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Abstract

TDP-43 is a highly conserved and ubiquitously expressed member of the heterogeneous nuclear
ribonucleoprotein (hnRNP) family of proteins. Recently, TDP-43 was shown to be a major disease
protein in the ubiquitinated inclusions characteristic of most cases of amyotrophic lateral sclerosis
(ALS), tau-negative frontotemporal lobar degeneration (FTLD), and inclusion body myopathy. In
these diseases, TDP-43 is redistributed from its predominantly nuclear location to ubiquitin-positive,
cytoplasmic foci. The extent to which TDP-43 drives pathophysiology is unknown, but the
identification of mutations in TDP-43 in familial forms of ALS and FTLD-U suggests an important
role for this protein in pathogenesis. Little is known about TDP-43 function and only a few TDP-43
interacting proteins have been previously identified, which makes further insight into both the normal
and pathological functions of TDP-43 difficult. Here we show, via a global proteomic approach, that
TDP-43 has extensive interaction with proteins that regulate RNA metabolism. Some interactions
with TDP-43 were found to be dependent on RNA-binding, whereas other interactions are RNA-
independent. Disease-causing mutations in TDP-43 (A315T and M337V) do not alter its interaction
profile. TDP-43 interacting proteins largely cluster into two distinct interaction networks, a nuclear/
splicing cluster and a cytoplasmic/translation cluster, strongly suggesting that TDP-43 has multiple
roles in RNA metabolism and functions in both the nucleus and the cytoplasm. Finally, we found
numerous TDP-43 interactors that are known components of stress granules and, indeed, we find
that TDP-43 is also recruited to stress granules.

Introduction

The RNA binding protein TDP-43! was recently identified as the major disease protein in the
ubiquitinated inclusions characteristic of sporadic and familial forms of amyotrophic lateral
sclerosis (ALS), tau-negative frontotemporal lobar degeneration (FTLD), and inclusion body
myopathy. TDP-43 pathology also frequently accompanies the pathognomonic pathology of
Parkinson’s and Alzheimer’s diseases?™4. In these diseases, TDP-43 is redistributed from its
predominantly nuclear location to ubiquitin-positive, cytoplasmic foci. The extent to which
TDP-43 drives pathophysiology is unknown, but the identification of mutations in TDP-43
underlying rare familial forms of ALS and FTLD suggests an important role for this protein
in pathogenesis ™.
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595-6047, FAX: (901) 595-2032.
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TDP-43 is ahighly conserved and ubiquitously expressed member of the heterogeneous nuclear
ribonucleoprotein (hnRNP) family of proteins!?. TDP-43 contains two RNA recognition
motifs (RRMs) and binds RNA primarily through the first of these!. The glycine-rich C-
terminus of TDP-43 has been shown to mediate interaction with several other hnRNP proteins,
specifically hnRNPs A1, A2/B1, C1/C2, and A3l although the full extent of TDP-43
interactions has not been previously described. Predominantly a nuclear protein, TDP-43 has
been shown to shuttle between the nucleus and cytoplasm!2. Interestingly, TDP-43
redistributes to cytosolic granules as a physiological response to neuronal injury, and nuclear
localization is restored after recovery!3: 14,

Little is known about TDP-43 function, although there is evidence from experimental systems
that TDP-43 can negatively regulate expression of target genes at multiple levels, including
transcription, splicing and translation!>-17, although the full extent of TDP-43 target genes and
the influence of TDP-43 on their expression is not known. Additionally, there is no clear
consensus of how pathological TDP-43 functions within diseased cells.

To date, only a few TDP-43 interacting proteins have been identified, which makes further
insight into both the normal and pathological functions of TDP-43 difficult. Here we show,
via a global proteomic approach, that TDP-43 has extensive interaction with proteins that
regulate mRNA metabolism. TDP-43 interacting proteins largely cluster into two distinct
protein interaction networks. The first is a network of nuclear proteins that regulate RNA
splicing and other aspects of nuclear RNA metabolism, and the second is a network of
cytoplasmic proteins that regulate mRNA translation. Additionally, we show that TDP-43
interaction with some proteins is dependent on TDP-43 interaction with RNA, whereas other
interactions are RNA-independent. Surprisingly, the disease-causing mutations A315T and
M337V do not alter the profile of TDP-43 interactions. Numerous proteins in translational
regulation cluster are known to accumulate in stress granules and, indeed, we find that TDP-43
is also recruited to stress granules.

