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WRKY proteins are plant specific transcription factors involved in various developmental

and physiological processes, especially in biotic and abiotic stress resistance. Although

previous studies suggested that WRKY proteins in soybean (Glycine max var. Williams

82) involved in both abiotic and biotic stress responses, the global information of WRKY

proteins in the latest version of soybean genome (Wm82.a2v1) and their response

to dehydration and salt stress have not been reported. In this study, we identified

176 GmWRKY proteins from soybean Wm82.a2v1 genome. These proteins could be

classified into three groups, namely group I (32 proteins), group II (120 proteins), and

group III (24 proteins). Our results showed that most GmWRKY genes were located on

Chromosome 6, while chromosome 11, 12, and 20 contained the least number of this

gene family. More GmWRKY genes were distributed on the ends of chromosomes to

compare with other regions. The cis-acting elements analysis suggested that GmWRKY

genes were transcriptionally regulated upon dehydration and salt stress. RNA-seq data

analysis indicated that three GmWRKY genes responded negatively to dehydration,

and 12 genes positively responded to salt stress at 1, 6, and 12 h, respectively. We

confirmed by qRT-PCR that the expression ofGmWRKY47 andGmWRKY 58 genes was

decreased upon dehydration, and the expression of GmWRKY92, 144 and 165 genes

was increased under salt treatment.

Keywords: codon usage bias, dehydration stress, Glycine max, salt stress, WRKY protein

INTRODUCTION

WRKY transcription factors were first identified from plant species and were thought to be plant
specific (Eulgem et al., 2000; Rushton et al., 2010). However, increasing studies identified WRKY
proteins from non-plant species, including Caenorhabditis elegans, Dictyostelium discoideum,
Drosophila melanogaster, Giardia lamblia, Klebsormidium flaccidum, and Saccharomyces cerevisiae
(Riechmann et al., 2000; Zhang and Wang, 2005; Rinerson et al., 2015). WRKY proteins were
named after a conserved WRKY domain, containing the WRKYGQK heptapeptide, followed by
a zinc-finger motif (CX4−5CX22−23HXH or CX7CX23HXC; Eulgem et al., 2000; Rushton et al.,
2010). Based on the number of WRKY domains and the type of zinc-finger motif, WRKY proteins
were classified into three groups (group I–III; Eulgem et al., 2000; Rushton et al., 2010). Group I
WRKY proteins contained two WRKY domains and a zinc-finger motif (CX4−5CX22−23HXH or
CX7CX23HXC). Group II WRKY proteins which could be divided into five subgroups (IIa–IIe),
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contained a single WRKY domain and a CX4−5CX22−23HXH
zinc-finger motif (Eulgem et al., 2000; Rushton et al., 2010).
Group III WRKY proteins had a single WRKY domain and a
CX7CX23HXC zinc-finger motif (Eulgem et al., 2000; Rushton
et al., 2010).

To date, genome-wide WRKY analysis has been performed
in many plant species including Arabidopsis thaliana (Eulgem
et al., 2000), Brachypodium distachyon (Tripathi et al., 2012;
Wen et al., 2014), Hordeum vulgare (Liu et al., 2014), Lotus
japonicus (Song et al., 2014), Medicago truncatula (Song and
Nan, 2014), Oryza sativa (Wu et al., 2005), Vitis vinifera
(Wang et al., 2014), Zea mays (Wei et al., 2012), Gossypium
(Ding et al., 2015), and Populus (He et al., 2012; Jiang
et al., 2014). Over the past 15 years, studies demonstrated
that WRKY proteins played crucial roles in pathogen defense
and insect resistance (Eulgem and Somssich, 2007; Grunewald
et al., 2008; Skibbe et al., 2008; Rushton et al., 2010). WRKY
proteins were implicated to modulate plant development such
as seed development (Luo et al., 2005), trichome morphogenesis
(Johnson et al., 2002), senescence (Robatzek and Somssich, 2002),
dormancy and germination (Zhang et al., 2004; Zentella et al.,
2007; Zou et al., 2008). Recently, studies demonstrated that
WRKY proteins were involved in response to abiotic stresses,
such as salt, drought, and cold (Wu et al., 2009; Ren et al.,
2010; Zou et al., 2010; Jiang et al., 2012; Rushton et al.,
2012). WRKY proteins were involved in signal transductions
mediated by plant hormones, for example, abscisic acid (ABA)
(Rushton et al., 2012). In Arabidopsis, WRKY proteins are
involved in regulation of ABA-responsive genes, such as MYB2,
DREB1a, DREB2a, and RAB18 (Rushton et al., 2012). WRKY
proteins could increase drought and salt tolerance in plants.
Overexpression of ZmWRKY33 in Arabidopsis could improve
salt stress tolerance of the transgenic plants (Li et al., 2013).
Overexpression of OsWRKY11 under the control of HSP101
promoter led to enhanced drought tolerance (Wu et al.,
2009). Moreover, overexpression of TaWRKY10 in tobacco

TABLE 1 | Number of WRKY genes identified in plants.

Species Group I Subgroup IIa Subgroup IIb Subgroup IIc Subgroup IId Subgroup IIe Group III Total Genome size(Mb)

Glycine max 32 12 30 41 15 22 24 176 978

Arabidopsis thalianaa 13 4 7 18 7 9 14 72 125

Brachypodium distachyonb 17 3 6 21 6 10 23 86 272

Cucumis sativusa 10 4 4 16 8 7 6 55 367

Lotus japonicusc 12 5 8 13 5 9 7 59 472

Medicago truncatulac 19 6 8 19 8 8 13 81 375

Oryza sativaa 34 4 8 7 11 0 36 100 480

Populus trichocarpad 50 5 9 13 13 4 10 104 485

Vitis viniferaa 12 4 8 16 7 6 6 59 487

Gossypium raimondiie 20 7 16 26 16 13 14 112 737

Gossypium arboreume 19 7 16 26 14 13 14 109 1746

aData from Ling et al. (2011)
bdata from Tripathi et al. (2012)
cdata from Song et al. (2014)
ddata from He et al. (2012)
edata from Ding et al. (2015).

resulted in enhanced drought and salt tolerance (Wang et al.,
2013).

Soybean (Glycine max), as one of the important protein
and oil crop, is planted worldwide. Zhou et al. (2008)
identified 64 GmWRKY genes before the soybean genome
was sequenced, and confirmed that GmWRKY13, 21, and 54
genes were involved in abiotic stresses. Bencke-Malato et al.
(2014) identified 182 GmWRKY genes including 33 pseudogenes
using the whole genome sequence information (Wm82.a1.v1;
Schmutz et al., 2010). Among the 149 non-pseudogenized
GmWRKY genes, 72 genes were differentially expressed during
fungal infection based on SAGE, RNA-seq and microarray
experiments (Bencke-Malato et al., 2014). However, the role
of GmWRKY gene in dehydration and salt stress are largely
unknown.We carried out a comprehensive analysis ofGmWRKY
genes base on the newly released genome Wm82.a2v1, and
investigated their response to dehydration and salt stress.
Totally, we identified 176 putative GmWRKY genes from
soybean Wm82.a2v1 genome using bioinformatics approach.
The chromosomal location, codon usage bias, cis-elements, and
gene expression in different tissues and under dehydration
and salt stress were analyzed. These results provided new
insight into the roles of soybean WRKY genes in abiotic stress
responses.

