining the predicate for that call is available. Therefore, since from
these subtrees new calls (and new call patterns) can appear, which affect other
parts of the program, the whole analysis may not be correct.

There is a first straightforward solution to the extra call pattern problem. It
can be tackled by simply assuming that there are unknown call patterns, and thus
any of the predicates in the program may be called (either from the undetermined
call or from within its subtree). This means that analysis may still proceed but
topmost call patterns must be assumed for all predicates. This is similar to
performing a goal independent analysis and it may allow some optimizations,
but it will probably preclude others. However, if program multiple specialization
[29, 25, 26] is done, a non-optimized version of the program should exist (since
all the predicates in the program must be prepared to receive any input value),
but other optimized versions could be inferred.

Consider the previous example. To solve the success substitution problem we
can (a) assume a topmost substitution w.r.t. X and Y, which will indicate that
nothing is known of these two variables; or (b) assume the topmost substitution
w.r.t, the call substitution, which will indicate that nothing is known of Y, but
still X is known to be ground. To solve the extra call pattern problem we can
(a) assume new call patterns with topmost substitutions for all predicates in the
program, since the asserted clause is not known during analysis; or (b) perform
the transformation proposed below, which will isolate the problem to predicate
1/2, which is the only one affected.

We propose a second complete solution which is general enough and very
elegant, with the only penalty of some cost in code size. The key idea is to
compile essentially two versions of the program - - one that is a straightforward
compilation of the original program, and another that is analyzed assuming that
the only possible calls to each predicate are those that appear explicitly in the
program. This version will contain all the optimizations, which will be performed
ignoring the effect of the undetermined calls. Still, in the other version, any op-
timizations possible with a goal independent analysis, or a topmost call pattern
goal dependent analysis, may be introduced. Calling from undetermined calls
into the more optimized version of the program (which will possibly be unpre-
pared for the call patterns created by such calls) is avoided by making such calls
call the less optimized version of the program. This will take place automatically
because the terms that will be built at run-time will use the names of the orig-
inal predicates. When a predicate in the original program is called, it will also
call predicates in the original program. Therefore, the original predicate names
are used for the less optimized version, and predicates in the more optimized
version are renamed in an appropriate way (we will assume for simplicity that
it is by using the prefix "opt_"). Thus, correctness of a transformation such as
the following is guaranteed. Assume that ca l l (X) is an undetermined call. If a
clause such as the first one appears in the program, the second one is added:

112

p(...) :-q(...), call(X), r(...).
opt_p(...) :-opt_q(...), call(X), opt_r(...).

The top-level rewrites calls which have been declared as entry points to the
program so that the optimized version is accessed. Note that this also solves (if
needed) the general problem of answering queries that have not been declared
as entry points: they simply access the less optimized version of the program.
If the top-level does also check the call patterns, then it guarantees that only
the entry patterns used in the analysis will be executed. For the declared entry
patterns, execution will start in the optimized program and will move to the
original program to compute a resolution subtree each time an undetermined
call is executed. Upon return from the undetermined call, execution will go back
to the optimized program.

We shall see how this solution can be applied both to the case of meta-
predicates and to that of dynamic predicates, allowing full optimizations to be
performed in general to "dynamic" programs. The impact of the optimizations
performed in the renamed copy of the program will depend on the time that
execution stays in each of the versions. Therefore, the relative computational
load of undetermined calls w.r.t, the whole program will condition the benefits
of the optimizations achieved. The only drawback with this solution is that it
implies keeping two full copies of the program, although only in case there are
undetermined calls. In cases where code space is a pressing issue, the user should
be given the choice of turning this copying on and off.

4 Program Annotations

Annotations are assertions regarding a program that are introduced as part of
its code. Annotations refer to a given program point. We consider two general
classes of program points: points inside a clause (such as, for example, before
or after the execution of a given goal - - the "goal level") and points that refer
to a whole predicate (such as, for example, before entering or after exiting a
predicate - - the "predicate level"). At all levels annotations describe properties
of the variables that appear in the program. We will call the descriptions of such
properties declarations. There are at least two ways of representing declarations
which we will call "property oriented" and "abstract domain oriented". In a
property oriented annotation framework, there are declarations for each property
a given variable or set of variables may have. Examples of such declarations are:

mode(X,+) X is bound to a non-variable term
term(X,r(Y)) X is bound to term r(Y)
d e p t h (X , r / 1) X is bound to a term r (_)

The property oriented approach presents two advantages. On one hand, it is
easily extensible, provided one defines the semantics for the new properties o n e

wants to add. On the other hand, it is also independent from any abstract
domain for analysis. One only needs to define the semantics of each declaration,
and, for each abstract domain, a translation into the corresponding abstract
substitutions. For concreteness, and in order to avoid referring to any abstract
domain in particular, we propose to use such a framework.