FLAG-TDP-43 was subcloned into the mammalian expression vector pcDNA 3.1(+)
(Invitrogen). FLAG-TDP-43(A315T), FLAG-TDP-43(M337V) and FLAG-TDP-43
(mutRRM) with the W113A and R151A mutations were generated using PCR to perform site-
directed mutagenesis.

Immunoprecipitations/Immunoblot

10 cm? plates of HEK-293T or HeLa cells grown in a 1:1 mixture of DMEM/F12 culture media
were transfected with Sug of FLAG-TDP-43 or relevant TDP-43 mutant plasmid for 48 hours.
Cells were then lysed in gentle lysis buffer (1X PBS, SmM EDTA, 0.2% NP-40, 10% glycerol
+ Roche complete EDTA-free protease inhibitor cocktail Cat# 11836170001), passed five
times through a 21-gauge needle, and spun at 20,000g for 10 minutes. The supernatant was
pre-cleared using Protein G affinity gel (Sigma, Cat# E3403) for 30 minutes and then
immunoprecipitated using Anti-FLAG M2 affinity gel (Sigma, Cat# F2426) for 1.5 hours at
4C. The immunoprecipitate was then eluted using FLAG peptide (Sigma, Cat# F3290) at 4C
for 30 minutes. 330 pg of RNase A (Sigma, Cat# R4642) was added immediately following
lysis prior to immunoprecipitation where indicated. For immunoprecipitation from mouse brain
tissue, mouse brain homogenate was lysed as described above and then immunoprecipitated
with 2.5 pg of TDP-43 polyclonal antibody (Proteintech, Cat# 10782-2-AP). As a control, half
of the homogenate was immunoprecipitated using normal rabbit IgG.
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Lysates/immunoprecipitates were separated on a 8-16% gradient tris-glycine gel. M2
monoclonal antibody (Sigma, Cat# F1804) and TDP-43 polyclonal antibody (Proteintech, Cat#
10782-2-AP) were used to visualize TDP-43. Polyclonal antibodies were also used to visualize
PABPC1, hnRNP H and hnRNP U respectively (Abcam Cat# ab21060 and ab10374, Bethyl
Laboratories Cat# A300-689A).

Immunofluorescence

Antibodies

HEK-293T cells grown on chamber slides (Lab-Tek Cat#154917) were transiently transfected
with FLAG-TDP43 or FLAG-TDP-43(mutRRM) using FuGENE 6 (Roche Diagnostics). After
48 h, HEK-293T cells were fixed in 4% formaldehyde in PBS for 10 min at room temperature.
The cells were then permeabilized with 0.5% Triton-X in PBS and incubated with primary
antibodies for 1 hr to visualize TDP-43, hnRNP H, PABPC1, EIF4G and G3BP1. Cells were
then washed and proteins were visualized using secondary antibodies conjugated to Rhodamine
Red-X and FITC (Jackson Immunoresearch). Cells were then washed, stained with DAPI and
visualized on a Leica DMIRE2 fluorescent microscope using a 63X objective.

The following primary antibodies were used to visualize proteins: mouse anti-FLAG M2
(1:1000 for western blot and immunofluorescence) (Sigma Cat# F1804), rabbit anti-TDP-43
(1:350 for immunofluorescence) (Proteintech Group Cat# 10782-2-AP), rabbit anti-PABPC1
(1:1000 for western blot, 1:200 for immunofluorescence) (Abcam Cat# ab21060-100), rabbit
anti-hnRNP H (1:10,000 western blot, 1:500 for immunofluorescence) (Abcam, Cat#
10374-50), mouse anti-G3BP1 (1:200 for immunofluorescence) (BD Transduction
Laboratories Cat #611126), and rabbit anti-EIF4G (1:200 for immunofluorescence) (Santa
Cruz Biotechnology Cat# sc-11373)

LC-MS/MS protein identification

FLAG epitope-tagged TDP-43 constructs were transfected into HEK293T cells and
immunoprecipitated as described above. The sample was then run on an 8-16% gel, and
analyzed as described below.