MATERIALS AND METHODS

Identification and Analysis of WRKY Genes
in Soybean
Sequences of the soybean genome (Wm82.a2.v1) were
downloaded from Phytozome 10.0 database (http://www.
phytozome.org). The Hidden Markov Model (HMM) profile of
WRKY domain (PF03106) was downloaded from Pfam protein
family database (http://pfam.janelia.org) and was used to survey
all soybean proteins by HMMER program (Finn et al., 2011). To
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FIGURE 1 | Chromosomal location of GmWRKY genes. The chromosome numbers were shown at the top of each chromosome (black bars). The names on the

left side of each chromosome correspond to the approximate location of each WRKY gene.

verify the reliability of searched results, each protein sequence
was checked in Pfam database.

A. thaliana WRKY proteins (http://www.arabidopsis.
org) were obtained and used for phylogenetic analysis. To
categorize GmWRKY proteins, we used AtWRKY domains
as query sequences to constructed phylogenetic tree. MAFFT
7.0 program was applied to multiple sequences alignment
(Katoh and Standley, 2013). The phylogenetic trees were
inferred using MEGA 6.0 with the neighbor-joining method
(Tamura et al., 2013). Bootstrap values were calculated for 1000
iterations.

All GmWRKY genes were mapped to soybean chromosomes
based on information available from SoyBase (http://soybase.
org/). The map was drafted using MapInspect software (http://
mapinspect.software.informer.com/).

Soybean EST sequences were downloaded from GenBank
(http://www.ncbi.nlm.nih.gov/est). GmWRKY genes were used
as query to blast against soybean ESTs using BLASTN with
sequence similarity >96%, length >= 200 bp, and E-
value <10−10.

Analysis of Codon Usage Bias
Codon usage bias was derived from cDNA sequences encoding
full-length proteins. To avoid sampling bias, CDS sequences
were filtered based on the following criteria: (1) full-length CDS
sequences shorter than 300 bp were excluded from this analysis;
(2) the presence of a start codon (ATG) beginning and a stop
codon (TAA, TAG, and TGA) ending in each CDS was required.
Codon usage bias was calculated from sequences using the Codon
W 1.4 program (http://codonw.sourceforge.net) and Perl scripts.

Expression Profiles of GmWRKY Genes
The normalized data (Reads/kb/Million, RPKM) for six different
tissues from different growth periods was reported by Severin
et al. (2010), and available from SoyBase website. A gene was
considered expressed if the RPKM value was greater than or
equal to two in an expression atlas (Belamkar et al., 2014). The
RPKM normalized read count data of expressed genes was log2-
transformed and displayed in the form of heatmaps in R script.
To survey the involvement of GmWRKY genes in dehydration
and salt stress responses, transcriptome sequencing data of
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FIGURE 2 | Neutrality plots (GC12 vs. GC3s). The regression line: y =

0.87345X + 3.15405.

soybean under dehydration, and salt stress at three time points
(1, 6, and 12 h) was downloaded from described by Belamkar
et al. (2014). The satisfied criteria of differentially expressed
genes was as follows: (1) P-value adjusted for multiple testing
correction using Benjamini and Hochberg method (Benjamini
and Hochberg, 1995) to be <0.05, (2) two fold or greater fold
change, (3) residual variance quotients of both the control and
treatment samples of <20.

cis-Acting Elements Analysis in GmWRKY

Promoters
PlantCARE online program (http://bioinformatics.psb.ugent.
be/webtools/plantcare/html/) was used to predict cis-acting
elements inGmWRKY promoters. Sequence of 2000 bp upstream
of the start codon was used for cis-acting elements analysis. The
sequences were obtained from Phytozome 10.0 database.

Plant Material and Stress Treatments
The seeds of soybean (Williams 82) were germinated on wet filter
paper in growth chamber at 28◦C, and grown for 2 weeks at
room temperature (about 32◦C). For salt treatment, roots of the
seedlings were transferred into 100mM NaCl solution at room
temperature. For dehydration treatment, seedlings were removed

FIGURE 3 | Relationship between gene expression and CDS length. The

regression line: y = −0.000000762534X + 0.49866.

from the wet filter paper and kept in air at room temperature.
Roots were harvested after 0, 6, 12, 24, and 48 h exposure to NaCl
and dehydration treatment.

Quantitative Real-Time RT-PCR
Total RNA was extracted using the CTAB method (Chang et al.,
1993). The first-strand cDNAs were synthesized using 2µg RNA
using the Reverse Transcriptase M-MLV System (Takara, Dalian,
China). Primers for quantitative real-time RT-PCR (qRT-PCR)
analysis were listed in Table S1. Metalloprotease gene (forward
primer: 5′-ATGAATGACGGTTCCCATGTA-3′; reverse peimer:
5′-GGCATTAAGGCAGCTCACTCT-3′) was used as a reference
gene (Libault et al., 2008). qRT-PCR was carried out using Fast
Start Universal SYBR Green Master (ROX) with a 7500 real-
time PCR machine (ABI). The reactions were carried out using
the following program: 95◦C for 30 s, followed by 40 cycles of
95◦C for 5 s, 60◦C for 30 s. Melting curve was generated from the
following program: 95◦C for 15 s, 60◦C for 60 s, 95◦C for 30 s, and
60◦C for 15 s. Three biological replicates were used for qRT-PCR
analysis. The 11Ct method was used for quantification (Livak
and Schmittgen, 2001).
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FIGURE 4 | Relationship between fop and expression breadth. The

regression line: y = 0.000337875X + 0.42302. The number of 1–14 indicated

yongg_leaf, flower, one.cm.pod, pod. shell. 10 DAF, pod. shell. 14 DAF, seed.

10 DAF, seed. 14 DAF, seed. 21 DAF, seed. 25 DAF, seed. 28 DAF, seed. 35

DAF, seed. 42 DAF, root, and nodule, respectively.

RESULTS

WRKY Proteins in Soybean
We predicted 192WRKY sequences from soybean genome using
HMMER program. Seven of these protein sequences were not
WRKY sequences, and other nine proteins were excluded in this
study because each of them contained an incomplete WRKY
domain (Table S2). The remaining 176 proteins were identified
as putative WRKY proteins in soybean genome Wm82.a2v1.
GmWRKY proteins could be divided into three groups based
on the number of WRKY domains and the type of zinc-
finger structure. Group I, II, and III contained 32, 120, and
24 proteins, respectively (Table 1 and Table S2). The conserved
WRKY domain from Arabidopsis and soybean were used to
reconstruct a neighbor-joining phylogenetic tree (Figure S1).
Soybean Group II WRKY proteins could be further divided
into five subgroups, namely IIa, IIb, IIc, IId, and IIe, and
each containing 12, 30, 41, 15, and 22 sequences, respectively
(Figure S1 and Table 1). Notably, we identified one novel

WRKY (Glyma.14G085500), which was named GmWRKY183
(Table S2).