An alternative solution is to define declarations in an abstract domain ori-
ented way. For example, for the sharing domain [21]:

s h a r i n g ([IX], [Y, Z]]) shows the sharing pattern among variables X, Y, Z

113

This is a simple enough solution but has the disadvantage that the meaning
of such domains is often difficult for users to understand. Also, the interface is
bound to change any time the domain changes. It has two other disadvantages.
The semantics and the translation functions mentioned above have to be defined
pairwise, i.e. one for each two different domains to be communicated. And, sec-
ondly, there can exist several (possibly overlapping) properties declared, one for
each different domain. In the property oriented approach, additional properties
that several domains might take advantage of are declared only once. In any
case, both approaches are compatible via the syntactic scheme we propose.

P red ica t e Level: E n t r y Anno ta t ions One class of predicate level annota-
tions are en t ry annotations. They are specified using a directive style syntax,
as follows:

:- entry(goal_pattern,declaration).

These annotations state that calls to that predicate with the given abstract call
substitution may exist at execution time. For example, the following annotation
states that there can be a call to predicate p/2 in which its two arguments are
ground:

:- entry(p(X,Y), (ground(][) ,ground(Y))).

Entry annotations and goal dependent analysis. A crucial property of en t ry
annotations, which makes them useful in goal dependent analyses, is that they
must be closed with respect to outside calls. No call patterns other than those
specified by the annotations in the program may occur from outside the program
text. I.e., the list of en t ry annotations includes all calls that may occur to a
program, apart from those which arise from the literals explicitly present in the
program text. Obviously this is not an issue in goal independent analyses.

Entry annotations and multiple program specialization. If analysis is multi-
variant it is often convenient to create different versions of a predicate (multiple
specialization). This allows implementing different optimizations in each version.
Each one of these versions generally receives an automatically generated unique
name in the multiply specialized program. However, in order to keep the multiple
specialization process transparent to the user, whenever more than one version
is generated for a predicate which is a declared entry point of the program (and,
thus, appears in an en t ry directive), the original name of the predicate is re-
served for the version that will be called upon program query. If more than one
e n t r y annotation appears for a predicate and different versions are used for
different annotations, it is obviously not possible to assign to all of them the
original name of the predicate. There are two solutions to this. The first one is

to add a front end with the exported name and run-time tests to determine the
version to use. However, this implies run-time overhead. As an alternative we
allow the en t ry directive to have one more argument, which indicates the name
to be used for the version corresponding to this entry point. For example, given:

:- entry(mmultiply(A,B,C) ,ground([A,B]) ,mmultiply_ground).

: - entry (- .nult iply (A, B, C), true,mmult iply_any).

if these two entries originate different versions, they would be given different
names. If two or more versions such as those above are collapsed into one, this
one will get the name of any of the entry points and, in order to allow calls to

114

all the names given in the annotations, binary clauses will be added to provide
the other entry points to that same version.

P red ica t e Level: Trus t Anno ta t ions In addition to the more standard
en t ry annotations we propose a different kind of annotations at the predicate
level, which take the following form:

:- t ru s t (goal_pattern,call.declaration,success-declaration) .

Declarations in t r u s t annotations put in relation the call and the success pat-
terns of calls to the given predicate. These annotations can be read as follows: if
a literal that corresponds to goal_pattern is executed and call_declaration holds
for the associated call substitution, then success_declaration holds for the asso-
ciated success substitution. Thus, these annotations relate abstract call and suc-
cess substitutions. Note that call_declaration can be empty (i.e., true). In this
way, properties can be stated that must always hold for the success substitution,
no matter what the call substitution is. This is useful also in goal independent
analyses (and in this case it is equivalent to the "omode" declaration of [18]).

Let (p(x), a) denote the call pattern and a' the success substitution of a given
t r u s t annotation of a program P. The semantics of t r u s t implies that Vac (ac _
a =~ A O T a (P , (p(x), ac)) _ a'). I.e., for all call substitutions approximated by
that of the given call pattern, their success substitutions are approximated by
that of the annotation. For this reason, the compiler will "trust" them. This
justifies their consideration of "extra" information, and thus and in contrast to
en t ry annotations, the list of t r u s t annotations of a program does not have to
be closed w.r.t, all possible call patterns occurring in the program.

One of the main uses of t r u s t annotations is in describing predicates that are
not present in the program text. For example, the following annotations describe
the behavior of the predicate p/2 for two possible call patterns:

�9 - trust(p(X,Y), (ground(X) ,free(Y)) , (ground(X),ground(Y))).

�9 - trust(p(X,Y), (free(X) ,ground(Y)) , (free(X) ,ground(Y))).

This would allow performing the analysis even if the code for p/2 is not present.
In that case the corresponding success information in the annotation can be used
("trusted") as success substitution.

In addition, t r u s t annotations can be used to improve the analysis when
the results of the analysis are imprecise. However, note that this does not save
analyzing the predicate for the corresponding call pattern, since the abstract
underlying subtree may contain call patterns that do not occur elsewhere in the
program.

