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Abstract

Background: Drosophila melanogaster females have two X chromosomes and two autosome

sets (XX;AA), while males have a single X chromosome and two autosome sets (X;AA).

Drosophila male somatic cells compensate for a single copy of the X chromosome by

deploying male-specific-lethal (MSL) complexes that increase transcription from the X

chromosome. Male germ cells lack MSL complexes, indicating that either germline

X-chromosome dosage compensation is MSL-independent, or that germ cells do not carry

out dosage compensation.

Results: To investigate whether dosage compensation occurs in germ cells, we directly

assayed X-chromosome transcripts using DNA microarrays and show equivalent expression

in XX;AA and X;AA germline tissues. In X;AA germ cells, expression from the single X

chromosome is about twice that of a single autosome. This mechanism ensures balanced

X-chromosome expression between the sexes and, more importantly, it ensures balanced

expression between the single X chromosome and the autosome set. Oddly, the inactivation

of an X chromosome in mammalian females reduces the effective X-chromosome dose and

means that females face the same X-chromosome transcript deficiency as males. Contrary to

most current dosage-compensation models, we also show increased X-chromosome

expression in X;AA and XX;AA somatic cells of Caenorhabditis elegans and mice. 

Conclusions: Drosophila germ cells compensate for X-chromosome dose. This occurs by

equilibrating X-chromosome and autosome expression in X;AA cells. Increased expression of

the X chromosome in X;AA individuals appears to be phylogenetically conserved.
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Background
In most organisms, copy number at any given locus has

little effect on proper organismal function. Very few genes

are deleterious if present in only one copy (haploinsuffi-

ciency) or are overtly deleterious in three copies. Having

more or fewer copies (aneuploidy) of a large fraction of the

genome is, however, invariably incompatible with viability.

For example, over 10% of human oocytes are aneuploid,

but with a few exceptions none of these aneuploid oocytes

gives rise to viable offspring [1]. The most common aneu-

ploid genotypes in a wide range of species involve the dele-

tion or duplication of a chromosome or chromosome

segment. Deletions are the most deleterious. 

In Drosophila melanogaster, a systematic study of aneuploids

with deletions of different segments of chromosomes indi-

cates that having only a single copy of 1% of the genome

reduces viability (and often fertility) and having only a

single copy of 3% or more of the genome is lethal [2]. From

current estimates of gene content in Drosophila, 3% repre-

sents about 500 genes [3]. Therefore, having only a single

copy of 500 genes or more usually results in the collapse of

a major part of the genetic network. That genetic networks

do indeed collapse because of minor differences in the

expression levels of a few connected nodes is evident from

genetic interaction studies. In the female germline, for

example, the dose of the gene ovarian tumor (otu) strongly

modifies the sterility phenotype of flies heterozygous for

ovoD [4]. (The gene ovo encodes a transcription factor that

acts on otu [5]). Similarly, in the male germline, hetero-

zygosity for haywire or �-tubulin mutations are tolerated, but

heterozygosity for both results in failed spermatogenesis [6].

The sex chromosomes represent an extraordinary exception

to the genetic imbalance rule. Drosophila males have one

copy of the X chromosome per diploid set of autosomes

(X;AA) and females have two (XX;AA) [7]. As the Drosophila

X chromosome bears about 20% of the genome [3],

Drosophila males vastly exceed the usual 3% single-copy

threshold for viability. This is not due to an underrepresen-

tation of dosage-sensitive genes on the X chromosome, as

females are sensitive to X-chromosome deletions [2]. There-

fore, males have a special mechanism(s) to compensate for

X-chromosome dose (for reviews see [8,9]). An extensive set

of autoradiographic experiments on the giant polytene

chromosomes of the salivary gland showed that the X chro-

mosome in X;AA flies is expressed at roughly twice the level

as an X chromosome in XX;AA flies. Hypertranscription of

the X chromosome in karyotypic males is dependent on a

complex of at least five proteins and two non-coding RNAs.

The genes encoding the proteins in the complex are referred

to as the male specific lethal (msl) loci. Males lacking any of

the msl activities show reduced X-chromosome transcription

and die as larvae. At the molecular level, these genes encode

a histone-modifying MSL complex, which acetylates histone

4 on lysine 16 (H4 K16). The modification is thought to

relieve the general repressive action of histones and result in

increased transcription.

Interestingly, the MSLs do not function in the germline. The X

chromosomes of male germ cells are not decorated with MSL

complexes and are not hyperacetylated at H4 K16 [10]. Fur-

thermore, neither the genes encoding the MSL complex nor

the obligate somatic regulators of the MSLs are required for

germline viability [11,12]. There is similar lack of evidence of

dosage compensation in the germline of other organisms

[13,14], leading to the hypothesis that germ cells are dosage-

tolerant. Alternatively, dosage compensation in germ cells

may be MSL-independent. Whether the germline X chromo-

some of Drosophila, or indeed of any organism, is dosage

compensated is one of the major unresolved issues in the

study of sex chromosomes. Our array results indicate that

Drosophila germ cells do, in fact, dosage compensate.

Equally enigmatic are the dosage-compensation systems in

Caenorhabditis elegans and mammals, which are based on

reducing X-chromosome expression in XX;AA cells [15,16].

This is seen most clearly in mammals, where one of the X

chromosomes in XX;AA females is inactivated. In C. elegans,

both the X chromosomes in XX;AA hermaphrodites show

reduced expression. In both cases, the dosage-compensation

model equilibrates X-chromosome expression between the

sexes but it also makes both sexes functionally aneuploid

with respect to the autosomes. Both males and females (or

hermaphrodites) become functionally X;AA. It has been sug-

gested that this is counterintuitive, as within each diploid

X;AA organism, gene expression from a single X chromosome

should be equilibrated and balanced to the autosomes

[17-20]. Therefore, it is more useful to think of X-chromo-

some dosage as a mechanism for equilibrating X chromo-

some and autosome expression, rather than as only a

mechanism for equilibrating expression between the sexes.

This predicts, for example, that in mammals both the single X

chromosome of males and the single active X chromosome in

females are hypertranscribed [17,18]. While there is an over-

whelming literature supporting X-chromosome inactivation,

there has been very little experimental evidence to support

hypertranscription of the active X chromosome [21]. Our

examination of array results in C. elegans and the mouse sug-

gests that such X-chromosome hypertranscription does occur.

Results
Comparing XX;AA and X;AA expression ratios

Gene expression in XX;AA and X;AA tissues can be simply

visualized by plotting the hybridization intensities of the
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two samples in a scatterplot (Figure 1). There is modest

sex-biased expression in the soma, but extensive sex-biased

expression in the gonads. In the absence of dosage com-

pensation, we would expect to see XX tissue expression at

twice the level of X tissues. There is no evidence of such a

distribution of X-chromosome expression ratios in either

tissue. The bulk of the XX versus X expression data points

overlies the bulk of the AA versus AA expression data

points in both tissues. This indicates that the single X chro-

mosomes of X;AA soma and gonads are expressed at the

same level as the two X chromosomes in XX;AA soma and

gonads. This strongly suggests that somatic dosage com-

pensation is widespread in adult tissues. More importantly,

this provides the first strong evidence that X-chromosome

dosage compensation occurs in the germline. It is,

however, much more difficult to look for subtle effects of

gene dose in the germline because of the dramatic and

extensive sex-biased expression observed between ovaries

and testes: this sex bias affects about 31% of the genome

and results in a greater than tenfold difference in expres-

sion level for some genes.