Enzymatic Digest of Proteins

The gel lane containing the immunoprecipitated sample was manually excised into 24 bands
in the molecular weight range between 14 kDa and greater than 200 kDa. Each of the protein
bands was then digested individually as below. The protein bands were cut into small plugs,
washed with 50% acetonitrile, and destained by several incubations in 100 mM ammonium
bicarbonate pH 8 containing 50% acetonitrile. Reduction (10 mM, DTT for 1 hour at 37°C)
and alkylation (50 mM iodoacetamide for 45 min at room temperature in the dark) were
performed, followed by washing of the gel plugs with 50% acetonitrile in 50mM ammonium
bicarbonate twice. The gel plugs were then dried using a speedvac (Savant) and rehydrated in
10 pl of 0.2ug trypsin. 25uLL of 25 mM ammonium bicarbonate pH 8 was added to the tube
after 10 minutes. The peptides were extracted from the gel plugs using 20 to 30uL of 0.2%
formic acid after an overnight (approx 12 hours) enzymatic reaction at 37°C. The solution was
then transferred to a sample vial for LC-MS/MS analysis. Non-transfected cells were used as
a control and treated in an identical manner to determine non-specific interactions.

Electrospray lonization lon Trap Mass Spectrometry Analysis

LC-MS/MS analysis was performed using a ThermoFisher LTQ XL linear ion trap mass
spectrometer in line with a nanoAcquity ultra performance LC system (Waters Corporation,
Milford, MA). Tryptic peptides generated above were loaded onto a “precolumn” (Symmetry
C18, 180um i.d X 20mm, Spm particle) (Waters Corporation, Milford, MA) which was
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connected through a zero dead volume union to the analytical column (BEH C18, 75pum i.d X
100mm, 1.7pm particle) (Waters Corporation, Milford, MA). The peptides were then eluted
over a gradient (0-70% B in 60 minutes, 70-100% B in 10 minutes, where B = 70% Acetonitrile,
0.2% formic acid) at a flow rate of 250nL/min and introduced online into the linear ion trap
mass spectrometer (ThermoFisher Corporation, San Jose, CA) using electrospray ionization
(ESI). Data dependent scanning was incorporated to select the 10 most abundant ions (one
microscan per spectra; precursor isolation width 3.0Da, 35% collision energy, 30ms ion
activation, exclusion duration: 30s; repeat duration: 15s; repeat count: 2) from a full-scan mass
spectrum for fragmentation by collision activated dissociation (CAD).

Database Searching

Results

Productions generated above (b/y-type ions) were used in an automated database search against
the Swissprot (Swissprot 57.1, Homo Sapiens subset) database by the Mascot search
algorithm!8 using trypsin (1 missed cleavages) as the digestion enzyme. The following residue
modifications were allowed in the search: carbamidomethylation on cysteine and oxidation on
methionine. Mascot was searched with a precursor ion tolerance of 1.0 Da and a fragment ion
tolerance of 0.6 Da. Using the automatic decoy database searching tool in the Mascot, a false
discovery rate for peptide matches above the identity threshold was estimated to be 4%. In
addition, searches were also performed on two mgf files (one for IP lane and one for the control
lane) that were generated by merging data from all the bands in each lane. The identifications
from the automated search were further validated through Scaffold (Proteome Software,
Portland, OR) and manual inspection of the raw data. Peptide identifications were accepted if
they could be established at greater than 95% probability as specified by the Peptide Prophet
algorithm!®. Protein identifications were accepted if they could be established at greater than
99% probability and contained at least 2 identified peptides. Protein probabilities were assigned
by the Protein Prophet algorithm?0.

