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GLOBAL ANALYSIS OF THE PHASE PORTRAIT
FOR THE
KURAMOTO-SIVASHINSKY EQUATION

JU. S. IL’YASHENKO*

Abstract. The global behavior of the Kuramoto-Sivashinsky equation is studied. The existence of an
absorbing ball in every Sobolev norm is proved. The transition of energy from low modes to high ones is
observed. An upper estimate for the Hausdorft dimension of the attractor is given. The main tool is to
use the methods of the theory of ordinary differential equations in the investigation of partial differential
equations.

§1. Main results and intrinsic relations.

1.1. Statement of results. The paper deals with the so called Kuramoto-Sivashinsky
equation

Uy = _((uz‘)Q + ’LL21. + Vu:c‘*))y > O’U:c" = 8”“‘/axn

with periodic boundary conditions: u(t,z + 27) = u(¢t,z). This equation occurs in various
physical problems [1,2,3]. The numerical studies show chaotic behavior of its solutions [4].
The phase space of this equation is the set of functions defined on the circle S? = R/27Z.
The average of the right hand side is negative, if u # const. The difference between the
function f and its average f will be called the “centralized function f”. The main results
of this paper are the following (details are given below).

(1) The centralized solutions of the Kuramoto-Sivashinsky equation, as well as all their
derivatives, are bounded on the time interval [0, +00).
(2) The transition of energy from low harmonics to high ones.

(3) The existence and Liapunov stability of the attractor, and an upper estimate of its
Hausdorft dimension.

1.2. The equation for the centralized solutions and heuristics. Denote by
P the operator which maps each function f to Pf (the centralized function). P is the
projection of the space L?(S!) along the vector fo = 1 onto the orthogonal complement
of the vector fy. The right hand side of the Kuramoto-Sivashinsky equation depends only
on Pu. Thus the centralized solution w = Pu of this equation satisfies the equation

wy = —P(wy)* 4+ wy2 + vw,s).
Note that P(w,) = w,. Thus, after replacing w by u, we obtain

(1) Uy = —(Pug)? + ugz 4+ vug), i =0

*Department of Mathematics and Mechanics, Moscow State University 117234 Moscow, USSR.



From now on we will consider only equation (1). Its right hand side may be decomposed
to give the following two equations:

Uy = —(ug2 + vuga),

(H]) uy = —P(u,)?

We will call the second equation the Hamilton-Jacobi equation, though this is not com-
pletely accurate: only the centralized solutions of the actual Hamilton-Jacobi equation
u; = —u? satisfy (HJ). The linear equation has the singular point 0 : v = 0. For v < 1 this
is an infinite dimensional saddle. The corresponding operator has the eigenvectors e***
with eigenvalues A\, = k% — vk*. For k < v7'/2 X, <0 (such k correspond to low modes);
for k > V—l/2, A > 0 (high harmonics). V.I. Arnol’d, who attracted my attention to the
Kuramoto-Sivashinsky equation, noticed that “the linear part causes the low harmonics
to increase, and the high ones to decrease, while the nonlinear part mixes the low and
high harmonics”. The formalization of this heuristic picture takes up the main part of this
paper: §3-5. We now pass to the exact formulation.

1.3. The bounds for the solutions. The phase space for equation (1) is the space

X = C>°(81) of infinitely smooth functions with zero average on S'. It is endowed with
different scalar products and corresponding norms; it is not complete in any of them. Let

For any real s, the s-th Sobolev norm n, of f is defined as follows:

) = 17l = (S #hael?)

For natural s = m, the m-norm n,,(f) is equal to the L?-norm of the m-th derivative f('™):

Hf“m = Hf(m)“O-

Consider also a C™ norm in X:

|1.f]

com =max | f™|
Sl

Since f = 0, this norm is equivalent to the usual C™ norm. From now on by “smooth” we
will mean “infinitely differentiable”.
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THEOREM 1. For any s there is a positive R, such that all solutions of the equation
(1) with a smooth initial condition enter the ball ny, < R, after some positive time and
never leave it thereafter.

1.4. Properties of the norm and universal constants. . For any fixed u €

C*>(S8'), the function s — n,(u) is monotone and logarithmically convex, that is, its
logarithm is a convex function [11]. Consequently, the functional n, has the following
properties:

k
n n
< ( - > for a > 0; ng < Ng_qNgta
nS‘—‘(I

The Sobolev imbedding theorem implies that, for any natural m and any s > m + 1/2,
there is a constant C' such that ||u||cm < Cllu||s. For convenience we abuse the notation
by writing A < B, where the left hand is a function or functional, and the right hand may
be a constant. This notation means that for some C > 0 the inequality A < C'B holds
everywhere. For instance,

llullem = ||ulls for s > m 4+ 1/2.

1.5. The transition of energy. In this subsection (and only here) the square of
any Sobolev norm is called the energy. If f = Asina, then all the energy is concentrated
in the first mode; if f = 5 are’*®, g = 2 |k|>100 are’*® and ||g{|? > ||f]|?/2 - that is, more
than half the energy is concentrated in the modes of order higher than 100.

To state the transition theorem exactly, let us denote by En the space of trigonomet-
rical polynomials of degree not higher than N and with zero average. Denote by Py the
orthogonal projection operator L?(S') — En with kernel E]%, (obtained by eliminating
the higher order terms of the Fourier series), and let Py = id — Py (this is obtained by
eliminating the terms of order lower than N + 1).

THEOREM 2. (TRANSITION OF ENERGY). For every N and every A € (0,1) there
exists an R = R(N, \,v) such that for any function ¢ € X lying outside the ball n; < R,
there exists a time T, such that the solution of the equation (1) with the initial condition
¢ takes the value 1 at time T,,, where ¢ satisfies || PEv||2 > A||%|[2.

For example, if A = 0.99, N = 100, the theorem asserts that more than 99% of the
energy n? for the function % is concentrated in the modes of order higher than 100. For

example, ¢ might be taken as A sinz for A > R and thus have no high modes in its Fourier
expansion.

1.6. Generalized dissipative systems and their attractors. I failed to find for
the equation (1) an absorbing domain in the classical sense, that is a domain on whose
boundary the vector field points inward (such systems are called dissipative). Such a
domain probably does not exist at all. Only a “generalized absorbing domain” was found,
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which is “no worse” than an absorbing one: an equation with such a domain has just the
same properties as if it were dissipative.

DEFINITION 1. Let {¢'|t > 0} be a semiflow in the space X with continuous depen-
dence on the initial conditions. Let B and B be two sets in X with B C B. We say that
the domain B is globally absorbing for the semiflow {g*} with periphery B and time delay
T,if

1°. The orbit of any point ¢ € B returns to the domain B after at most time T and
meanwhile does not leave the domain B.