To avoid distortion due to sex-biased expression, we included

sex-transformed tissues in our experiments (see Materials and

methods). These tissues were produced by genetic manipula-

tion of the sex-determination hierarchy (Figure 2, and see

[7,22] for reviews). We use gonad samples to assay germline

dosage compensation. Although both wild-type and trans-

formed gonads are composed of germline and somatic

tissues, germline cytoplasm accounts for the bulk of the

mRNA [4,11,23]. We confirmed that the germline contributes

the majority of the transcripts in these hybridizations, as we

were unable to extract sufficient RNA from similar numbers

of dissected empty gonads [24]. More importantly, we

directly verified the composition of the sample gonads by

looking for clusters of genes with germline-biased expression

and for individual genes with known germline-specific or

germline-biased expression patterns (Figure 3). These

samples allow us to isolate the effect of X-chromosome dose

from the confounding effects of sexual dimorphism.

Scatter in the XX;AA versus X;AA data due to sex-biased expres-

sion can be very effectively reduced by sex transformation
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Figure 1

Scatterplots of hybridization intensities from wild-type female and male tissues. Hybridization intensities for XX;AA vs X;AA are plotted along the
y-and x-axis respectively. Data points correspond to elements reporting autosomal genes (black) and X-chromosome genes (red). (a) Germlineless
XX;AA female progeny of homozygous tudor1 (tud1)) mothers (tud+ being required for germ cell formation) compared with their germlineless X;AA
male siblings; (b) XX;AA wild-type ovaries compared with X;AA wild-type testes from siblings. The expected twofold difference in gene expression
in the absence of X-chromosome dosage compensation is shown as a red line.
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Figure 2 (see legend on the following page)
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(Figure 4). When we compare expression of XX;AA and

X;AA soma that were sexually matched (for example,

females versus males transformed into females, and males

versus females transformed into males), we observe very

little high-magnitude differential expression. Even more

striking is the similarity in the expression profiles of trans-

formed ovaries bearing non-differentiating germ cells. The

high-magnitude differences in expression observed between

wild-type XX;AA ovaries and X;AA testes (Figure 1) are

nearly abolished when we compared XX;AA and X;AA trans-

formed ovaries (Figure 4). The implications from visual

examination of the scatterplots are clear, as hybridization to

array elements corresponding to X-chromosome and auto-

somal genes show expression ratios centered tightly on

unity. We confirmed the veracity of this exploratory analysis

using multiple statistical tools (see the section Transcrip-

tional response to altered autosomal gene dose, below).

This strongly supports the idea that X-chromosome dosage

compensation occurs in the germline.

It is formally possible that X chromosomes are dosage

compensated in XX;AA versus X;AA transformed germ cells

but not in wild-type oogenic and spermatogenic germ cells.

Although most of the data points lie along the diagonal in

scatterplots of hybridization intensities comparing XX;AA

ovaries and X;AA testes, regression lines for X chromosome

and autosome expression profiles are differentially

deflected (Figure 5). This is caused by the large number of

genes showing male-biased expression on the autosomes

and the lower density of genes with male-biased expression

on the X chromosome [25]. There are, however, many

genes with ‘housekeeping’ functions on both the X chro-

mosome and the autosomes that are expected to be equally

expressed in both oogenic and spermatogenic germ cells.

To determine how genes with housekeeping function

respond to dose in the germline, we examined in more

detail the expression levels of nuclear genes encoding cyto-

plasmic or mitochondrial ribosomal subunits [26]. The X

chromosome and autosomal genes show strikingly similar

distributions (p > 0.1 by regression analysis of slopes and

intercepts), despite a twofold difference in X-chromosome

dose (Figure 5b). We also identified a de facto set of house-

keeping genes by investigating array elements showing

reduced hybridization variance and high intensity

hybridization across all our experiments (Figure 5c). In the

absence of dosage compensation, we would expect a deficit

of X chromosome genes in this subset, as they would show

increased variance due to the dose difference. We found no

deficit of X-chromosome encoded genes showing low-

variance expression. Both these analyses indicate that at

least some X-chromosome genes are dosage compensated in

the wild-type germline.

Transcriptional response to altered autosomal gene

dose

To understand the precision of X-chromosome dosage com-

pensation, we first need to understand the general response
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Figure 2 (see figure on the previous page)
Sex-determination hierarchy. Sex-biased expression was controlled for by using mutations in sex-determination genes. Relevant aspects of
(a) wild-type female, (b) wild-type males, (c) somatic transformation from female to male (sex transformed), (d) somatic transformation from
male to female (sex transformed), and (e) germline transformation are outlined. (a) Sex determination occurs in early embryogenesis, before the
activation of dosage compensation, which leads to higher levels of expression of transcription factors on the X chromosome in XX;AA than
X;AA individuals. These transcription factors activate Sex-lethal (Sxl) in the soma. The Sxl protein regulates the alternative splicing of the
transformer (tra) pre-mRNA such that Tra protein is produced only in females. Sxl also inhibits the formation of the MSL dosage compensation
complex. Tra protein and non-sex-specifically expressed Transformer2 (Tra2) protein control the alternative splicing of the doublesex (dsx) pre-
mRNA. The dsx mRNAs resulting from Tra- and Tra2-mediated splicing encode a female-specific DsxF transcription factor. Sex determination in
the germline is poorly understood and controversial, but a female somatic environment and an independent reading of the XX;AA karyotype in
germ cells increases expression of positively acting Ovo transcription factors and their direct target, ovarian tumor (otu). The otu locus is required
for Sxl activity in the germline. Note that Sxl does not regulate the MSLs in the germline. The female sex-determination hierarchy results in
oogenic differentiation. (b) In X;AA flies Sxl protein is not present. This permits the formation of the MSL dosage-compensation complex. The tra
pre-mRNAs are spliced to a non-coding form in the absence of Sxl, and in the absence of Tra protein the dsx pre-mRNA is spliced into a default
form encoding a male-specific DsxM transcription factor. The germ cells develop into sperm. (c) XX;AA flies are transformed from females into
males using null mutations of tra2 and by using a dsx mutation encoding a pre-mRNA that is constitutively spliced into the male-specific form
(dsxswe). Flies bearing dsxswe in trans to a deletion produce DsxM protein and no DsxF protein. Similarly, flies null for tra2 produce only DsxM. To
remove germline expression from the analysis of somatic X-chromosome dosage compensation we took advantage of the fact that XX;AA flies
transformed from females into males usually have no germline. These germline-atrophic (having few to no germ cells) XX;AA females
transformed into males were compared with X;AA male carcasses (everything but the gonads) or with X;AA males with a genetically ablated
germline due to the absence of maternal tud+. (d) X;AA flies are transformed from males into females by expressing female-specific tra cDNA
transgenes. The activation of female rather than male sexual differentiation in the X;AA soma results in vast numbers of non-differentiated germ
cells, presumably due to sexual incompatibility between the soma and germline. The sexual identity of these cells is ambiguous. (e) Mutations in
Sxl (using allelic combinations effecting only in the germline isoforms of Sxl) or otu also result in vast numbers of non-differentiated germ cells.
Positive (arrows) and negative (barred lines) genetic or molecular regulation are indicated. Loss-of-function (red) and gain-of-function (green)
mutations and phenotypes are indicated.
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Figure 3 

Germline-biased gene expression in transformed ovaries. (a) Heat diagram (yellow > red > blue) of hybridization intensities for all unique array
element sequences (N = 13,267) from individual samples (columns) used in this study. Gonad samples (left) and somatic samples (right) are indicated
with karyotype (XX;AA and X;AA) and abbreviated genotypes; wt, wild type (see Materials and methods for more details). Replicates are indicated
(brackets). Germline expression is clearly evident in the gene-expression profiles of transformed ovaries. There are large blocks of elements showing
high- or low-intensity hybridization to gonad probes and the opposite pattern when hybridized to samples from carcasses or from flies lacking germ
cells but having somatic components of the gonads. (b) Selected genes with known functions in the germline. Array elements representing germline-
marker genes (for example, vasa (vas), pumilio (pum), tudor (tud), piwi and benign gonial cell neoplasia (bgcn) [67,68]) show strong hybridization to
labeled gonad mRNA samples and comparatively weaker hybridization to non-germline samples. Furthermore, at least some of the differences
between the samples also support the proposed germline sex-determination pathway. For example, as predicted, both ovo and otu are germline-
biased and overexpressed in XX;AA Sxl ovaries relative to X;AA hs-tra ovaries [40,69]. All these data validate the use of XX;AA and X;AA
transformed germlines as matched tissues for the careful analysis of X-chromosome dosage compensation in the germline.
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of the biological system to altered gene dose. What should

we expect if there is no X-chromosome dosage compensa-

tion? A twofold difference in gene dose is unlikely to always

result in a twofold difference in steady-state transcript levels,

as many genes are regulated by elegant feedback mecha-

nisms that would dampen the effect of gene dose. Similarly,

we need to prove that the entire data-handling pipeline

allows us to see gene-expression differences associated with

altered gene dose.