If we analyze a call pattern for which a t r u s t annotation exists, two abstract
success patterns will be available for it: that computed by the analysis (say as)
and that given by the t r u s t annotation (say a' , for a call substitution a). As
both must be correct, the intersection of them (which may be more accurate than
any of them) must also be correct. The intersection among abstract substitutions
(whose domain we have assumed has a lattice structure) is computed with the

glb operator, 9. Therefore, AOT ~ (P , (p(x), ac)) = a8 [-1 a ' , provided that ac _
a. Since VasVa' (as N a ' _ a8 A a8 • a ' E a') correctness of the analysis

within the t r u s t semantics is guaranteed, i.e. A O T a (P , (p(x),ac)) _E a ' and
A O T ~ (P, (p(x), ac)) _E as. However, if their informations are incompatible, their

intersection is empty, and a , R a ' = • This is an error (if a , r I and also
a ' ~ l) , because the analysis information must be correct, and the same thing
is assumed for the t r u s t information. The analysis should give up and warn the
user.

115

A similar scheme can be used to check the mutual consistency of annotations
provided by the user. The result of the glb operation between inconsistent an-
notations will be • Also, note that, in addition to improving the substitution
at the given point, the trusted information can be used to improve previous
patterns computed in the analysis. This might be done by "propagating" the
information backwards in the analysis process.

Goal Level: P r a g m a Anno ta t ions Annotations at the goal level refer to
the state of the variables of the clause just at the point where the annotation
appears: between two literals, after the head of a clause or after the last literal
of a clause. 1 We propose reserving the literal pragma (as in [24]) to enclose all
necessary information referring to a given program point in a clause. It takes the

form:

. . . . goal1, pragma(declaration) , 9oa12

where the pragma information is valid before calling 9oa12 and also after calling
goal1, that is, at the success point for goal1 and at the call point of goal2.

The information given by pragma can refer to any of the variables in the
clause. The information is expressed using the same kind of declarations as in
the predicate level annotations. This allows a uniform format for the declara-
tions of properties in annotations at both the predicate and the goal level. These
annotations are related to t r u s t annotations in the sense that they give infor-
mation that should be trusted by the compiler. Therefore, they have similar uses
and a similar treatment that them.

5 Dealing with Standard Prolog

In this section we discuss different solutions for analyzing the full standard Prolog
language. In order to do so we have divided the complete set of builtins offered
by the language in several classes.

Bui l t ins as Abs t r ac t Funct ions Many Prolog builtins can be dealt with
efficiently and accurately during analysis by means of functions which capture
their semantics. Such functions provide an (as accurate as possible) abstraction of
every success substitution for any call to the corresponding builtin. This applies
also to goal independent analyses, with minor modifications. It is interesting
to note that the functions that describe builtin predicates are very similar in
spirit to t r u s t annotations. This is not surprising, if builtins are seen as Prolog
predicates for which the code is not available. Since most of the treatment of
builtins is rather straightforward, the presentation is very brief, concentrating on
the more interesting cases of meta-predicates and dynamic predicates. In order
to avoid reference to any particular abstract domain any functions described will
be given in terms of simple minded t r u s t annotations. For the reader interested
in the details, the source code for the PLAI analyzer (available by ftp from
c l i p . d in . f i . upm. es) contains detailed functions for all Prolog builtins and for
a large collection of well known abstract domains. For a description of such
functions for some builtins in a different domain see e.g. [10].

Control flow predicates include t rue and repeat , which have a simple treat-
ment: identity can be used (i.e., they can be simply ignored). The abstraction of
f a i l and h a l t is • For cut (!) it is also possible to use the identity function (i.e.,

1 Similar annotations can be used at other levels of granularity, from between head
unifications to even between low level instructions, but we will limit the discussion
for concreteness to goal-level program points.

116

ignore it). This is certainly correct in that it only implies that more cases than
necessary will be computed in the analysis upon predicate exit, but may result in
some cases (specially if red cuts -those which modify the meaning of a program-
are used) in a certain loss of accuracy. This can be addressed by using a semantics
which keeps track of sequences, rather than sets, of substitutions, as shown in [7].
Finally, exception handling can also be included in this class. The methods used
by the different Prolog dialects for this purpose have been unified in the Prolog
standard into two builtins: catch and throw. We propose a method for dealing
with this new mechanism: note that, since analysis in general assumes that execu-
tion can fail at any point, literais of the form catch(Goal , Catcher,Recovery)
(where execution starts in Goal and backtracks to Recovery if the exception
described by Catcher occurs) can be safely approximated by the disjunction
(Goal;Recovery), and simply analyzed as a meta-cail. The correctness of this
transformation is based on the fact that no new control paths can appear due to
an exception, since those paths are a subset of the ones considered by the anal-
ysis when it assumes that any goal may fail. The builtin throw, which explicitly
raises an exception, can then be approximated by directly mapping it to failure,
i.e. _L.

The function corresponding to = is simply abstract unification. Specialized
versions of the full abstract unification function can be used for other builtins
such as \=, functor, arg, univ (=..), and copy_term. Other term and string
manipulation builtins are relatively straightforward to implement. Arithmetic
builtins and base type tests such as is, >, �9 integer, vax, number, etc., usually
also have a natural mapping in the abstract domain considered. In fact, their in-
complete implementation in Prolog is an invaluable source of information for the
analyzer upon their exit (which assumes that the predicate did not fail -- failure
is of course always considered as an alternative). For example, their mappings
will include relations such as ": - trust (is (X,Y) ,true ,ground([X ,Y])) ." or
": - t r u s t (vat (X), t r u e , f r ee (X)) ." On the contrary, =ffi, \ffi=, and their arith-
metic counterparts, are somewhat more involved, and are implemented (in the
same way as with the term manipulation builtins above) by using specialized
versions of the abstract unification function.