Identification of the TDP-43 interacting proteins in HEK-293 cells

TDP-43 interacting proteins in human epithelial kidney (HEK-293T) cells were isolated by
immunoprecipitation of FLAG-TDP-43 followed by identification of co-purified proteins by
mass spectrometry (Figure 1A, Sup. Figure 1). We found 261 proteins to be enriched in the
FLAG-TDP-43 immunoprecipitate relative to control (Table 1). Of these 261 proteins, 126
were found exclusively in association with TDP-43. Sixty-eight proteins were found to be
enriched in the control relative to the immunoprecipitate indicating that our
immunoprecipitation was highly specific ( Supplementary Table 1).

Analysis of the TDP-43 interactors reveals extensive interaction with proteins that associate
with RNA, consistent with previously described roles for TDP-43 in RNA metabolism. These
include hnRNPs, RNA helicases, splicing factors, translation regulatory proteins, as well as
proteins involved in mRNA transport and stability (Figure 1B and Table I). TDP-43 was found
to interact with a smaller number of DNA binding proteins such as transcription factors,
consistent with a previously described role for TDP-43 in transcriptional repression!, but also
interacts with DNA repair proteins such as Ku70 suggesting that TDP-43 may have roles in
DNA metabolism beyond transcriptional regulation (Figure 1B and Table I). Notably, although
TDP-43 is predominantly a nuclear protein, we found interaction with both cytoplasmic and
nuclear proteins, as well as many proteins that are known to shuttle between the nucleus and
cytoplasm. This likely reflects a functional role for TDP-43 in both the nucleus and the
cytoplasm consistent with the observation that TDP-43 itself undergoes nucleocytoplasmic
shuttling!2.
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TDP-43 associates with two distinct protein interaction networks

To gain a better understanding of the relationships between TDP-43 interacting proteins, we
employed the STRING interaction database?!. To minimize the chance of including false
positives, our analysis included only those proteins in which the spectral count was at least
two-fold enriched in the TDP-43 immunoprecipitate relative to control. Furthermore, only high
confidence interactions as determined by the STRING database were accepted. This analysis
reveals that TDP-43 interactors cluster largely into two distinct protein interaction networks
(Figure 2). The “Nuclear/Splicing Cluster” is comprised entirely of nuclear proteins including
many hnRNPs, but also serine/arginine-rich (SR) proteins, small nuclear ribonucleoproteins
(snRNPs), an ATP-dependent RNA helicase, and nuclear RNA export factors. These proteins
are all involved in nuclear RNA metabolism, primarily RNA splicing but also export of mRNA
to the cytoplasm (Table 2). The “Cytoplasmic/Translation Cluster” is comprised entirely of
cytoplasmic proteins, including translation initiation and elongation factors, and ribosomal
subunits (Table 3). Interestingly, PABPC1 was found to link these two distinct protein
interaction networks (Figure 2).

Disease-associated TDP-43 mutations do not significantly impact TDP-43 interactions

The missense mutations A315T and M337V are causative of dominantly inherited ALS>> 7.
To investigate whether disease-associated mutations alter the complement of proteins that
interact with TDP-43, we introduced each of these mutations into TDP-43 by site-directed
mutagenesis and examined their interaction profiles. We found that TDP-43 variants harboring
either the A315T or M337V mutation have interaction profiles that are qualitatively
indistinguishable from that of wild type TDP-43 by examination of Sypro-Ruby-stained gel
(Figure 3A). This finding suggests that the mechanism by which TDP-43 missense mutants
are pathogenic may be due to cell type-specific interactions that do not occur in 293T cells or
that disease-causing mutations do not grossly alter the function of TDP-43 or its binding
partners.

