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Abstract

Recent experimental studies have shown that HIV can be transmitted directly from cell

to cell when structures called virological synapses form during interactions between T cells.

In this article, we describe a new within-host model of HIV infection that incorporates two

mechanisms: infection by free virions and the direct cell-to-cell transmission. We conduct the

local and global stability analysis of the model. We show that if the basic reproduction number

R0 ≤ 1, the virus is cleared and the disease dies out; if R0 > 1, the virus persists in the host.

We also prove that the unique positive equilibrium attracts all positive solutions under addi-

tional assumptions on the parameters. Finally, a multi strain model incorporating cell-to-cell

viral transmission is proposed and shown to exhibit a competitive exclusion principle.
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1 Introduction

Mathematical modeling of within host virus models has flourished over the past few decades.

These models have been used to describe the dynamics inside the host of various infectious

diseases such as HIV, HCV, HTLV, as well as the flu or even the malaria parasite. Testing

specific hypotheses based on clinical data is often difficult since samples cannot always be

taken too frequently from patients, or because detection techniques of the virus may not be

accurate. This justifies the central role played by mathematical models in this area of research.

One of the early models, known as the standard model and reviewed in the next section,

was used by Nowak and May [16], and by Perelson and Nelson [17] to model HIV. It was

successful in numerically reproducing the dynamics of the early stages of HIV and its target,

the CD4+ T cells, following an infection event. The global behavior of the standard model

was first investigated analytically in [2]. Here, the global stability of the disease steady state

was proved using the powerful second compound matrix methods developed by Muldowney

[15] and by Li and Muldowney [10]. Among the first successes of this geometrical method

was the long sought-after proof of global stability in the classical epidemiological SEIR model

[11]. Since epidemic models and within host virus models are structurally similar, it should

not come as a surprise that the geometrical methods of [10, 15] are at the basis of the global

stability proof of the standard model in [2].

It is well-known from the converse Lyapunov theorem [7], that whenever a nonlinear system

of ODEs has a globally stable steady state, that then there exists a global Lyapunov function.

Korobeinikov in [8] was the first to discover a Lyapunov function in the context of SEIR and

SEIS models. Korobeinikov’s Lyapunov function was exploited further in [3] to establish global

stability for the standard model under relaxed conditions for the model parameters, as well as

for within host virus models with multiple, possibly mutating, strains.

Although our discussion so far was focused on the global stability of certain steady states,

it has been demonstrated that more complex dynamical behavior, in particular taking the

form of sustained oscillations, may arise in the standard model for specific proliferation rates

of healthy cells [2, 24], or under the assumption that infected cells proliferate as well [23], a

feature which is not encoded in the standard model.

Based on more recent findings about additional infection processes, it is the main goal of

this paper to extend the standard model in two ways:

1. In the standard model it is assumed that healthy cells can only be infected by viruses.

2



However, recent work shows that cell-to-cell transmission of viruses also occurs when a

healthy cell comes into contact with an infected cell [18]. In fact, in vitro experiments

reported in [21] have shown that in shaken cultures, viral transfer via cell-to-cell contact

is much more rapid and efficient than infection by free virus because it avoids several

biophysical and kinetic barriers. In vivo, direct cell-to-cell transmission is also more

potent and more efficient according to [14]. The details of the infection mechanism via

cell-to-cell contact are described in [13, 14, 19] and have been attributed to the formation

of virological synapses (VSs), filopodia and nanotubes. The model proposed here deviates

from, and in fact, expands the standard model, by including the additional cell-to-cell

infection mechanism.

2. According to the standard model, viruses do not enter previously infected cells, although

most HIV infected splenocytes for example, are found to be multiply infected [4]. More-

over, the loss of virus upon entry of a healthy cell, has often been neglected in the

literature. The model we propose here, accounts for both processes.

2 The mathematical model

The standard model of a within-host virus infection [16, 17] is


















Ṫ = f(T )− kV T,

Ṫ ∗ = kV T − βT ∗,

V̇ = NβT ∗ − γV (−kV T ),

where the term in the parentheses may or may not be present.

Our mathematical model has the following form:


















Ṫ = f(T )− k1V T − k2TT
∗,

Ṫ ∗ = k1V T + k2TT
∗ − βT ∗,

V̇ = NβT ∗ − γV − k3V T − k4V T ∗.

(1)

where T, T ∗ and V denote the concentrations of uninfected host cells, infected host cells and

free virus particles, respectively. Parameters k1, k2, β,N and γ are all positive constants. k1 is

the contact rate between uninfected cells and viruses. k2 is the contact rate between uninfected

cells and infected cells. The parameters β and γ represent the death rate of infected cells and

virus particles, respectively. In the case of budding viruses, N is the average number of virus

particles produced by an infected cell during its lifetime; in case of lytic viruses, N represents
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the average burst size of an infected cell. The parameter k3 models the rate of absorption of

free virions into healthy cells during the infection process. In some instances, this term has

been neglected [16, 17]. The parameter k4 models the absorption of free virions into already

infected cells, a process which may be biologically relevant for some viruses, yet in each case

it will be determined by the specific mechanism of the viral cell entry [4].

The growth rate of the uninfected cell population is modeled by the smooth function

f : R+ → R, which is assumed to satisfy the following:

∃T0 > 0 : f(T )(T − T0) < 0, ∀T 6= T0, and f ′(T ) < 0 ∀T ∈ [0, T0]. (2)

The continuity of f implies that f(T0) = 0, and hence E0 = (T0, 0, 0) is an equilibrium point

of system (1). Biologically, E0 represents the disease-free equilibrium.

The Jacobian matrix of (1) at E0 is

J0 =











f ′(T0) −k2T0 −k1T0

0 k2T0 − β k1T0

0 Nβ −γ − k3T0











.