Output from the program does not directly pose any problem since the related
predicates do not instantiate any variables or produce any other side effects
beyond modifying external streams, whose effect can only be seen during input
to the program. Thus, identity can again be used in this case. On the other
hand, the external input cannot be determined beforehand. The main problem
happens to be the success substitution problem. In the general case, analysis can
always proceed by simply assuming topmost success substitutions in the domain.

The treatment of directives is somewhat peculiar. The directive dynamic is
used to declare predicates which can be modified at run-time. Dynamic predi-
cates will be considered in detail below. The directive m u l t i f i l e specifies that
the definition of a predicate is not complete in the program. Multifile predicates
can therefore be treated as either dynamic or imported predicates - - see Sec-
tion 6. The directives include and ensure_loaded must specify an accessible
file, which can be read in and analyzed together with the current program. The
directive i n i t i a l i z a t i o n specifies new (concrete) entry points to the program.

Meta-Predicates Meta-predicates are predicates which use other predicates
as arguments. All user defined meta-predicates are in this class but their treat-
ment can be reduced to the treatment of the meta-call builtins they use. Such
meta-calls are literals which call one of their arguments at run-time, converting
at the time of the call a term into a goal. Builtins in this class are not only ca l l ,
but also bagof, f i n d a l l , se tof , negation by failure, and once (single solution).
Calls to the solution gathering builtins can be treated as normal (meta-)cails

117

since most analyzers axe "collecting" in the sense that they always consider all
solutions to predicates. Negation by failure (\+) can be defined in terms of c a l l
and cut, and can be dealt with by combining the treatment of cut with the
treatment of meta-calls. Single solution (once) can be dealt with in a similar
way since it is equivalent to "once (X) : - c a l l (X), ! ."

Since meta-call builtins convert a term into a goal, they can be difficult to
deal with if it is not possible to know at compile-time the exact nature of those
terms [14, 18]. In particular, the success substitution problem for the metaocall
appears, as well as the extra call pattern problem (within the code defining the
corresponding predicate, and for the possible calls which can occur from such
code). Both problems can be dealt with using the techniques in Section 3. First,
topmost call patterns can be used for all predicates in the program, second, and
alternatively, the renaming transformation can also be applied. In this case meta-
calls that axe fully determined either by declaration or as a result of analysis,
and incorporated into the program text will call the more optimized version.
Analysis will have taken into account the call patterns produced by such calls
since they they would have been entered and analyzed as normal calls. I.e., the
following transformation will take place:

.... pragma (term(X, p (Y))), call (X) ~ opt_p(Y)

Meta-calls that are partially determined, such as, for example,

.... pragma (depth (X ,p/l)), call (X)

are a special case. One solution is not to rename them. In that case they will
be treated as undetermined meta-calls. Alternatively, the solution in the second
item above can be used. It is necessary in this case to ensure that the optimized
program will be entered upon reaching a partially determined meta-call. This
can be done dynamically, using a special version of c a l l / 1 or by providing
binary predicates which transform the calls into new predicates which perform a
mapping of the original terms (known from the analysis) into the renamed ones.
Using this idea the example above may be transformed into a new literal and a
new clause, as follows:

.... opt_call(X) opt_call(p(X)) :- opt_p(X).

Undetermined meta-calls will not be renamed, and thus will call the original (less
optimized) code. This fulfills the correctness requirement, since these calls would
not have been analyzed, and therefore can not be allowed to call the optimized
code.

More precise solutions to both problems are possible if knowledge regarding
the terms to be converted is available at compile-time. Thus, following [14], we
can distinguish between:

- C o m p l e t e l y d e t e r m i n e d meta-calls. These are calls in which the term (func-
tot and arguments) is given in the program text (this is often the case for
example in many uses of bagof, finda11, se to f , \+ , and once), or can be
inferred via some kind of analysis, as proposed in [14]. In the latter case they
can even be incoporated into the program text before analysis. These calls
can be analyzed in a straightforward way.

- P a r t i a l l y d e t e r m i n e d meta-calls. The exact term cannot be statically found,
but at least its main functor can be determined by program analysis. Then,
since the predicate that will be called at run-time is known, it is sufficient
for analysis to enter only this predicate using the appropriate projection of
the current abstract call substitution on the variables involved in the call.

118

- Undetermined meta-calls.

The first two classes distinguish subclasses of the fully determined predicates
of [14], where certain interesting types of programs are characterized which allow
the static determination of this generally undecidable property. Relying exclu-
sively on program analysis, as in [14], has the disadvantage that it restricts the
class of programs which can be optimized to those which are fully determined.
Our previous solution solves the general case.