2°. The orbit of each initial point ¢ enters the domain B after some positive time.

A system which defines a semiflow with a generalized globally absorbing domain which
is compact, together with its periphery, is called “generalized dissipative”.

We say that the orbit v of a semiflow is defined on the whole time axis if there exists
amap ¢ : R — z such that gRy = v and, for any s > 0,¢(t + s) = ¢*(g(s))

DEFINITION 2. The maximal attractor of a generalized dissipative system is the union
of all those orbits which are defined on the whole time axis and lie in the periphery.

It turns out that the attractor above may be defined by the same formula as for a
dissipative system, and it will be also Liapunov stable.

PROPOSITION 1. Let {g'|t > 0} be a generalized dissipative semiflow with generalized
globally absorbing domain B with periphery Band time delay T, the closures of B and B
being compact, and let A be its attractor in the sense of Definition 2. Then

A= ﬂ ngE'
n>0

Furthermore, the attractor A is nonempty and Liapunov stable: for any neighbourhood U
of A there exists a positive t(U) such that ¢*B C U for any t > t(U).

We prove that A is nonempty. Let B = Uiso ~g’B . Evidently, B C B. Definition 1
implies that any point z € B enters the domain B in time T and never leaves it. Thus
ng C B. Let

Ay = Nusog™™B.
This is a countable intersection of nested compact sets, hence it is nonempty. We claim
that it coincides with the attractor in the sense of Definition 2. Indeed, A; is the union

of all the orbits which are defined on the whole time axis and lie in B. Moreover, Ay is
closed. Thus A = A; is nonempty.

We next prove the Liapunov stability of the attractor. The function “exit time from
B in reverse time” is defined as follows:

t(z) = max{t > 0|3y € B: gly==z,9"y € Bforre [0,1]}.

4



Obviously, t(z) = oo iff the orbit of = is defined on the whole time axis, that is to say, iff
¢ € A. The function is upper semicontinuous: if z = limz,, then ¢(z) > limsupt(z,).
This follows from the continuous dependence on the initial conditions for the orbits of the
semiflow and the fact that B is closed. Suppose now that A is not Liapunov stable. Then
for any n there is a point x, € E\U such that t(z,) > n. The compactness of B implies
that {z,} may be assumed convergent: z, — z,z ¢ U. The semicontinuity of the function
t then gives t(z) = co. Thus z € A C U, a contradiction. ‘

1.7. The upper bound for the dimension of the attractor. Asusual, H, denotes
the Sobolev space, obtained as the completion of C*° in the norm n,. It is proved below

that in cach space H, with s > 4 equation (1) defines a generalized dissipative system.

The standard part of the proof is contained in subsection 1.8; the more sophisticated part
[+

in sections 2-5. Hence equation (1) possesses an attractor A, in any H,. Equation (1),

just as the heat equation, smoothens the initial conditions. Thus, all the attractors A,

consist of smooth functions and coincide. We may thus replace A; by A in what follows.

THEOREM 3. Consider the Lqo-metric in the space C*°. The corresponding Hausdorff
dimension of the attractor A is finite. Moreover, dimg A < v =365,

1.8. Main theorem and reductions.

THUEOREM 1A. The Kuramoto-Sivashinsky equation defines a semiflow which has a
generalized absorbing domain B, given by the inequality ny < R, where R depends on
v:R<pT2,

This is the main theorem, to be proved below in full detail. The scheme of reduction
of theorems 1 and 3 to theorem 1A is given in the remaining part of §1. The rest of the
reduction may be found in [3]. Theorem 2 is also proved below in full detail.

In this section the idea of the reduction of theorem 1 to 1A is given. For any natural

m, we prove the existence of an R,, such that the following domain B,, is a generalized
absorbing domain for equation (1):

B, = {77'1 < Rl};Bs = B, ﬂ{ns < R3}
Bm = Bm—l ﬂ{nm < Rm},"n > 3.
Consider the case n = 3. Let R; = R, with R as in theorem 1A. The domain B is globally

absorbing, according to theorem 1A. We prove that, in the domain B3\ By, the functional

n3 decreases along solutions. In section 4.3 the following inequality is proved:

d(n?)

3 2 2
<Z .
< n3 +ny — vns;
dt

ot



here d/dt is the derivative with respect to equation (1). By using the logarithmic convexity
of the norm n,, we obtain the following inequalities in the ball ny < R;:

n3 < n?/zng/z < R?ﬂngﬂ; n3 < ni/zng/z < Ri/zng/z

thus
d(n3)
dt
If Ry > 4R3v~2, then ns > n3 > 4R3v~%in B;\B3. Thus in this domain dns/dt < 0.
Now we prove that, if Ry > 4v~! Ry, the orbits of equation (1) may leave the domain
B;\Bj; only by entering the ball Bz. This follows from Corollary 2.3 of subsection 2.3
below, which asserts that on the intersection of the sphere n; = R, and the domain

= ZR?/zni'/z —wni <0forns >4R}v "2 Ry > 1

R3 > 2v7 ! R; the energy n; decreases along the orbits of equation (1). Thus, by Theorem
1A, all the orbits of (1) enter the ball By, and afterwards, as has just been proved, they
enter B3 = By N {n3 < R3}.

The case m > 3 is treated in an analogous way.

1.9. The upper estimate of the Hausdorff dimension of the attractor. Here
we give the main ideas involved in the reduction of Theorem 3 to theorem 1A. The reasoning
below gives an estimate for the Galiorkin approximation to equation (1) for a sufficiently
large dimension N of the truncated phase space; this estimate does not depend on N. To
obtain the same estimate for the attractor of the whole equation (1), it is sufficient to
proceed in the standard way [5,6,7,8].

According to [9,10], consider the quadratic form F, on the periphery B of the gen-
eralized absorbing domain of (1) (the results in these papers are proved for dissipative

systems, but by using Proposition 1 one may check their validity in the case of generalized
dissipative systems).

Fu(€) = (dWu(£),6);

here W, is the right hand side of equation (1). Then one must find a quadratic form G
such that G(¢) > F(€) for any u € B. Let Ay > --- > A; > .- be the eigenvalues of the
form G. If the number % is such that Zi" Aj <0, then dimy A < k.

The form F, is given by:
Fu(£) = (2uate, €)1z + lIENIT — wIIEllS
An upper estimate for this form in the ball ||u||; < 2R follows from the inequalities:

(usbes 1 S ulli €N} < RullEI < Rallelloli€lle
< 3v R lelf; + S l€l;

el < 3v=Ielf; + 5 1€l
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The form G may be taken as follows:
- v
G(&) = 3v™'(R] + 1)1l — gllill%

The eigenvalues of this form are \; = pp — vj*/3 with p = 3v~1(R? + 1). Their sum
is ), = Zle Aj = pk —vk®/5. For k = (pr=!)Y/* one has 3, < 0. Theorem 1A implies
that 4 < v~1*°. Thus dimpy A < v =355, E. Titi showed that this exponent may be lowered
to 29.