The submatrix of J0 corresponding to the infectious compartments is

J01 =





k2T0 − β k1T0

Nβ −γ − k3T0



 = F − V, where F :=





k2T0 k1T0

Nβ 0



 and V :=





β 0

0 γ + k3T0



 .

A quick calculation shows that the next generation matrix is given by

FV −1 =





k2T0

β
k1T0

γ+k3T0

N 0



 .

The basic reproductive number, R0, is the spectral radius of FV −1 [22], hence

R0 = ρ(FV −1) =
1

2





k2T0

β
+

√

(

k2T0

β

)2

+
4k1T0N

γ + k3T0



 . (3)

One eigenvalue of J0 is given by f ′(T0) < 0, and the remaining two are also eigenvalues of J01.

The determinant of J01 is given by

det J01 = (β − k2T0)(γ + k3T0)−Nβk1T0

= β(γ + k3T0)

(

1− k2T0

β
− Nk1T0

γ + k3T0

)

= β(γ + k3T0)(1− T0),
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where

T0 =
k2T0

β
+

Nk1T0

γ + k3T0
(4)

Note that

R0 =
1

2





k2T0

β
+

√

(

k2T0

β

)2

+ 4

(

T0 −
k2T0

β

)





=
1

2





k2T0

β
+

√

(

2− k2T0

β

)2

+ 4(T0 − 1)





and hence

R0 = 1 if and only if T0 = 1.

Moreover, R0 is increasing in T0, and thus R0 > 1 if and only if T0 > 1. Similarly, R0 < 1 if

and only if T0 < 1. Consequently, if R0 > 1, then det J01 < 0, and J0 has a positive eigenvalue.

If R0 < 1, then det J01 > 0, and k2T0 < β which implies that trJ01 < 0, so that all eigenvalues

of J0 have negative real parts. We obtain our first result.

Theorem 1. If R0 < 1, then E0 is locally asymptotically stable; if R0 > 1, E0 is unstable.

Any other equilibrium E = (T̄ , T̄ ∗, V̄ ) in R
3
+ must satisfy the following relations:

βT̄ ∗ = f(T̄ ), V̄ =
Nf(T̄ )

γ + k3T̄ + k4T̄ ∗
, 1 =

k2T̄

β
+

Nk1T̄

γ + k3T̄ + k4f(T̄ )
β

:= G(T̄ ).

The function G is monotonically increasing, since the first term is linear in T̄ , and the reciprocal

of the second term
γ

Nk1T̄
+

k3
Nk1

+
k4f(T̄ )

Nk1βT̄

is strictly decreasing in T̄ when T̄ is in (0, T0), by (2). A positive equilibrium corresponds to

a solution of G(T̄ ) = 1 with 0 < T̄ < T0. Since G(0) = 0 and G(T0) = T0, we conclude that a

unique positive equilibrium exists if and only if R0 > 1.

Lemma 1. If R0 ≤ 1, then the equilibrium E0 is the only equilibrium of (1). If R0 > 1, then

E0 and E = (T̄ , T̄ ∗, V̄ ) are the only two equilibria of (1).

3 Preliminary results for the general model

Lemma 2. Every forward solution of (1) starting in R
3
+, is defined in R

3
+ for all t ≥ 0, and

bounded. Furthermore, system (1) is uniformly dissipative in R
3
+.
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Proof. Positive invariance of R3
+ follows from the standard argument that the vector field of

system (1) is inward pointing on the boundary of R3
+. To show boundedness, fix a forward

solution in R
3
+ and fix some ǫ > 0. Observe that the T -equation in (1) implies that T (t) ≤

M := max(T0, T (0)) for all t ≥ 0 as long as the solution is defined. Since f(T ) is bounded on

[0,M ], there exist A,B > 0 such that f(T ) ≤ A − BT for all T ∈ [0,M ]. Choose a constant

0 < α1 < 1/N and consider an auxiliary function U = T + T ∗ + α1V . Due to (1), we have

U̇ ≤ f(T )− β(1− α1N)T ∗ − α1γV ≤ A−BT − β(1− α1N)T ∗ − α1γV ≤ A− α2U,

where α2 = min(B, β(1 − α1N), γ) > 0. Hence, U(t) ≤ max
(

U(0), A
α2

)

for all t ≥ 0. This

implies that the corresponding forward solution of (1) is bounded in R
3
+ and exists for all t ≥ 0.

From the above argument, it is clear that any solution of (1) in R
3
+ eventually satisfies

T (t) ≤ M0 := T0 + 1, and therefore one can choose uniform constants A0, B0 > 0 so that

the function U(t) eventually satisfies the inequality U̇ ≤ A0 − α0U where α0 = min(B0, β(1−
α1N), γ) > 0. Hence, any solution of (1) in R

3
+ eventually enters a forward invariant simplex

D =

{

(T, T ∗, V ) ∈ R
3
+ : T + T ∗ + α1V ≤ A0

α0
+ 1

}

. (5)

Hence, system (1) is uniformly dissipative in R
3
+.

At this point, we make the following (possibly trivial) remark: Consider any solution of (1)

in R
3
+. If there exists a t0 such that T (t0) < T0 then T (t) < T0 for all t ≥ t0. Our next result

provides the necessary and sufficient condition for the global stability of E0.

Theorem 2. If R0 ≤ 1 then the infection free equilibrium E0 attracts all solutions in R
3
+.

Proof. If T (0) = 0, then Ṫ (0) > 0, so T (t) > 0 for all sufficiently small t > 0. If T ∗(t) =

V (t) = 0, then it is clear that T (t) → T0 as t → ∞. If exactly one of T ∗(0) or V (0) is zero,

then its derivative at t = 0 is positive, and hence this variable is positive for all small t > 0.