Some TDP-43 interactions are RNA-dependent whereas others are RNA-independent

Since TDP-43 and many of its interacting proteins are RN A binding proteins, we sought to
determine how RNA binding influences the TDP-43 interactome. RNA binding by TDP-43 is
mediated by its first RRM domain?2. Two specific point mutations, W113A and R151A, have
been previously shown to abolish RNA binding by TDP-4322, We introduced both of these
mutations into FLAG-TDP-43 to generate the RNA binding mutant FLAG-TDP-43
(mutRRM). In comparison with FLAG-TDP-43, some TDP-43 interactions are lost with
FLAG-TDP-43(mutRRM) indicating that many TDP-43 interacting proteins/complexes are
strongly influenced by RNA binding (Figure 3B, lane 4). To further examine the role of RNA
binding in determining TDP-43 interactions, we performed immunoprecipitation of TDP-43
in the presence of RNase A to degrade RNA. This approach yielded an almost identical
interaction profile to FLAG-TDP-43(mutRRM), further demonstrating the strong influence of
RNA binding on TDP-43 interactions (Figure 3B, lane 3). Many of the RNA-dependent
interactions are proteins with molecular weights between ~14 and 35 kDa, a cohort largely
comprised of ribosomal subunits, which suggests that the association of TDP-43 with
ribosomes is indirect and mediated by interaction with the same transcript. However, other
proteins are likely to interact with TDP-43 independent of its ability to bind RNA. Such proteins
are more likely to be present in a multimeric protein complex with TDP-43.

Verification of TDP-43 interacting proteins

We verified a subset of TDP-43 interacting proteins by co-immunoprecipitation followed by
Western blot. hnRNP H is one of a large number of hnRNPs found to interact with TDP-43 in
our proteomic analysis. Similar to TDP-43, this protein has been shown to be involved in the

J Proteome Res. Author manuscript; available in PMC 2011 February 5.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duosnuey Joyiny Vd-HIN

Freibaum et al.

Page 6

regulation of splicing?3. Immunoprecipitation followed by Western blot confirms an
interaction between TDP-43 and hnRNP H (Figure 4A). This interaction is not altered in the
disease-associated point mutations A315T or M337V (Figure 4A). The interaction between
TDP-43 and hnRNP H is at least partially influenced by TDP-43 binding to RNA because
treatment with RNase A strongly mitigates interaction (Figure 4A). Consistent with this
finding, hnRNP H shows reduced interaction with the TDP-43(mutRRM) mutant (Figure 4A).
To determine the subcellular compartment in which the interaction between TDP-43 and
hnRNP H occurs, immunofluorescence was performed in HeLa cells to simultaneously
visualize TDP-43 and hnRNP H. TDP-43 and hnRNP H both show pan-nuclear localization
and are found to co-localize in nuclear puncta (Figure 4B).

Verification of the interaction between TDP-43 and PABPC1 was also performed. PABPC1
is a predominantly cytoplasmic protein that associates with and stabilizes poly(A) mRNA and
is regulates RNA translation?*: 2. Immunoprecipitation followed by Western blot confirms
that PABPC1 associates with TDP-43 and that this association is not affected by either the
A315T or M337V mutation (Figure 4A). Immunoprecipitation in the presence of RNase A
reveals that the association between TDP-43 and PABPCI is also dependent upon RNA since
binding is strongly mitigated by treatment with RNAse A (Figure 4A). Consistent with this
finding, PABPC1 shows reduced interaction with the TDP-43(mutRRM) mutant (Figure 4A).
Thus, hnRNP H and PABPCI1 interaction with TDP-43 is completely abolished by RNase A
treatment, but only partially mitigated by selectively impairing the ability of TDP-43 to bind
RNA (TDP-43-(mutRRM)). RNase A treatment is likely to completely disassemble
ribonucleoprotein complexes, thus abolishing both direct and indirect interactions between
TDP-43 and RNA binding proteins. On the other hand, the residual binding exhibited by
TDP-43(mutRRM) indicates limited ability to associate with multimeric ribonucleoprotein
complexes independent of its ability to bind RNA, although the interaction is clearly stabilized
by RNA binding. Co-immunoprecipitation experiments were also performed in HeLa cells,
confirming the interaction between PABPC1 and hnRNP H with TDP-43 and associated
mutants (Sup. Figure 2A) and providing a second cell type in which these novel interactions
are observed. Furthermore, we performed co-immunoprecipitation from mouse brain
homogenate to confirm that interactions between TDP-43 and PABPC1 and hnRNP U occur
with the endogenous TDP-43 protein in one tissue that is frequently affected in TDP-43-related
disease (Sup Figure 2B).

