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Abstract. The paper deals mainly with combinatorial structures; in some
cases we need refinements of combinatorial structures. Riemannian metrics
are defined on any combinatorial manifold M.

The existence of distance functions and of Riemannian metrics with
"constant volume density" implies smoothing.

A geometric realization of PL(m)/0(m) is given in terms of Riemannian
metrics.

A graded differential complex Q*(M) is constructed: it appears as a
subcomplex of Sullivan's complex of piecewise differentiable forms. In the
complex Q'(M) the operators d, . , S, A are defined.

A Rellich chain of Sobolev spaces is presented. We obtain a Hodge-type
decomposition theorem, and the Hodge homomorphism is defined and
studied. We study also the combinatorial analogue of the signature operator.

Introduction
This paper is a slightly modified version of my Ph.D. thesis at the

Massachusetts Institute of Technology.
The departure point of this study was a problem proposed by I. M. Singer

[S], that is the problem of the geometrical realization of Sullivan's orientation
class [Su2]. This study has to be considered as a first approach towards the
solution of this problem.

In this paper we extend, by analogy, some techniques of partial differential
equations involved in the solution of the signature theorem, from the category
of smooth manifolds to that of combinatorial manifolds. To our knowledge,
this paper constitutes the first tentative step of this nature.

We show that some phenomena in the smooth case persist even in the
combinatorial case, while others do not.

This paper is divided into three chapters.
After the first two preparatory sections of Chapter I, we define in §3 a

graded differential complex fi*(A/) which is a subcomplex of Sullivan's
complex A *(M) of piecewise differentiable forms. In the complex Q,*(M) the

Received by the editors June 21, 1977 and, in revised form, June 22, 1978.
AMS (MOS) subject classifications (1970). Primary 57D10, 58-xx, 58G05; Secondary 57C99,

58G10.
Key words and phrases. Riemannian structure on PL-manifold, constant volume density,

distance function, distributions, Sobolev spaces, Hodge theory, signature operator.
'Work partially supported by a Teaching Assistantship at the Massachusetts Institute of

Technology.
© 1979 American Mathematical Society

49

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



50 NICOLAE TELEMAN

star operator * is defined, and hence it makes sense to define the exterior
co-derivative 5 and the Laplace-Beltrami operator A (§4). In our study, the
elements of the complex Q*(M) play the role of test functions.

In Chapter II we study some smoothing problems. We show in § 1 (Theo-
rem 1.2) that if a combinatorial manifold admits a Riemannian metric with
the property that, for any point x in it, the sum of measures of all solid angles
tangent to the simplices of the manifold which contain x is the measure of the
solid angle around a point in Euclidean space, then the Riemannian metric
defines a smoothing of the manifold; in particular, M is smoothable.

The local measure of a Riemannian metric seems to us to play a central
role in the analysis of combinatorial manifolds. Theorem 1.2 suggests also
that it does not make sense to look for special Riemannian metrics on
PL-manifolds.

Another consequence of Theorem 1.2 is Theorem 2.1 of §2 which asserts
that if a combinatorial manifold admits a distance function of class C3, then
M is smoothable, showing so that Bidal-de Rham method for constructing a
parametrix for the Laplacian is no longer applicable on PL-manifolds.

In §3 we obtain as an application of Theorem 1.2 some fundamental results
from the theory of smoothing.

Chapter III presents a combinatorial Hodge theory and studies a combina-
torial analogue of the signature operator. In §1 we define distributions in
PL-manifolds. In §2 we introduce natural norms on &*(M) and we define
Sobolev spaces Hf(M) on PL-manifolds. At the end of §2 we show that the
sequence of Sobolev spaces {Hf}s, 0 < p < dim M, is a Relhch chain. In §3
we show that the Sobolev spaces Hf aie spaces of distributions. In §4 we
compute homology of the complex of distributional forms (currents) on M:
we show this cohomology is H*(M, R), thus obtaining a complete analogue
of de Rham's theorem.

In §5 we obtain a Hodge-type decomposition theorem (Theorem 5.1).
Theorem 5.2 shows that the Hodge homomorphism (which we define accord-
ingly) is a monomorphism on the space of the harmonic forms which stay in
the Sobolev space Hf, while the Hodge homomorphism is an epimorphism on
the space of the harmonics which stay in Ht,. In §6 we study the combina-
torial analogue of the signature operator and we show (Theorem 6.3) that the
defect 9 depends only on the cokernel of the Hodge homomorphism in the
middle dimension.
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Chapter I. Preliminaries

1. Preliminaries. Throughout this paper Mm denotes a compact oriented
combinatorial manifold of dimension m without boundary.

All simplices of the decomposition of Mm are considered closed. Two
maximal simplices are said to be "neighboring" if their intersection is a
simplex of dimension m — I.

2. Riemannian structures. A Riemannian structure of class Ck, 0 < k < oo,
on M is, by definition, a function T which associates with any maximal
simplex o G M a Riemannian structure Tg of class Ck on the (closed) simplex
o; these Riemannian structures are required to be "C*-compatible", a notion
which is defined below.

First suppose that k > 1. If N is any smooth manifold (with or without
boundary), let TXN denote its tangent space at x G N. If o is a maximal
simplex in M, if x is an interior point of a Ac-dimensional face it c o and if U
is an open neighborhood of x in a, a coordinate chart

p: i/-»R* xRm_*

is called "adapted at the boundary" iff:
(i) p(i/ni)cR*x {0},
(ii) A: [0, e) -» U being an arc of geodesic, A(0) G ir, ||À(0)|| = 1, A normal

at it, then
p(\(t)) = (0, . . ., 0, axt,..., am.kt) + p(X(0)),

where 2,: a? = 1.
Suppose o,t are two neighboring simplices in M and x G Int a n t. Let ^

be any coordinate system on a small neighborhood V of x in a n r; then
there exist only two coordinate systems p on a sufficiently small neighbor-
hood U of x in M, with U (~\ (a n t) = V, such that

(i) p| U n a, p\ U n t are coordinate systems adapted at the boundary,
(ii)p|K = ¥,
(iii) p(U) = *(V) X (-e, e) c Rm_1 X R, e > 0. (2.1)

Any such p is called a "bicollared coordinate system" on U.
Suppose that a and t are two neighboring simplices. We say that ro, Tr aie

C*-compatible iff for any bicollared coordinate system on a neighborhood U
of x G Int a n t, the Riemannian metric ((p-1) * r„, (p-1) * TT) on p(i7) is
of class C*.

We say that the Ta are C*-compatible iff for any neighboring simplices o,t
in M, r„ and TT are C*-compatible.
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Remark 2.1. The definition of C*-compatibility does not depend on the
particular bicollared coordinate system chosen.

If k = 0, we say that Ta, Tr aie C°-compatible iff their restrictions at a n r
coincide, i.e.,

ro|ff n t = rT|ff n t. (2.2)

Remark 2.2. If r„,rT are C*-compatible, they are C'-compatible, for any
0 < / < k.