Furthermore, none of T (t), T ∗(t) or V (t) can decrease to zero in finite time, hence it suffices

to consider only solutions with both T ∗(t) and V (t) positive for all t ≥ 0. We previously

remarked that either T (t) ≥ T0 for all t ≥ 0, or there exists a t0 ≥ 0 such that T (t) < T0 for

all t > t0.

Consider the former case, that is, T (t) ≥ T0 for all t ≥ 0. Then Ṫ (t) ≤ 0 for all t ≥ 0,

and T (t) → T∞ ≥ T0 as t → ∞. Barbalat’s Lemma implies that limt→∞ Ṫ (t) = 0. Noticing

that by (2), f(T∞) ≤ f(T0) = 0, we use the T -equation in (1), to conclude that T∞ = T0, and

limt→∞ T ∗(t) = limt→∞ V (t) = 0.
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Now, suppose that there exists a t0 ≥ 0 such that T (t) < T0 for all t > t0. Without loss of

generality, we may assume that T (t) < T0 for all t ≥ 0. We introduce an auxiliary function:

W = (γ + k3T0)T
∗ + k1T0V, (6)

and evaluate Ẇ along a solution of (1):

Ẇ = (γ + k3T0)Ṫ
∗ + k1T0V̇

= (γ + k3T0) (k1V T + k2TT
∗ − βT ∗) + k1T0(NβT ∗ − γV − k3V T − k4V T ∗)

= T ∗ (k1T0Nβ + (γ + k3T0)(k2T − β)) + V (k1T (γ + k3T0)− k1T0(γ + k3T )− k1T0k4T
∗)

≤ β(γ + k3T0)T
∗(T0 − 1) + k1γV (T − T0)− k1k4T0V T ∗ ≤ 0,

where all three terms are non-positive. Therefore, there exists limt→∞W (t) = W∞ ≥ 0.

Barbalat’s Lemma then implies that limt→∞ Ẇ (t) = 0.

If W∞ = 0, it is clear that limt→∞ T ∗(t) = limt→∞ V (t) = 0 and limt→∞ T (t) = T0.

If W∞ > 0, then there exists ∆1 > 0 such that k1V + k2T
∗ ≥ ∆1 > 0 for all sufficiently

large t. The T -equation in (1) implies that Ṫ ≤ f(T ) − ∆1T , and thus there exists ∆2 > 0

such that T (t) ≤ T0 −∆2 for all sufficiently large t. Since Ẇ ≤ k1γV (T − T0) ≤ −k1γ∆2V ,

limt→∞ Ẇ (t) = 0 implies that limt→∞ V (t) = 0, and by Barbalat’s Lemma, we have that

limt→∞ V̇ (t) = 0, and the V -equation in (1) implies limt→∞ T ∗(t) = 0, hence W∞ = 0, a

contradiction. Therefore, W∞ = 0, and the proof is complete.

The next Theorem shows that the positive equilibrium E is locally stable whenever it exists.

Theorem 3. If R0 > 1, then E is locally asymptotically stable.

Proof. If R0 > 1, a unique positive equilibrium E exists by Lemma 1. For notational conve-

nience, we will drop all bars so that all variables are at their equilbrium values. The following

relations hold at E:

βT ∗ = f(T ), k1V+k2T
∗ = f(T )/T, γ+k3T+k4T

∗ =
NβT ∗

V
=

Nf(T )

V
, β−k2T =

k1V T

T ∗
.

The Jacobian at E has the form

J(E) =











f ′(T )− k1V − k2T
∗ −k2T −k1T

k1V + k2T
∗ k2T − β k1T

−k3V Nβ − k4V −γ − k3T − k4T
∗











.
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Using the equilibrium relations, J(E) simplifies to

J(E) =











f ′ − f/T −k2T −k1T

f/T −k1V T
T ∗

k1T

−k3V (γ + k3T )
V
T ∗

−Nf
V











,

where we have suppressed the arguments of f and f ′. The characteristic polynomial p(λ) =

λ3 + a1λ
2 + a2λ+ a3 is given by

p(λ) = det











λ− f ′ + f/T k2T k1T

−f/T λ+ k1V T
T ∗

−k1T

k3V −(γ + k3T )
V
T ∗

λ+ Nf
V











.

A direct computation using the equilibrium relations above to simplify a2 and a3, we obtain

a1 = f/T − f ′ +
k1V T

T ∗
+

Nf

V
> (f/T − f ′) +

Nf

V
> 0,

a2 = k1k4V T + (−f ′ + f/T )

(

k1V T

T ∗
+

Nf

V

)

+ k2f − k1k3V T,

a3 = (−f ′ + f/T )k1k4V T + f/T

(

k2T
Nf

V
+ k1T (γ + k3T )

V

T ∗

)

− k1k3βV T.

Since −f ′ > 0, we have that

a2 > k1k4V T +
k1V f

T ∗
+

Nf2

V T
+ k2f − k1k3V T.

Since k1V f
T ∗

= k1βV , Nf
V

> k3T , and f/T > k1V , we have that

a2 > k1k4V T + k1βV + k2f > 0.

Simplifying a3 in a similar fashion, we find that

a3 = (−f ′ + f/T )k1k4V T +
k2Nf2

V
+ k1βγV > 0.

Finally, since Nf
V

> γ, we have that a1a2 > a3, and J(E) satisfies the Routh-Hurwitz stability

conditions.

Lemma 3. System (1) is uniformly persistent in D̊, the interior of D, if and only if R0 > 1.

Here, the set D is defined in (5).

Proof. If R0 ≤ 1, then by Theorem 2, E0 attracts all positive solutions. Hence R0 > 1 is

necessary for persistence. The sufficiency of the condition R0 > 1 follows from a uniform per-

sistence result, Theorem 4.3 in [6]. To demonstrate that system (1) satisfies all the conditions
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of Theorem 4.3 in [6] when R0 > 1, choose X = R
3
+ and E = D. The maximal invariant set

N on the boundary ∂D is the singleton {E0} and it is isolated. Thus, the hypothesis (H) of

[6] holds for (1). We conclude the proof by observing that, in the setting of (1), the necessary

and sufficient condition for uniform persistence in Theorem 4.3 of [6] is equivalent to E0 being

unstable.