TDP-43 localizes to RNA granules in the cytoplasm

Although TDP-43 is predominantly a nuclear protein, in some HeLa cells TDP-43 can be
visualized in discrete cytoplasmic puncta in addition to diffuse nuclear staining (Figure 5A).
These puncta do not stain for hnRNP H (data not shown) although they stain strongly for
PABPC1, a marker for cytoplasmic RNA granules2® (Figure SA). Our findings are consistent
with previous evidence indicating that TDP-43 co-purifies with cytoplasmic RNA
granules2’. Cytoplasmic RNA granules, including stress granules, processing bodies and germ
cell (or polar) granules are cytoplasmic structures believed to represent physiological
accumulations of mRNA and ribonucleoproteins that modulate gene expression by influencing
translation, trafficking and stability23. PABPC1 is a specific marker of stress granules2,
suggesting that TDP-43 is present in this specific subtype of RNA granule. Further extensive
evidence that TDP-43 associates with stress granules was the identification of TDP-43
interaction with numerous additional protein components of stress granules28: 2% (Table 4).

To confirm the association of TDP-43 with stress granules, we performed immunofluorescence
to examine two additional stress granule proteins (EIF4G and G3BP1) that are also known to
associate with stress granules. FLAG-TDP-43 was found to strongly co-localize with these

proteins in discrete cytoplasmic puncta clearly indicating that cytoplasmic TDP-43 associates
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with stress granules (Figure 5B-C). Furthermore, endogenous TDP-43 was found to localize
to stress granule markers following challenge with the proteasome inhibitor MG-132, a well-
established stimulus of stress granule formation (Figure 5D).

To determine whether RNA binding is necessary for TDP-43 localization to stress granules,
we visualized the localization of FLAG-TDP-43(mutRRM) and EIF4G as a marker for RNA
granules. The localization of FLAG-TDP-43(mutRRM) remains predominantly nuclear,
although the presence of tiny discreet puncta is observed in many cells that have both nuclear
and cytoplasmic localization that do not co-localize with stress granules (Figure 6). FLAG-
TDP-43(mutRRM) was found to be present in only 6.5% of stress granules whereas FLAG-
TDP-43 was found to be present in 84.7% of stress granules (Figure 6). This indicates that the
association of TDP-43 with stress granules is strongly impaired by an inability to interact with
RNA.

Discussion

Using a global proteomic approach we have demonstrated that TDP-43 has extensive
interaction with proteins that regulate mRNA metabolism. These include nuclear proteins,
cytoplasmic proteins, and proteins known to undergo nucleocytoplasmic shuttling. Among
TDP-43’s interactors are hnRNPs, RNA helicases, splicing factors, translation regulatory
proteins, as well as proteins involved in mRNA transport and stability. TDP-43 was found to
interact with a smaller number of DNA binding proteins such as transcription factors, consistent
with a previously described role for TDP-43 in transcriptional repression!, but also interactions
with DNA repair proteins such as Ku70 suggesting that TDP-43 may be involved in other
aspects of DNA metabolism.