Remark 2.3. In spite of the fact that the definition of C*-compatibility
involves relationships only between Riemannian metrics of neighboring sim-
plices, it implies relations between the Riemannian metrics of any two
intersecting simplices of M. Really, the relations (2.2) make sense and remain
valid, by continuity, even for x at the boundary of o n t.

If o,t aie two intersecting /w-simplices in Mm, and T is a C°-Riemannian
structure on M, then

r„|ff n t = rT|ff n t (2.3)
whatever dim a n r is. Indeed, in Star(o, M) there exists a chain of m-sim-
plices ff = a0,ax, . .. , ctp = t, with o,_, and o, neighboring, 1 < /' < p; hence

r> n «, = raJff n a„   raja, n a2 = raja, n a2, ...,
ra,.J«p-in r = rT|ap_, n t

which proves (2.3).
Remark 2.4. Any combinatorial manifold M admits a Riemannian metric

T with all the r„ flat. Indeed, it is enough to embed M linearly in a Euclidean
space and take the induced metric on each simplex of the image.

Remark 2.5. If T is a Riemannian metric of class C° on M and if all the r„
are flat, then T is of class C00.

3. Differential forms. Suppose F is a Riemannian structure of class C °° on
M. A real (resp., complex) differential form of degree r on M is, by definition,
a function w which associates with any maximal simplex a G M a real (resp.,
complex) differential form ua of degree r on o.

The differential form u is, by definition, of class Ck, 0 < k < co, with
respect to T, iff any wa is of class C* and for any two neighboring cells o, t
and for any bicollared coordinate system p on U, a small neighborhood of
any point x G Int(«r n t), the form

((p-^oUp-1)*«,) (3.1)
is of class C* on p(U) c Rm.

Remark 3.1. From (3.1) it follows that the restrictions of w0,«T to ff n t are
equal:

w„|ff n t = wT|o n t. (3.2)
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The argument in Remark 2.3 can still be applied; hence (3.2) remains valid
for any o, t, not necessarily neighboring.

Definition 3.1. If F = R or C,
ßp(M ) = {w|w is an F C°°-form of degree r on M }.

Definition 3.2. If « G ñ^Af ), we define the differential d<o of w to be the
form

(du>)„ = d(ua),   Vff = m-simplex.

Definition 3.3. If w (resp., #) is a form of degree r (resp., s) on M, then
w A ♦ is the form of degree r + s:

(to A # ). = «. A #„•

Proposition 3.1. For any u> G &(M), d e S^(M),
(i) ¿2<o = 0,
(ii)du GilT+x(M),
(in) <o A * S Qr+i(Jl/).

Proof. The proof reduces to the case of C°° forms on Rm.

Corollary 3.1. Q£(M) = {ß£(M), d}reN is a differential graded algebra.

Definition 3.4. If w G ST(M), we define

/«-      2      /«„. (3-3)

Proposition 3.2 (Stokes' formula). Ifu e ßm_1(3/) (3M = 0),

dw = 0. (3.4)I'M
Proof. We have

/<i«-2/<fcw-2i«w. (3-5)
•'Ai » -'o « •'a«

If a is any (m — l)-simplex in M, and if a, t are neighboring simplices with
intersection a, then (3.2) gives us

a„\a = uT\a. (3.6)
The coefficient of a in 3o + 3t is 0 because the orientations of a and r aie

coherent; hence (3.4).
We recall here the definition of PL-forms over a cell complex (see Sullivan

[Su,]). If K is a cell complex, a PL-form of degree p over K is a function w
which associates with any cell o of K a C" form w of degree/? over a: these
forms w0 must be compatible in the sense that for any two cells o, r of K,
their restrictions to ff n t must be equal. The set of all PL-forms of degree p
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over K is denoted by AP(K), while A*(K) = © p A"(K). If « G AP(K), then
(du)„ = d(aa) belongs to y4*+1(ÄT).

Proposition 3.3. If M is a combinatorial manifold, then ÜP(M) c AP(M).

Proof. It follows from Remark 3.1.

4. Laplace-Beltrami operator. Let T be a C "-Riemannian structure on M.
Definition 4.1. If w is any r-form on Ai, * r w is the (m — /-)-form:

( * r w)0 = • , ("„).      » = w-simplex, (4.1)

the last  * r being the usual  * -operator defined by r„ (for the definition of
*  and its properties on smooth Riemannian manifolds see de Rham [R]).

Proposition 4.1. Ifw G ß'(M), then
(i)        *rwGfl"-'(M)

(ii)    *m_r *rW = (-irm+i)co(*+„ (4-2)

Definition 4.2. If w,# G ß£(M), we define their scalar product (w, d) G R
as

(w,#)=fwA*#. (4-3)
JM

If w and # are of different grades, we define (w, &) = 0. Set ||w||o — (w, o>).

Proposition 4.3. Ifu,& G ß£(Af)> then
(i)       (w,#) = (#,w),

(Ü)       (w, w) > 0,
(iii)        (a, w) = 0 => w = 0,
(iv)        («,#) = (♦«,  .0). (4.4)

Proof. Properties (i)-(iv) depend on local properties of forms on smooth
manifolds.

Definition 4.3. If w G fíg(M), we define ôw G Qpt~x(M) and Aw G %(M)
by the formulas

ow = (-l)m(' + 1)+1 *rf*w,       m = dimAf,

Aw = (d8 + 8d)u. (4.5)
A is called the Laplace-Beltrami operator.

Proposition 4.4. For any w,# G ß*.(A/),
(i)       (¿w,#) = (w,sn

(ii)       (Aw, & ) = (w, Aw)       ((¿ + 5 )w, d ) - (w, (d + 8 )d ),
(iii)        (Aw, w) > 0, (4.6)
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Proof, (i) follows from Stokes' formula, (4.2)(ii) and (4.4)(iv); (ii) and (iii)
are consequences of (i).

Chapter II. Smoothing problems

1. An analytical necessary and sufficient condition for smoothing. Suppose
that Mm is an /w-dimensional PL-manifold. Let 9" = {A^}agA;0<r<m be a
triangulation of M (r is the dimension of the closed simplex AJ,), and let T be
a Riemannian structure of class C° on M.

Definition 1.1. If x is any point in the triangulated PL-manifold M, we
define

A(x) = {a\a GA,xGAra,0<r<m},

A'(x) = {a\a GA,xGAra,r= m).

Let 7^(A^) denote the tangent space at A^ in x.
Definition 1.2. If M is a triangulated PL-manifold as above, let

Vra(x, M ) = {o|tJ = Ä(0) G 7;(A;), X: [0, 1] -» A;, A(0) = x, X of class C'}.
The Riemannian structure in M defines a flat metric on Vra(x, Af).

Vra(r, M) is called the tangent solid angle of Ara in x. By definition,
dim Vra(x, M) - r.

Definition 1.3. Let A™ be a maximal simplex, and let S™~x denote the unit
sphere in Tx(&£) centered at 0. Then

I *?*(*> M)\m = measure on S^~x of V?(x, M) n S^~x

is called the measure of the angle V™(x, M).
The sum

Q(x,M)-     2     \V?(x,M)\m
aSA'(Jt)

is called the "volume density" of T in x.
The incidence relations between the A^, a G A(x), determine incidence

relations between the V^(x, M), a G A(x); the latter determine incidence
relations between the "spherical triangles":

t;-x(x, M) = V^(x, M) n S£',       a G Ai».