In the remainder of this paper, we prove that the positive equilibrium E is globally asymp-

totically stable in several special cases of system (1).

4 The case k4 = 0

We begin this section by introducing the method of demonstrating global stability through the

use of compound matrices; see [10, 15].

Let Ω be an open subset of Rn, and let f : Ω → R
n be a vector field that generates the

flow φ(t, x). That is, for a given x ∈ Ω, z(t) = φ(t, x) is the unique solution of the system

ż = f(z) (7)

with z(0) = x. A compact set K ⊂ Ω is called absorbing if for each compact set F ⊂ Ω there

exists a T > 0 such that φ(t, F ) ⊂ K for all t ≥ T . It is clear that an absorbing set must

contain all equilibria of f in Ω. We say that an open set Ω ⊂ R
n is simply connected if each

closed curve in Ω can be contracted to a singleton within Ω.

Let ∧ denote the exterior product on R
n ×R

n, that is, a surjective antisymmetric bilinear

transformation ∧ : R
n × R

n → R
d, where d =

(

n
2

)

. Consider the basis of R
d consisting

of pairwise products ei ∧ ej , 1 ≤ i < j ≤ n ordered lexicographically, where the vectors

ei, 1 ≤ i ≤ n are the elements of the canonical basis of Rn. For a real n × n matrix M ,

its second additive compound matrix, denoted by M [2], is defined by its action on the chosen

basis as follows:

M [2](ei ∧ ej) := (Mei) ∧ ej + ei ∧ (Mej), 1 ≤ i < j ≤ n.

According to this definition, M [2] is a d × d matrix. For instance, if M = (mij) is a 3 × 3

matrix, then its second additive compound is given by

M [2] =











m11 +m22 m23 −m13

m32 m11 +m33 m12

−m31 m21 m22 +m33











. (8)
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For more details on compound matrices, we refer the reader to [5, 15].

Let | · | denote a vector norm on R
d and let ‖ · ‖ be the induced matrix norm on R

d×d, the

space of all real d× d matrices. For a given matrix A ∈ R
d×d, we define its Lozinskii measure

with respect to the norm ‖ · ‖ as

µ(A) = lim
h→0+

‖I + hA‖ − 1

h
.

More details on the properties of Lozinskii measures can be found in [1]. For future reference

we recall without proof the Lozinskii measure, associated to the l1 vector norm:

Lemma 4. The Lozinskii measure of a real n× n matrix M with respect to the matrix norm

induced by the l1 vector norm, is given by

µ1(M) = max
i



mii +
∑

j 6=i

|mji|





Let the map A : Ω → R
d×d be continuously differentiable and nonsingular for all x ∈ Ω,

and let µ be a Lozinskii measure on Rd×d, where d =
(

n
2

)

. Let K be a compact absorbing set

for the flow φ(t, x) in Ω. Define a quantity q̄2 as

q̄2 = lim sup
t→∞

supx∈K
1

t

∫ t

0
µ(M(φ(s, x)))ds, (9)

where

M(x) = Af (x)A
−1(x) +A(x)J [2](x)A−1(x), (10)

with

Af (x) :=
d

dt
A(φ(t, x)), J(x) :=

∂f

∂x
(x).

We have the following result [10, 24].

Theorem 4. Consider system (7), and suppose that Ω is simply connected and contains a

compact absorbing set K. Let (7) have a unique equilibrium point x̄ ∈ K. If A : Ω → R
d×d

is C1 and everywhere nonsingular, and if µ is a Lozinskii measure such that q̄2 < 0, then x̄ is

globally asymptotically stable in Ω.

For the proof of the global stability of E, we will need the following Lemma.

Lemma 5. Every forward solution of (1) in R
3
+ satisfies

lim sup
t→∞

V (t) ≤ Nβ

γ

(

f(0)

β
+ T0

)

=: Vmax.
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Proof. Consider a nonnegative forward solution of (1) and let ǫ > 0. The T-equation in (1)

implies that T (t) ≤ T0 + ǫ for all sufficiently large t. Hence, since f ′(T ) < 0 on [0, T0] by (2),

the total number of cells, Ttot := T + T ∗, for all large t satisfies:

Ṫtot = f(T )− βT ∗ ≤ f(0) + βT − βTtot ≤ f(0) + β(T0 + ǫ)− βTtot.

It follows that T ∗(t) ≤ Ttot(t) ≤ f(0)
β

+ T0 + 2ǫ for all sufficiently large t. The V-equation in

(1) now implies that

V̇ ≤ Nβ

(

f(0)

β
+ T0 + 2ǫ

)

− γV

for all sufficiently large t, thus

V (t) ≤ Nβ

γ

(

f(0)

β
+ T0 + 3ǫ

)

for all sufficiently large t. Since ǫ > 0 is arbitrary, the claim follows.

Theorem 5. Suppose that k4 = 0 and k3 ≥ 0. Let D be the set defined in (5), and let Ω = D̊.

Suppose that R0 > 1, 2k2T0 < β, and k3(f(0) + βT0) < βγ, then E is globally asymptotically

stable for system (1) in Ω.

Proof. Consider a positive solution of (1). As in the proof of Theorem 2, any solution with

T (t) ≥ T0 for all t ≥ 0 converges to E0. Since R0 > 1, Lemma 3 implies persistence, hence any

positive solution must satisfy T (t) < T0 for all sufficiently large t. In addition, Lemma 5 implies

that lim supt→∞ V (t) ≤ Vmax. The condition k3(f(0) + βT0) < βγ implies that k3Vmax < Nβ,

hence k3V (t) < Nβ for all sufficiently large t. By shifting time (which does not affect the

value of the quantity q̄2), if necessary, we will assume that T (t) < T0 and k3V (t) < Nβ for all

t ≥ 0.