There are other possible solutions to the general case. The first and simplest
one is to issue a warning if an undetermined meta-call is found and ask the user
to provide information regarding the meta-terms. This can be easily done via
pragma annotations. For example, the following annotation:

.... pragma((term(X,p(Y)) ; term(X,q(Z)))), call(X)

states that the term called in the meta-call is either p(Y) or q(Z). Note also
that this is in some way similar to giving entry mode information for the p/1
and q/1 predicates. This suggests another solution to the problem, which has
been used before in Aquarius [26], in MA3 [28], and in previous versions of the
PLAI analyzer [3]. The idea (cast in the terms of our discussion) is to take
the position that meta-calls are external calls. Then, since en t ry annotations
have to be closed with respect to external calls it is the user's responsibility
to declare any entry points and patterns to predicates which can be "meta-
called" via en t ry annotations. Accuracy of the analysis will depend on that of
the information supplied by the user. These solutions have the disadvantage of
putting the burden on the user - - something that we would like to avoid at least
for naive users. Our alternative solutions are completely transparent to the user.

Da tabase Man ipu la t i on and Dynamic Predica tes Database manipula-

tion builtins include a s se r t , r e t r a c t , abol ish, and clause. These builtins
(with the exception of clause) affect the program itself by adding to or remov-
ing clauses from it. Predicates that can be affected by such builtins are called
dynamic predicates and must usually be declared as such in modern Prolog
implementations (and this is also the case in the ISO standard).

The potential problems created by the use of the database manipulation
builtins are threefold. On the one hand, the extra call pattern problem appears
again since the literals in the body of the new clauses that are added dynami-
cally can produce new and different call patterns not considered during analysis.
The success substitution problem also appears for literals which call dynamic
predicates ("dynamic literals"). Even if abstract success substitutions can be
computed from any static definition of the predicate which may be available
at compile-time, it may change during program execution. On the other hand,
there exists the additional problem of computing success substitutions for the
calls to the database manipulation builtins themselves. We call this the "database
builtin" success substitution problem. Note that c lause --which can be viewed
as a special case of retract-- does not modify the database and thus clearly only
has the third problem.

Solving the extra call pattern problem. From the correctness point of view, the
extra call pattern problem only arises from the use of assert , but not from the
use of abo l i sh or r e t r a c t . These predicates do not introduce new clauses in the
program, and thus they do not introduce any new call patterns. This is true even
for "intelligent" analyses which can infer definite success or failure of some goals,
because these analyses must take r e t r a c t into account to do so, or otherwise
would themselves not be correct in general. Therefore, retraction is not a problem
in our case. On the other hand, it is conceivable that more accuracy could be

119

obtained if these predicates were analyzed more precisely since removing clauses
may remove call patterns which in turn could make the analysis more precise.
We discuss this in the context of incremental analysis at the end of the section.
The discussion is general enough to subsume the above mentioned intelligent
analyses.

The a s s e r t predicate is much more problematic, since it can introduce new
clauses and through them new call patterns. The problem is compounded by the
fact that asserted clauses can call predicates which are not declared as dynamic,
and thus the effect is not confined to dynamic predicates. In any case, and as
pointed out in [14], not all uses of a s s e r t are equally damaging. To distinguish
these uses, we propose to divide dynamic predicates into the following types:

- memo only facts which are logical consequences of the program itself are
asserted;

- d a t a only facts are asserted, or, if clauses are asserted, they are never called
(i.e., only read with clause or retract);

- localocall the dynamic predicate only calls other dynamic predicates;
- g l o b a l _ c a l l .

The first two classes correspond to the unit-assertive and green-assertive pred-
icates of [14], except that we have slightly extended the unit-assertive type by
also considering in this type arbitrary predicates which are asser ted/retracted
but never called. Clauses used in this way can be seen as just recorded terms:
simply a set of facts for the predicate symbol : - / 2 .

d a t a predicates are guaranteed to produce no new call pat terns and therefore

they are safe with respect to the extra call pat tern problem. 2 This is also the case

for m e m o predicates since they only assert facts. 3 If all dynamic predicates are of
the l o c a l _ c a l l type, then the analysis of the static program is correct except
for the clauses defining the dynamic predicates themselves. Analysis can even
ignore the clauses defining such predicates. Optimizations can then be performed
over the program text except for those clauses, which in any case may not be
such a big loss since in some systems such clauses are not compiled, but ra ther
interpreted.

While the classification mentioned above is useful, two problems remain. The
first one is how to detect that dynamic procedures are in the classes that are
easy to analyze (dynamic predicates in principle need to be assumed in the
g l o b a l _ c a l l class). This can be done through analysis for certain programs, as
shown in [14], but, as in the case of metaocalls, this does not offer a solution in
all cases.

The general case in which g l o b a l _ c a l l dynamic predicates appear in the
program is similar to that which appeared with undetermined meta-calls. In
fact, the calls tha t appear in the bodies of asserted clauses can be seen as unde-
termined meta-calls, and similar solutions apply. Additionally, the static clauses
of the dynamic predicates themselves are subject to the same t reatment as the
rest of the program, and therefore subject to full optimization. Clearly, this so-
lution can be combined with the previous ones when particular cases can be
identified.