1.10. Previous results. The boundeness of the solutions and the dimension of
the global attractor of the Kuramoto-Sivashinsky equation were investigated in [3]. In
this paper the upper estimate for the dimension is given under the assumption that all
the orbits enter the ball n; < R; it is also proved that this is the case for even initial
conditions. Qur methods, based on ideas from ordinary differential equations, and applied
to the case of partial differential equations, allow us to get similar estimates for «ll initial
conditions, not only even ones. The estimate [3] for the even case is better than ours: the
exponent is —13/8 instead of —36.5. It seems that the method developed below may be
used to get similar results for equations in a much wider class than (1). The main results
of the paper were announced in [12].

During his visit to Moscow in June, 1989, G. Sell kindly communicated to me that the
uniform estimates for the solutions of Kuramoto Sivashinsky equation given by Theorem
1A imply the existence of a finite-dimensional inertial manifold [14]. This existence was
proved in [14] only for even initial conditions. Now it is proved for arbitrary initial condi-
tions. Thus the Kuramoto-Sivashinsky equation can be reduced to an ordinary differential
equation.

It is a pleasure to thank Professors V.I. Arnol’d, N.D. Vvedenskaya, L.R. Volevich, Ju.
B. Radvogin, A.V. Fursikov, G. Sell for fruitful discussions, and E. Titi and M. Taboada,

who read an English version of the text and made many useful comments.
§2. Global analysis of the phase portrait.

2.1. Pumping and dissipation of energy. From now on, the energy will be defined
to be the norm of the functional E = n?. The Hamilton-Jacobi equation u, = —P(u?)
preserves the energy:

d 2
FE = ‘2(ux,(——Pu$$2)x) = 2(»1/,”,'113.) = 2]{uiu” = - %(ui)x = 0.
dtyg 3

Here and below d/dty j(resp.d/dts) denotes differentiation along the orbits of the equa-
tion (HJ) (respectively (1)); ¢ f is the integral of the function f on S with respect to the
Lebesgue measure. The derivative of E along the orbits of (1) is
dE 22,
dtis B
For v > 1 the energy n? is a Liapunov function and the point 0 is the global attractor.
From now on we assume that v < 1.




DEFINITION 1. The cone of pumping K, and the cones of dissipation K4, of slow
dissipation K4, and of rapid dissipation I,y are defined as follows:

K, :nd >wvn}; Ky:n? <wnl;

1 v
K. n% > —vng;Krd : n% < §V§

The derivative of the energy along the orbits of (1) is positive iff this point belongs to
the cone of pumping.

2.2. The global behavior of solutions.

THEOREM 4. There exist positive constants T,c and a with the following property:
for any initial condition ¢, lying in the cone of slow dissipation and outside the ball
B :ny < R(v) = cv®, the corresponding solution of equation (1) will enter the cone of
rapid dissipation in time Ty, € [0,T]. The arc of the orbit

) I = {g'olt € [0, T,])

belongs to the ball ny < 2||p||;. Its endpoint 3 has the property: ||¢||; < |l¢lli — 1. One
may take T = n2/R(v),a = 72.

We next deduce Theorem 1A from Theorem 4. We prove that B is a generalized global
absorbing ball for system (1) with periphery B:n < 2R(v) and time delay T. The
evolution from the initial to the final point of the arc I' in Theorem 4 will be called a step.
Take an arbitrary initial condition . If it belongs to the cone of rapid dissipation or to
the ball B, one must study possibilities A or B below. If ¢ € K,;\B then, according to
theorem 4, the corresponding orbit enters the cone of rapid dissipation after one step and
loses energy by at least by 1. Three cases are possible (Figure 1):

A. The solution remains forever in the cone of rapid dissipation. In this case the energy
will decrease, and the solution will tend to the saddle point. This case has probability

zero: the initial condition belongs to the stable manifold of the saddle, which has finite
codimension.

B and C. The solution leaves the cone of rapid dissipation at the point ¢y; in case B,
v1 € B;in case C, p; ¢ B.

B. By Theorem 4, the solution will either remain in the ball B or leave it, but will
remain in it for no longer than a time interval 7', while not escaping the ball B.

C. By Theorem 4, after one step the solution will pass from the point p; to ¥, € Ky,

with its energy decreasing by at least 1. Thus, after a finite number of steps, it will enter
the ball B and will never leave B.



Figure 1.

2.3. The Exit and Loss of Energy lemmas. Theorem 4 follows from two lemmas,
which are proved in sections 3 and 4.

LEMMA 1 (EXIT LEMMA). There exists a positive constant T and for any p > v~}

there exists R = R(v, p) with the following property. For each initial condition ¢, lying in
the cone of slow dissipation and outside the ball n;y < R, there is a time T, < T such that
the arc () is in the ball ny; < 2||p||; and has an endpoint 3 for which

lls = pllells

COROLLARY. % € K4 for p > 4071,

One must verify that v satisfies the inequality which defines the cone of rapid dissipa-
tion. Namely,

1
111z < 11l [ls < 201113/p < SvIll5.

The first inequality follows from logarithmic convexity of the norm n,(u) as a function of

s; the second, from the conclusion of the Lemma: ||| < 2||¥|]1 < 2||¥|ls/p; the third,
from the lower estimate for p.

LEMMA 2 (ENERGY LOSS LEMMA). Let ¢,1,p be as in Lemma 1. If p > v™2% and ¢ is
sufficiently large, then

Holh <llelh = 1.
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2.4. The transition of energy. Theorem 2 is a direct consequence of Lemma 1.

Let ¢ and % be as in Lemma 1. Let us suppose that ||P1||2 < A|[4]||2 and obtain

a contradiction for sufficiently large p. The inverse inequality will give Theorem 2. The
previous assumption gives

1PnplI3 = (1= MlIl[5

The definition of the Sobolev norms by Fourier coefficients implies that

IPnlls < N?[]ls = 1.

Thus
lls < (1= NNl < 2(1 = A) AN [y ).

For p > 2(1 — \)~'/2N? this contradicts Lemma 1.

The analogues of Lemmas 1 and 2 may be proved for N-th Galiorkin approximations
to the Kuramoto-Sivashinsky equations with estimates independent of N. This is done in
the next three sections, which form the main part of the paper. Lemmas 1 and 2 are then
proved by letting N tend to infinity.

§3. Galiorkin approximations to the Kuramoto-Sivashinsky equation as
small perturbations of the Hamilton-Jacobi equation.