Definition 1.4. 2(jc, M), and V(x, M), are the complexes

2(JC, Af ) =   [Ta       )aSA(x);l<r<:m'

V(x,M)={V¿(x,M))a£Mx);X<r<m.

Observation. 2(x, Af) c V(x, M).
Definition 1.5. If Mm, 5", T are as above, we say that T has "constant

volume density" iff, for any point x G M, ñ(x, M) = |Sm_1|m_,.
We remark that the volume density is constant at every point off the

(m — 2)-skeleton.
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Proposition l.lm. Let T be a Riemannian metric of class C° on the manifold
M of dimension m. We suppose T has constant volume density; then: (i)for any
x0G M there exists a PL-homeomorphism

<p(Xo, M): V(x0, Af ) ^ Em,       <p(x0, M)(0) = 0,

with the properties:
(ii) the homeomorphism ^(xq, M) restricted to any V^x^ M) a G A(x<i), is

an isometry on the image;
(iii) the homeomorphism <p(x0, M) which satisfies (ii) is unique up to an

isometry ofEm;
(iv) tp(x0, M) can be performed continuously with respect to x0 on a stellar

neighborhood of x0.

From Proposition l.lm we deduce

Theorem 1.2. If T is a Riemannian metric with constant volume density of
class C° on the PL-manifold M, then T defines a differentiable structure of class
C ' on M, compatible with the combinatorial structure.

Proof. Set V(M) = U xeM V(x, Af) (U = disjoint union), endowed with
the natural topology, and let/?: V(M) -* Af be the ma.pp(V(x, Af)) = x. Let
s: M -> V(M) be the map s:m06 V(x, Af). Then t = (V(M),p, M, s) is
evidently equivalent with the tangent microbundle of Af (see, e.g., Milnor
[Mi]).

Property (ii) of Proposition l.lm enables us to introduce a vector space
structure in the fibres of the tangent microbundle t. Property (iii) insures us
that this vector space structure is well defined. Property (iv) expresses the
local triviality of the fibration t. Hence 9" is a vector bundle. A theorem by
Milnor [Mi] permits us to conclude that Af admits a well-defined differentia-
ble structure of class C ', compatible with the combinatorial structure of Af.

Remark. Property (ii) says that, if <p(x, M) exists, it can be constructed as
follows. We begin with a maximal solid tangent angle V™(x, M) and we
represent it isometrically in Em in such a way that the vertex of V™(x, M)
goes into 0 G Em. Call this isometry <px(x, M). We take another maximal solid
tangent angle of V(x, M) which is a neighbor to the first one; if <p(x, Af )
exists, then <px(x, M) can be extended at the new angle in a unique manner in
order to verify (ii), and so on.

Proof of Proposition l.lm. By induction on m. For m = 2 the proposi-
tion is clearly true. We suppose we have proved Proposition l.lm_, and now
we prove Proposition l.lm, m > 3.

We suppose x0 G M is a vertex; if not, we perform a subdivision of t in
such a way that x0 becomes a vertex (after the subdivision, T still has constant
volume density).
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Given that we have to verify a local property, we may restrict our
considerations to Star(x0, Af ); let Xq,vx, . . ., vn be all the vertices of
Stai(x0, M). We can think of Star(x0, M) as a part of V(xq, Af). Any angle
V£(x0, M) has a well-defined affine structure; let us denote the vectors x0v¡
by X¡, i = 1,.. ., N. If v¡ 6A¡,c Star(x0, Af), we consider on A¡, the field X¡
of vectors parallel to X¡ and then we extend it on Vra(x, M) d A^.

The Riemannian metric 1^ is determined by the scalar products (X~¡, xp^,
i g v;.

Lemma 1.1. With the same hypothesis and notations, we construct on
V(x0, Af) a constant Riemannian metric Tx (Af) = {f^}, a G A(x¿), given by
the following scalar product:

(X„ Xj )~ = <*,, Xj )Xo,       i G V(Xo, M ).
Then Tx (Af) has constant volume density.

Lemma 1.2. Let V(x0, M) be endowed with the Riemannian metric fx (Af).
Let Êt(2(jc0, Af )) be the induced Riemannian metric on 2(x0, Af) c V(x0, M).
Then Tx£2(xq, M)) has constant volume density.

We shall prove Lemmas 1.1 and 1.2 after completing the proof of Proposi-
tion l.lm.

Suppose we have constructed q>(x0, M) satisfying Properties (i)-(iv). Let

*(x0,Af):S(x0,Af)^Sm-1

be the restriction of <p(xq, M) to 2(xq, Af ).
Let (i')-(iv') denote the statements (i)-(iv) from Proposition l.lm in which

we have replaced <p by ^, V by t, and E by S. Then ^(xq, M) satisfies
(iO-(iv').

Reciprocally, suppose we have a map ^(a:0, Af ) which satisfies (i')-(iv').
Then there exists one and only one possibility in order to construct tp(x0, M)
such that it satisfies (i)-(iv) and ¥ = <p|2. We shall indicate how <ír(x0, M)
can be constructed.
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Let w¡, 1 < i < N, be that vertex of 2(xo, Af ) which is collinear with x0 and

First we shall prove that we can construct ^(x0, M) on Stai^w,-, 2);
afterwards, we shall show that $r(x0, M) can be extended over all 2(x0, Af).

Lemma 1.2. shows that fx (2(x0, Af )) has constant volume density;
2(x0, Af ) being a combinatorial manifold of dimension m — 1, we may apply
Proposition l.lm_,. Therefore there exists a PL-homomorphism

tPo(wi, 2(*o, Af )): V(wt, 2(x0, M))^ Em~»

which satisfies (i)-(iv).
Let w¡ be any point in Sm_ '. We have the diagram

F(w,.,2(x0, Af)) -* Em   '

expW(l 4-expsj
*„,(*(„ A/)

Star(w,, 2(x0, Af)) .-» Sm_1

where ^(xq, Af ) is that map which makes the diagram commutative, and the
exponential mappings are taken with respect to the Riemannian metric
f ((2q, Af )) and the usual Riemannian metric on Sm_1, respectively.

Observe that any 1-simplex [w,, wj\ G Star^w,-, 2(jc0, Af )) is an arc of the
great circle.

The map ^(xq, Af ) has the following properties:
(1) it maps any 1-simplex [w¿, wj\ G Star(w„ 2(x0, M)) into a congruent arc

of a great circle in Sm~x;
(2) it conserves the angle between any two 1-simplices [w¡, Wj], [w¡, wk]

belonging to the same 2-simplex contained in Star(>vI) 2(x0, Af ));
(3) it is a homeomorphism from a neighborhood of w¡ to the image.
Therefore the map ^(xq» Af ) satisfies (i')-(ii').
Now we shall construct ^(x0, Af ). We fix a maximal simplex t™-1 G

2(x0, Af ), and we choose an isometric embedding:

^ao(x0,A/):r^-1^S"-1.