Now, consider the Jacobian matrix of system (1):

J =











f ′(T )− k1V − k2T
∗ −k2T −k1T

k1V + k2T
∗ k2T − β k1T

−k3V Nβ −γ − k3T











. (11)

The second compound matrix corresponding to J is given by

J [2] =











a− β k1T k1T

Nβ b− γ −k2T

k3V k1V + k2T
∗ c− β − γ











, (12)
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where

a = f ′(T )− k1V − k2T
∗ + k2T, b = f ′(T )− k1V − k2T

∗ − k3T, c = k2T − k3T. (13)

Define an auxiliary matrix function A on Ω as

A := diag

(

1

T ∗
,
1

V
,
1

V

)

.

Since T ∗, V > 0 everywhere in Ω, A is smooth and nonsingular. Furthermore, we find that

Af = diag

(

− Ṫ ∗

(T ∗)2
,− V̇

V 2
,− V̇

V 2

)

,

AfA
−1 = diag

(

− Ṫ ∗

T ∗
,− V̇

V
,− V̇

V

)

,

AJ [2]A−1 =











a− β k1TV
T ∗

k1TV
T ∗

NβT ∗

V
b− γ −k2T

k3T
∗ k1V + k2T

∗ c− β − γ











, (14)

hence

M = AfA
−1 +AJ [2]A−1 =











a− β − Ṫ ∗

T ∗

k1TV
T ∗

k1TV
T ∗

NβT ∗

V
b− γ − V̇

V
−k2T

k3T
∗ k1V + k2T

∗ c− β − γ − V̇
V











=





M11 M12

M21 M22



 , (15)

where

M11 =
[

a− β − Ṫ ∗

T ∗

]

, M12 =
[

k1TV
T ∗

k1TV
T ∗

]

, M21 =





NβT ∗

V

k3T
∗



 ,

M22 =





b− γ − V̇
V

−k2T

k1V + k2T
∗ c− β − γ − V̇

V



 .

Let (u, v, w) denote a vector in R
3, and define a vector norm on R

3 as |(u, v, w)| = max(|u|, |v|+
|w|) and let µ be the corresponding Lozinskii measure. Then from [11, 12], we have that

µ(M) ≤ max(g1, g2), (16)

where

g1 = µ1(M11) + ‖M12‖, g2 = µ1(M22) + ‖M21‖.
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‖M12‖, ‖M21‖ are the operator norms associated to the linear mappings M12 : R2 → R, and

M21 : R → R
2 respectively, where R

2 is endowed with the l1 vector norm in both cases.

We have the following

µ1(M11) = a− β − Ṫ ∗

T ∗
, ‖M12‖ =

k1TV

T ∗
, ‖M21‖ = max

(

NβT ∗

V
, k3T

∗

)

,

µ1(M22) = −γ − V̇

V
+max (k1V + k2T

∗ + b, k2T + c− β) ,

where Lemma 4 has been used to calculate µ1(M22). Since k3V < Nβ, it follows that NβT ∗

V
≥

k3T
∗, and ‖M21‖ = NβT ∗

V
. Using (1), we find that

Ṫ ∗

T ∗
=

k1V T

T ∗
+ k2T − β, (17)

V̇

V
=

NβT ∗

V
− γ − k3T. (18)

Recalling the expressions for a, b and c in (13), we have that

µ1(M22) = −NβT ∗

V
+max(f ′(T ), 2k2T − β),

and therefore that

g1 = a− β − Ṫ ∗

T ∗
+

k1TV

T ∗
= f ′(T )− k1V − k2T

∗,

g2 = max(f ′(T ), 2k2T − β).

Since f ′(T )− k1V − k2T
∗ ≤ max(f ′(T ), 2k2T −β), we find that g1 ≤ g2, and then (16) implies

that µ(M) ≤ g2. Let

p1 = max
[0,T0]

f ′(T ), and p2 = 2k2T0 − β.

The assumptions in 2 imply that p1 < 0, and the assumptions of this Theorem imply that

p2 < 0. Hence,

µ(M) ≤ p, p := max(p1, p2) < 0.

Integrating the above inequality, we find that

1

t

∫ t

0
µ(M) ds ≤ p.

Therefore,

lim sup
t→∞

1

t

∫ t

0
µ(M) ds ≤ p < 0.

This clearly holds for all solutions in Ω, thus q̄2 ≤ p < 0. The uniform persistence established

in Lemma 3 implies the existence of a compact absorbing set K ⊂ Ω. Observing that Ω is

simply connected, we apply Theorem 4 to complete the proof.
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5 The case k3 = 0

Although this case is biologically relevant only if k4 = 0, the following global stability result

holds for all k4 ≥ 0.

Theorem 6. Suppose that k3 = 0 and k4 ≥ 0. Let D and Ω be as defined in Theorem 5. If

R0 > 1, then the equilibrium E is globally asymptotically stable for system (1) in Ω.

Proof. Local stability of E follows from Theorem 3. Recall that the following equilibrium

relations hold:

k1V̄ T̄ + k2T̄ T̄
∗ = βT̄ ∗, (19)

T̄ ∗ =
k1V̄ T̄

β − k2T̄
, (20)

NβT̄ ∗ = γV̄ + k4V̄ T̄ ∗. (21)

Combining (20) and (21), we find that

Nβk1T̄ = γβ − k2γT̄ + k1k4V̄ T̄ . (22)

Consider the following function on R̊
3
+:

W =

∫ T

T̄

(

1− T̄

τ

)

dτ +

∫ T ∗

T̄ ∗

(

1− T̄ ∗

τ

)

dτ +
k1T̄

γ

∫ V

V̄

(

1− V̄

τ

)

dτ.