3.1. Rescaling. Outside the large ball the quadratic terms of equation (1) dominate
the linear ones. Let us change the scale, so as to transform the ball of radius £™! into the
unit ball while preserving the quadratic terms of (1): w = eu,7 = ¢~ 't. Equation (1) will
take the form:

wr = ~(P(w}) + e, + vwg)).

Replace w by w and 7 by ¢:

(1¢) wy = —(P(ul) + e(uy2 4+ vugs)).

The phase flow transformation of equation (1.) will be denoted by gt.

£

LEMMA 1A. For any p > v~ there exists a positive g = £o(v, p) such that for any
¢ € (0,eq) and for any initial condition ¢ lying in the cone of slow dissipation and the
sphere ny = 1, there exists a t, such that the arc

Pe,ap = {gétp‘t € [O,tsﬂ]}

belongs to the ball n; < 2 and reaches the sphere ny = p.

Lemma 1 follows from Lemma 1A. Take R(v,p) = &5 . Let, in Lemma 1, ||p|| = R >
R(v, p). Rescale the equation (1) as before with e = R™!. Then the arc (*) from Lemma
1 will be transformed into the arc I'c , of Lemma 1A, and the inequalities of Lemma 1A
will give the inequalities of Lemma 1 with T = 7/ R(v, p).

10



3.2 Galiorkin approximations. Let En be the space of real trigonometrical poly-
nomicals and the projection operators Py and Py be those defined in subsection 1.5. The
N-th Galiorkin approximation is constructed as follows. Its phase space is Ey, and the
corresponding vector field is the projection Py onto En of the right hand side of (1.),
restricted to EFn. This projection commutes with differentiation, so the N-th Galiorkin
approximation has the form:

Uy = —(PN(uzx) + e(uy2 +vuzs)),u € EN(KSNe).

Here K Sy, denotes the N-th Galiorkin approximation to the e-rescaled Kuramoto-Sivashinsky
equation.

LEMMA 1B. For any p > v~! there exists an ¢y > 0, depending on v and p and
independent of N, such that for any ¢ € (0,eq) and any initial condition ¢ with the
properties ¢ € En N K4, ||¢lli = 1, there exists t, € (0,72) such that the arc

I'= {95\1599|t € [Oatsa]}

is contained in the ball ny < 2 and reaches the sphere n3 = p. Here gf\,e denotes the phase
flow transformation of the equation (K Sy.), corresponding to time t.

Lemma 1A may be deduced from Lemma 1B by letting N tend to co. The Galiorkin
approximations will be considered as small perturbations of the Hamilton-Jacobi equation
in the ball ng < p. To begin with, we prove a general perturbation lemma for a differential
equation in a finite or infinite dimensional space.

3.3 The perturbation Lemma. Consider two differential equations in the pre Hilbert
space X:
& =v(z)and & = v(a) + w(z).

If X is finite dimensional, it is supposed to be an Euclidian space. If X is infinite di-
mensional, it is supposed to have a scalar product < -,- > and a corresponding norm
[| - ||, perhaps being incomplete in this norm. The most common estimate of the distance
between the orbits of the vector fields v and v + w uses the Gronwall inequality, which
contains the Lipshitz constant of the field v. Yet in the typical infinite dimensional situ-
ation the field v is not Lipshitzian. Nevertheless, the distance between the orbits may be
estimated, if the unperturbed equation ¢ = v(z) is solved and an upper bound is found
for the norm of the Fréchet derivative of the corresponding phase flow.

We recall next the definition of a flow box (with a flat bottom).

Let D be a closed subset of a hyperplane A in X, at all points of which the vector
field is transversal to the hyperplane. The flow box of the field v with bottom D and time
interval T is the set

Q = {g,z|v € D,t € [0,T]}.

11



The sets
DT = ¢gI'D,{g,0D|t € [0,T]},D* = gD

are called the top, the side and the t-floor of the flow box, respectively. The t-floor is
defined for any ¢ € [0,T]. Denote by II, the projection map of the flow box onto its
bottom along the orbits of v: for any z € D and ¢ € [0, T) one has II,(g\z) = . From now
on ¢! will denote the phase flow transformation corresponding to the flow (or semiflow) of
v at time t. The time function t is defined by everywhere on Q by gtz — t.

LEMMA 3. Let v and w be vector fields in the pre-Hilbert space X. If X is finite
dimensional the fields v and w are supposed to be smooth. If X is infinite dimensional,
then we shall make the following smoothness assumption: the map

¢:(t, 7)) ghogr e

is smooth (wherever defined). Let T' be the arc of the orbit of the field v + w defined by :

I ={T(7)lr € [0,70]}, (1) = gu1ui

Let © be the flow box of the unperturbed field v with bottom D in the hyperplane A:
(¥ — @,v(¢)) =0 and time interval T. Assume that I' C 2, and also:

(1) |lw|| < a everywhere on T.
(2) Ify e T, gly € Q, then
ldg' ()l < F.

(3) |[v]| > C everywhere on D.

(4) The angle between the vectors v(1) and v(p), for any ¢ € D, does not exceed a
fixed value, say /3.

Then

(1) The length of the projection II,T' does not exceed 2aF'T.
(2) |(to ), — 1| < 3aF/C.

We begin with the finite dimensional case. In this case the smoothness of the functions,
which is analyzed below, follows from the smoothness of the vector fields v and w.

PROPOSITION 1. Under the assumptions of Lemma 3
||dIT,(y)|| < 2F for any y € T,
(this proposition is proved below).
Set 4(t) = II,I(r). Then
() = dIL,I(r) = dll (v o I(7) 4+ w o T(7)) = dll,w o (7).

12



Condition 1 of the Lemma, together with Proposition 1 implies
(Il < 2aF.

This gives the first assertion of the Lemma.

2. The time function ¢ : 2 — R was defined above as
t:glz s tforanytel0,T],z€D.

The form dt is the invariant of the action of the phase flow v. Thus, letting y = I'(7):

< (4o T(r) = (dt, (o + w)y)) = (1 + (dt, w()).

Here (w, £) is the value of the 1-form w on the vector €. Let = II,y, and bring the vector
w(y) to the point z by the phase flow of v; let w; the vector thus obtained: w; € T, X.
Condition 2 of the lemma implies that {|w;|| < Fa. Decompose the vector w; as the sum
w; =w' +w' v = PBu(z), w" € T, A, €R. Since dt =0 on T, A and (dt,v(z)) = 1, one

has

(dt,wy) = (dt,w') = .

Moreover, w' = wy; — w",w" = dll,(z)w;. These elementary geometrical considerations
developed in the proof of Proposition 1 below, imply that ||dII,(z)|] < 2. Thus |[w"|| <
2||w: || and

181 = llw'I/ffo()IF < 3{hw|l/[[o(2)]] < 3aF/C.