The WRKYGQK sequence is considered to be important for
recognizing and binding to W-box elements (C/TTGACT/C)
in the promoter of target genes (Eulgem et al., 2000). Previous
studies showed that variation of WRKYGQK sequences was
observed in many species (Wu et al., 2005; He et al., 2012;
Liu et al., 2014; Song et al., 2014). Besides the most common
WRKYGQK sequence, we found seven other heptapeptide
variants in GmWRKY, namely, WRKYGKK, WRKYGEK,
WRKYGKR, WRKYEDK, WKKYGQK, WRKYGKK, and
WHQYGLK (Table S2). WRKYGKK sequence appeared
with the highest frequency among them, which belong to
subgroup IIc. WRKYGKK sequence is the most common
variant not only in soybean, also in Solanum lycopersicum
(Huang et al., 2012), L. japonicus (Song et al., 2014), and
Brassica oleracea var. capitata (Yao et al., 2015). WRKYGKK
sequence in tobacco WRKY could bind specifically to WK-box
(TTTTCCAC), which was significantly different from the
consensus sequence of W-box (van Verk et al., 2008). Three
WRKYGEK sequences were found in GmWRKY5 (group I),
GmWRKY67 (group I), and GmWRKY25 (subgroup IIc),
respectively. Two WKKYGQK sequences were identified in
GmWRKY80 (subgroup IIa) and GmWRKY102 (subgroup IIa),
respectively. WRKYGKP, WRKYEDK, and WHQYGLK were
identified in GmWRKY91 (group III), GmWRKY148 (group
I), and GmWRKY130 (subgroup IIc), respectively (Table S2).
WHQYGLK sequence, with the most divergent variation
among these seven variants, might execute new biological
functions.

These 176 GmWRKY genes were randomly distributed
throughout the 20 soybean chromosomes (Figure 1). There
were more GmWRKY genes (15 genes) on chromosome 6, and
chromosome 11, 12, and 20 each contained only three GmWRKY
genes. We found that more GmWRKY genes were located at
both ends of chromosomes (Figure 1). No group I GmWRKY
gene was found in chromosome 5, 10, 13, 15, and 16. Group
III GmWRKY gene was not detected in chromosome 2, 10,
11, 12, 15, 17, and 20. Group II genes were distributed in 20
chromosomes. Chromosome 10 and 15 contained only group II
genes.

Publicly available ESTs were considered as a useful source for
gene expression study (Ohlrogge and Benning, 2000). A total of
1,468,526 soybean ESTs were downloaded fromGenBank. A total
of 127 GmWRKY genes were obtained from these ESTs which
were generated from leaf, seed, and other tissues (Table S3).
These ESTs were sequenced from soybean plants under different
stresses. We found that the expression of GmWRKY4, 5, 6, 9, 31,
46, 50, 56, 96, 106, 155, and 160 genes was responsive to water
deficit stress, and GmWRKY10, 49, 121, and 155 genes showed
altered expression in response to salt stress.

Codon Usage Bias Analysis
Based on the full-length CDS sequences of 171 GmWRKY genes,
GC content in three codon positions was analyzed using the
Perl scripts. The GC1 value (48.30) was higher than that of GC2
(43.80) and GC3 (43.37). The average GC content of all codons
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FIGURE 5 | Expression pattern of GmWRKY group I genes in different tissues. The Reads/Kb/Million (RPKM) normalized values of expressed genes was

log2-transformed. The abbreviation “DAF” in the tissue label indicates “Days after flowering.”

was 45.15. The AT content (54.85) was higher than GC content
in GmWRKY genes. Neutrality plots (GC12 vs. GC3) were used
to analyze the relationship among three codon positions. We
detected a positive correlation (P < 0.05) between GC12 and
GC3 (Figure 2), indicating GCmutational bias leading to similar
GC content in all codon positions. Optimal codons of GmWRKY
genes showed a greater preference for a C or G in the third
base position (Table S6), while accounting for its lower GC in
third base when compared with the AT content. Song et al.
(2015) reported that AT content were higher than GC content in
MtWRKY genes, but the 3rd position exclusively used G or C in
optimal codons.We found a significant negative correlation (P <

0.05) between EST expression data and length of CDS sequences
(Figure 3), indicating a tendency of higher level expression for
genes with shorter CDS, and lower level expression for longer
CDS genes. The correlation between codon bias and expression
breadth was significant positive (P < 0.05; Figure 4), indicating
that GmWRKY with larger expression breadth showed a high
degree of codon usage bias.

RNA-seq Analysis of GmWRKY Expression
One hundred and three GmWRKY genes were expressed at
various developmental stages in leaf, flower, pod, seed, root,
and nodule of soybean. Fifteen, 76, and 12 of GmWRKY genes
belonged to group I, II, and III, respectively. Group I genes
were highly expressed in root, leaf, flower, nodule, and pod. Five
group I genes (GmWRKY44, 59, 70, 82, and 103) expressed in
all these tissues at various development stages (Figure 5). Group
II GmWRKY23, 31, 52, and 149 genes were mainly expressed in
leaf, flower, nodule, and pod. GmWRKY11, 13, 33, 35, 37, 42, 47,
50, and 127 genes in group II were expressed in all six tissues
at various development stages (Figure 6). Group III GmWRKY
genes were mainly expressed in root, leaf, flower, nodule, and
pod, for example, GmWRKY46, 55, and 125 genes. However,
for an individual group III gene, none of them was detected in
all six tissues (Figure 7 and Table S2). Experimental evidence is
lacking for the involvement ofWRKY gene in floral development
or organogenesis. However, most GmWRKY genes were highly
expressed in flower, suggesting their roles in floral development.
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FIGURE 6 | Expression pattern of GmWRKY group II genes in different tissues. The Reads/Kb/Million (RPKM) normalized values of expressed genes was

log2-transformed. The abbreviation “DAF” in the tissue label indicates “Days after flowering.”

RNA-seq data was used to screen GmWRKY genes that
are responsive to dehydration and salt stress. A total number
of 31 and 65 GmWRKY genes are considered differentially
expressed at least at one of the three time points under
dehydration or NaCl treatment, respectively (Tables S4, S5).
Dehydration induced down-regulation of most GmWRKY
genes except GmWRKY56, 106, 120, and 139 genes at 1 h
(Table S4). GmWRKY47, GmWRKY58, and GmWRKY60 genes
were differentially expressed at least at one of three time
points under dehydration. These genes were significantly down-
regulated (Figure 8). NaCl treatment resulted in up-regulation
of most GmWRKY genes (Figure 9 and Table S5). Twelve
GmWRKY genes were differentially expressed at all three time
points under salt (Figure 9). Most of the differentially expressed
genes belong to group II (dehydration: 17/31; salt: 45/65), and
followed by group III (dehydration: 9/31; salt: 13/65). Less group
I genes (dehydration: 5/31; salt: 7/65) were found responsive to

salt and dehydration stresses. These results were consistent with
results from cotton WRKY that most group II and III GhWRKY
genes are highly expressed under stress condition (Dou et al.,
2014).

cis-Acting Element Analysis
Ninety-five GmWRKY genes are differentially expressed under
dehydration and/or salt stresses (Tables S4, S5). Removal of three
genes (GmWRKY175, GmWRKY53, and 155) with incomplete
sequences or low quality sequences, we extracted 2000 bp
promoter regions of 92 GmWRKY genes. Various types of
cis-acting elements were detected in the promoter region of
92 WRKY genes, suggesting that the same type of GmWRKY
could perform different functions. Most of W-box elements
could be distributed in promoters of GmWRKY (Tables S7, S8).
Some WRKY genes, contained majority of W-box elements,
are auto-regulated by itself and cross-regulated, indicating a
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FIGURE 7 | Expression pattern of GmWRKY group III genes in different tissues. The Reads/Kb/Million (RPKM) normalized values of expressed genes was

log2-transformed. The abbreviation “DAF” in the tissue label indicates “Days after flowering.”

self-feedback ormutual manipulation channel might exist among
WRKY genes (Chi et al., 2013). AtWRKY18, 40, and 60 genes
were reported to be self- and cross-regulated based on W-box
elements (Yan et al., 2013). Similarly, OsWRKY24, 53, and 70
genes were predicted self- and cross-regulated according to the
presence of W-box clusters in their promoters (Zhang et al.,
2015). Based on these reports, we speculated that the presence
of W-box elements in GmWRKY gene might have the similar
regulatory mode. ABRE and MBS elements that respond to
dehydration or salt stress were distributed in promoter region
of most GmWRKY genes (Tables S7,S8). These results suggested
that GmWRKY genes were transcriptionally regulated upon
dehydration and salt stress.