Solving the dynamic literal success substitution problem. If only a b o l i s h and
r e t r a c t are used in the program, the abstract success substitutions of the static

In fact, the builtins record and recorded provide the functionality of data predicates
but without the need for dynamic declarations and without affecting global analysis.

However, those builtins are now absent from the Prolog standard.
3 Note however that certain analyses, and especially cost analyses which are affected

by program execution time, need to treat these predicates specially.

120

clauses of the dynamic predicates are a safe approximation of the run-time suc-
cess substitutions. However, a loss of accuracy can occur, as the abstract success
substitution for the remaining clauses (if any) may be more particular. In the
presence of a s se r t , a correct (but possibly inaccurate) analysis is obtained by
using appropriate topmost abstract substitutions. Finally, note that in the case
of m e m o predicates (and for certain properties) this problem is avoided since the
success substitutions computed from the static program are correct.

Solving the database builtin success substitution problem. This problem does
not affect a s s e r t and abol i sh since the success substitution for calls to these
builtins is the same as the call substitution. On the other hand, success substi-
tutions for r e t r a c t (and clause) are more difficult to obtain. However, appro-
priate topmost substitutions can always be safely used. In the special case of
dynamic predicates of the memo class, and if the term used as argument in the
call to r e t r a c t or c lause is at least partially determined, abstract counterparts
of the static clauses of the program can be used as approximations in order to
compute a more precise success substitution (see [2] for more details).

Dynamic analysis and optimization. There is still another, quite different and
interesting solution to the problem of dynamic predicates, which is based on
incremental global analysis [17]. Note that in order to implement a s s e r t some
systems include a copy of the full compiler at run-time. The idea would be to
also include the (incremental) global analyzer and the analysis information for
the program, computed for the static part of the program. The program is in
principle optimized using this information but the optimizer is also assumed to
be incremental. After each non-trivial assertion or retraction (some cases may
be treated specially) the incremental global analysis and optimizer are rerun and
any affected parts of the program reanalyzed (and reoptimized). This has the
advantage of having fully optimized code at all times, at the cost of increasing
the cost of calls to database manipulation predicates and of executable size. A
system along these lines has been built by us for a parallelizing compiler. The
results presented in [17] show that such a reanalysis can be made in a very small
fraction of the normal compilation time.

6 P r o g r a m M o d u l e s

The main problem with studying the impact of modularity in analysis (and the
reason we have left the issue until this section) is the lack of even a de-facto stan-
dard. There have been many proposals for module systems in logic programming
languages (see[5]). For concreteness, we will focus on that proposed in the new
draft ISO standard [20]. In this standard, the module interface is static, i.e. each

module in the program must declare the procedures it exports, 4 and imports.
The module directive is used for this.

As already pointed out in [18] module directives provide the entry points for
the analysis of a module for free. Thus, as far as entry points are concerned, only
exported predicates need be considered. They can be analyzed using the substi-
tutions declared in the en t ry annotations if available, and topmost otherwise.
The analysis of literals which call imported predicates requires new approaches,

4 This is in contrast with other module systems used in some Prolog implementations
that allow entering the code in modules at arbitrary points other than those declared
as exported. This defeats the purpose of modules. We will not discuss such module
systems since the corresponding programs in general need to be treated as non
modular programs from the point of view of analysis.

121

some of which are discussed in the following paragraphs. One advantage of mod-
ules is that they help encapsulate the propagation of complex situations such as
with g l o b a l _ c a l l dynamic predicates.

Compositional Analysis. Modular analyses based on compositional semantics
(such as, for example, that of [9]) can be used to analyze programs split in
modules. Such analyses leave the abstract substitutions for the predicates whose
definitions are not available open, in the sense that some representation of the
literals and their interaction with the abstract substitution is incorporated as
a handle into the substitutions themselves. Once the corresponding module is
analyzed and the (abstract) semantics of such open predicates known, substitu-
tions can be composed via these handles. The main drawback of this interesting
approach is that the result of the analysis is not definite if there are open pred-
icates. In principle, this would force some optimizations to be delayed until the
final composed semantics is known, which in general can only be done when
the code for all modules is available. Therefore, although analysis can be per-
formed for each module separately, optimizations (and thus, compilation) cannot
in principle use the global information.

Incremental Analysis. When analyzing a module, each call to a predicate not
declared in it is mapped to _L. Each time analysis information is updated, it
is applied directly to the parts of the analysis where this information may be
relevant. Incremental analysis [17] is conservative: it is correct and optimal. By
optimal we mean that if we put together in a single module the code for all
modules (with the necessary renaming to avoid name clashes) and analyze it in
the traditional way, we will obtain the same information. However, incremental
analysis, in a very similar way to the previous solution, is only useful for opti-
mization if the code for all modules is available, since the information obtained
for one isolated module is only partial. On the other hand, if optimization is
also made incremental, then this does present a solution to the general problem:
modules are optimized as much as possible assuming no knowledge of the other
modules. Optimizations will be correct with respect to the partial information
available at that time. Upon module composition incremental reanalysis and
reoptimization will make the composed optimized program always correct.

Note that Prolog compilers are incremental in the sense that at any point in
time new clauses can be compiled into the program. Incremental analysis (aided
by incremental optimization) allows the combination of full interactive program
development with full global analysis based optimization.