This proves assertion 2.

3. In the infinite dimensional case, the proof of assertion 1 is the same as in the finite
dimensional one. In order to transfer the proof of assertion 2 to the infinite dimensional
case, one must check the smoothness of the restriction of the function ¢ to the surface
> = {¢(t,7)}. This smoothness follows from the smoothness of the map ¢ and the
transversality of the field v to the bottom. After this, all the previous reasons will remain
true.

4. To finish the proof of Lemma 3 we must prove Proposition 1.

Proposition 1 follows from assumptions 3,4 of Lemma 3 and the inequality
1AL (9)I] < [lgs (9)I/ cos £(v(z), v(p)) where y = gyz.
Let us prove this inequality. It is obvious that

dll,(y) = dll,(x) o dg; ‘(y) :

13



in order to find a projection of the vector onto the bottom of the box along the orbits it is
sufficient to bring it by the flow to some point on the bottom, and then to take a projection
of the vector thus obtained onto the bottom along the field v. The norm of the projection
operator : T, X — T, A along the vector v(z) does not exceed one times the cosine of the
angle between the vectors v(z) and v(yp), the latter being the normal to A. In the case
dim X = 2,dim A = 1 this is just elementary geometry; the general case is reduced to the
two dimensional one by considering the plane containing the image and the preimage of
the projection.

3.4. Galiorkin approximations to the rescaled Kuramoto-Sivashinsky equa-
tion. These are considered as small perturbations of the Hamilton-Jacobi equation. The
proof of Lemma 1B uses the following two ideas.

1. Each solution of the Hamilton-Jacobi equation survives only for a finite time, after
which blow up occurs: the higher derivatives (particularly, those of order 3) become infinite.

2. While the solution of the Hamilton-Jacobi equation lies in the ball ng < p, the
solution of the (K Sn¢) equation with the same initial condition for sufficiently large N
and small € stays close to the former. The first solution reaches the sphere ng # p and goes
outside; thus the second solution reaches the same sphere. After this the two solutions “go
different ways”: the Hamilton-Jacobi solution blows up, while the solution of the (K Sn.)
enters the cone of rapid dissipation and its high modes decrease.

The detailed exposition is as follows. The perturbation Lemma 3 will be used for the
unperturbed field of the (HJ) equation and the perturbed field of the (KSy.) equation.
The phase space X will be the space of all smooth functions over S! with zero average,
with the H_; scalar product. This space is not complete (pre-Hilbert, but not Hilbert).

PROPOSITION 2. For any pair of positive («, p) there exist N and ¢ such that the right
hand sides of equations (HJ) and (I{Sy.) In the intersection of the balls B : n; < 2 and
Q : n3 < p differ by no more than « in the Hy norm.

Remark. It is sufficient to take N and e such that
a > p(2C/N + ve) + 2¢,
C being a universal constant.
We have to prove the inequality
Py (u?) 4 e(uy 4+ vuga)||o1 € a

if [Jullzs < p,||u1]] < 2, N and ¢ are sufficiently large and small, respectively. The following
inequalities hold:

2

1) 1 (2) 2 @
1Pl < il < Frllualllyy <

@ W
< Fllullaz = 5 llulhllulls,
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C being a universal constant. The first inequality is a corollary of the definition of the
H_, norm by means of the Fourier coefficients; the second one, of the Cauchy inequality;
the third one, of the Sobolev imbedding theorem; the fourth one, of the monotonicity and
logarithmic convexity in s of the norm n,(w). On the other hand,

le(uyz + vugs)l|-1 < e(lully + vllulls).
The desired inequality is a consequence of the last two estimates.

3.5. Properties of the Hamilton-Jacobi solutions. The properties of the solution
of the Hamilton-Jacobi equation are stated here and will be proved in section 5. In this
section they will be used to prove Lemma 1B. The phase flow transformation of (HJ),
corresponding to the time ¢, is denoted by ¢4 ;.

1°. The blow-up time. The solution of the (H.J) equation blows up either in the
future or in the past. The blow-up times are the values T: and T, with the following
properties: T <0 < T:; the solution ¢}, ;¢ is smooth for all values of T' € (T, T;’) and
ceases to be smooth for t = T; and T"‘: . Furthermore, one has
oL g1 S1|i_7r_2_
® 2minp!’ ¥ 2max '’ 7 2||ellc: ¥ Hells

2°, The conservation law (see 2.1). The function n? is preserved by the (HJ)
equation.

3°. Upper and lower estimates of the n3 norm near the blow-up time. For
some positive C,

5 1Pl 13

CIT, |
P —

¥ >
T —t

4°. Variation of the initial conditions. For some positive C' and any t € (T, T)

gty ()11 < Cllel2 el

Note. Near the blow-up time the norms ng, for s > 1, tend to infinity along the
(H J)-solutions, while the n; norm is preserved. Thus it is not surprising that the n_;
norm of the variation of the initial condition “does not notice” the approaching to the
blow-up time.

3.6. Construction of the flow box for the (HJ) equation. We now pass to the
proof of Lemma 1B. Consider two vector fields v and v + w corresponding respectively to
the (HJ) and (SKn.) equations in the phase space X defined in subsection 3.4. Let ¢ be
the initial condition from Lemma 1B: |||}y = 1, ¢ € Igy. The hyperplane A is defined as
follows

(¥ — @, v(p))-1 = 0,v(p) = —P(ul).

15



The bottom of the flow box of the field v will be chosen so as to fulfill the conditions 3 and
4 of Lemma 3, namely, the upper estimate of the n_; norm of the field v on the bottom
and lower estimate of the angle between the vectors of the field v at different points of the
bottom. Moreover, the blow-up will be almost simultaneous for all the initial conditions
at the bottom. The time interval T will be chosen so as to obtain an inequality nz > p on
the top of the box. Thus the ball ) : n3 < p does not intersect the top. Let us prove that
such a choice of the bottom and the time interval is possible.

PROPOSITION 3. For some positive Cy,Cy and any ¢,%, satisfying the conditions

H‘PHI = 1799 € I(sda ”90 - d}llc2 _<_ ag,o S Cvlyl.2

the following inequalities hold:

NP($2)l1-1 2 Cav' 2, [L(P(03), P(2))] < 7/3.
The proof is given in 5.5.
ProPoOSITION 4. If ||¢||1 = 1,¢p € K4q, then

lells < 207 [lol|c2 < v4/5.

The logarithmic convexity of n,(p) is s implies

lells/llell < Tells/llell2

The first assertion of the Proposition is now a consequence of the definition of the cone

of slow dissipation. The second one follows from the first one and the Sobolev imbedding
theorem.

The bottom of the box now will be defined as follows:

D= (e Alllp—pllox < o).
The time interval T will be taken close to T, : T'= T, — 6, with ¢ small.