GmWRKY Genes Expression in Response
to Dehydration and Salt Stress Using
qRT-PCR
To validate the expression patterns of GmWRKY genes revealed
by RNA-seq, 15 GmWRKY genes were selected for expression
analysis by qRT-PCR. The RNA-seq results showed that 3 and 12
GmWRKY genes were responsive to dehydration and salt stress at

all three time points, respectively. The qRT-PCR results showed
the expression of GmWRKY47 and 58 genes was down-regulated
at 6, 12, 24, and 48 h under dehydration stress (Figure 10).
Expression of GmWRKY60 gene was significantly increased at 6
and 24 h, but significantly suppressed at 48 h under dehydration
stress. The results showed that GmWRKY47 and 58 genes were
consistent with RNA-seq data while GmWRKY60 gene was not.
The expression ofGmWRKY92, 144, and 165 genes was enhanced
at all time points using qRT-PCR (Figure 11). The results were
consistent with the RNA-seq data. Unexpectedly, the expression
of remaining nine GmWRKY genes was not consistent with
RNA-seq data. For example, the expression of GmWRKY56, 96,
and 106 genes was reduced at all four time points (Figure 11),
but they showed up-regulation in RNA-seq analysis.

DISCUSSION

Identification and Characterization of
WRKY
In this study, we identified 176 WRKY proteins in soybean
Wm82.a2v1 genome. Compared to present study, Zhou et al.
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FIGURE 8 | Different expression of GmWRKY genes in three time point

under dehydration stress based on RNA-seq data.

(2008) found 64 GmWRKY sequences and Bencke-Malato et al.
(2014) identified 149 GmWRKY in Wm82.a1v1 genome. The
new assembled Wm82.a2v1 genome constructed using the latest
ARACHNE assemble is more accurate. Annotation of eight
GmWRKY has been changed in the new assembled genome
(Table 2). For example, GmWRKY148, 171, and 172 belonged
to subgroup IIc in Wm82.a1v1, but belong to group I in
Wm82.a2v1. Moreover, GmWRKY57 and 67 were classified
into group I in Wm82.a1v1, but they were in group III
and subgroup IIc in Wm82.a2v1, respectively. These results
showed that there were differences between Wm82.a1v1 and
Wm82.a2v1 genomes. Therefore, it is important to update the
global information of GmWRKY in the latest version of soybean
genome.

Compared to other plants, soybean genome contained the
highest number of WRKY members. The expansion of WRKY
proteins in soybean might be due to the following reasons. (1)
soybean genome experienced at least three rounds of whole
genome duplication (WGD) events that could produce a large
number of paralogs (Conant andWolfe, 2008). The dicotyledons,
such as Arabidopsis, grape, soybean, and M. truncatula, share a
general “gamma” genome triplication event about 117 million

years ago (Mya; Schmutz et al., 2010). Subsequently, soybean
andMedicago experience a common legume-specificWGD event
around 59 Mya, and soybean has undergone an additional
glycine-specific genome duplication event approximately 13 Mya
(Schmutz et al., 2010). (2) The number of duplicated genes
was mainly determined by segmental duplication events because
genes generated by segmental duplicated events have more
chance to be retained (Wang et al., 2005). Tandem duplication
events play an important role in generating new duplicated
genes (Cannon et al., 2004), whereas segmental duplication
events may widely distribute duplicated genes across the genome
(Baumgarten et al., 2003). Segmental duplication events could
result in lost of many functional redundant genes to avoid
fitness cost (Song et al., 2014). Yin et al. (2013) found that
GmWRKY genes were generated mainly through segmental
duplication events, which may lead to neofunctionalization
or subfunctionalization (Moore and Purugganan, 2005). Gene
duplication events could improve plant resistance to pathogens
by allowing the functional diversification of genes (Moore and
Purugganan, 2005). It was reported that 75 GmWRKY genes
were involved in response to fungal infection (Bencke-Malato
et al., 2014). (3) Positive selection play a key role in preserving
duplicated genes, and can act at very early stage of gene
duplication process (Moore and Purugganan, 2005). Site model
and branch-site model analysis showed that group I, IIc, IIe, and
III GmWRKY underwent positive selection (Yin et al., 2013).
Positive selection promotes constant expansion of GmWRKY.
Similarly, group IIc and III WRKY from eggplant and turkey
berry were speculated to undergo positive selection (Yang et al.,
2015). In contrast, Group III WRKY from L. japonicus (Song
et al., 2014), M. truncatula (Song and Nan, 2014), and Cucumis
sativus (Ling et al., 2011) appear to be under purifying selection.
Purifying selection may generate genes with conserved functions
or pseudogenization (Zhang, 2003). The genome size and the
number ofWRKY family members are not necessarily correlated.
For example, the genome size of soybean is 978 Mb containing
176 WRKY, while the genome size of Gossypium arboretum
is 1746 Mb containing 109 WRKY. The genome size of G.
arboreum (1746 Mb) was about three times greater than the
Populus trichocarpa genome size (485 Mb). These two plants
have approximately same number of WRKY (109 vs. 104;
Table 1).

GmWRKY Expression in Different Tissues
and Stress Conditions
Dou et al. (2014) reported that most Gossypium hirsutumWRKY
genes expressed at low levels in all developmental stages, while
a few GhWRKY expressed highly in specific organs. Huang
et al. (2012) found that 10 S. lycopersicum WRKY genes were
constitutively expressed in nearly all tissues. Our results showed
that GmWRKY genes expressed with distinct temporal and
spatial patterns. Sixteen GmWRKY genes from group II were
expressed in root, flower, or nodule with tissue-specific manner
(Figure 6). The expression of a particular GmWRKY gene in
a given tissue may differ at different developmental stages. For
example, the expression of GmWRKY71 and 154 genes was
observed in 10 DAF pod shell, but hardly detected in other
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FIGURE 9 | Different expression of GmWRKY genes in three time point under salt stress based on RNA-seq data.

FIGURE 10 | Expression pattern of selected GmWRKY genes under dehydration stress. The Y-axis indicates the relative expression; X-axis (0, 6, 12, 24, and

48 h) indicates hours of dehydration treatment. The standard errors are plotted using vertical lines. *significant difference at P < 0.05, **significant difference (P < 0.01).

developmental stages. GmWRKY54, 62, 125, and 180 genes were
expressed in 14 DAF seeds, but not in other seed developmental
stages (Figure 6).

Although a little evidence demonstrated the involvement
of GmWRKY genes in flower development, many GmWRKY
genes were highly expressed in flowers (Figures 5–7). Recently,
Luo et al. (2013b) reported that heterologous expression of
WRKY20 from Glycine soja in Arabidopsis resulted in earlier
flower. GsWRKY20 is orthologous of AtWRKY53, GmWRKY20,
46, and 55. We found that GmWRKY20, 46, and 55 genes
were highly expressed in flower (Figure 7). This was consistent
with the results from Brassica rapa, where most of BrWRKY
highly expressed in flower buds (Kayum et al., 2015). Here, we

speculated that these three GmWRKY genes might play roles in
flower development.