To determine whether differences in genetic dose result in

detectable differences in gene expression, we have directly

measured gene-expression changes resulting from altered

gene dose due to deficiency (deletion) and duplication of

an autosomal segment of the genome. The duplication that

we used overlaps the deletion region, but covers more

genes. Flies heterozygous for the duplication

Dp(2:2)Cam3/+ (Dp/+) have three copies of around 330

genes, while flies heterozygous for the deletion Df(2L)J-H/+

(Df/+) are hemizygous for a subset of around 70 of those

duplicated genes [27]. By directly comparing gene expres-

sion in flies bearing these aberrations, we assayed the conse-

quences for gene expression of 1-fold, 1.5-fold, and 3-fold

differences in gene dose along chromosome arm 2L.

We isolated mRNA from two independent preparations of

females, males and ovaries and performed six hybridiza-

tions comparing Dp/+ and Df/+ samples directly against

each other on microarrays (Figure 6). The effect of altered

autosomal gene dose is obvious in the moving average

plots of expression ratios against position along the chro-

mosome arm (Figure 6). We observed distinct alterations of

gene-expression ratios between Dp/+ and Df/+ flies within

the cytologically defined aneuploid regions in males,

females and ovaries. Moving from left to right along such a

plot, the ratios are essentially 1.0 (indicating equivalent

expression) in the region that is two-copy in both Dp/+ and

Df/+ flies, until reaching the region that is three-copy in

Dp/+ flies and two-copy in Df/+ flies. At this position there

is a strong break in the moving average towards Dp-biased

expression. A similar break in the moving average occurs at

the transition to the region that is three-copy in Dp/+ flies

and single-copy in Df/+ flies. Altered fold ratios between

Dp/+ flies and Df/+ flies return to baseline as the proximal

breakpoints of the aberrations are crossed.

The differences in gene-expression ratios corresponding to

1-, 1.5- and 3-fold dose changes on chromosome 2L are

highly significant (p << 10-4 by ANOVA followed by Tukey
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Figure 4

Scatterplots of hybridization intensities from transformed XX;AA and X;AA tissues. Data points correspond to elements reporting autosomal genes
(black) and X-chromosome genes (red). (a) XX;AA females transformed into somatic males (dsxswe/Df(3R)dsxM+15) compared with germlineless X;AA male
progeny of homozygous tud1 mothers and (b) XX;AA ovaries from ovo1/otu17 females compared with X;AA ovaries from hs-tra83/+ males transformed
into females. The expected twofold difference in gene expression in the absence of X-chromosome dosage compensation is shown as a red line.
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HSD, Hodges-Lehmann, and Kolmogorov-Smirnov tests;

see Materials and methods). No other similar large blocks of

genes elsewhere in the genome show significantly greater

expression in Dp/+ flies than in Df/+ flies. There were,

however, smaller two-copy regions that showed expression

ratios mimicking the 1.5- to 3-fold gene dose effect or the

inverse effect. These regions could be due to unrecognized

aberrations or could be secondary transcriptional effects.

We also used these 1-, 1.5- and 3-fold dose-change data to

tune our data handling. The on-spot background correction

method gave the greatest discrimination power (see Materi-

als and methods and Additional data file 1, available with

the online version of this article), and was used for all sub-

sequent distribution analyses. This method maximizes our

ability to detect the absence of dosage compensation.

The salient feature of the above analyses is that expression

changes due to altered gene dose changes on autosomes are

readily detectable. This provides us with a metric for the

analysis of the similar X-chromosome gene-expression ratios

when comparing XX;AA with X;AA tissues. We performed 48

hybridizations using 96 biological samples (see Materials and

methods). Matched XX;AA and X;AA tissues were compared

in direct hybridizations and were linked through the loop

design to other XX;AA and X;AA samples hybridized on other

arrays. This allowed for even greater numbers of compar-

isons. In all of our global comparisons of XX;AA with X;AA

expression in the soma (72 comparisons), a 1.5-fold dose

difference on an autosome gave a greater difference in

gene-expression profiles than did a twofold difference in

X-chromosome dose (p << 10-4). The same was found in all of

our global comparisons of XX;AA to X;AA expression in trans-

formed gonads (119 comparisons). These data conclusively

demonstrate that germ cells carry out dosage compensation.

Mechanism of X-chromosome dosage compensation

Balancing X-chromosome expression between XX;AA and

X;AA germ cells in Drosophila is likely to require either

hypertranscription of the X in males (as occurs in the soma)

or hypotranscription of the X chromosome in females com-

pared with an autosomal reference. Determining which

mechanism of dosage compensation operates in the

germline requires measuring the absolute expression levels

of the X chromosome genes relative to those of autosomal

genes. Gene expression varies by orders of magnitude, but

in a large representative population of genes on a chromo-

some arm we expect that those represented by two copies

will have higher transcript abundance than those repre-

sented by a single copy.

As a rigorous feasibility test, we examined hybridization

intensities in the Df/+ region of autosome 2L. In whole

adult males, adult females and ovaries, average hybridiza-

tion intensities were significantly lower in the 70 or so

genes in the single-copy Df segment than in the two-copy
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Figure 5

Subsets of gene-expression profiles from wild-type gonads. Scatterplots of hybridization intensities for XX;AA ovary (y-axis ) versus X;AA testis
(x-axis) samples to elements corresponding to (a) all genes, (b) genes encoding cytoplasmic or mitochondrial proteins, and (c) de facto
housekeeping genes (showing high intensity and low variance across all experiments). Data points and regression lines (trendlines) correspond to
elements reporting autosomal genes (black) and X-chromosome genes (red).
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segments elsewhere in the genome (Figure 7). X chromo-

somes are hypertranscribed in the soma relative to auto-

somes. As expected, transcripts from the single X

chromosome in the soma hybridize to arrays as intensely as

those from the two-copy autosomes. We observed the same

trend in the X;AA germline. Transcripts from the X chromo-

some of X;AA transformed ovaries show as an high intensity

of hybridization as those from the two-copy autosomes. In

fact, the X chromosome appeared to be slightly overex-

pressed relative to autosomes in the X;AA transformed

http://jbiol.com/content/5/1/3 Journal of Biology 2006, Volume 5, Article 3 Gupta et al.  3.9

Journal of Biology 2006, 5:3

Figure 6

Gene-expression changes due to an altered gene dose on autosomes. (a) Experimental design to measure gene-expression changes for altered
autosomal gene dose. Replicate mRNA samples from flies bearing a duplication, Dp(2;2)Cam3/+, or a deletion, Df(2L)JH/+, on the left arm of
autosomal chromosome 2 (2L) were labeled with either Cy3 or Cy5 and hybridized to FlyGEM arrays. These were performed as dye-swap
experiments to avoid any effect of dye bias. Following data extraction, changes in expression ratios as a result of differences in the dose of individual
genes were determined. There are no differences in underlying gene dose outside the region of the aberrations, and there is a 1.5-fold difference
when a gene is present on the duplication (Dp) or a 3-fold difference when the gene is present on the duplication and deleted in the deficiency (Df).
(b) Average expression ratios from duplicate experiments comparing Dp/+ vs Df/+ adult male flies were plotted as a moving average against gene
position along 2L. Gene-expression ratios for no gene dose difference (black), 1.5-fold (green) and 3-fold (orange) gene doses are indicated. Breaks
in gene-expression ratios occur at the predicted cytological breakpoints of the aberrations. The aberrations are cartooned below the moving average
plot, with the Dp (triangle) and Df (gap) indicated. In addition, the diploid regions of the genome where Dp/+ flies show greater expression than Df/+
flies are indicated (arrow). 
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Figure 7 (see legend on the following page)
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ovaries, in each of seven replicate experiments. Even the

transcripts from the single X chromosome in X;AA testis

showed higher intensity hybridization than the single-copy

genes from any Df+ sample (p << 10-4). These results indi-

cate that X-chromosome dosage compensation in the

Drosophila soma and germline is the result of higher per-

copy X-chromosome transcript accumulation in X;AA cells.