PROPOSITION 5. If p > 207}, and 6§ = §(v,p),0 = o(v, p) are sufficiently small, then
for any t € [T — 6,T] one has ng > p everywhere on the t-floor of the flow box Q. For
sufficiently small B1, B> the values § = Byp 231415 o = B,618/% = By Bap~2/31%8/15 will
be adequate.

We next estimate the difference |T;f =T | for ||¢p—1||c2 < . The formula of subsection
3.5 for Tg implies, for o < T;/Q, the inequality

T} —Tf| < o(TH)™2.

16



Proposition 4 gives (Tf)™? < v~8/%, Thus for B, sufficiently small and o = £,68/5 one
has
ITE —Ty|<é6/2

Let y = g% ;% be an arbitrary point of the t-floor of Q2 for t € [T — 6,T]. Then for any
peD
0<Tf —t<26

Property 3° of the (HJ)-equation and Proposition 4 imply that, for some positive Cy, Cy
and sufficiently small § = é(v, p), one has

nd(y) > CiTH67% > Cowt/P672 > p.

The first part of the Proposition is thus proved. The second, containing the explicit
formulas for § and o is proved by directly checking the inequalities (i) ¢ < T: /2
Tg/2 > But/5 > BBy /3128/15 > 45 the last inequality follows from the condition
p > v L(i1)Cov?/®673 > p?, which is obtained by an appropriate choice of .

Note. For p > v~ and f,, 8, sufficiently small the constant ¢ from Proposition 4
satisfies the inequality of Proposition 3.

The construction of the flow box 2 is thus finished.

3.7. The a priori estimate. Let ¢ be as in Subsection 3.6. Property 1° of the
(H J)-equation implies that T: < n%. Consider the arc T of the orbit of the equation
(K Sne) with initial point ¢ and time length 79 = T'—§. Denote by I the part of T located
in the intersection QN Q(Q = {n3 < p}) from the beginning to the end of I' or to the first
exit point from Q N Q. It is proved below that such an exit point exists, but for now the
possibility I' = I" is not excluded. Note that ¢ € QN Q because ||| < 207! < p; the first
inequality follows from Proposition 4, the second one from the definition of p.

PROPOSITION 6. For p > 2v~!, ¢ and N sufficiently small and large, respectively, one
has 1/2 < ni|r < 2.

Recall that 7¢ < T < 7%, Thus it is sufficient to prove that the function |dn?/dty.]|
is small over ' : dn?/dtn. = e(nd — vn3) < gp* < 1. The first inequality follows from
ny <nz < pin Q.

3.8. Reaching the sphere n3 = p. Here the proof of the Lemma 1B is finished. Let
I" be the same arc as in subsection 3.7. Suppose that it does not reach the sphere n3 = p.
Then three possibilities arise (Figure 2.), each of them leading to a contradiction. In all
three cases I' C () and one of the assertion holds:

(A.) T reaches the bottom of the flow box {1

(B.) T reaches the side of Q.
(C.) T belongs to .



| - B, C'—c'm,oa.ssi!/e
C. HJ-time is close to KSy-~time

Figure 2.

The impossibility of the case A has just been proved: the ball Q has an empty inter-
section with the top of 2, according to Proposition 5. '

The impossibility of cases B and C will be deduced from Lemma 3. We check the
conditions of this Lemma for the fields v and w, the flow box 2, the arc I" and the space

X = C* with the H_; norm.
Condition 1 is a consequence of Propositions 2 and 6:
llw|r|l-1 < a for a = p(2C/N + ve) + 2¢ < evp.

The last inequality is valid for N sufficiently large and p > 2v~!. Condition 2 is a conse-
quence of Proposition 6 and Property 4 of the (HJ) equation:

max ||dg}y ;(u)||-y = F3 F < p*/2 for ||ulls < p,|lully > 1/2,u €T

Conditions 3 and 4 follow from Proposition 3. The value of the constant in the condition
4 may be chosen to be Cv!2.

The smoothness assumption of Lemma 3 is evidently fulfilled. In fact, the initial

condition u(r) = ¢7,,¢,u(r) € I' depends smoothly on 7; the solution of the (HJ)-
equation with the initial condition u(7) also depends smoothly on 7.
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We now use the perturbation Lemma to prove the impossibility of cases B and C.
Case C is impossible, because the arc I' reaches the t-floor of €2 for a value of ¢ close to
T — ¢*. This follows from assertion 2 of Lemma 3. The difference |T} — ¢| is so small,
and the time T: is so close to the blow-up time of all the solutions in the box, that on the
t-floor the inequality n3 > p holds. (see Proposition 5).

Case B is impossible because of the logarithmic convexity in s of the norm n, with
respect to s. More specifically, let T" reach the side of the box §2 at the point ¢, remaining

in the ball @ : n3 < p (Figure 2). Let ¢y = [I,p1,€ = ¢ — . (Figure 2). The following
properties of ¢ lead to contradiction:

1) |léllr £ 2aFT 2°) [féllcz =0 3°) [llls < pv72

We prove the first of these properties. Property 1° follows from assertion 1 of Lemma
3. Property 2° follows from the definition of the bottom of the box. Property 3° follows
from property 3° of (HJ)-solutions; the detailed proof is as follows. In subsection 3.6 a
lower estimate for the blow-up time in the past is given for the (H J)-solutions beginning
at the bottom of the box. Namely, there is a positive § such that for any ¢ € D one has
Br—/5 < [T, |. Property 1° of the (HJ)-equation implies that |T}| < 7%, Thus, by using
the rightmost inequality in property 3° of (H.J)-equation, one obtains

|11z < pr 2.

Since ||p||s < 2v7!, the vector € = 1, — ¢ has property 3°. Thus all three properties of
the vector £ are proved. We will deduce a contradiction for ¢ sufficiently small.

The Sobolev embedding theorem implies ||[é]|c2 < ||€]]2.6. The logarithmic convexity
of n, gives then

€11 )10 1€l or 0 10 s e1s 16
(Hf”ﬂi = [1€]]-1 €111 2 [IE]I5]lll2s = Cp™ v 0

for sufficiently small C. Since « is arbitrary small (together with ¢) the last inequality
contradicts the property 1° of £. This ends the proof of Lemma 1B.

Note. The previous inequality implies that case B is impossible for ¢ = Cp~ 1151710,
if C is small. Here the following inequalities are used: ||£]|-1 < 2aFT, T = 0(1); <
evp, F < p*/2. Let p = Cv~? with C large enough. Then the assertion of Lemma 1B holds

72

for € = cv’® with ¢ small enough.
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84. Loss of energy.

In this section we prove Lemma 2 of Subsection 2.3.