Disease-associated mutations in TDP-43 are nearly all located within a C-terminal glycine-
rich domain that has previously been found to interact with some hnRNPs>~%:11, Surprisingly,
the disease-causing mutations A315T and M337V do not alter the profile of TDP-43
interactions in 293T cells. Analysis using the STRING database of protein-protein interactions
demonstrates that TDP-43 associates with two distinct protein interaction networks. The first
is a network of nuclear proteins that regulate RNA splicing and other aspects of nuclear RNA
metabolism, consistent with prior evidence that TDP-43 can influence transcription and RNA
splicing!?. The second is a network of cytoplasmic proteins that regulate mRNA translation.
Although a predominantly nuclear protein, it has been previously shown that TDP-43 shuttles
between the nucleus and cytoplasm!2. Moreover, TDP-43 has been found to redistribute to
cytoplasmic RNA granules in response to neuronal injury!3: 14, This is consistent with our
finding that TDP-43 has extensive interaction with components of stress granules and that
TDP-43 colocalizes with stress granules.

TDP-43 is arelatively new player in a growing list of RNA binding proteins that are associated
with disease0. In addition to TDP-43, there are at least two other RNA binding proteins in
which mutations lead to motor neuron disease. Loss of function mutations affecting the SMN
gene cause spinal muscular atrophy3! whereas mutation in the SR protein FUS/TLS also leads
to dominantly inherited ALS32> 33, Furthermore, a large number of additional
neurodegenerative diseases are also associated with mutations in RNA binding proteins
indicating that defects in RNA metabolism may be a common underlying mechanism causing
neurodegeneration3?. Our work suggests that TDP-43 may play a role in regulation of mRNA
at multiple levels that may include transcription, stability, trafficking and translation. Other
RNA binding proteins mutated in neurodegenerative disease are similarly multifunctional,
including SMN, FUS/TLS, and FMRP. It remains to be determined whether any one particular
aspect of RNA metabolism is perturbed in common amongst these diseases.
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TDP-43 has a well described role in the nucleus in the negative regulation of splicing,
specifically it has been shown to promote exon skipping by direct interaction with the CFTR
mRNA34. In the cytoplasm, TDP-43 has been shown to stabilize the mRNA of the
neurofilament light chain through direct interaction with mRNA!7. Recently, it has been shown
that TDP-43 interacts with 14-3-3 protein subunits (also identified in our screen) to modulate
the stability of the NFL mRNA3. Another intriguing possibility is that TDP-43 is required for
site specific translation of specific mRNAs. Previous work has shown localization of TDP-43
in RNA granules in the dendrites of hippocampal neurons and repression of translation in
vitro39. Altered regulation of site specific translation of mMRNAs in motor neurons may prove
to be an important mechanism leading to development of TDP-43 proteinopathies. Thus, future
studies will be required to determine specific mRNAs that associate with TDP-43 in neurons.

TDP-43 pathology in ALS, FTLD-TDP and IBMPFD is typically characterized by clearance
of TDP-43 from the nucleus and accumulation in the cytoplasm of affected cells2. Thus,
diseases mediated by TDP-43 could involve loss of TDP-43 nuclear function or gain of a toxic
of function in the cytoplasm. Given the dominant mode of inheritance of ALS associated with
TDP-43 mutations>~’, and insight derived from our Drosophila model of TDP-43-related
disease (Ritson et al. submitted) we hypothesize that toxic gain of cytoplasmic function is more
likely.

Conclusion

TDP-43 associates with two distinct protein interaction networks, one implicated in RNA
metabolism nucleus and the other involved in mRNA metabolism in the cytoplasm. Many of
these interactions are dependent upon the ability of TDP-43 to bind RNA. TDP-43 interactions
are not altered by two mutations that are causative of ALS. The association of TDP-43 with
translational machinery, as well as histological evidence of TDP-43 assocaition with stress
granules, strongly suggests that TDP-43 plays a role in translational regulation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of TDP-43 interacting proteins by FLAG-immunoprecipitation

(A) Immunoprecipitates from FLAG-TDP-43-expressing HEK-293T cells or control
HEK-293T cells were separated by gel electrophoresis and stained with Sypro-Ruby to
visualize proteins. Both the control and FLAG-TDP-43 lanes were separated into 24 bands
along the entire length of the gel and analyzed by mass spectrometry. Intervening empty lanes
were removed for visualization purposes. (B) Pie-chart representation of functional classes of
TDP-43-interacting proteins.
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Figure 2. TDP-43 interacting proteins form two distinct protein interaction networks