Stomata and roots were involved in plant responses to
dehydration and salt stress (Song et al., 2009; Chen et al.,
2012; Belamkar et al., 2014). The RNA-seq data showed that 15
GmWRKY genes were differentially expressed under dehydration
and salt stress in root. Zhou et al. (2008) found that GmWRKY54
genes confer tolerance to salt and drought stresses in Arabidopsis,
possibly through the regulation of DREB2A and STZ/Zat10
genes. Heterologous expression of GmWRKY13 genes could
increase the sensitivity of Arabidopsis to salt tolerance (Zhou
et al., 2008). However, we failed to detect the response of these
two genes to dehydration and salt stress. The possible explanation
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FIGURE 11 | Expression pattern of selected GmWRKY genes under salt stress. The Y-axis indicates the relative expression; X-axis (0, 6, 12, 24, and 48 h)

indicates hours of salt treatment. The standard errors are plotted using vertical lines. *significant difference at P < 0.05, **significant difference (P < 0.01).

might be due to tissue-specific regulation; GmWRKY13 and 54
genes were cloned from leaf, while the RNA-seq data were from
root.

Under dehydration stress,GmWRKY47, 58, and 60 genes were
considered as differentially expressed genes. Their orthologous
genes in Arabidopsis are AtWRKY11, 41, and 70, respectively
(Table S2). WRKY11 from Vitis vinifera is orthologous gene
of AtWRKY11. Transgenic Arabidopsis expressing VvWRKY11
showed higher tolerance to drought stress, indicating its
involvement in response to dehydration stress (Liu et al., 2011).

Overexpression of GsWRKY20 (orthologous of AtWRKY 70)
in Arabidopsis and Medicago sativa could increase drought
tolerance of the transgenic Arabidopsis, and enhance salt and
drought tolerance of transgenicMedicago (Luo et al., 2013a; Tang
et al., 2014). VvWRKY11 and GsWRKY20 promoted dehydration
tolerance. However, our results from qRT-PCR and RNA-seq data
showed that GmWRKY47 (AtWRKY11) and 60 (AtWRKY70)
genes were negatively regulated by dehydration. AtWRKY41
(orthologous of GmWRKY58) could promote disease resistance
(Higashi et al., 2008). It could promote seed dormancy through
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TABLE 2 | Annotation revised in GmWRKY genes.

Name Previous annotation Present annotation

GmWRKY10 III IIe

GmWRKY57 I III

GmWRKY64 IIe IIc

GmWRKY67 I IIc

GmWRKY148 IIc I

GmWRKY170 IIb IIc

GmWRKY171 IIc I

GmWRKY172 IIc I

regulation of ABI3 gene (Ding et al., 2014). We first reported the
observation that GmWRKY58 gene was involved in dehydration
response.

Twelve GmWRKY genes were differentially expressed under
salt stress. Their orthologous genes are AtWRKY6, 30, 40,
50, 51, and 70 in Arabidopsis, respectively (Table S2). The
orthologous genes of AtWRKY40 are GmWRKY17, 56, 106,
139, and 144; Both of GmWRKY36 and 105, which are
orthologous genes of AtWRKY6; and GmWRKY57 and 125
shared a common orthologous gene, AtWRKY70. AtWRKY6
was identified as target gene of AtWRKY53 (Miao et al., 2004).
The expression of AtWRKY53 was up-regulated in Arabidopsis
sos2 mutant under salt stress (Kamei et al., 2005), indicating
its involvement in salt tolerance. Scarpeci et al. (2013) showed
that overexpression of AtWRKY30 enhanced salt tolerance
in Arabidopsis during early growth stages. ChIP experiments
showed that AtWRKY40 directly targeted a number of known
ABA-responsive genes, including ABI4, ABI5, ABF4, MYB2,
DREB1A, and RAB18 genes (Shang et al., 2010), indicating
that AtWRKY40 could promote salt tolerance. Previous study
showed that AtWRKY50 and 51 played crucial roles in jasmonic
acid (JA) pathway (Chen et al., 2012), which was a key
component in pathogen tolerance. We found the expression of
GmWRKY92 (orthologous of AtWRKY51) and 165 (orthologous
of AtWRKY50) was up-regulated under 100mM NaCl treatment
(Figure 11), indicating their involvement in multiple stress
responses.

There are many opposite results between qRT-PCR and RNA-
seq analysis. We speculated that growing condition and seed
dormancy time probably caused different expression pattern
between qRT-PCR and RNA-seq data.WRKY genes are involved
in varies of plant development, including seed dormancy and
germination (Zhang et al., 2004; Zentella et al., 2007; Zou
et al., 2008). Moreover, some WRKY genes have different
functions (Rushton et al., 2010; Tang et al., 2013), indicating
the selected GmWRKY genes probably involved in multiple
biological pathway.

CONCLUSIONS

In this study, we identified 176 GmWRKY proteins in soybean
genome (Wm82.a2v1) using bioinformatics approach. There are

more WRKY proteins in soybean genome than other plant
species. We found that no positive correlation exists between
the genome size and the number of WRKY. Expression analysis
showed that some GmWRKY genes were involved in response
to dehydration and salt stress. Our results will be helpful for
understanding the roles ofWRKY gene family in soybean.
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Table S1 | qRT-PCR primers in this study.

Table S2 | Annotation of GmWRKY genes. The names GmWRKY1-64 and

GmWRKY65-182 genes are given according to Zhou et al. (2008) and

Bencke-Malato et al. (2014); GmWRKY183-186 genes are given according to the

chromosome order in this study.

Table S3 | Digital expression analysis of GmWRKY genes.

Table S4 | GmWRKY genes differentially expressed under dehydration

stress at 1, 6, and 12h.

Table S5 | GmWRKY genes differentially expressed under salt stress at 1,

6, and 12h.

Table S6 | Optimal codons analysis in GmWRKY genes. Number of codons

in high bias dataset 2265; Number of codons in low bias dataset 3255; High bias

was assigned to the dataset with the lower average NEC (effective number of

codons); RSCU: relative synonymous codon usage; Codon UUC (Phe) chi value

was 37.913; Codon UCC (Ser) chi value was 112.912; Codon UAC (Tyr) chi value

was 19.766; Codon UGC (Cys) chi value was 5.112; Codon UCG (Ser) chi value

was 22.781; Codon CUC (Leu) chi value was 83.801; Codon CCC (Pro) chi value

was 7.139; Codon CAC (His) chi value was 60.096; Codon CGC (Arg) chi value

was 17.807; Codon CCG (Pro) chi value was 61.074; Codon CGG (Arg) chi value

was 13.621; Codon AUC (Ile) chi value was 9.526; Codon ACC (Thr) chi value was
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28.927; Codon AAC (Asn) chi value was 43.255; Codon ACG (Thr) chi value was

23.339; Codon GUC (Val) chi value was 10.427; Codon GCC (Ala) chi value was

41.279; Codon GAC (Asp) chi value was 38.179; Codon GGC (Gly) chi value was

27.092; Codon GUG (Val) chi value was 19.760; Codon GCG (Ala) chi value was

39.804; Codon GAG (Glu) chi value was 13.304; Codon GGG (Gly) chi value was

10.177.