4.1. An upper estimate for the energy. Let T be the same arc as in Subsection
3.8. We can estimate the maximum of the energy n? on I' by a value depending on € and

v. We have )
dnf

dtisy.

= ¢g(nl —vnl).

Let T be the part of I' which belongs to the cone of pumping. According to Subsection
3.7, n1|r < 2. Together with Proposition 4 of 3.6 this implies that ngjpr < 2v~1. The
logarithmic convexity of n, gives n3|p < 4y~ 1. The time length corresponding to I' is less
than or equal to the time length of T and does not exceed a universal constant. Everywhere
on [\I" the derivative dn?/dtr,, is negative since n}(¢) = 1. Thus

max n? <144ev'r.

Consequently
1

m[z‘l.x n <142 7.
4.2 Dissipation of energy. The energy decreases in the domain Ky4\K,. By defi-
nition of the cone of rapid dissipation we have, everywhere in K4, the inequality

ny —wvni < —vni/2.

This implies that the energy n? decreases rapidly in I, along the KSy.-orbits. In this
subsection we show that for p > Cvr~? and sufficiently large C the arc I stays in K,4 for
such a long time that the energy will decrease substantially along this arc.

Denote by I'" a subset of I' consisting of a finite number of arcs, ordered according to
the time orientation on I' and having the following property: n3 takes the same value at
the initial point of each arc as at the end point of the previous one; at the beginning of the
first arc ng = 4v71; at the end of the last, n3 = Cv~% = p (Figure 3). This set of arcs exists

because of the Exit Lemma; it is finite because the right hand side of (K Sy, )-equation is
analytic. A simple calculation gives

dn? dn?

= +e(n3 — vnk
ditgsy. dtug 4 5)

Because of the logarithmic convexity of ny with respect to s one has: ng/ng > nsg/ns.
Thus ni — 1/71% < 0 everywhere in I{,q (and even in K,q). We now estimate dn?/dty ;.

%dng/(lt}]] = —((Pul)s,ups) = (P(u2), uys)
= (u2, Pul) = (v, upe) = —((u2)s,uzs).
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\dn3/dty ] < | ?{uxzuigi + | furuxaui\

f’U;IUIS’U.LA = — %uxzuzs/Q; luy2| < ng

Idng/dtyjl =| 7{u12ui3| =< ng, |dng/dtn | < ng

But

Thus

4.3. Change of variables. We begin with the following general result:

PROPOSITION 1. Let z, a smooth function of t, satisfy the inequality 0 < dz/dt < f(z),
where ¢ is a nonnegative function on the interval

€ [a,b];z(a) = A, z(b) = B.

Then

b B
/a plat)t 2 | ?((i;d:r

This proposition is a direct consequence of the change of variables formula.

4.4. Estimate for the energy dissipation. Let p > Cv~2%. Suppose that I' is
a single arc (in the general case, Proposition 1 may be applied to each arc of the set
I separately). Take ¢ = ny|pv,2 = n.|pv, t = txs,. = the time corresponding to the
(K Sne) equation. Let A and B be the values of t corresponding to the beginning and the
end of the arc I''; thus A = 4v~!; B = Cv™2. In subsection 4.2 we proved the inequality
dz/dt < z2. For sufficiently large C, Proposition 1 implies that

dn ev [ eC
TL]( - n1 / —ldt —T / ’I'Lg’(lt S —/ —dn3 < —7
) @ A A—l

Also, if C is large, the growth of the energy along I'' is less than the loss of energy along
I'"'. This proves Lemma 2.

§5. Properties of the Hamilton-Jacobi equation.

In this section we prove the assertions of Subsection 3.5 and Proposition 3 of 3.6.

5.1. Explicit formulas for solutions of (HJ). Consider the two initial problems:

2 —
uy = —Puj,uli=g = ¢, u = 0;

2
wy = —wj, W= = .

Denote the restriction of the solution of the first problem to the circle {t} x S! by

u' = g'¢ and denote by w! the corresponding restriction for the second problem. In
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Subsection 1.1 the equality u! = Pw' was stated. The solution w* is found in the standard
way [13, §8]:
wt = v o tl™1) where vl = ¢ + tp?, x! = id + 2¢'t.

The exponent in the composition is enclosed in square brackets in order to avoid confusion
with an algebraic exponent; with this notation, x=1 is the inverse of x.

5.2. The blow-up time. The solutions g*p are defined and smooth for all ¢ for which
x! is a diffeomorphism. This smoothness is lost for the values t = T: >0andt =T, <0,
which can be obtained directly by solving the equation

X' =1+ 20"t =0.
Thus
T;’ = —1/2miny", T, = -1/2max ", |T;,|:| > 1/2[fp||c2-

If the value max " or |min | is small, then the norm ||¢||; is also small. This leads in
a simple way to the inequality |T| < «2/||¢||;. This proves Property 1° of 3.5.

5.3. Estimates for the Hi;-norm along solutions of (HJ). We prove that for
any ¢ # 0 and t € (T} /2,T}) there exists a positive C' such that

. 2 N
) o'l = /(1 + 2070
(%) CTF /(TS —1)° < lg'oll; S (TF°/(Tg = 6°)lell3
Similar inequalities hold for t € (T;’/'Z, T, ). The first one is valid also for ¢t € (0, T;).
A calculation with some mysterious simplifications gives:
(9'¢)as o X' = P (x") 7%
Formula (*) can be derived from here by using the change of variable £ = x!(z) in the
integral §[(g'p),s]?dz.
We next prove the rightmost inequality (*x) for ¢t € (0, T:). Set ¢ = x! =1+ 20"t
Then formula () will take the form: [|g'p||3 = $((®)?/45. For t € (0,Tf) one has

( * %) miny =1+ 2ming"t =1 —¢/T} = (T} —t)/T}.
Together with (), this implies the desired inequality.

Let us prove the leftmost inequality (xx) for t € (T:/‘Z, T;'). For the same v as above
one has o' = 9'/2t. By (%)

o B = (a6 fum /%) = (92) o >
Z (ISWTJZ)_I(f‘((Z’_&/?)I'(]&)? — CO(T:)'Z(Va1‘¢_3/2)2 >

@) 2 -
> Co(TH (TS — )27 32 — 12, ¢y = (187) !
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Here varf is the variation of the function f; inequality (1) is a consequence of the Cauchy
inequality; (2) follows from the equality min = (T} —1t)/T;f (see (+ * *)) and the fact
that v = 1 whenever ¥" = 0. Moreover, t € (T:/Q, T:). Thus

(TF — ) 2(TF PP =12 > (T /8(TF —t)°.
This implies the desired inequality for sufficiently small ¢:
lg'ell3 > Ty /(TF —t)°

5.4, The variation of the initial conditions. Here we prove property 4° from 3.5.
Another calculation with mysterious simplifications gives the formulas

ef d _
(dg") (@) & g (o + etb)[emo = 0 X171,

de
To estimate the norm of this Fréchet derivative it is convenient to pass from the space H _;

to Hy. To do this consider the operator I, defined on the space of centralized functions
by I: fw— F,F' = f,F = 0. The equivalent definition of the n_; norm is given by

the equality ||f||-1 = HIfHO. Any bounded operator A : H_y — H_;, defined on an

everywhere dense subset Ho C H 1, generates an operator B : Hy — H defined on an

everywhere dense subset H1 C HO and having the same norm: ||A||=; = ||B]lo- In fact

B =ToAoIl"1, The coincidence of the norms is obvious, because I preserves the length
of each vector.