In order to define ¥(x0, M), we will define its restrictions ^a(x0, M) =
^(xq, Af )|t"~', where r™~ ' is any maximal simplex of 2(;c0, Af). There exists
a chain y of maximal simplices:

^(C'-C.Ti"' = T-m_1)

with the property that for any i,0 < i < p - \, dim(T™-1 n r"~x) = m - 2.
Then there exists a unique continuous mapping

*/•   U
0
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with the following properties:
(a) *>£-*-*«.(** *0,
0>) *,«-') n *t(t^7») = *Y«-' n C;1),
(c) ¥y|T™  ', 0 < / < p, is an isometric embedding.
Condition (b) could require one to subdivide 2(x0, Af ), which we suppose

has been done. Now, SL can be constructed inductively starting with its
definition onr™"', then out™"', and so on.

By definition, we take ^(x0, M)|t™-1 = ^t™-1. It remains to check that
this last restriction does not depend on the chain y connecting t™-1 with

m-l
'a

In order to prove it, notice that the induction hypothesis gives that for any
simplex t G 2(x0, Af ) (of any dimension) and for any isometric embedding
¥g: a -» Sm_1 of any maximal simplex a G Star(r, 2(x,j, Af )), there exists a
unique embedding

<Sr: Star(r, 2(x0, Af )) -> Sm~x

which: (i) extends ^„ continuously, and (ii) when restricted to any maximal
simplex of Star(T, 2(x0, Af )) is an isometry.

Notice also (this will be used below) that such a ¥ is an open mapping (on
the interior of Star(T, 2(x0, Af ))).

Correctness of the definition of ^(xq, M) depends also on the fact that
Sm-\ m > 3, is simply connected.

Indeed, for any two chains y, y' connecting t™-1 and t™-1 there exists a
"homotopy" yp 1 < j < N, i.e. a finite sequence of chains y, with fixed ends:
(y = 7i>72> • • • > TV = TO such that f°r anyy> I < j < N — I, the chains yp
yj+, are of the form

yj = (a,b,c),        yJ+x = (a,b',c),

where (a), (b), (b'), (c) denote chains and b, b' are contained in
Star(r, 2(x0, A/)), for an (arbitrary) simplex t G 2(xo, Af ).

From those considerations it follows also that ^f(x0, M) is continuous.
Indeed, let t"~x, rp~x be any two simphces, with dim(T™-1 n Tp~x) = m —
2, and let y be a chain connecting t"~x with t"-1. Then (y, Tß~x) is a chain
connecting t™-1 with t™-1 and hence can be used to define ^(xq, Af) on
both t™-1 and ?ß~x; from the definition of those restrictions it follows that
^(xq, Af) is continuous on TŒm_1 n t^1-1, and hence it is continuous.

As has been pointed out before, the induction hypothesis implies that
^(x0, Af) is open. Therefore ^(xq, M)(2(xo, Af)) is open and closed in Sm_I.
Since Sm_ ' is connected, we have

^(x0,A/)(2(x0,Af)) = S"-1.

^(xq, Af ) being a local isometry, we have the strict inequality:
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Measure *(x0, M )(2(xo, Af )) < 2 Measure ^(x^ Af )(t™_ ')
t^-'£2(^0, A/)

if and only if ^(x0, Af) is not injective. But the first term of the inequality is
IS"1-'! because ^(x,,, M) is surjective, while the second term is by hypothesis
of Proposition l.lm just |Sm_l|; hence ^(xq, Af) is injective.

Now it is not hard to observe that ^(x0, Af ) satisfies all the required
properties, and Proposition l.lm is proved.

Proof of Lemma 1.1. We have to check that < , >~ satisfies ß(£, V(x0, Af))
= |Sm_1| for any i G V(x0, Af).

Notice that it is enough to prove it for i G Ara c V(xq, Af ). Notice also that
the volume density at any point i depends only on < , >¿~. We consider the
following continuous deformation (indexed by the parameter t G [0, 1]) of the
scalar product in £:

\x>' Xj )a= (Xi, Xj )(,_,)Xo+,{-
We have

lim<,>¡;,= <,>*„= <,>¡\

Q(Í, V(x, Af ))<- y- is a continuous function of the variable t, and hence

0(fc V(Xo, M ))<, >r = m V(Xo> M »„„.^, >a
»limßanx^A/))^^.,^
= lim|Sm-1| = |Sm-1|.

Since T is a Riemannian metric with constant volume density, we have

ß(£, V(x0, A/))<>>(1_,);to+,{ = ß(l, Af )<,>(1_,)J>0+,£ =|S-1|,

for any t G (0, 1]. Therefore

0(fc F(x0, M ))<, >£~ = Jim |S— «| = |S"- '|,

which proves Lemma 1.1.
Proof of Lemma 1.2. Let | G 2(x0, Af) and let V¿(x0, Af) be any solid

angle which contains {; then

v;(i, v(x0,m)) = k;-'(|, t;-'(x0, a/)) © r¿,
© denoting orthogonal decomposition (observe that the ray which contains |
is orthogonal to the sphere S¿~ x(x0, Af )).

From this decomposition we deduce that

| V?(i, V(x0, M ))| = JQ • | Vr \i, 2(xo, M ))|.
P      I
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Therefore

fi(|, 2(x0, Af )) =      2     \Vr\i, 2(xo, Af ))|
a€A'(JCo)

= gSj 2  ■\vra,v(x0,M))\
I»      I «eA(^o)

|S"~2|
-   |gm-l|

m — 11_t om — 21|Sm-'| = |S

using Lemma 1.1 which completes the proof of Lemma 1.2.

2. Existence of a distance function implies smoothing. Let Mm be a smooth
manifold and let T be a Riemannian structure on Af, of class Cr, r > 3.

A smooth function r: M X M -» [0, co) is called a distance function, cf.
Hodge [Hd], iff r has the following properties:

(i) r(x,y) = r(y, x) > 0, for x ¥*y,
(ii) r(x, x) = 0,
(iii) r2(x, y) is of class C2,
(iv) let A: Í/-» Rm be a coordinate chart on Í/ c Af and let

(A X A)(x,.y) = (A(x), h(y)) = (x1,. .., x"1,/, ...,ym)

foTany(x,y) G U X U.
Then

for any x G U, where the gtj are the components of the fundamental tensor
with respect to the coordinates x\ . . . , xm.

Any smooth Riemannian manifold of class C3 possesses at least one
distance function. The geodesic distance is an example of a distance function.
Any distance function can be used to construct a parametrix for the La-
placian (cf. Bidal-de Rham [B.R.]).

In this section we intend to define properly and to study the existence of
distance functions on PL-manifolds with Riemannian structure.

By the end of this section, Afm will denote a triangulated PL-manifold with
Riemannian metric of class Cr,r > 3.

Properties (i)-(iv) make sense even in this context. Only (iv) requires an
explanation; in this case U denotes any maximal closed simplex of the
triangulation, and h is any affine coordinate system on it.