So,

dW

dt
=

(

1− T̄

T

)

dT

dt
+

(

1− T̄ ∗

T ∗

)

dT ∗

dt
+

k1T̄

γ

(

1− V̄

V

)

dV

dt
:= A1 +A2 +A3.

The first term, A1, in Ẇ can be rewritten as

A1 =

(

1− T̄

T

)

(f(T )− k1V T − k2TT
∗)

=

(

1− T̄

T

)

(f(T )− f(T̄ )) +

(

1− T̄

T

)

f(T̄ )− T (k1V + k2T
∗) + T̄ (k1V + k2T

∗)

=

(

1− T̄

T

)

(f(T )− f(T̄ )) +

(

1− T̄

T

)

T̄ (k1V̄ + k2T̄
∗)− T (k1V + k2T

∗) + T̄ (k1V + k2T
∗)

=

(

1− T̄

T

)

(f(T )− f(T̄ )) + T̄ (k1V̄ + k2T̄
∗)− T̄ 2

T
(k1V̄ + k2T̄

∗)− T (k1V + k2T
∗) + T̄ (k1V + k2T

∗).

Due to (19), the second term, A2, in Ẇ takes the form

A2 =

(

1− T̄ ∗

T ∗

)

(k1V T + k2TT
∗ − βT ∗) =

k1V T + k2TT
∗ − βT ∗ − k1V T

T̄ ∗

T ∗
− k2T T̄

∗ + k1V̄ T̄ + k2T̄ T̄
∗.
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The third term, A3, in Ẇ is

A3 =
k1T̄

γ

(

1− V̄

V

)

(NβT ∗ − γV − k4V T ∗) =

k1Nβ

γ
T̄T ∗ − k1T̄ V − k1k4

γ
T̄V T ∗ − k1Nβ

γ
T̄T ∗ V̄

V
+ k1T̄ V̄ +

k1k4
γ

T̄T ∗V̄ .

Using (22), A3 can be written as

A3 = βT ∗ − k2T̄ T
∗ +

k1k4
γ

V̄ T̄T ∗ − k1T̄ V − k1k4
γ

T̄V T ∗ − βT ∗ V̄

V

+ k2T̄ T
∗ V̄

V
− k1k4

γ
T̄T ∗ V̄

2

V
+ k1T̄ V̄ +

k1k4
γ

T̄T ∗V̄ .

Adding A1 +A2 +A3, and using (19), we obtain

Ẇ =

(

1− T̄

T

)

(f(T )− f(T̄ )) + k1V̄ T̄

(

3− T̄

T
− V T T̄ ∗

V̄ T̄ T ∗
− T ∗V̄

T̄ ∗V

)

+ k2T̄ T̄
∗

(

2− T̄

T
− T

T̄

)

+
k1k4
γ

V̄ T̄T ∗

(

2− V

V̄
− V̄

V

)

.

The first term is always non-positive due to our assumptions on f . The second, third and forth

terms are non-positive as well due to the arithmetic-geometric mean (AM-GM) inequality.

Hence, Ẇ ≤ 0 in R̊
3
+. To characterize the subset of R̊3

+ where Ẇ equals zero, we distinguish

two cases: k4 > 0 and k4 = 0. If k4 > 0, then Ẇ equals zero if and only if (T, T ∗, V ) = E.

Since W is a proper Lyapunov function in R̊
3
+, it follows that E is globally asymptotically

stable in R̊
3
+. If k4 = 0, then Ẇ = 0 if and only if T = T̄ and T̄ ∗V = T ∗V̄ . Since all solutions

of (1) in R̊
3
+ are bounded by Lemma 2, the LaSalle’s invariance principle implies that any

ω-limit set in R̊
3
+ is a subset of the largest invariant set in

M = {(T, T ∗, V ) ∈ R̊
3
+ | T = T̄ , T̄ ∗V = T ∗V̄ }.

Any such invariant set in M must satisfy Ṫ = 0, hence

0 = f(T̄ )− T̄
V

V̄

(

k1V̄ + k2T̄
∗
)

= f(T̄ )

(

1− V

V̄

)

,

which implies that V = V̄ and T ∗ = T̄ ∗. Therefore, the largest invariant set in M is the

singleton {E}, and since W is a proper function in R̊
3
+, E attracts all solutions in R̊

3
+.

5.1 Competitive exclusion

The global stability result of Theorem 6 can be readily extended to the model with several

viral strains competing for the same pool of susceptible cells. The multistrain competition

15



model takes the form


















Ṫ = f(T )−
∑

i k
i
1ViT −

∑

i k
i
2T

∗
i T,

Ṫi
∗

= ki1ViT + ki2T
∗
i T − βiT

∗
i , i = 1, ..., n,

V̇i = NiβiT
∗
i − γiVi, i = 1, ..., n,

(23)

on R
2n+1
+ , where we neglect the loss of virions due to cellular absorption. For each strain, we

define the quantities

T i
0 =

ki2T0

βi
+

Nik
i
1T0

γi
, T̄i =

γiβi
ki2γi +Niki1βi

=
T0

T i
0

.

We have the following extinction result.

Theorem 7. Suppose that T 1
0 > max{1, T 2

0 , . . . , T n
0 }. Then the equilibrium E1 = (T̄1, T̄

∗
1 , V̄1, 0, ..., 0)

attracts all solutions of (23) with T ∗
1 (0) + V1(0) > 0. Here, T̄ ∗

1 := f(T̄1)/β1 and V̄1 :=

N1f(T̄1)/γ1.