Table S7 | cis-element in differentially expressed genes of dehydration.

Table S8 | cis-element in differentially expressed genes of salt.

Figure S1 | Phylogenetic tree of AtWRKY and GmWRKY domain. The

phylogenetic tree was constructed using MAGE 6.0 by the Neighbor-Joining (NJ)

method with 1000 bootstrap replicates.

REFERENCES

Baumgarten, A., Cannon, S., Spangler, R., and May, G. (2003). Genome-

level evolution of resistance genes in Arabidopsis thaliana. Genetics 165,

309–319.

Belamkar, V., Weeks, N. T., Bharti, A. K., Farmer, A. D., Graham, M. A., and

Cannon, S. B. (2014). Comprehensive characterization and RNA-Seq profiling

of the HD-Zip transcription factor family in soybean (Glycine max) during

dehydration and salt stress. BMC Genomics 15:950. doi: 10.1186/1471-2164-

15-950

Bencke-Malato, M., Cabreira, C., Wiebke-Strohm, B., Bücker-Neto, L., Mancini,

E., Osorio, M. B., et al. (2014). Genome-wide annotation of the soybean

WRKY family and functional characterization of genes involved in response to

Phakopsora pachyrhizi infection. BMC Plant Biol. 14:236. doi: 10.1186/s12870-

014-0236-0

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate:

a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57,

289–300.

Cannon, S. B., Mitra, A., Baumgarten, A., Young, N. D., and May, G. (2004).

The roles of segmental and tandem gene duplication in the evolution of large

gene families in Arabidopsis thaliana. BMC Plant Biol. 4:10. doi: 10.1186/1471-

2229-4-10

Chang, S., Puryear, J., and Cairney, J. (1993). A simple and efficient method

for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11, 113–116. doi:

10.1007/BF02670468

Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., and Yu, D. (2012). The role of WRKY

transcription factors in plant abiotic stresses. BBA-Gene Regul. Mech. 1819,

120–128. doi: 10.1016/j.bbagrm.2011.09.002

Chi, Y., Yang, Y., Zhou, Y., Zhou, J., Fan, B., Yu, J. Q., et al. (2013). Protein-

protein interactions in the regulation if WRKY transcription factors.Mol. Plant

6, 287–300. doi: 10.1093/mp/sst026

Conant, G. C., and Wolfe, K. H. (2008). Turning a hobby into a job: how

duplicated genes find new functions. Nat. Rev. Genet. 9, 938–950. doi: 10.1038/

nrg2482

Ding, M., Chen, J., Jiang, Y., Lin, L., Cao, Y., Wang, M., et al. (2015). Genome-

wide investigation and transcriptome analysis of the WRKY gene family in

Gossypium. Mol. Genet. Genomics 290, 151–171. doi: 10.1007/s00438-014-

0904-7

Ding, Z. J., Yan, J. Y., Li, G. X., Wu, Z. C., Zhang, S. Q., and Zheng, S. J.

(2014). WRKY41 controls Arabidopsis seed dormancy via direct regulation

of ABI3 transcript levels not downstream of ABA. Plant J. 79, 810–823. doi:

10.1111/tpj.12597

Dou, L., Zhang, X., Pang, C., Song, M., Wei, H., Fan, S., et al. (2014). Genome-

wide analysis of the WRKY gene family in cotton. Mol. Genet. Genomics 289,

1103–1121. doi: 10.1007/s00438-014-0872-y

Eulgem, T., Rushton, P., Robatzek, S., and Somssich, I. (2000). The WRKY

superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206. doi:

10.1016/S1360-1385(00)01600-9

Eulgem, T., and Somssich, I. (2007). Networks of WRKY transcription

factors in defense signaling. Curr. Opin. Plant Biol. 10, 366–371. doi:

10.1016/j.pbi.2007.04.020

Finn, R. D., Clements, J., and Eddy, S. R. (2011). HMMER web server:

interactive sequence similarity searching.Nucleic Acids Res. 39,W29–W37. doi:

10.1093/nar/gkr367

Grunewald, W., Karimi, M., Wieczorek, K., Van de Cappelle, E., Wischnitzki,

E., Grundler, F., et al. (2008). A role for AtWRKY23 in feeding site

establishment of plant-parasitic nematodes. Plant Physiol. 148, 358–368. doi:

10.1104/pp.108.119131

He, H., Dong, Q., Shao, Y., Jiang, H., Zhu, S., Cheng, B., et al. (2012). Genome-wide

survey and characterization of the WRKY gene family in Populus trichocarpa.

Plant Cell Rep. 31, 1199–1217. doi: 10.1007/s00299-012-1241-0

Higashi, K., Ishiga, Y., Inagaki, Y., Toyoda, K., Shiraishi, T., and Ichinose,

Y. (2008). Modulation of defense signal transduction by flagellin induced

WRKY41 transcription factor in Arabidopsis thaliana. Mol. Genet. Genomics

279, 303–312. doi: 10.1007/s00438-007-0315-0

Huang, S., Gao, Y., Liu, J., Peng, X., Niu, X., Fei, Z., et al. (2012). Genome-wide

analysis of WRKY transcription factors in Solanum lycopersicum. Mol. Genet.

Genomics 287, 495–513. doi: 10.1007/s00438-012-0696-6

Jiang, Y., Duan, Y., Yin, J., Ye, S., Zhu, J., Zhang, F., et al. (2014). Genome-wide

identification and characterization of the Populus WRKY transcription factor

family and analysis of their expression in response to biotic and abiotic stresses.

J. Exp. Bot. 65, 6629–6644. doi: 10.1093/jxb/eru381

Jiang, Y. J., Liang, G., and Yu, D. Q. (2012). Activated expression of WRKY57

confers drought tolerance in Arabidopsis. Mol. Plant 5, 1375–1388. doi:

10.1093/mp/sss080

Johnson, C., Kolevski, B., and Smyth, D. (2002). TRANSPARENT TESTA

GLABRA2, a trichome and seed coat development gene of Arabidopsis,

encodes a WRKY transcription factor. Plant Cell 14, 1359–1375. doi:

10.1105/tpc.001404

Kamei, A., Seki, M., Umezawa, T., Ishida, J., Satou, M., Akiyama, K., et al. (2005).

Analysis of gene expression profiles in Arabidopsis salt overly sensitive mutants

sos2-1 and sos3-1. Plant Cell Environ. 28, 1267–1275. doi: 10.1111/j.1365-

3040.2005.01363.x

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment

software version 7: improvements in performance and usability.Mol. Bio. Evol.

30, 772–780. doi: 10.1093/molbev/mst010

Kayum, M. A., Jung, H. J., Park, J. T., Ahmed, N. U., Saha, G., Yang, T. J., et al.

(2015). Identification and expression analysis of WRKY family genes under

biotic and abiotic stresses in Brassica rapa. Mol. Genet. Genomics 290, 79–95.

doi: 10.1007/s00438-014-0898-1

Li, H., Gao, Y., Xu, H., Dai, Y., Deng, D., and Chen, J. (2013). ZmWRKY33, a

WRKY maize transcription factor conferring enhanced salt stress tolerances

in Arabidopsis. Plant Growth Regul. 70, 207–216. doi: 10.1007/s10725-013-

9792-9

Libault, M., Thibivilliers, S., Bilgin, D. D., Radwan, O., Benitez, M., Clough, S. J.,

et al. (2008). Identification of four soybean reference genes for gene expression

normalization. Plant Genome 1, 44–54. doi: 10.3835/plantgenome2008.