Interestingly, the X chromosome shows slight, but highly

significant, overexpression in all XX;AA samples. This may

be due to inherent hypertranscription of X-chromosome

genes in both males and females.

Escape from dosage compensation

Although the overall expression of X-chromosome genes

appears to be very tightly dosage compensated, there might

be small regions or scattered genes that escape dosage com-

pensation. To look for blocks of the X chromosome that

fail to undergo dosage compensation in either the soma or

the germline, we plotted a moving average of expression

ratios along the length of the X or the similarly sized auto-

some arm 2L (Figure 8). In the case of the soma, plots of

(XX;AA)/(X;AA) expression ratios revealed only noise fluc-

tuating around expression ratios of unity. X-chromosome

expression ratios for gonads were slightly skewed towards

XX-biased expression, but we detected no overt region of

the X chromosome expressed like a Df/+ region. These

results indicate that no contiguous blocks of genes on the X

chromosome escape dosage compensation in the soma

or germline.

Scattered genes along the X chromosome that fail to

become dosage compensated in either the soma or the

germline are more difficult to detect because there are X

chromosome and autosomal genes that are differentially

expressed between XX;AA and X;AA tissues even following

sex transformation of those tissues. If some autosomal

genes are expressed at higher levels in XX;AA flies than in

X;AA flies, then some X-chromosome genes are expected to

do the same. To test for isolated genes that have escaped

dosage compensation, we extracted all the genes that were

at least 1.5-fold overexpressed in either XX;AA or X;AA flies,

normalized them to gene content per arm, and looked for

departure from a normal distribution (Figure 8). If there are

a significant number of genes on the X chromosome that

escape dosage compensation, then there should be more

expression outliers mapping to the X chromosome relative

to similarly sized autosomal segments. Furthermore, the

outliers from the X chromosome should show XX-biased

expression if they escape dosage compensation. In the sex-

transformed soma, even though there are X-chromosome

genes that always show higher expression in XX;AA than X;AA

somas, we observed no significant enrichment (Figure 8) of

such genes. About twice as many X-chromosome genes as

expected, however, show higher expression in XX;AA trans-

formed germline (p < 10-3, by the �2 test). At face value, we

can calculate that approximately 2% of X-chromosome

genes escape dosage compensation in the germline. In the

soma, sex determination and dosage compensation are

linked pathways, however, and this could conceivably be

true for the germline [7,22]. We cannot rule out the possi-

bility that reduced X-chromosome expression in X;AA,

hs-tra/+ ovaries relative to XX;AA otu or Sxl ovaries is due to

a slight defect in germline dosage compensation concurrent

with a germline sex transformation. 

Dosage-compensation mechanisms in C. elegans and

the mouse 

Although X-chromosome dosage compensation equilibrates

X-chromosome expression between the sexes, the X;AA indi-

viduals are the ones to face an unbalanced karyotype. This

makes the increased X-chromosome expression in the X;AA

male Drosophila a logical mechanism of dosage compensa-

tion. In contrast, X-chromosome transcription is reduced

from both X chromosomes in C. elegans hermaphrodites,

and one X chromosome is inactivated in mammalian

females [15,16]. In both cases, this dosage compensation

equilibrates X-chromosome expression between the sexes,

but also makes both sexes functionally aneuploid with

respect to the autosomes. This conundrum is solved if X

chromosomes are generally hypertranscribed and if

X-chromosome inactivation or hypotranscription in XX;AA

females or hermaphrodites is a mechanism to prevent
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Figure 7 (see figure on the previous page)
Increased X-chromosome expression in the X;AA soma and germline. (a) Experimental design. The mRNA samples from XX;AA or X;AA somatic or
germline tissues were labeled with either Cy3 or Cy5 and hybridized to FlyGEM arrays. Hybridization intensities corresponding to X chromosomes
(red) and autosomal genes (black) were analyzed within each X:AA or XX:AA sample. (b-f) Histograms of hybridization intensities. (b) Autosomal
hybridization intensities from single-copy (orange) and two-copy (black) regions of Df/+ samples in whole adult males, whole adult females and ovaries.
Bars represent autosomal arms, in the order shown across the top. (c-f) Average hybridization intensities from the single X chromosome (red)
compared to two copies of each autosomal arms. (c) Germlineless X;AA male progeny of homozygous tud1 mothers and carcasses from X;AA males
transformed into somatic females with hs-tra. (d) X;AA gonads from wildtype males and X;AA hs-tra sex transformed flies. (e) Germlineless XX;AA
female progeny of homozygous tud1 mothers and XX;AA females transformed into males by dsxswe/Df(3R)dsxM+15 and tra2B/Df(2R)trix. (f) XX;AA
gonads from wild-type and otu17/otu1 and Sxl7BO/Sxlfs3 transformed ovaries. Error bars show standard deviation of the mean hybridization intensity from
all replicates of each sample. Numbers of hybridization replicates are indicated in parentheses above each histogram panel.
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Figure 8

Escaping dosage compensation. (a,b) Moving average of expression ratios plotted against position along the X chromosome (red) and autosome 2L
(black) from (a) sex-transformed soma and (b) germline. (c-f) Histograms of genes showing expression ratios greater than 1.5-fold in either XX;AA
(gray) or X;AA (black) transformed soma (c,d) and germline (e,f). Genotypes are indicated. Genes were analyzed by chromosome arm (number of
genes >1.5-fold on arm/total on arm)/(number of genes >1.5-fold in genome/total in genome). �2 tests (p > 0.3) indicate that there is no enrichment
on the X chromosome for genes expressed more than 1.5-fold in XX;AA soma, but that there is enrichment in gonads (*, p <10-4).
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overexpression of the X chromosome. Otherwise, hypertran-

scription of the X chromosome in XX;AA individuals would

result in functional tetraploidy.

In order to investigate the activity level of the X chromosome

in these animals, we reanalyzed previously published array

data on gene expression in the soma of hermaphrodite and

male C. elegans [28] and female and male mice [29]. These

studies reported on gene-expression differences between the

sexes rather than dosage compensation. From scatterplots of

these data there is little difference between the expression of

the X chromosome in XX;AA versus X;AA germlineless

animals or somatic tissues (Figure 9). Given that both species

have somatic dosage-compensation mechanisms that equili-

brate expression between the sexes, this is unsurprising. 

To determine whether per-copy transcription from the X

chromosome is reduced in XX;AA soma, we measured the

average hybridization intensity for the X and all autosomes

in both X;AA and XX;AA animals (Figure 9). Transcripts

from the single X chromosome in X:AA C. elegans male

soma hybridize as well as those of two-copy autosomes.

Indeed, the X chromosomes of both X;AA and XX;AA

C. elegans appear to be overexpressed relative to autosomes

(p << 10-4). Similarly, X-chromosome transcripts from X;AA

and XX;AA mouse soma (average of hypothalamus, kidney

and liver) are detected well within the range of those of the

autosomes. Many mouse tissues have been examined, and

we find evidence of elevated X-chromosome expression in

all cases (data not shown). A study concurrent with this one

has extensively cataloged mammalian X-chromosome

dosage compensation, and confirms our observation that

the single X chromosome in males and the single active X

chromosome in females are compensated [30]. These find-

ings suggest that the single X chromosomes of X;AA

C. elegans and mice are expressed at levels comparable to

two autosomes, as we observed in Drosophila. Perhaps this is

a universal phenomenon.