Theorem 2.1. Let Mm be a compact oriented PL-manifold. Then Mm admits
a Riemannian structure of class C, r > 3, with at least one distance function if
and only if Mm is smoothable.
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Proof. Suppose m > 3; any manifold of dimension < 6 admits a smooth
structure; therefore this limitation does not restrict the generality of the
theorem.

Let w be the following double form on Af X Af (cf. Bidal-de Rham [B.R.,
p. 18], and de Rham [R, pp. 143-144]):

1 m    1

U(X>y)  = 7-.Vuc.m-1,    m-2    ^   T7(m - 2)|Sm   x\rm  2 p-oP- .
dxd,[-^r\x>y)} (2.2)

where |Sm-1| denotes the measure of the unit sphere in Em. In the smooth
case, the form w would be a parametrix for the Laplacian.

Theorem 2.1 will follow from Lemmas 2.1 and 2.2.

Lemma 2.1. For any form $ on M of class C, r > 2, the left-hand side of
(2.3) is a form of class C° on M.

Lemma 2.2. For any <j>on M of degree p, 0 < p < m, and class C, r > 2, the
following identity holds:

f      a(x,y) A * y *j*{y) - V A * y ¥j) = /*(*)<*>(*),       (2-3)
JM{y)

where ¡i(x) is the volume density of the Riemannian metric T at x (see $1 of
Chapter II).

Suppose we have proved these lemmas. Let us take <¡> = 1 in (2.3). Then we
deduce that ¡i(x) is a continuous function on Af. But ¡x(x) = |Sm_l| for any
interior point x of any maximal simplex of the triangulation and hence, by
the continuity of /n we deduce that the Riemannian metric T has constant
volume density. Theorem 1.2 says that Af is smoothable. If Af is smoothable,
then there exists a distance function, as we have explained above. Theorem
2.1 is proved.

Remark 2.1. We have used only the component of degree 0 of w in order to
prove Theorem 2.1.

Let us consider Lemma 2.2 first.
Lemma 2.2 is a translation, from the smooth case into the combinatorial

case, of Formula I of Bidal-de Rham [B.R., p. 18] or of Formula I of de
Rham [R, p. 146]. For its proof we shall use Bidal-de Rham [B.R.].

The first part of the proof (Green formula) can be carried out without any
modification. Let B c Af be a small combinatorial ball which contains
x G Af. As the integrand is regular on Af — B, the Green formula gives us

/       wA*A<f> — AwA*«i>
JM-B

= — /   <j> A* du — ôwA*<t>+84>A*u — bA»4.    (2.4)
J*n
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and hence

fwA*A^>-AwA*^

=  lim   /   <¡> A * du — 5wA*4> + 5<í>A*w — <¿ A* d<¡>,    (2.5)
\B\->oJdB

where \B\ is the measure of B; \B\ -» 0 means we take a family of homothetic
balls eB, with e —* 0.

From now on, the proof is based on estimates of w, ̂ w, Ô,,w, A^w, near the
diagonal. These estimates can be obtained just as in the smooth case. Indeed,
in both the smooth case and the combinatorial case, it is necessary to study
these forms at points (x,y) G Af X Af, with x fixed and y near x. This
observation allows us to focus our attention, separately, on each maximal
simplex of Af which contains x; so this is the same problem as in the smooth
case.

The estimates are obtained by the following method. First, one approxi-
mates the Riemannian metric gtj (on a neighborhood of x) by a flat one g{j
which has contact of order 1 at x (it is called oscillator), i.e.,

&(*) = «*(*),       (-¿^JW = (¿^)(x)'
then one approximates the distance function r by the distance function f, the
Euclidean distance given by g¡j. A function f(y) is said to be of order A: on a
neighborhood of x (see [B.R., p. 24]) if f(y)/rk(x,y) is bounded on a small
neighborhood of x. One obtains the following estimates:

(i) r2(x,y) — r2(x,y) is of order 3;
(ü) gy - ¿¡j is of order 2.
Let us denote g = det( g¡j), g = det(g0). Then, it follows from (ii) that:
(iii) g - g, V~g - Vf , giJ - giJ are of order 2.
Let * denote the * -operator with respect to the metric g; let us put

8 = ± * d * .
Then one obtains the following estimates:
(iv) if a is of order k, then

(a) * a — * a is of order k + 2,
(b) 8a — 8a is of order k + 1,
(c) Aa - Aa is of order k.

Let w denote the analogue of w which arises from f. It is very easy to
determine the orders of w, dû, Ôw, Aw. From these estimates and the estimates
(i)-(iv), one can deduce the estimates

(v) w(x, y) is of order 2 — m,
(vi) * <Lw(x, y) — * dyi5(x, y), and 8yu(x, y) — 8yû(x, y) aie of order 3 —

m,
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(vii) Ay(x, y) is of order 2 — m.
The following remark will be useful later.
Remark 2.2. Suppose we take instead of the oscillator metric g a new

metric g' which has only a contact of order 0 at x, i.e., gj,(x) = gy(x). Then all
estimates (i)-(vi) remain valid if the order of the estimates is reduced by 1.

From (v) we deduce

lim   j   ô<i> A * <■> — u A * d<¡> = 0,
\B\-*0 JSB

and hence (2.5) becomes

|«A*A(j)-AwA*<¡'= — nm   /  d> A * dw — ôw A * <f>-    (2.6)
•>M    ' I-8!— » J3B

It remains to prove that the right-hand side (R.H.S.) of (2.6) is /i(x) • <p(x). At
this point, we remark that the Bidal-de Rham method may no longer be
applied directly. Indeed, they observe that if 9 is a form of order 2 — m, then

lim   f 9 = 0,
|*|-0 JdB

and hence, by (vi), w may be changed to w in the R.H.S.
Successively, Bidal-de Rham [B.R.] use the Stokes formula twice and the

result follows.
Unfortunately, in the combinatorial case we do not know whether there

exists an oscillator metric f of class C3 on Star(x, Af). Hence, if we want to
apply the Stokes formula, the simplex-by-simplex approximation of the gtJ by
g¡j is no longer useful.

Fortunately, there exists a Riemannian metric f of class C°° on
Star(x, Af ), which has a contact of order 0 with g on each simplex of
Star(x, Af ).

Indeed, the "constant Riemannian metric" (see Lemma 1.1) which extends
the Riemannian metric g(x) has this property.

Let us apply, at this point, the estimate (vi) along with Remark 2.2. Then,
for each m-simplex a G Star(x, Af ), we have

lim   (      </>A*^-5wA*<í>=bm   f      <f>A*' dû' - 5'w' A *' $
\B\-OJaBno \B\-*OJZBC\o

(2.7)
where w', *', 8', are, respectively, the form and the operators which arise
from g'.

The right-hand side of (2.7) does not change if we take instead of <f> the
constant form ¿, where <¡>(y) = <K*)> for any y G o n B.

Hence

R.H.S.= - lim   f ¿ A *' dû' - 8'û' A *' <i>- (2.8)
\b\-*oJbb
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From now on the method of Bidal-de Rham may be used, and the result
follows.

Lemma 2.1 follows from the estimates (v), (vii).

3. Smoothing problems. Applications. In this section we intend to present
some applications of Proposition 1.1 and Theorem 1.2.