02.0091

Ling, J., Jiang, W., Zhang, Y., Yu, H., Mao, Z., Gu, X., et al. (2011). Genome-wide

analysis of WRKY gene family in Cucumis sativus. BMC Genomics 12:471. doi:

10.1186/1471-2164-12-471

Liu, D., Leib, K., Zhao, P., Kogel, K. H., and Langen, G. (2014). Phylogenetic

analysis of barley WRKY proteins and characterization of HvWRKY1 and-2

as repressors of the pathogen-inducible gene HvGER4c. Mol. Genet. Genomics

289, 1331–1345. doi: 10.1007/s00438-014-0893-6

Liu, H., Yang, W., Liu, D., Han, Y., Zhang, A., and Li, S. (2011). Ectopic expression

of a grapevine transcription factor VvWRKY11 contributes to osmotic stress

tolerance in Arabidopsis.Mol. Biol. Rep. 38, 417–427. doi: 10.1007/s11033-010-

0124-0

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene wxpression

sata using real-time quantitative PCR and the 2−11CT method. Methods 25,

402–408. doi: 10.1006/meth.2001.1262

Luo, M., Dennis, E., Berger, F., Peacock, W., and Chaudhury, A. (2005).

MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-

rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc.

Natl. Acad. Sci. U.S.A. 102, 17531–17536. doi: 10.1073/pnas.0508418102

Frontiers in Plant Science | www.frontiersin.org 13 February 2016 | Volume 7 | Article 9

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Song et al. WRKY Genes in Soybean

Luo, X., Bai, X., Sun, X., Zhu, D., Liu, B. H., Ji, W., et al. (2013a). Expression of wild

soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates

ABA signalling. J. Exp. Bot. 64, 2155–2169. doi: 10.1093/jxb/ert073

Luo, X., Sun, X., Liu, B., Zhu, D., Bai, X., Cai, H., et al. (2013b). Ectopic expression

of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis.

PLoS ONE 8:e73295. doi: 10.1371/journal.pone.0073295

Miao, Y., Laun, T., Zimmermann, P., and Zentgraf, U. (2004). Targets of the

WRKY53 transcription factor and its role during leaf senescence inArabidopsis.

Plant Mol. Biol. 55, 853–867. doi: 10.1007/s11103-005-2142-1

Moore, R. C., and Purugganan, M. D. (2005). The evolutionary dynamics

of plant duplicate genes. Curr. Opin. Plant Biol. 8, 122–128. doi:

10.1016/j.pbi.2004.12.001

Ohlrogge, J., and Benning, C. (2000). Unraveling plant metabolism by EST

analysis. Curr. Opin. Plant Biol. 3, 224–228. doi: 10.1016/S1369-5266(00)

00068-6

Ren, X. Z., Chen, Z. Z., Liu, Y., Zhang, H. R., Zhang, M., Liu, Q. A., et al.

(2010). ABO3, a WRKY transcription factor, mediates plant responses to

abscisic acid and drought tolerance in Arabidopsis. Plant J. 63, 417–429. doi:

10.1111/j.1365-313X.2010.04248.x

Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C. Z., Keddie,

J., et al. (2000). Arabidopsis transcription factors:genome-wide comparative

analysis among eukaryotes. Science 290, 2105–2110. doi: 10.1126/science.290.54

99.2105

Rinerson, C. I., Rabara, R. C., Tripathi, Q. J., Shen, P. J., and Rushton, P. J. (2015).

The evolution of WRKY transcription factors. BMC Plant Biol. 15:66. doi:

10.1186/s12870-015-0456-y

Robatzek, S., and Somssich, I. (2002). Targets of AtWRKY6 regulation during

plant senescence and pathogen defense. Genes Dev. 16, 1139–1149. doi:

10.1101/gad.222702

Rushton, D. L., Tripathi, P., Rabara, R. C., Lin, J., Ringler, P., Boken, A. K., et al.

(2012).WRKY transcription factors: key components in abscisic acid signalling.

Plant Biotechnol. J. 10, 2–11. doi: 10.1111/j.1467-7652.2011.00634.x

Rushton, P., Somssich, I., Ringler, P., and Shen, Q. (2010). WRKY transcription

factors. Trends Plant Sci. 15, 247–258. doi: 10.1016/j.tplants.2010.02.006

Scarpeci, T. E., Zanor, M. I., Mueller-Roeber, B., and Valle, E. M. (2013).

Overexpression of AtWRKY30 enhances abiotic stress tolerance during early

growth stages in Arabidopsis thaliana. Plant Mol. Biol. 83, 265–277. doi:

10.1007/s11103-013-0090-8

Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., et al. (2010).

Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183. doi:

10.1038/nature08670

Severin, A. J.,Woody, J. L., Bolon, Y. T., Joseph, B., Diers, B.W., Farmer, A. D., et al.

(2010). RNA-Seq atlas of Glycine max: a guide to the soybean transcriptome.

BMC Plant Biol. 10:160. doi: 10.1186/1471-2229-10-160

Shang, Y., Yan, L., Liu, Z. Q., Cao, Z., Mei, C., Xin, Q., et al. (2010). The Mg-

chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription

repressors to telieve ABA-responsive genes of inhibition. Plant Cell 22,

1909–1935. doi: 10.1105/tpc.110.073874

Skibbe, M., Qu, N., Galis, I., and Baldwin, I. (2008). Induced plant defenses in

the natural environment:Nicotiana attenuataWRKY3 andWRKY6 coordinate

responses to herbivory. Plant Cell 20, 1984–2000. doi: 10.1105/tpc.108.

058594

Song, H., and Nan, Z. (2014). Genome-wide indentification and analysis of WRKY

transcription factors in Medicago truncatula (In Chinese). Hereditas (Beijing)

36, 152–168. doi: 10.3724/SP.J.1005.2014.00152

Song, H.,Wang, P., Ma, D. C., Xia, H., Zhao, C. Z., Zhang, Y., et al. (2015). Analysis

of codon usage bias of WRKY transcription factors in Medicago truncatula

(In Chinese). J. Agric. Biotechnol. 23, 203–212. doi: 10.3969/j.issn.1674-

7968.2015.02.007

Song, H., Wang, P., Nan, Z., and Wang, X. (2014). The WRKY transcription

factor genes in Lotus japonicus. Int. J. Genomics 2014:420128. doi:

10.1155/2014/420128

Song, Y., Jing, S. J., and Yu, D. Q. (2009). Overexpression of the stress-induced

OsWRKY08 improves osmotic stress tolerance in Arabidopsis. Chin. Sci. Bull.

54, 4671–4678. doi: 10.1007/s11434-009-0710-5

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6:

Molecular evolutionary genetics analysis version 6.0. Mol. Bio. Evol. 30,

2725–2729. doi: 10.1093/molbev/mst197

Tang, J., Wang, F., Wang, Z., Huang, Z., Xiong, A., and Hou, X. (2013).