Discussion 
Polytene salivary gland chromosomes have greatly facili-

tated the analysis of dosage compensation in Drosophila [8],

but global analysis of dosage compensation in the other

tissues has not been conclusive. A recent reverse transcriptase

(RT)-PCR study showed a wide range of states of compensa-

tion of X-chromosome genes [31]. Sex-biased expression

potentially distorts such dosage-compensation analysis,

however. There is extensive sex-biased expression in

Drosophila [24,32-34] and, furthermore, these genes are not

equally distributed between the X chromosome and auto-

somes [25,35]. Studies directed at subsets of genes have

revealed complex relationships between X chromosome and

autosome expression. It is, however, difficult to interpret a

subtle difference in X-chromosome expression between

XX;AA and X;AA individuals if effects of a similar magnitude

are seen for autosomal genes [36]. Global analysis of tran-

scription in non-polytene tissues could help resolve the

nature of X-chromosome dosage compensation in the

understudied tissues that make up the bulk of the fly. 

Microarray analysis is ideally suited to the study of dosage

compensation. Our results suggest that remarkably tight X-

chromosome dosage compensation occurs in a wide range

of adult tissues. Most importantly, we also provide the first

evidence for germline dosage compensation in any organ-

ism. The compensation mechanism in both the soma and

germline is the equilibration of X chromosome expression

with autosomal expression. This is likely to be due to

increased expression from the single X chromosome in

X;AA, although decreased expression from all the autosomes

could also ensure that X chromosome expression is equili-

brated with the autosomes [37].

MSL-independent germline dosage compensation 

Germline X-chromosome dosage compensation has been a

black box for decades [22]. As the well-known somatic

dosage-compensation mechanisms in the major genetic

model organisms clearly do not function in the germline,

the idea has gradually emerged that germ cells are dosage-

tolerant. This is due not to evidence of absence, but to

absence of evidence. Although our results show that dosage

compensation in the soma and germline are thematically

similar, the mechanisms in the germline must be distinct.

The MSL complexes required for dosage compensation in

the soma are dispensable in the germline [10,12]. This

might appear to be non-parsimonious, but germline and

somatic gene expression also appear to be distinct. The male

and female germline express different types of basal tran-

scription machinery, such as male-germline-specific TATA-

box-binding associated factors (TAFs), which might require

a different chromatin structure [38,39], and germline-

restricted factors bind the germline-restricted core promoter

of the ovo gene [40]. In addition, even though somatic

dosage compensation is highly conserved, proteins mediating

dosage compensation are not. For example, in some other

species of flies the MSL complex associates with all chromo-

somes, not just the X chromosome [41-43], suggesting that

the complex plays no role in dosage compensation in those

organisms. In yeast, which lack well differentiated sex chro-

mosomes, one of the main MSL complex components is

required for viability [44]. These observations indicate that

MSL complexes play markedly different roles in different

species. Given the differences in gene expression between

the germline and the soma, it is perhaps unsurprising that

http://jbiol.com/content/5/1/3 Journal of Biology 2006, Volume 5, Article 3 Gupta et al.  3.13

Journal of Biology 2006, 5:3



3.14 Journal of Biology 2006, Volume 5, Article 3 Gupta et al.                                                                                   http://jbiol.com/content/5/1/3

Journal of Biology 2006, 5:3

Figure 9 (see legend on the following page)
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different proteins might be involved in Drosophila germline

dosage compensation.

It is also unclear whether the MSL complex accounts for all

somatic dosage compensation. For example, XX;AA flies

lacking Sex-lethal (Sxl) protein in the soma die, presumably

because of a failure to repress MSL complex formation [45].

But mutations in the MSL-encoding genes fail to rescue the

lethality of XX;AA flies without Sxl, suggesting that Sxl

represses additional dosage-compensation functions [46].

Similarly, in polytene salivary glands, large blocks of the X

chromosome do not associate with MSL complexes [47]. We

find no evidence to support extensive escape from X-chro-

mosome dosage compensation in somatic tissues. These

results are consistent with either selective deployment of

MSLs at active genes [47] or MSL-independent dosage com-

pensation at a subset of genes.

Mutations in genes regulating germline dosage compensa-

tion would be expected to show karyotype-specific pheno-

types. Interestingly, there are at least two genes that appear to

be required for the viability of XX;AA but not X;AA germ

cells; ovo and stand still (stil) [48,49]. Negative and positive

Ovo protein isoforms act at the transcription start site of at

least some promoters [5,40,50] and Stil protein decorates

active chromatin when overexpressed in the soma [49].

Perhaps one or both of these proteins serve to block the

upregulation of the X chromosome that normally occurs in

the male germline. This could be analogous to the situation

in the Drosophila soma, where dosage compensation is

actively repressed in XX;AA females [7]. There are also a

number of genes that are required for the viability of male

germ cells [51]. Some of these genes may encode dosage-

compensation functions. If such dosage-compensation genes

exist, they might encode chromatin-modifying complexes, as

in the Drosophila soma. Given that our data show that steady-

state transcripts from the X chromosome are compensated,

however, there are a host of post-transcriptional mecha-

nisms, such as preferential mRNA stability, that could con-

ceivably mediate germline dosage compensation. 

X-chromosome dosage-compensation mechanisms might

arise from dosage control mechanisms that are active at

many or all genes. Indeed, we have detected transcriptional

buffering in our control experiments on the effects of auto-

some gene dose. We found that the magnitude of the tran-

scriptional effect was less than expected from a simple

calculation of gene dose. This inverse effect on transcription

relative to gene dose has been known for decades [52-54],

and has recently been observed in expression profiling and

RT-PCR studies [31,55-57]. It seems likely that many genes

have a self-contained dosage-compensation system, albeit an

imperfect one. The MSL components have general transcrip-

tional activity in yeast and appear to have been co-opted in

Drosophila to regulate somatic dosage compensation.

Germline dosage compensation might be mediated by other

co-opted cis- or trans-acting components that serve to buffer

gene expression. 

Escape from dosage compensation

There are X-chromosome genes, such as LSP1-�, that escape

dosage compensation in Drosophila [58], but it is not

known how common this might be. Similarly, in

mammals, many X-chromosome genes escape inactivation

in females (escape from dosage compensation in X;AA

males has not been examined). In theory, this is expected,

as not all genes need to be dosage compensated in the

course of X-chromosome evolution [59]. Although we can

confidently analyze populations of X-chromosome genes,

it is quite difficult to determine whether a given gene

escapes dosage compensation. Indeed, in the absence of a

detailed, gene-by-gene mechanistic study, it might be impos-

sible. There are many autosomal genes that are more highly

expressed in XX;AA than X;AA tissues, even after controlling

for sex-biased expression. These gene-expression differences

are clearly not directly related to X-chromosome dosage

compensation. Many of the X-chromosome genes expressed

at higher levels in XX;AA than X;AA tissues will be similarly

unrelated to dosage compensation per se. In studies of escape

from dosage compensation in Drosophila, C. elegans, or

mammals where sex-bias is uncontrolled, reports of genes

escaping dosage compensation could well be spurious. 