Proof. We begin by observing that T 1
0 > T i

0 is equivalent to T̄1 < T̄i for i = 2, ..., n. It is also

easy to check that E1 is indeed an equilibrium of (23). Define W as follows

W =

∫ T

T̄1

(

1− T̄1

τ

)

dτ +

∫ T ∗

1

T̄ ∗

1

(

1− T̄ ∗
1

τ

)

dτ +
k11T̄1

γ

∫ V1

V̄1

(

1− V̄1

τ

)

dτ +
∑

i≥2

(T ∗
i +BiVi),

where Bi =
ki
1
T̄1

γi
for i = 2, ..., n. Evaluating Ẇ , we find that Ẇ = A1 +A2 + ...+An, where

A1 =
(T − T̄1)(f(T )− f(T̄1))

T
+k11V̄1T̄1

(

3− T̄1

T
− V1T T̄

∗
1

V̄1T̄1T ∗
1

− T ∗
1 V̄1

T̄ ∗
1 V1

)

+k12T̄1T̄
∗
1

(

2− T̄1

T
− T

T̄1

)

is the same as Ẇ in the proof of Theorem 6, and

Ai = T̄1(k
i
1Vi + ki2T

∗
i )− βiT

∗
i +Bi(NiβiT

∗
i − γVi)

= T ∗
i (T̄1k

i
2 − βi +BiNiβi) + Vi(T̄1k

i
1 −Biγi)

= T ∗
i

(

T̄1k
i
2 − βi +

ki1NiβiT̄1

γi

)

=
ki2γi +Nik

i
1βi

γi
T ∗
i (T̄1 − T̄i) =

βiT i
0

T0
T ∗
i (T̄1 − T̄i).

Clearly, all Ai’s are non-positive, hence Ẇ ≤ 0. Furthermore, the set M where Ẇ = 0 is given

by

M = {T = T̄1, T ∗
1 V̄1 = T̄ ∗

1 V1, T ∗
2 = ... = T ∗

n = 0},

thus the largest invariant set of (23) in M is E1. An application of the LaSalle’s invariance

principle concludes the proof.
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6 The case 0 < k3 << k4

In this section, we use a global perturbation result [20] to show that the positive equilibrium

E is globally asymptotically stable for system (1) in R̊
3
+, provided that ki > 0 for i = 1, ..., 4,

and k3 is sufficiently small. We begin with the following result.

Lemma 6. Suppose that k1, k2, k4 > 0, k3 = 0, and R0 > 1. Let W be the Lyapunov function

defined in the proof of Theorem 6. Then there exist ǫ1, ǫ2 > 0 such that Ẇ (x) ≤ −ǫ1 for all

x ∈ R̊
3
+ such that |x − E| ≥ ǫ2. In other words, Ẇ is bounded away from zero outside of any

compact neighborhood of E in R̊
3
+.

Proof. From the proof of Theorem 6, we have that

Ẇ ≤ k1V̄ T̄

(

3− T̄

T
− V T T̄ ∗

V̄ T̄ T ∗
− T ∗V̄

T̄ ∗V

)

+k2T̄ T̄
∗

(

2− T̄

T
− T

T̄

)

+
k1k4
γ

V̄ T̄ T̄ ∗T
∗

T̄ ∗

(

2− V

V̄
− V̄

V

)

.

To simplify the notation, let

A1 = k1V̄ T̄ , A2 = k2T̄ T̄
∗, A3 =

k1k4
γ

V̄ T̄ T̄ ∗, u =
T

T̄
, v =

T ∗V̄

T̄ ∗V
, w =

V

V̄
,

so that

Ẇ ≤ A1

(

3− 1

u
− u

v
− v

)

−A2
(u− 1)2

u
−A3v(w − 1)2.

For each v > 0, the first term is maximized when u =
√
v, hence

3− 1

u
− u

v
− v ≤ 3− 2√

v
− v = −2 +

√
v√

v
(
√
v − 1)2 = − 2 +

√
v√

v(
√
v + 1)2

(v − 1)2.

Therefore,

Ẇ ≤ −A1
2 +

√
v√

v(
√
v + 1)2

(v − 1)2 −A2
(u− 1)2

u
−A3v(w − 1)2.

Now, let ǫ > 0 be sufficiently small, and suppose that Ẇ ∈ (−ǫ2, 0). Then we have

A2
(u− 1)2

u
< ǫ2 ⇒ |u− 1| < κ1ǫ ⇒ |T − T̄ | < κ1T̄ ǫ,

for some κ1 > 0 which is independent of ǫ. Similarly,

A1
2 +

√
v√

v(
√
v + 1)2

(v − 1)2 < ǫ2 ⇒ |v − 1| < κ2ǫ,

for some κ2 > 0 which is independent of ǫ. This implies that

|w − 1| ≤ ǫ

A3(1−
√
κ2ǫ)

< κ3ǫ ⇒ |V − V̄ | < κ3V̄ ǫ,
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for an appropriate κ3 > 0. Lastly, we have that

|T ∗ − T̄ ∗| = T̄ ∗

w
|w − v| ≤ T̄ ∗(κ2 + κ3)ǫ

1− κ3ǫ
< κ4T̄

∗ǫ,

for some κ4 > 0. Combining the above inequalities, we conclude that there exists κ0 > 0 such

that for all sufficiently small ǫ > 0, the inequality −ǫ2 < Ẇ (x) < 0 implies that |x−E| < κ0ǫ,

and the claim follows.

Theorem 8. Suppose that k1, k2, k4 > 0, k3 = 0, and R0 > 1. Then there exist δ > 0 and a

smooth mapping E : [0, δ) → R̊
3
+, such that for every k3 ∈ [0, δ) the point E(k3) is a globally

asymptotically stable equilibrium of (1) in R̊
3
+.