Characterization and co-expression analysis of WRKY orthologs

involved in responses to multiple abiotic stresses in Pak-choi (Brassica

campestris ssp. chinensis). BMC Plant Biol 13:188. doi: 10.1186/1471-2229-

13-188

Tang, L., Cai, H., Zhai, H., Luo, X., Wang, Z., Cui, L., et al. (2014). Overexpression

of Glycine soja WRKY20 enhances both drought and salt tolerance in

transgenic alfalfa (Medicago sativa L.). Plant Cell Tiss. Org. 115, 77–86. doi:

10.1007/s11240-014-0463-y

Tripathi, P., Rabara, R., Langum, T., Boken, A., Rushton, D., Boomsma, D., et al.

(2012). The WRKY transcription factor family in Brachypodium distachyon.

BMC Genomics 13:270. doi: 10.1186/1471-2164-13-270

van Verk, M. C., Pappaioannou, D., and Neeleman, L. (2008). A novel WRKY

transcription factor is required for induction of PR-1a gene expression by

salicylic acid and bacterial elicitors. Plant Physiol. 146, 1983–1995. doi:

10.1104/pp.107.112789

Wang, C., Deng, P., Chen, L., Wang, X., Ma, H., Hu, W., et al. (2013).

A wheat WRKY transcription factor TaWRKY10 confers tolerance to

multiple abiotic stresses in transgenic tobacco. PLoS ONE 8:e65120. doi:

10.1371/journal.pone.0065120

Wang, L., Zhu, W., Fang, L., Sun, X., Su, L., Liang, Z., et al. (2014). Genome-wide

identification of WRKY family genes and their response to cold stress in Vitis

vinifera. BMC Plant Biol. 14:103. doi: 10.1186/1471-2229-4-103

Wang, X., Shi, X., Hao, B., Ge, S., and Luo, J. (2005). Duplication and DNA

segmental loss in the rice genome: implications for diploidization. New Phytol.

165, 937–946. doi: 10.1111/j.1469-8137.2004.01293.x

Wei, K. F., Chen, J., Chen Y. F., Wu, L. J., and Xie, D. X. (2012). Molecular

phylogenetic and expression analysis of the complete WRKY transcription

factor family in maize. DNA Res. 19, 153–164. doi: 10.1093/dnares/

dsr048

Wen, F., Zhu, H., Li, P., Jiang, M., Mao, W., Ong, C., et al. (2014). Genome-

Wide evolutionary characterization and expression analyses of WRKY family

genes in Brachypodium distachyon.DNA Res. 21, 327–339. doi: 10.1093/dnares/

dst060

Wu, K., Guo, Z., Wang, H., and Li, J. (2005). The WRKY family of transcription

factors in rice and Arabidopsis and their origins. DNA Res. 12, 9–26. doi:

10.1093/dnares/12.1.9

Wu, X. L., Shiroto, Y., Kishitani, S., Ito, Y., and Toriyama, K. (2009). Enhanced heat

and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11

under the control of HSP101 promoter. Plant Cell Rep. 28, 21–30. doi:

10.1007/s00299-008-0614-x

Yan, L., Liu, Z. Q., Xu, Y. H., Lu, K., Wang, X. F., and Zhang, D. P.

(2013). Auto- and cross-repression of three Arabidopsis WRKY transcription

factors WRKY18, WRKY40, and WRKY60 negatively involved in ABA

signaling. J. Plant Growth Regul. 3, 399–416. doi: 10.1007/s00344-012-

9310-8

Yang, X., Deng, C., Zhang, Y., Cheng, Y., Huo, Q., and Xue, L. (2015). The

WRKY transcription factor genes in eggplant (Solanum melongena L.) and

turkey berry (Solanum torvum Sw.). Int. J. Mol. Sci. 16, 7608–7626. doi:

10.3390/ijms16047608

Yao, Q. Y., Xia, E. H., Liu, F. H., and Gao, L. Z. (2015). Genome-wide

identification and comparative expression analysis reveal a rapid expansion and

functional divergence of duplicated genes in theWRKY gene family of cabbage,

Brassica oleracea var. capitata. Gene 557, 35–42. doi: 10.1016/j.gene.2014.

12.005

Yin, G., Xu, H., Xiao, S., Qin, Y., Li, Y., Yan, Y., et al. (2013). The large soybean

(Glycine max)WRKY TF family expanded by segmental duplication events and

subsequent divergent selection among subgroups. BMC Plant Biol. 13:148. doi:

10.1186/1471-2229-13-148

Zentella, R., Zhang, Z., Park, M., Thomas, S., Endo, A., Murase, K., et al.

(2007). Global analysis of della direct targets in early gibberellin signaling in

Arabidopsis. Plant Cell 19, 3037–3057. doi: 10.1105/tpc.107.054999

Zhang, J. Z. (2003). Evolution by gene duplication: an update. Trends Ecol. Evol.

18, 292–298. doi: 10.1016/S0169-5347(03)00033-8

Zhang, L., Gu, L., Ringler, P., Smith, S., Rushton, P. J., and Shen, Q.

(2015). Three WRKY transcription factors additively repress abscisic acid

and gibberellin signaling in aleurone cells. Plant Sci. 236, 214–222. doi:

10.1016/j.plantsci.2015.04.014

Frontiers in Plant Science | www.frontiersin.org 14 February 2016 | Volume 7 | Article 9

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Song et al. WRKY Genes in Soybean

Zhang, Y., and Wang, L. (2005). The WRKY transcription factor superfamily:

its origin in eukaryotes and expansion in plants. BMC Evol. Biol. 5:1. doi:

10.1186/1471-2148-5-1

Zhang, Z., Xie, Z., Zou, X., Casaretto, J., Ho, T., and Shen, Q. (2004). A rice

WRKY gene encodes a transcriptional repressor of the gibberellin signaling

pathway in aleurone cells. Plant Physiol. 134, 1500–1513. doi: 10.1104/pp.103.

034967

Zhou, Q., Tian, A., Zou, H., Xie, Z., Lei, G., Huang, J., et al. (2008). SoybeanWRKY-

type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54,

confer differential tolerance to abiotic stress in transgenic Arabidopsis

plants. Plant Biotechnol. J. 6, 486–503. doi: 10.1111/j.1467-7652.2008.

00336.x

Zou, C. S., Jiang, W. B., and Yu, D. Q. (2010). Male gametophyte-

specific WRKY34 transcription factor mediates cold sensitivity of mature

pollen in Arabidopsis. J. Exp. Bot. 61, 3901–3914. doi: 10.1093/jxb/

erq204

Zou, X., Neuman, D., and Shen, Q. (2008). Interactions of two

transcriptional repressors and two transcriptional activators in modulating

gibberellin signaling in aleurone cells. Plant Physiol. 148, 176–186. doi:

10.1104/pp.108.123653

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Song, Wang, Hou, Zhao, Zhao, Xia, Li, Zhang, Bian and Wang.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Plant Science | www.frontiersin.org 15 February 2016 | Volume 7 | Article 9

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean
	Introduction
	Materials and Methods
	Identification and Analysis of WRKY Genes in Soybean
	Analysis of Codon Usage Bias
	Expression Profiles of GmWRKY Genes
	cis-Acting Elements Analysis in GmWRKY Promoters
	Plant Material and Stress Treatments
	Quantitative Real-Time RT-PCR

	Results
	WRKY Proteins in Soybean
	Codon Usage Bias Analysis
	RNA-seq Analysis of GmWRKY Expression
	cis-Acting Element Analysis
	GmWRKY Genes Expression in Response to Dehydration and Salt Stress Using qRT-PCR

	Discussion
	Identification and Characterization of WRKY
	GmWRKY Expression in Different Tissues and Stress Conditions

	Conclusions
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