On a global level, we find no evidence for escape from

dosage compensation in the Drosophila soma. In the

germline, however, there are clearly more genes with
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Figure 9 (see figure on the previous page)
Scatterplots of hybridization intensities from RNA from somatic tissue from XX;AA and X;AA C. elegans and mouse. Hybridization intensities of
(a) germlineless (glp4) XX;AA hermaphrodites plotted against a population greatly enriched for germlineless X;AA male C. elegans (glp4 him5), and
(b) female mouse hypothalamus tissue plotted against matched tissue from males. X chromosome (red) and autosomal (black) elements as well as the
trend line (red) for the twofold expression difference expected in the absence of dosage compensation are shown. (c-f) Average hybridization
intensities corresponding to genes on the X chromosome (red) and autosomes (black) in (c) X;AA glp4 him5 C. elegans male soma and (d) X;AA
mouse male soma (average of hypothalamus, kidney and liver) samples, (e) XX;AA glp4 C. elegans hermaphrodite soma, and (f) XX;AA mouse female
soma samples. The intensities from individual autosomal arms are averaged across all experiments and standard deviations of the means are indicated.



XX-biased expression than expected. There are several differ-

ent interpretations of this finding. It is possible that escape

from dosage compensation is more common in the

germline (about 2% of genes). Alternatively, there may be

slight under-compensation in the germline. The X chromo-

somes in both XX;AA and X;AA gonads appear to be overex-

pressed relative to autosomes, however. It is therefore

possible that the slight excess of XX-biased expression is due

to failure to fully dampen X-chromosome hypertranscrip-

tion in XX;AA females.

Towards a unified model of dosage compensation 

Females have two X chromosomes and males have one. It is

therefore natural to think of the problem of dosage compen-

sation as a mechanism to equilibrate X chromosome expres-

sion between the sexes. But changing the dose of large

segments of the genome is a problem for the individual with

the aneuploid condition - the males in the case of the major

metazoan model systems. Remarkably, an X chromosome is

inactivated in female mammals. Equally remarkable, both X

chromosomes in C. elegans hermaphrodites are downregu-

lated. Why should X chromosome dosage compensation be

achieved in these organisms by unbalancing gene expression

in both sexes? Our analyses of pre-existing array data suggest

that both the male X chromosome and the single active

female X chromosome are hypertranscribed or accumulated

in mammals. In the course of our study, some of the same

data has been reanalyzed independently, and the authors of

the other study have reached similar conclusions [30]. These

data support a more unified theory of dosage compensation

[17-20], whereby X-chromosome expression is increased in

all X;AA cells (Figure 10). There may be counteracting forces

to increase X-chromosome expression in X;AA males and to

keep X-chromosome expression under control in XX;AA

females. Indeed, our analysis suggests that in Drosophila and

C. elegans, the X chromosomes of XX;AA and X;AA tissues

are overexpressed relative to autosomes. Such overshooting

would be expected to be more detrimental to XX;AA

individuals and could have given rise to X-chromosome

inactivation in the mammalian lineage. Interestingly, the

repressive chromatin-associated protein HP1 is enriched on

the Drosophila X chromosome in males [60]. Perhaps this is

to modulate overcompensation.

Conclusions 
Dosage compensation has been under study for a nearly a

century. Examination of chromatin structure, rather than

direct assay of gene transcription, dominates the recent

dosage-compensation literature. Microarray analysis allows us

direct access to the transcript accumulation of all X-chromo-

some genes. The Drosophila array data provide the first demon-

stration in any organism that germ cells dosage compensate.

These data also add a significant twist to our understanding of

dosage compensation in mammals and C. elegans. Microarray

analysis will be a vital tool for directly assaying this intriguing

whole-chromosome regulation of gene expression. 

Materials and methods 
Drosophila strains 

Flies were grown at 25°C, aged for 5-6 days, dissected, flash-

frozen, and prepared for RNA extraction as described previ-

ously [24] (see the Flybase compendium of information on

genes, alleles, and phenotypes for additional descriptions

[27]). Flies used to test for the effect of chromosomal aber-

rations were Dp(2;2)Cam3/+ and Df(2L)J-H/+ that were

generated from outcrossing the stocks to y1 w67c to remove

the balancer chromosomes. In addition to using XX;AA

females (y1 w67c), we transformed XX;AA flies into males

using null mutations of transformer2 (tra2B/Df(2R)trix) and

by using a dsx mutation encoding a pre-mRNA that is con-

stitutively spliced into the male-specific form (dsxswe). Flies

bearing dsxswe trans to a deletion produce DsxM protein and

no DsxF protein (dsxswe/Df(3R)dsxM+15). Similarly, flies null

for tra2 produce only DsxM. To obtain X;AA flies that are sex

transformed from males into females, we crossed female

flies bearing female-specific tra cDNA transgenes (w; P{w+

hs-tra83}/CyO or Gla) or (Df(3L)stj7 Ki roe pp P{hs-tra}/TM3

or TM6) to BsY males. The hs-tra transgenes are sufficiently
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Figure 10

Model for X-chromosome dosage compensation in Drosophila, C. elegans
and mouse. X-chromosome transcription is generally upregulated (green
arrow). X;AA tissues thus avoid unbalanced expression of
X-chromosome genes. In order to avoid overexpression of
X-chromosome genes (red symbols), females either destroy the
compensation machinery used in males (Drosophila soma), or deploy a
counteracting mechanism to reduce expression from both hyperactive X
chromosomes (C. elegans) or eliminate expression from one hyperactive
X chromosome (mouse). The mechanism used in the XX;AA Drosophila
germline is unknown, but given that X-chromosome expression in the
female germline is bi-allelic, an X-inactivation mechanism is unlikely. 

Drosophila soma

X  ; AA   =  X   X     ; AA
Drosophila germline

X  ; AA   =  X   X     ; AA
C. elegans soma

X  ; AA   =  X   X     ; AA
Mouse soma

X  ; AA   =  X   Xinactive; AA

? ?



active at 25°C to transform males into phenotypic females.

We did not utilize a heat-shock regimen.

In order to study the expression changes resulting from a

twofold change in the dose of the X chromosome between

the XX;AA and X;AA germlines, we utilized genetic mut-

ations that we show remove most sex-biased germline

expression from the analysis. The activation of female rather

than male sexual differentiation in the soma with hs-tra in

X;AA flies results in gonads with vast numbers of poorly dif-

ferentiated germ cells. Mutations in Sxl (y Sxlfs3/y cm Sxl7BO)

or otu (ct otu1 v24/y w otu17) result in a similar germline phe-

notype. Occasionally, a few ovaries from X;AA hs-tra flies

and germline-transformed Sxl or otu flies bear eggs. These

ovaries were not included in the samples. Similarly, very

small ovaries that are essentially germlineless were not

included in any of our samples.

To remove germline expression from the analysis of somatic

X-chromosome dosage compensation, we took advantage of

the fact that XX;AA flies transformed from females to males

usually have no germline, but rarely have a few germ cells

showing either oogenic or spermatogenic phenotypes. These

germline-atrophic XX;AA females transformed into males

were compared with both gonadectomized X;AA males or

sham-dissected X;AA males with a genetically ablated

germline as a result of the absence of maternal Tud+

(progeny of tud1 bw1 sp1 mothers).

Arrays 

We have used an extensively tested microarray platform

designed to detect transcription from 94% of

D. melanogaster release 1 genes [61]. Unlike most array

studies, where the object is to determine which genes are

altered between tissues, life stages or treatments, we focus

here on non-differential expression. In dozens of homo-

typic hybridization experiments (where an mRNA sample is

split, labeled with either Cy3 or Cy5, mixed, and hybridized

to the array) performed as part of this (data not shown) and

previous studies, we find that the expression ratio is 1 and

that there are very few outliers [24,25,61]. In the most

extensive set of such homotypic hybridizations, the 99.5%

confidence intervals were always between 1.4 and 1.5-fold

[61]. Given that only a handful of genes are expected to

show artifactually a greater than 1.5-fold expression differ-

ence, we easily had the sensitivity to detect changes in

expression owing to a twofold difference in the 2,245 X-

chromosome genes represented on the array.