Let <i>: (Rm, 0) -» (Em, 0) be a PL-homeomorphism. There exist a triangula-
tion D of Rm and a triangulation E of Em such that <f> is simplicial; we can
arrange D and E such that the origins are vertices in D and E.

Let us consider Star(0, D). Let us take off all vertices, except 0, of D and E,
and let us prolong radially from 0 all simplices which contain 0 of Star(0, D)
(resp., Star(0, E)). Thus, we obtain a decomposition D (resp., E) of Rm (resp.,
Em) by "simplicial cones" with vertex at 0.

The mapping <£|Star(0, D) extends linearly, in a unique manner, to all R"
and it remains a PL-homeomorphism. Let us denote by <f> the new PL-homeo-
morphism. The associate mapping $ has the following property: let <j>x,<b2 be
two PL-homeomorphisms from Rm into Em; then <i>, = <j>2 if and only if
germ,, <bx = germ,, <j>2.

Let <j> be as above. Let T+ be the Riemannian metric on Rm:

r* = ♦•<*). (3.1)
where tj is the Euclidean metric in Em.

The Riemannian metric T^ is determined by its restriction at 0, because T^
is "constant" on each simplicial cone of the decomposition. Moreover, I\ has
constant volume density.

Reciprocally, suppose we have a decomposition of Rm into simplicial cones
with vertices at 0; a metric g at 0 G R"1 is by definition an assignment a i-+ ga
which associates with any maximal closed cone o a scalar product ga on the
tangent space T0a such that for any two maximal cones a,r, the scalar
products ga, g, agree on the common tangent vectors. If g is a metric at
0 G Rm, we can extend it over all Rm as in Lemma 1.1. If this extended
Riemannian metric has constant volume density, we say that the initial metric
g at 0 is "normalized". Hence, a Riemannian metric with constant volume
density over Af is nothing but a field on Af of normalized metrics.

Definition 3.1. Let T(m) denote the set of all normalized metrics at
0 G Rm with respect to all possible decompositions of Rm in simplicial cones.

Now we shall indicate how to introduce a topology on T(m).
Let D be any decomposition of Rm in simplicial cones with vertex in 0. For

any 1-dimensional simplicial cone of the decomposition D, let us choose a
point on it, different from the vertex 0; let tx.ep be these points, which
we think of as vectors. Any normalized metric in 0 is determined by the
matrix with real entries {(e„ ef)}^ G RN, where ij are such that e¡, e, belong
to a 2-dimensional simplicial cone of D. Therefore any normalized metric at 0
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can be thought of as a point of R^, where N is the cardinal of the set of all
2-dimensional simplicial cones of D. In other words, the set of all normalized
metrics at 0 G Rm, constructed on the decomposition D, can be endowed with
a topology, that induced by R^.

Let T(D) denote this topological space. If D' is a refinement of the
decomposition D (so that D' is still a decomposition by simplicial cones),
then T(D) can be thought of as a subspace of T(Dr).

As

f (m) = lim T(D )   (as sets), (3.2)
D

we shall introduce on T(m) the weak topology, i.e., U c T(m) is by definition
open in T(m) if f U n T(D) is open in T(D) for any D.

Let PL(m) denote the group of germs of PL-homeomorphisms 3>: (Rm, 0)
-► (Em, 0). The space

T(m) = PL(m)/0(w) (3.3)
is fundamental in the theory of smoothing.

THEOREM 3.1. Let $ be the germ of a PL-homeomorphism <f>: (Rm, 0)-»
(Em, 0). Then the correspondence

¥: PL(m) -» f (m),       ¥: <i> h> r+ (3.4)
factorizes to a bijection

Z:T(m)^t(m). (3.5)

Proof. The map ¥ factorizes because an orthogonal transformation of Em
does not change the metric of Em.

The proof of Proposition 1.1 shows that for any normalized metric y at
0 G Rm, there exists a PL-homeomorphism <i>: (Rm, 0) h» (Em, 0) such that T+
is just the Riemannian metric y. Hence Z is an epimorphism.

Suppose the <f>¡: (Rm, 0)-»(Em, 0), i = 1, 2, are two PL-homeomorphisms
such that r^ = r^,. The proof of Proposition 1.1 shows again that <¡>x, <¡>2
differ by an orthogonal transformation of Em, which proves injectivity.

Theorem 3.2. Let Mm be a PL-manifold. Let x be any point of Mm and let Tx
denote the (topological) space of all normalized metrics in x. Then T(M) —
U xSAf Tx is the total space of a locally trivial fibre bundle over Af, with fibre
T(m), such that any Riemannian structure with constant volume density on M is
a continuous section in this bundle.

From Theorems 1.2 and 3.2 we deduce the following corollaries:

Corollary 3.1. The combinatorial manifold M admits a differential structure
if and only if there exists a continuous global section in T(M). Any continuous
section in T(M) defines a smoothing.
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Corollary 3.2. Any two homotopic sections in T(M) define concordant
smoothings.

Corollary 3.3. There exists an obstruction theory for smoothing.

Results of this nature are well known in the theory of smoothing, but the
definition of the associated bundle I\Af ) is different. Such results are due to
J. Munkres, R. Thorn, M. Hirsch, and J. Milnor.

Chapter III. Combinatorial Hodge theory

1. Distributions. Throughout this chapter, Afm denotes a compact oriented
combinatorial manifold without boundary of dimension m.

For any maximal simplex o G Af we choose a linear embedding pc of o in
Rm; pa is a coordinate chart on a, and let us denote these coordinates by x„.

Let T be any C°° Riemannian metric on Afm such that for any ff G Af, all
the components of r„ (with respect to the coordinates xa) are constant
functions. There exists at least one such Riemannian metric. Indeed, it is
enough to embed Af linearly in E* and take as T the induced Riemannian
metric.

As in the case of smooth manifolds (see, e.g., de Rham [R] or Schwartz
[Sc]) we shall introduce:

Definition 1.1. A linear functional T: QP(M) -» R will be called a distribu-
tional form (or distribution) of degree m — p on Af iff there exist a natural N
(which depends on T) and a positive constant C, such that

|7w| < C Sup|Z)^w,(x)|,       w G ß'(Af ), (1.1)

where the supremum is taken with respect to:
(a) any partial derivative Dx, \a\ < N,
(b) any maximal simplex o G M and x G ff,
(c) any / = (/„ . . ., ip), uaJdx' = w„.
The set of ail distributions of degree m — p will be denoted by ^ÍT'~P.
As in the smooth case, any form # £ Í!' or any chain 7 of degree m — p

defines a distribution of degree/?:

d(w) = j{f A w,       w G Qm-p, (1.2)

y(«) = /"«. (1-3)

If T G ty and # G ß«(M) is a form, their exterior product T A & G W+?
is defined as

(rAv)(«)=n»A4     »eQ—'-«. (1.4)
If/ G ß°(Af), and T G GSm-p,fT G »m~> and

(/T)(w) = 7X/w). (1.5)
Hence ^ is a module over ß°(Af ).
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If T G <&, we define ¿TÊr1:

(dT)(u) = (-lfT(dw),       w G ß-"-'-1, (1.6)
and the usual formula holds:

d(TAd) = (dT)Ad+WTAd9 (1.7)
where WT = (- iyT for T G 6ÙP. It is clear that ¿2 = 0.