TDP-43 proteins identified by mass spectrometry were analyzed using STRING interaction
software to identify high confidence interactions using database, literature, and experimental
search parameters. Only proteins that were at least two-fold enriched in the TDP-43
immunoprecipitate were analyzed using STRING. Two distinct protein interactions were
observed that are labeled as the Nuclear/Splicing Cluster and the Cytoplasmic/Translation
Cluster.
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Figure 3. The impact of TDP-43 mutations on interactions

(A) Disease-associated mutations do not alter the TDP-43 interactome. The figure shows
Sypro-Ruby-stained FLAG immunoprecipitates from control HEK-293T cells, HEK-293T
cells expressing wild type FLAG-TDP-43, FLAG-TDP-43 (A315T) or FLAG-TDP-43
(M337V) as indicated. FLAG-TDP-43 (M337V) reproducibly immunoprecipitates less
efficiently than either FLAG-TDP-43 or FLAG-TDP-43 (A315T) which is proportional to the
decrease in intensity of interacting proteins as visualized by Sypro-Ruby. (B) Some TDP-43
interactions are RNA-dependent. The figure shows Sypro-Ruby-stained FLAG
immunoprecipitates from control HEK-293T cells, HEK-293T cells expressing wild type
FLAG-TDP-43, wild type FLAG-TDP-43 (treated with RNase A), or FLAG-TDP-43
(mutRRM), as indicated. Immunoprecipitation was repeated at least three times with consistent
results. Representative images were chosen for display.
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Figure 4. Characterization of TDP-43 interaction with hnRNP H and PABPC1

(A) Validation of TDP-43 interaction with hnRNP H and PABPC1 by co-immunoprecipitation
followed by Western blot analysis in HEK-293T cells. Left panel: Western blot analysis of
whole cell lysates prior to immunoprecipitation was used to visualize 1% of protein input.
Right panel: Western blot analysis of FLAG immunoprecipitates. Quantification was
performed using Image J (shown below each band) and normalized to the amount of TDP-43
in lane 2. Immunoprecipitation was repeated at least three times with consistent results and
representative images were chosen for display. (B) Immunofluorescence was used to visualize
the localization of TDP-43 and hnRNP H in HeLa cells. DAPI staining was used to visualize
the nucleus. TDP-43 and hnRNP H both showed pan-nuclear expression with co-localization

J Proteome Res. Author manuscript; available in PMC 2011 February 5.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duosnuey Joyiny Vd-HIN

Freibaum et al.

Page 15

in sub-nuclear foci in HeLa cells. The immunofluorescence data shown represents consistent
results obtained in multiple replicates. IB: immunoblot, IP: immunoprecipitation.
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Figure 5. Cytoplasmic TDP-43 is localized in stress granules

Immunofluorescence was used to visualize the localization of exogenous (A-C) FLAG-
TDP-43 or endogenous (D) TDP-43 and (A) PABPC1, (B, D) G3BP1 and (C) EIF4G in HeLa
cells. DAPI staining was used to visualize the nucleus. TDP-43 was found to localize with
stress granules in the cytoplasm of HeLa cells. (D) After treatment with 50 uM MG-132 for 3
hours, RNA granules were observed in 66% of cells. At least 1 TDP-43 positive stress granule
was observed in 25% of cells after MG-132 treatment. 300 HeLa cells were counted. All of
the immunofluorescence data shown represents consistent results obtained in multiple
replicates.
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Figure 6. TDP-43 association with stress granules is strongly mitigated by inability to bind RNA
(A) TDP-43(mutRRM) was rarely found in cytoplasmic RNA granules (as visualized by
EIF4G). (B) In FLAG-TDP-43 expressing cells, FLAG-TDP-43 was found to co-localize with
EIF4G in 85% of stress granules (n=242 cells) whereas FLAG-TDP-43(mutRRM) was found
in only 6.5% of stress granules (n=168 cells).
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