We have further shown that twofold differences in mRNA

concentrations can be readily detected by adding known con-

centrations of mRNA to hybridization mixes in ‘spike-in’

experiments [61]. Analysis of spike-in control data (a twofold

change in input results in a twofold difference in expression

ratios) and a comparison of sex-biased expression deter-

mined by FlyGEM and northern blotting reveal no evidence

of compression of expression ratios in our data [24,61]. 

Sample preparation and labeling 

We used 96 biological samples in this study. Careful sample

preparation ensures minimum adjustment in subsequent

data handling. Dissections, flash freezing and RNA extrac-

tions were performed as described [24,61]. Briefly, total

RNA was extracted using Trizol (Life Technologies, Carls-

bad, USA), followed by mRNA isolation using an Oligotex

poly(A) extraction kit (Qiagen, Valencia, USA). RNA con-

centration was determined using RiboGreen dye (Molecular

Probes, Oak Ridge, USA) in a fluorescent assay using a

Luminescence Spectrometer LS-50B (PerkinElmer, Fremont,

USA) fitted with 485 nm (excitation) and 520 nm (emis-

sion) filters. RNA quality was determined by capillary elec-

trophoresis on a Bioanalyzer 2100 (Agilent, Palo Alto,

USA), using the 6000 Nano Assay kit (Agilent) according to

the manufacturer’s instructions. 

Samples were labeled with Cy3- or Cy5-labeled random

nonamers (Trilink Biosciences, San Diego, USA). To ensure

that each of the nonamer sets was in fact equally ‘random’,

we ordered a single batch of random oligonucleotides that

was split into half at the penultimate synthetic step with Cy3

or Cy5 nucleotides added at the end. To verify performance

of these oligonucleotides, we performed an experiment in

which RNA was labeled using both Cy3 and Cy5 nonamers

in the same tube, followed by hybridization, scanning and

analysis. There was no dye bias evident. Hybridizations of

samples to the microarrays were performed at 60°C, fol-

lowed by washes exactly as described [24,61].

Scanning 

Arrays were scanned using an Axon GenePix 3000A fluores-

cence reader (Molecular Devices Corporation, Union City,

USA) in which the photon multiplier tube (PMT) settings

were first adjusted using calibration slides. GenePix v.4.1

image acquisition software (Molecular Devices Corporation)

was used to extract signal for each target element. Calibra-

tion slides were Ultra GAPS (Corning, Acton, USA) spotted

with 10-3 to 10-6 dilutions of a 0.33 nM each stock of Cy3

and Cy5 dyes (Amersham Biosciences, Pittsburgh, USA)

using GMS 417 Arrayer (Affymetrix, Santa Clara, USA). The

PMT voltages, in the linear range, were balanced using these

slides. With each new batch of labeling and hybridization,

we included a homotypic hybridization [61], in which the

same RNA preparation from y1 w67c whole males was split

into two tubes, labeled with Cy3 or Cy5 nonamers, mixed

and hybridized. Slight adjustments of PMT voltages were

sometimes made on these control slides. No elements were
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saturated. Once PMT settings were determined, all arrays in

the same hybridization batch were scanned at the same

voltage settings. Hybridization and labeling quality was

determined by confirming that the channels were close to

global balance in the absence of PMT adjustment (no ‘on-

the-fly’ adjustments were made). No arrays were discarded

because of failed labeling reactions in one of the two chan-

nels. In addition, all elements were printed in duplicate.

Regression analysis of plots of duplicate elements was also

used as a quality-control step for gradients and severe speck-

ling. No arrays were discarded following duplicate element

evaluation. Finally, we determined the fraction of elements

that returned signal above on-spot background (see Data

handling). Three arrays were discarded from the study

because less than 50% of elements exhibited above-back-

ground signal.

Loop design for microarray pairings 

Samples from all flies and tissues were prepared (Table 1)

and hybridized using a loop design [62]. This design (see

Additional data file 2) ensured first, that the highest-quality

direct hybridizations were predominantly between matched

XX;AA and X;AA tissues and second, that any sample could

be compared with every other sample included in the study,

after normalization across all samples. Most of the relevant

samples were compared directly, but all samples are con-

nected in the design for indirect comparisons. In most direct

comparisons we have included both technical labeling repli-

cates (dye-flips) and biological replicates. Although we used

a series of pair-wise comparisons of XX;AA and X;AA samples

in this study, the flexible design will allow easy future use to

address other questions about sex-biased expression.

Data handling 

Drosophila data were processed using the Bioconductor [63]

package limma (Linear Models for Microarray Analysis) v.

1.7.6, to adjust for effects that arise from variations in

microarray technology rather than biological differences.

Because of the care taken in using identical RNA concentra-

tions in labeling reactions and scanner settings, data handling

resulted in minimal adjustments to the raw data. We did not

average duplicate array elements as this would reduce statis-

tical power in later steps. At the individual array level, the

raw intensity data were normalized using print-tip loess

(locally weighted scatter plot smooth) [64]. This corrects for

tip biases and for minor hybridization gradients. This was

followed by one of three different background corrections.

For background elimination, intensities less than the average

intensities of the barcode elements (designed against DNA

corresponding to an intron that were included in printing

plates for tracking purposes, but are also quite useful for

background correction [61]) were classified as background

and excluded from calculations. For on-spot background

correction, the average intensity of the barcoding elements in

the array were subtracted from the spot intensity for every

array element. For the no-correction option, we used quan-

tile normalization to compare across arrays [64]. Experi-

ments with the Df/+ and Dp/+ flies confirm that on-spot

background correction maximizes expression differences

within aneuploid segments, but the effect of the copy

number was evident with both background elimination and

no background correction (see Additional data file 1). 

Array data from C. elegans and mouse were extracted directly

from the Gene Expression Omnibus (GEO) website [65]. We

performed no additional normalization or background correc-

tion. The C. elegans experiments were two-channel hybridiza-

tions on spotted arrays [28]. Test samples were hybridized

with a reference sample. The reference channels cancel in our

comparison of XX;AA versus X;AA gene expression. The mouse

experiments were performed on Affymetrix arrays [29].

Data sources 

All array data are available at GEO. An extensive platform

description of FlyGEM is available at  GEO under accession

number GPL20 [61]. Data are available under GEO accessions

GSM37438-GSM37451, GSM2464-2467, GSM16582-

GSM16583, GSM16570-GSM16581, and GSM77749-

GSM77752. Expression data from mouse hypothalamus,

kidney and liver were obtained from GEO accession

number GSE1148 [29]. C. elegans data were from GEO

accession number GSE715 and GSE724 [28]. 

Exploratory data visualization 

Data were clustered and visualized using Cluster 3.0/Tree-

View 1.6 [66]. A self-organizing map (SOM) was calculated

to organize normalized hybridization intensities (on-spot

background subtraction followed by quantile normalization

across arrays) of array elements at 100,000 iterations,

followed by k-means clustering of genes with 10 nodes

using the correlation (uncentered) similarity metric. Genes,

but not experiments, were clustered. We averaged duplicate

elements for this analysis to avoid crashing the application.

For scatterplots and moving average plots, we used data

processed by background elimination followed by quantile

normalization across all experiments. We used on-spot

background corrected data for histograms of Drosophila

expression data. Chi-squared tests were performed in Excel

(Microsoft, Redmond, USA).

Array elements encoding Drosophila ribosomal subunits were

identified using the Gene Ontology identifier ‘structural con-

stituent of ribosomes’ as assigned in GEO accession GPL20.

The de facto housekeeping elements were identified as

follows. Following background elimination and quantile
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normalization across all experiments, we selected the ele-

ments with hybridization intensities greater than two stan-

dard deviations above the median intensity of all array

elements, from all experiments. From the above, we

selected the de facto housekeeping elements as those ele-

ments with standard deviations for the expression ratios as

± 0.1. Regressions for the X-encoded and the autosome-

encoded elements were calculated separately in Bioconduc-

tor. Slopes and intercepts were compared at the 95%

confidence limit.