Trust-Enhanced Module Interface. In [20] imported predicates have to be de-
clared in the module importing them and such a module can only be compiled
if all the module interfaces for the predicates it imports are defined, even if
the actual code is not yet available. Note that the same happens for most lan-
guages with modules (e.g., Modula). When such languages have some kind of
global analysis (e.g., type checking) the module interface also includes suitable
declarations. We propose to augment the module interface definition so that it
may include t r u s t annotations for the exported predicates. Each call to a pred-
icate not defined in the module being analyzed but exported by some module
interface is in principle mapped to appropriate topmost substitutions. But if in
the module interface there are one or more t r u s t annotations applicable to the
call pattern, such annotations will be used instead. Any call to a predicate not
defined in that module and not present in any of the module interfaces can be
safely mapped to • during analysis (this corresponds to mapping program er-
rors to failure - note that error can also be treated alternatively as a first class
element in the analysis). The advantages are that we do not need the code for

122

other modules and also that we can perform optimizations using the (inaccurate)
analysis information obtained in this way.

Analysis using the trust-enhanced interface is correct, but it may be sub-
optimal. This can only be avoided if the programmer provides the most accu-
rate t r u s t annotations. The disadvantage of this method is that it requires the
trust-enhanced interface for each module. However, the process of generating
these t r u s t annotations can be automated. Whenever the module is analyzed,
the call/success patterns for each exported predicate in the module which are
obtained by the analysis are written out in the module interface as t r u s t an-
notations. From there, they will be seen by other modules during their analysis
and will improve their exported information. A global fixpoint can be reached in
a distributed way even if different modules are being developed by different pro-
grammers at different times and running the analysis only locally, provided that,
as required by the module system, the module interfaces (but not necessarily the
code) are always made visible to other modules.

Summary. In practice it may be useful to use a combination of incremental
analysis and the trust-enhanced module interface The trust-enhanced interface
can be used during the development phase to compile modules independently.
Once the actual code for all modules is present incremental analysis can be used
to analyze modules loading them one after the other. In this way we obtain the
best accuracy.

Multifile predicates (those defined over more than one file or module) also
need to be treated in a special way. They can be easily identified due to the
m u l t i f i l e declaration. They are similar to dynamic predicates (and also im-
ported predicates) in that if we analyze a file independently of others, some of
the code of a predicate is missing. We can treat such predicates as dynamic pred-
icates and assume topmost substitutions as their abstract success substitutions
unless there is a t r u s t annotation for them. When the whole program composed
of several files is compiled, we can again use incremental analysis. At that point,
clauses for predicates are added to the analysis using incremental addition [17]
(regardless of whether these clauses belong to different files and/or modules).

A case also worth discussing is that of libraries. Usually utility libraries pro-
vide predicates with an intended use. The automatic generation of t r u s t annota-
tions after analysis can be used for each library to provide information regarding
the exported predicates. This is done for different uses and the generated anno-
tations are stored in the library interface. With this scheme it is not necessary
to analyze a library predicate when it is used in different programs. Instead, it is
only analyzed once, and the information stored in the t r u s t annotation is used
from then on. If new uses of the library predicates arise for a given program, the
library code can be reanalyzed and recompiled, keeping track of this new use for
future compilations. An alternative approach is to perform a goal independent
analysis of the library, coupled with a goal dependent analysis for the particular
call patterns used thereafter [8].

7 C o n c l u s i o n s

We have studied several ways in which optimizations based on static analysis can
be guaranteed correct for programs which use the full power of Prolog, including
modules. We have also introduced several types of program annotations that can
be used to both increase the accuracy and efficiency of the analysis and to express
its results. The proposed techniques offer different trade-offs between accuracy,
analysis cost, and user involvement. We argue that the presented combination

123

of known and novel techniques offers a comprehensive solution for the correct
analysis of arbi trary programs using the full power of the language.

Acknowledgements

The work reported herein was partially supported by ESPRIT Project #6707
ParForce, and CICYT Project IPL-D. The authors would also like to thank M.
Garcfa de la Banda, S. Debray, F. Ballesteros, M. Carro, S. Prestwich, S. Yan,
and the anonymous referees for useful comments.

References

1. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic

Programs. Journal of Logic Programming, 10:91-124, 1991.

2. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Data-Flow Analysis of

Prolog Programs with Extra-Logical Features. Technical Report CLIP2/95.0,

Computer Science Dept., Technical U. of Madrid (UPM), Facultad Informatica

UPM, 28660-Boadilla del Monte, Madrid-Spain, March 1995.