Proof. First, we observe that R0 is a continuous function of k3 and for k3 = 0, R0 > 1. Hence,

there exists δ1 > 0 such that R0 > 1 as long as k3 ∈ [0, δ1). By Lemma 1, for each k3 ∈ [0, δ1)

there exists a unique positive equilibrium E(k3) of (1) which is locally asymptotically stable

by Theorem 3. By the Implicit Function Theorem, the mapping E : [0, δ1) → R̊
3
+ is smooth.

Now, let ǫ1, ǫ2 > 0 be as defined in Lemma 6. Let W be the Lyapunov function defined in

the proof of Theorem 6. SinceW is a proper Lyapunov function, there exists a sufficiently small

ǫ0 > 0 such that W (x) ≤ ǫ0 implies |x−E(0)| ≤ ǫ2. Define the compact set K = W−1([0, ǫ0]).

Let

δ2 :=
γǫ1

2k1T̄ V̄ (T0 + 1)
,

and suppose that k3 ∈ [0, δ2). Then for any solution of (1) in R̊
3
+ it holds that T (t) < T0 + 1

for all sufficiently large t. We have that

Ẇ =

(

1− T̄

T

)

(f(T )− f(T̄ )) + k1V̄ T̄

(

3− T̄

T
− V T T̄ ∗

V̄ T̄ T ∗
− T ∗V̄

T̄ ∗V

)

+ k2T̄ T̄
∗

(

2− T̄

T
− T

T̄

)

+
k1k4
γ

V̄ T̄T ∗

(

2− V

V̄
− V̄

V

)

− k1k3T̄ T

γ
(V − V̄ ).

As long as x 6∈ K and T (t) < T0 + 1, Lemma 6 implies that

Ẇ ≤ −ǫ1 +
k1δ2T̄ (T0 + 1)V̄

γ
≤ −ǫ1

2
< 0,

hence every positive solution enters the set K in finite time, so that K is an absorbing forward

invariant compact set for (1) for all k3 ∈ [0, δ2). Now, letting δ = min(δ1, δ2), we apply the

global perturbation result (Proposition 2.3 in [20]) to conclude that E(k3) is globally stable

under (1) for all k3 ∈ [0, δ).
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Figure 1: Time series of a solution (T (t), T ∗(t), V (t)) of system (1) with parameter values as de-

scribed in Example 1 in the text.

7 Numerical examples

In this Section we numerically explore the behavior of our model when some of the conditions

of the main results, Theorem 5 and Theorem 8, fail. In both cases, it appears that the disease

steady state attracts the simulated solution, providing evidence for the conjecture that this

steady state is globally stable when it exists.

Example 1: In this example, we set k4 = 0 and we have chosen the parameters such that

both 2k2T0 > β and k3(f(0) + βT0) > βγ, which implies that Theorem 5 is not applicable.

We used f(T ) = a − bT with a = 104ml−1day−1 and b = 0.01day−1 (which implies

that T0 = 106ml−1), k1 = 2.4 × 10−8ml day−1, k2 = 10−6ml day−1, k3 = 10−4ml day−1, N =

3000, γ = 23day−1, β = 1day−1.

Notice that with these assignments we have that R0 = 1.414 > 1, 2k2T0 − β = 1 > 0, and

k3(f(0)+βT0)−βγ = 78 > 0. The time series of the components of a simulated solution with

initial condition (T (0), T ∗(0), V (0)) = (106, 0, 106) are displayed in Figure 1. They suggest

convergence to a positive steady state.

Example 2: In this example, we have chosen k3 >> k4 > 0 (in fact, k3 = 10k4), which implies

that Theorem 8 may not be applicable.

Once again, we have set f(T ) = a − bT , and for a, b, k1, k2, k3, N, γ and β we used the

same values as in Example 1. On the other hand, here, k4 = 10−5ml day−1. Notice that

these assignments yield the same value for R0 = 1.414 as in Example 1 because this value is

independent of k4; see (3).

19



0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3

4

5

6

7

Time

L
o
g
1
0

 

 

Uninfected cells

Infected cells

Virus

Figure 2: Time series of a solution (T (t), T ∗(t), V (t)) of system (1) with parameter values as de-

scribed in Example 2 in the text.

The time series of the components of a simulated solution with the same initial condition

as in Example 1 are displayed in Figure 2, and they suggest convergence to a positive steady

state as before.

8 Conclusions

In this paper, we have analyzed a within-host virus model which incorporated the mechanisms

of direct cell-to-cell viral transmission and the viral coinfection (absorption of free virions

into already infected cells). We obtained a complete analytic description of equilibria and

their local stability. We presented the basic reproductive number R0 and proved that the

infection persists when R0 > 1 and becomes extinct when R0 ≤ 1. We also obtained sufficient

conditions for the global stability of the endemic equilibrium in several particular cases. We

were unable to establish the global stability in the most general cases where all coefficients are

positive. In one instance, namely when the absorption of free virions into infected cells can be

neglected (the case k3 = 0), we used the geometric approach developed by Li and Muldowney

to prove the global stability [10]. In another instance, when the absorption of free virions

into uninfected cells can be neglected (admittedly, not a biologically plausible scenario), we

employed a Lyapunov function approach with a specific function similar to that used by Li et

al in [9]. If both k3 = k4 = 0, we extended the global stability result to include a competition

of several viral strains, and proved that the competitive exclusion is the typical outcome.

Moreover, as it is common in competition models, it turns out that the fittest competitor is
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determined by the highest value of the basic reproduction number, R0. Another implication

of this result is that a direct cell-to-cell viral transmission cannot induce coexistence of viral

strains. Using the same Lyapunov function, we we were able to invoke a global perturbation

result of Smith and Waltman [20] to prove the global stability of the endemic equilibrium when

k3 > 0 is a small parameter. Finally, we presented two numerical examples to illustrate the

global stability of the endemic equilibrium. We conjecture that such equilibrium is globally

stable whenever it exists, but the proof of this general result remains an open question.
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