In the case under consideration
Ap =pox "N, Bf =To(f oxT7M).
Let us find an upper estimate for the norm ||B||y. Let

feHy#0,Bf(zo) =0

1):/ FroxUde x € [wg, w0 + 27),9 = Bf + alz — o).
Zo

Here a is the average of f' o x{=1. Then Bf = g — a(z — zg).

We next prove the inequalities

* 2 - -
() ligllo = |1 Flo(llells + Hell2®) el lal < I fllollellallelT
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Together with the Sobolev imbedding theorem for C? this implies property 4°. To see this,
let ! = x. Then

z) = / Floxt=t= / (Foxt™yx o xt™ = foxt™(a)x'x! ()
z0 z
0 X 1(z)
/ Foxt™lx"oxmH- (=) = (fx’)ox["”(x)—/ X"
xl=1(z0)
We now need the following general inequality: ||k o x!7U|]o < ||R|loy/max|x'|. In fact,

_ B2 o A= (1Y
1o X!~ = 7{};2 oxl 1 = f >(<x[_1(]>)<' ) < ||R)|2 max |x'|.

Thus

11F o xIm - x" o x=Ho < J1F o X ol Ixller €
3/2 3/2 —3/2
YIEE < ol 122 el

The last inequality uses the expression for x and the lower estimate for |T¢i| of 5.1. More-
over, for any «, 3 € S*,

I/ XTSI o < 2t fllollells < 1 fllollellsllell1™

This gives the first of the inequalities (:), it remains to prove the second. Using the
27-periodicity of f and the definition of «, one obtains:

a=g(zy+27)/27 = ffx”/?r,
la| < 11 fllollellsllollT

5.5. Proof of Proposition 3 of 3.6. Let us recall the formulation.

PROPOSITION 3 OF 3.6. For some positive Cy,Cy and any ¢, satisfying the condi-
tions

“LIQ“l = 1’99 € I‘\’sda “S‘o - d)HC? S g,0 S C'1V1'2

the following inequalities hold

IP@)|-1 2 Cav' 2, |L(P(03), P(97))] <

00|=l

Note. The condition ¢ € I,y implies that the high modes in the Fourier expansion of
¢ do not dominate the low ones in the sense of all norms n, for s < 3 (see the Note below
and the remarks following it).

24



PROPOSITION 1. Let the function f € Hi(S') have a zero, and max |f| > C,|f'| < C4.
Then a) if f = 0, then

max |[f] > C2/2C,  b) 74 1= CHCt oliflle > €2\ /Tr.

The proof of assertion (a) is illustrated in Figure 4. Since it has a zero, the function f
may be considered as a 2w-periodic function over R. . Thus the shadowed triangle in Figure
4 with area C?/C; may be placed under the graph of the function f and its base may be
placed between two neighboring zeroes of f, and consequently, on the period interval. Thus
the oscillation on S! of any indefinite integral of f is not less than C?/C;. Consequently,
If > C?/C,. This gives assertion (a). Assertion () is proved similarly. Let us prove (c).
We have: max |f?| > C2,|(f*)'| < 2CC;. Thus, by (b), § 2 > C*/2CCy = C?[2C,.

PROPOSITION 2. Let f = 0,|f|lo = 1,|f'| < Ci. Then ||Pf2||_; = C2/%,

Let us first estimate first max |IPf?| from below by using Proposition 1A. Then
HIPf2||lo = [|Pf2%||-1, using Proposition lc. Let max|f| = C. Then

max |Pf?| > C?/2,|(Pf?*)'| < 2CC,.
By applying Proposition 1A to the function Pf2, one has
max |IPf?| > C3/16C;.

By applying Proposition 1C to the function IPf2, which satisfies the previous estimate
and also |(IPf?)'| = |Pf?| < 2C?, one obtains

1P f?lo = IPf*||-1 2 CT/PCTH2,
Finally, the inequality ||f||o = 1 implies C' > 1/v/2n. Thus
1Pf2l- 2 €
Note. The logarithmic convexity in s of the norm n, and the conditions ||p||1 =

L |lells < 2v~! imply the lower estimate on ||p,||_1. Yet it says nothing about the norm

[|Po2||-1. For example, if the function ¢, is 1 on one half of S', and —1 on the other,
then Pyl =0.

We now prove the first assertion of Proposition 3 of 3.6: ||Pw2||_; = v!2. Set ¢, = f.
By assumption, ||f||o = 1. By Proposition 4 of 3.6 | f'| < v~*/%. Proposition 2 now implies

1P 2
To prove the second statement, we note that
P(‘Pi - ¢f) = P[(‘PI - ¢1)(‘19a: + wz)]

The function p, — 9, is small in H_;, and the function ¢, + ¢, is bounded; yet multipli-
cation by a bounded function followed by the projection P is not a bounded operator in
H_,. Thus the following Proposition is natural
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PROPOSITION 3. Let f € H_1, g € Hy. Then ||P(fg)ll-1 < |Ifll=1llgll1-

The integration by parts formula in the space of functions with zero average over S*
takes the form

I(P(fg)) =II((1f)g) = P((1f)g')] =
= P((1f)g) — IP((I1f)g")-

We can estimate the first term as follows:

IP((LFgllo < ILgllo < |1 fllo max|g| = |[f]l-1llgllx-

In order to estimate the second term, we use the simple inequality

|[IPh| < 2%]]1\
LP((If)g)llo = f ((TF)g'l < I fllollg’llo = 11f1-1llgll-

Let us now prove the second assertion of Proposition 3 of 3.6. Everywhere in D one
has n; < 2 if o is sufficiently small. Consequently ny < 2. Moreover, ||, + ¢¥:||-1 =
lle + ¥llo < 4. Thus

llpz = %ulli = llo = $ll2 S llo = Pller <o w2

Proposition 3 now implies that for any ¢, € D
IP(¢2 = 2)||-1 S o v

Finally, if the difference of the two vectors is small compared to the length of each of them,
then the modulus of the angle between them is less than 7/3.
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