We can define, as usual, distributional forms on any open set U c Af ; it
makes sense to restrict any distributional form in ^JV to any open set U.
These constructions will permit us to speak about the support of a distribu-
tion and about germs of distributional forms w G ^. The germs of distribu-
tional forms in fy can be organized as a sheaf and we shall indicate it by tfP'.

2. Sobolev spaces. We shall introduce on ß*(Af) various scalar products in
order to construct a Rellich chain of Hubert spaces on Af.

We define, for any s > 0,

(a, /&),-(«, (1 + A)sß ),       a,ß G ß*(Af ),

|«£ -(«,«).• (2.1)
Let V, denote the covariant derivative V, = Vd/oxj.
We can define also new scalar products on ß*(Af ):

(«, ß); - 2 (sk)Í8iJ' ■ ■ ■ tuy<, •••va« 7ft • • • v (2.2)
0<k<syK'Jo

o

where <j runs over all maximal simplices of Af.
If a, ß in (2.1) and (2.2) are homogeneous, but of different degrees, we

defme(a,ß)s = (a,ß);=0.
Remark 2.1. Both (, )s and ( , )* are symmetric and positive definite.
The scalar product (, )¡ depends only on the metric T.

Proposition 2.1. For any s = 0, I, ..., and for any a,ß G ß*(Af),

(a,ß\ = (a,ß);. (2.3)

Proof. Let s = I. We have

(a,A/?)= -   S   />«0A*V,.VA

-   S  /«*UA*V;i8,-   S   fviiîXA'V/).   (2.4)

We will prove that the last sum vanishes.
Let {0<t}o = 0 denote the 1-form on Af (see Tanaka [T, p. 50]):

*.(*> - « [ VA • VjS,],
x being any tangent vector to Af(m) - M(m_2). 9 is a C°°-form on Af. Then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GLOBAL ANALYSIS ON PL-MANIFOLDS 69

we have

89 - -giJ—9j
dx' J

where

*; = *(-¿7) = *[«A*V,/?];

it follows that

89= -g*V,. *[aA* Vjß]
or

«/•0-vV[«A* V]ï
therefore

2   fVi{gij«a/\*Vjß,) = i d*9=( *9 = 0. (2.5)
oeAfJo JM -'3A/-0

Now, (2.3), for j = 1, follows from (2.4) and (2.5), because we have

(«,A0)O=   2    /> V,.a A * V,/?. (2.6)

In order to prove (2.3) for an arbitrary j, it is enough to iterate (2.6):

(a,A'+1/î)0 = (a,A(A7î))0.
Definition 2.1. The completion of the pre-Hilbert space ß^Af) with

respect to the norm || ||j (or || ||") will be called the Sobolev space of order s,
and it will be denoted by ///(Af ).

Set H*(M) = 0 , HP(M). We have the following analog of the Rellich
theorem.

Theorem 2.1. For any s > 0, the identity ß*(Af )-^ ß*(Af) extends to a
continuous homomorphism

j(s, s+l): Hf+X(M) -+ H:(M). (2.7)
The map j(s, s + 1) is injective, completely continuous, and the image of Hs+X in
Hs is dense.

Proof. Let ß*(<r) denote the algebra of real smooth forms over the simplex
ff; we consider ß*(tr) endowed with the norm || ||¡, (2.2). The metric T being
flat, the norm || ||¡ is the usual Sobolev norm. We have the natural mapping

ß*(A/)^     0    ß*(o), (2.8)
dim o~m

and we introduce in  ©„ ß*(<j) the direct sum norm:  for w = (w0)„ G
©„ ß*(ff), we set
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l«Ë-2HI? (2-9)
Then, for any s > 0, we deduce from (2.2), (2.8) and (2.9) that

(o«(jf),||||,)^(©a«(o),||||;) (2.10)

in an injective isometry.
When we complete ß*(Af ) and ©0 ß*(ff) with respect to the Sobolev

norms || ||i; the induced map 3>| remains injective. We observe that

©0«(o)n, = © ß*(ff)ini, = © H*(o). (2.11)
O O O

where || U, denotes completion with respect to the norm Q ||r while H*(o)
denotes the Sobolev space of order s of * -forms. Therefore we have the
isometric injection

ê*: Hf(M ) - © H?(o). (2.12)
a

Consider the commutative diagram

#;+,(M)        ^* ©*£»
a

ij(s,s+l) l@ja(s,S+l)
o

h;(m)       t       ®hs*(o).
The Relhch theorem in o (see, e.g., Agmon [A]) says that ja(s, s + 1) is

completely continuous; it follows that even ®aj(s, s + 1) is completely
continuous. This property, together with the fact that <ï>*+, and i>* are
isometric injections, implies thatj(s, s + 1) is completely continuous.

They0(j, s + 1) are injective (see, e.g., Agmon [A]); therefore ©0y'(j, s +
1) is injective; hence from the diagram we deduce ihatj(s, s + 1) is injective.

H*+, is evidently dense in H*(M) because ß*(Af ) is dense in both of them,
by definition.

Definition 2.2. For any s > 0, define HP_S to be the dual of the Hubert
space Hp, or

Hp_s(M ) = (Hp(M ))*,       0 < p < m,
and

j(-s, -s - 1) =j(s,s + \)*:Hp_s(M)-+H»_,_x(M).

Theorem 2.2. The statement of Theorem 2.1 is still valid even for s < 0.

Proof. See Palais [P, Chapter VII, §1].

Corollary 2.2'. The sequence of Hilbert spaces and maps

j(s, s+l):H?+x(M)^ H*(M ),       sGZ,
is a discrete Rellich chain.
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Proposition 2.3. If w G Hf(M), then the restriction w|o of w to any
m-simplex a of M is defined and it belongs to the usual Sobolev space Hp(a). In
particular, w|o has weak (and hence strong) derivatives of order < s.

(For definitions of weak and strong derivatives see, e.g,. Friedman [F] or
Agmon [A].)

Corollary 2.3. 7/ w G Hf(M) and s > [m/2] + k, then w|o G Ck(a).

Proof of Proposition 2.3. If w G Hf(M), we take Ô*(w) G © „ Hf(a)
(see (2.12)). The oth component of 4>*(w) will be, by definition, the restriction
of w to o and it has the desired property.

Corollary 2.3 expresses nothing but the Sobolev theorem (see, e.g., Agmon
[A]) in the bounded domain a which has the cone property.

We can prove even global regularity properties for elements of Hf(M).

Proposition 2.4. (i) If P(d, 8) is any polynomial in d, 8 and w G H*(M),
deg P < s, then P(d, o)w is well defined and belongs to H*_degP(M). * w is
well defined and belongs to H*(M).