Moving averages of expression ratios for every 40 consecutive

elements (two elements per predicted transcript) were

plotted against the corresponding gene positions on chro-

mosome arm 2L or X. The predicted cytological break points

[27] were used to define the boundaries of aneuploid seg-

ments on chromosome arm 2L, in the Dp/+ vs Df/+ experi-

ments. Moving averages were calculated in Bioconductor.

Analysis of distributions

The distribution statistics cited in the text were obtained using

data processed with print-tip loess and on-spot background

correction on individual arrays, and quantile normalization

between arrays. We can unequivocally show that a modest

1.5-fold difference in gene dose has a detectable effect on gene

expression using precisely the same data-handling methods
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Table 1

Samples used for measuring X chromosome dosage compensation

Karyotype Somatic phenotype Germline phenotype Sample Genotype N

XX;AA Female Oogenic Wild type (whole fly) y1 w67c /+; Dp(2;2)Cam3/+ 2

XX;AA Female Oogenic Wild type (whole fly) y1 w67c /+; Df(2L)J-H/+ 2

XX;AA Female Oogenic Wild type (ovary) y1 w67c /+; Dp(2;2)Cam3/+ 2

XX;AA Female Oogenic Wild type (ovary) y1 w67c /+; Df(2L)J-H/+ 2

X;AA Male Spermatogenic Wild type (whole fly) y1 w67c /Y; Dp(2;2)Cam3/+ 2

X;AA Male Spermatogenic Wild type (whole fly) y1 w67c /Y; Df(2L)J-H/+ 2

XX;AA Female Oogenic Wild type (whole fly) y1 w67c 5

XX;AA Female Ovaries removed Wild type (carcass) y1 w67c 8

XX;AA Female Oogenic Wild type (ovary) y1 w67c 12

XX;AA Female Germlineless tud1 progeny (whole fly) tud1 bw1 sp1 5

XX;AA Transformed to male Atrophic dsxswe/Df (whole fly) dsxswe/Df(3R)dsxM+15 6

XX;AA Transformed to male Atrophic tra2B/Df (whole fly) tra2B/Df(2R)trix 8

XX;AA Female Non-differentiated otu17/otu1 (ovary) ct otu1 v24/y w otu17 8
‘ovarian tumor’

XX;AA Female Non-differentiated Sxlfs3/Df (ovary) y Sxlfs3 / y cm Sxl7BO 9
‘ovarian tumor’

X;AA Male Spermatogenic Wild type (whole fly) y1 w67c 9

X;AA Male Testes removed Wild type (carcass) y1 w67c 7

X;AA Male Germlineless tud1 progeny (whole fly) tud1 bw1 sp1 5

X;AA Transformed to female Ovaries removed hs-tra (carcass) y1 w67c/Y; Df(3L)stj7 Ki roe pp P{hs-tra}/+) 2

X;AA Transformed to female Ovaries removed hs-tra (carcass) w/BsY; P{w+ hs-tra83}/+ 1

X;AA Male Spermatogenic Wild type (testis) y1 w67c 10

X;AA Female Non-differentiated hs-tra (ovary) y1 w67c/Y; Df(3L)stj7 Ki roe pp P{hs-tra}/+) 4
‘ovarian tumor’

X;AA Female Non-differentiated hs-tra (ovary) w/BsY; P{w+ hs-tra83}/+ 3
‘ovarian tumor’



that we apply to the study of the X. In addition, the data-han-

dling method used is the least favorable method vis-a-vis the

conclusions we report. Differences in gene expression in auto-

somal aneuploid segments were always significantly greater

than those observed between the X chromosomes from XX;AA

and X;AA samples.

We performed a one-way analyses of variance (ANOVA) fol-

lowed by the Tukey HSD method for protection in multiple

comparisons using Matlab (The MathWorks, Natick, USA).

All cells were filled ten times. One-way ANOVA was used to

compare three different sets of expression ratios or hybridiza-

tion intensities. The single blocking factor for one-way

ANOVA was gene dose. We used bootstrap sampling of

pooled array data to fill each of the three ANOVA cells of the

one-way design. For ratiometric data, those cells were

(Dp/+)/(+/+), AA/AA, and XX/X (see Additional data file 3,

Tables 1-3). To fill the (Dp/+)/(+/+) cell, we pooled expres-

sion ratios associated with a 1.5-fold difference in gene dose

from the replicate samples from whole males, whole females

and ovaries, and sampled 600 ratios. There are fewer genes in

the Dp region than on all autosomes or on the X chromo-

some. Therefore, the stability of this inference was verified by

filling this cell with 200 ratios from each of the tissue types

separately (data not shown). To fill the AA/AA cell we pooled

all array data reported in this article where the gene dose was

1 and sampled 600 ratios. To fill the XX/X cells we sampled

600 X-chromosome ratios for each of three different gonad

comparisons separately. Those are (otu1/otu17)/(hs-tra/+),

(Sxlfs3/Sxl7BO)/(hs-tra/+) and ovary/testis (see Additional data

file 3, Tables 1-3). For analysis of Drosophila intensity data,

the cells were Df/+, AA, and X (see Additional data file 3,

Tables 4,5). As with ratiometric data, intensity data were

bootstrap sampled 600 times and the procedure was repeated

ten times. Stability for the Df/+ cell was also verified. The

inferences were similar in all ten samplings of 200 intensity

values from each tissue type (data not shown). For C. elegans

and mouse data the cells were AA and X (see Additional data

file 3, Table 6). These cells were filled as for Drosophila. For

mouse, we ran ANOVA on pooled intensities from liver,

kidney and hypothalamus. We also analyzed each tissue sepa-

rately. The Tukey HSD procedure was performed in Matlab

and generated a confidence interval for each pair of compar-

isons that has a family-wise error rate of, at most, � = 0.05

(see Additional data file 3).

For the Drosophila data, we applied a bootstrapped Hodges-

Lehmann (HL) estimate of median differences to determine if

X-chromosome expression was more similar to autosomal

expression or to expression from autosomal aberrations (see

Additional data files 4,5). Additional data file 6 shows a

cartoon depicting bootstrap HL estimates of median differ-

ences followed by the Kolmogorov-Smirnov (KS) test. HL

estimates and KS tests were performed in Bioconductor. For

ratiometric data (see Additional data file 4), the HL estimate

was calculated for every drawing of 600 bootstrap samples

from the (Dp/+)/(+/+) and AA/AA distributions to generate a

new distribution of differences. Next, the same bootstrap sam-

pling was used for the XX/X and AA/AA distribution to gener-

ate a second distribution of differences. Intensity data were

treated similarly (see Additional data file 5). The two distribu-

tions of differences were then compared using the KS test. The

differences in the medians and associated D and p-values for

the KS tests then permitted inference concerning the proximity

of expression ratios or intensities. In practical terms, a signifi-

cant p-value allows us to accept (not reject) the assumption

that expression ratios AA/AA are closer to XX/X than to Dp/+.

This procedure of bootstrap sampling, HL estimation and KS

evaluation was repeated ten times to check the stability and

robustness of the inferences. In all cases, replicate evaluations

resulted in the same inference.

Additional data files
The following files are available with the online version of

this article. Additional data file 1 is a figure showing the

effect of different data handling techniques on differential

expression resulting from altered gene dose on the auto-

somes. Additional data file 2 is a figure showing the experi-

mental design in detail. Additional data files 3-5 are tables

showing the results of statistical analysis of gene expression

ratios and absolute intensities for whole chromosome arms

and for autosomal aneuploid segments: Additional data file

3 shows one-way ANOVA comparisons and Additional data

file 4 shows estimation of Hodges-Lehmann (HL) median

differences between expression ratios in various experi-

ments and Additional data file 5 shows estimation of

Hodges-Lehmann (HL) median differences between signal

intensities. Additional data file  6 is a figure showing a

simple picture depicting bootstrap HL estimates of median

differences followed by the Kolmogorov-Smirnov (KS) test.
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