3. F. Bueno, M. Garcfa de la Banda, D. Cabeza, and M. Hermenegildo. The &-
Prolog Compiler System - Automatic Parallelization Tools for LP. Technical

Report CLIP5/93.0, Computer Science Dept., Technical U. of Madrid (UPM),

Facultad Informatica UPM, 28660-Boadilla del Monte, Madrid-Spain, June 1993.
4. F. Bueno, M. Garcfa de la Banda, and M. Hermenegildo. Effectiveness of Global

Analysis in Strict Independence-Based Automatic Program Parailelization. In In-

ternational Symposium on Logic Programming, pages 320-336. MIT Press, Novem-

ber 1994.
5. M. Bugliesi, E. Lamma, and P. Mello. Modularity in Logic Programming. Journal

of Logic Programming, 19-20:443-502, July 1994.
6. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic

Abstract Interpretation Algorithm for Prolog. ACM Transactions on Programming

Languages and Systems, 16(1):35-101, 1994.
7. B. Le Charlier, S. Rossi, and P. Van Hentenryck. An Abstract Interpretation

Framework Which Accurately Handles Prolog Search-Rule and the Cut. In Inter-

national Symposium on Logic Programming, pages 157-171. MIT Press, November

1994.
8. M. Codish, M. Garcfa de la Banda, M. Bruynooghe, and M. Hermenegildo. Goal

Dependent vs Goal Independent Analysis of Logic Programs. In F. Pfenning, ed-

itor, Fifth International Conference on Logic Programming and Automated Rea-

soning, number 822 in LNAI, pages 305-320, Kiev, Ukraine, July 1994. Springer-

Verlag.
9. M. Codish, S. Debray, and R. Giacobazzi. Compositional Analysis of Modular

Logic Programs. In ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages POPL'93, pages 451-464, ACM, 1993.

10. A. Cortesi and G. File. Abstract interpretation of prolog: the treatment of the

built-ins. In Proc. of the 1992 GULP Conference on Logic Programming, pages
87-104. Italian Association for Logic Programming, June 1992.

11. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints. In
ACM Symposium on Principles of Programming Languages, pages 238-252, 1977.

124

12. S. Debray, editor. Journal of Logic Programming, Special Issue: Abstract Interpre-

tation, volume 13(1-2). North-Holland, July 1992.

13. S. Debray. Static Inference of Modes and Data Dependencies in Logic Programs.

ACM Transactions on Programming Languages and Systems, 11(3):418-450, 1989.

14. S.K. Debray. Flow analysis of dynamic logic programs. Journal of Logic Program-

ming, 7(2):149-176, September 1989.
15. M. Gabbrielli, R. Giacobazzi, and G. Levi. Goal independency and call patterns in

the analysis of logic programs. In ACM Symposium on Applied Computing. ACM,

1994.
16. Roberto Giacobazzi, Saumya Debray, and Giorgio Levi. A generalized semantics for

constraint logic programs. In Proceedings of the International Conference on Fifth

Generation Computer Systems, pages 581-591, ICOT, Japan, 1992. Association for

Computing Machinery.
17. M. Hermenegildo, K. Marriott, G. Puebla, and P. Stuckey. Incremental Analysis

of Logic Programs. In International Conference on Logic Programming. MIT Press,

1995.
18. M. Hermenegildo, R. Warren, and S. Debray. Global Flow Analysis as a Practical

Compilation Tool. Journal of Logic Programming, 13(4):349-367, August 1992.
19. International Organization for Standardization, National Physical Laboratory,

Middlesex, England. PROLOG. ISO/IEC DIS 13211 - Part 1: General Core,

1994.
20. International Organization for Standardization, National Physical Laboratory,

Middlesex, England. PROLOG. Working Draft 7. 0 X3J17/95/1 - Part 2: Modules,

1995.
21. D. Jacobs and A. Langen. Compilation of Logic Programs for Restricted And-

Parallelism. In European Symposium on Programming, pages 284-297, 1988.

22. K. Marriott, H. S~ndergaard, and N.D. Jones. Denotational Abstract Interpre-

tation of Logic Programs. A CM Transactions on Programming Languages and

Systems, 16(3):607-648, 1994.
23. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable De-

pendency Using Abstract Interpretation. Journal of Logic Programming, 13(2 and

3):315-347, July 1992.
24. University of Bristol, Katholieke Universiteit Leuven, and Universidad Polit6cnica

de Madrid. Interface between the prince prolog analysers and the compiler. Tech-

nical Report KUL/PRINCE/92.1, Katholieke Universiteit Leuven, October 1992.
25. G. Puebla and M. Hermenegildo. Implementation of Multiple Specialization in

Logic Programs. In Proc. ACM SIGPLAN Symposium on Partial Evaluation and

Semantics Based Program Manipulation. ACM, June 1995.

26. P. Vaa Roy and A.M. Despain. High-Performace Logic Programming with the
Aquarius Prolog Compiler. IEEE Computer Magazine, pages 54-68, January 1992.

27. V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-I Preprocessor: Sup-

porting Full Prolog on the Basic Andorra Model. In 1991 International Conference

on Logic Programming, pages 443-456. MIT Press, June 1991.
28. R. Warren, M. Hermenegildo, and S. Debray. On the Practicality of Global Flow

Analysis of Logic Programs. In Fifth International Conference and Symposium on

Logic Programming, pages 684-699, Seattle, Washington, August 1988. MIT Press.
29. W. Winsborough. Multiple Specialization using Minimal-Function Graph Seman-

tics. Journal of Logic Programming, 13(2 and 3):259-290, July 1992.