(ii)//w,d G H*(M),s > 1, then
(rfw,d)o = (w,od)0. (2.13)

Proof, (i) Observe that the scalar product ( , )s [(2.1)] can be written also as

(«,/*),=    2   (Si)((d8)i + (8d)ia,ß)

=    2   (Si)[(Wi(d,8)a,Wi(d,8)ß) + (Wi(8,d)a,Wi(8,d)ß)]

(2.14)

where W¡(d, 8) is: (a) the unique word of length i which is constructed with
the symbols d, 8, (b) begins with d and (c) which does not contain two
consecutive ¿f's or o's.

From (2.14) we deduce, if {w„} is a Cauchy sequence in (ß*(Af), || ||,)
which converges to w G H*(M), then {W¡(d, o)w„}„ (resp., {W¡(8,d)un}„),
0 < i < p, is a Cauchy sequence in (ß*(Af), || ly. Hence it converges to an
element in /f*(Af) which we agree to denote by W¡(d, 8) (resp., W¡(8, d)a>).
We observe also that for 0 < i < s - 1, {W¡(d, 8)du„}„, {W¡(8, d)dun}n,
(resp. {W¡(d, 8)8u„}„, {W¡(8, d)8u„) „), are Cauchy sequences in the || ||0-
norm. (2.14) shows again that {du>n}n (resp. {ow„}„), is a Cauchy sequence in
II lli-i! hence it converges to an element in H*_X(M) which we agree to
indicate by du (resp. ôw). Therefore du,8u> G H*_X(M).

We obtain (i) for any polynomial P(d, 8) by iterating this result.
If {<•>„}„ is a Cauchy sequence in ß*(Af) which converges in the || l^-norm

to w G H*(M), then by definition
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(A'(w, - w,), (w, - w,))0^0,        0 < r < s.

But from (4.4) (iv) and the commutativity of A with * , we deduce that

(Ar( * Uj - * w,), ( * Uj - * w,)) = (Ar(w,- - w,), (w, - «,-)),

which proves {*«„}„ is still Cauchy in the || l^-norm.

(ii)  It  is  sufficient  to  suppose  w,o G /ff(Af).  Let  {w„}„ -» w  (resp.,
{#„} -» d), be a sequence in ß*(Af) which converges in the || ||,-norm to w
(resp., #). Then we have by (i):

II Ho .    Ho . .    lb,u„ -» w,       du„ -* du,       8u„ -» 8u„,

We get
(du, 8 ) = lim (du„, #„ ) = lim (w„, WJ = (w, S9 ). (2.15)

n n

Theorem 2.5. If u G Hf(M), s > lm/2] + k, then u is a p-form of class at
least k on M.

Proof. Corollary 2.3 says that u\o is a form of class C* for any m-simplex
o G Af. If ff,T are two neighboring simplices in Af, then out can be thought
of as a bounded domain in E" with the cone property, and hence the Sobolev
theorem in ff u t says that the form {w|<x, w|t} on o u t is of class at least k;
hence o h» w„ is a form of class Ck on Af.

Corollary 2.5'. // w G Hf(M) for any s, then u G ß'(Af). Hence #£, =f
PI , Hf is W(M).

3. Sobolev spaces and distributions. As in the case of the classical distribu-
tions, and the classical Sobolev spaces, any element u G H*, s G Z, defines a
distribution. Really, if s > 0, then u G /f* and we can associate with u a
distribution Tu, so

Tu(?) = f u A «P = (u, * *p),       qp G ß*(Af ). (3.1)JM

Any element u G H_s, s > 0, is by definition a continuous functional on
H*; that means there exists a unique element us G H* such that

"(<P) = («,. * V), - (",. (1 + A)J * «p)o,   for any <p G ß*(M );    (3.2)
u is clearly a distribution. The uniqueness of us permits us to formulate:

Proposition 3.1. The correspondence
X.H*_S(M)-><$*(M),       s>0,

u\^>u(),

u(<p) = (us, (1 + A)s  . <p)0,        <p G ß*(Af ),     u, G H*(M ),

is injective.
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Any element in x(#-*(Af)) will be called distribution in H*_S(M), s > 0.

Proposition 3.2. x#-,(Af) = {u\u G <%*(M), u(<p) = 2(a,., Pt(d, 8) * tp)^
<p G ß*(Af ), a¡ G H£(M), P¡ polynomials in d,8 of degree < s).

Proof. Proposition 3.1 and Proposition 2.4 give us that any distribution u
in H*_S(M) is of the form

«P w 2 (*,-> Piid, 8 ) * *>)„       <p G ß*(Af ). (3.3)
i

Conversely, any functional (3.3) is a distribution. This functional is con-
tinuous in the || Hj-norm because for any polynomial P, there exists a
constant C, > 0, such that

||/>,.(¿, Ô) * <p\\l < Ct(<p, (1 + A)*»''*) = q\\<p\\lcgPl < C,\\<pf,;    (3.4)
hence

2te, W«) *<p)o < 2(<%> W«) *«p)o < SqKHo-lbll,. (3.5)i i i
Therefore the distribution (3.3) stays in H^S(M).

4. Cohomology. The results of this section remain valid even for homologi-
cal PL-manifolds (for definition, see Milnor [Mi]).

Definition 4.1. Let A c U c Af be open sets. Let us define

QP(U, A) = {w|there exists w Gß'XAf ) such that û\U = w, u\A = 0},
^(U, A) = { r|there exists f G^(Af ) such that f \U- T, T\A = 0},

ß'(i/) = ß'(i/,$),
ty(UJ- ^(U,^),
ßg(£/) = {u\uGQp(U), Suppw cri/},
^(£7)= {r|TG ^(i/), SuppTcni/}.

It is clear that {QP(U, A), d) = ß*(t/, A) and {^(f/, A), d} = <$*({/, ̂ )
are cochain complexes and let us denote their homologies by

Hp(Q*(U, A)) = H"(U, A),       p>0,
Hp(<%*(U,A)) = H"(U,A),       p>0.

Theorem 4.1. If M is any combinatorial manifold, then the inclusion

j:Q*(M)^><%*(M) (4.1)
induces the isomorphism

j, : H*(M ) -» H*(M ) (4.2)
in cohomology.
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The inclusion of the complex ß*(Af) in the complex of PL-differential
forms induces isomorphism in cohomology.

Therefore all these cohomologies are isomorphic with H*(M, R).
Proof of Theorem 4.1. We shall prove the lemmas:

Lemma 4.1. The sheaves ß*(Af), gD*(Af ) are fine.

Lemma 4.2. The diagram

0   -*    R   -+    ß°(Af)    4     ß'(Af)    4
Il U u

0   -*    R   -*    ^(A/)    4-     ̂ '(Af)    4.

w commutative.

Lemma 4.3 ("Poincaré" lemma). The rows in (4.3) are exact.

Theorem 4.1 will follow from the generalized de Rham theorem.
Lemma 4.1 will be proved in Appendix I.
Lemma 4.2 is evident.
Proof of Lemma 4.3. Let x0 be any point in Af. If x0 is an internal point of

a maximal simplex, then exactness of (4.3) in x0 is a particular case of the de
Rham isomorphism theorem (see de Rham [R]). Therefore it remains to prove
exactness of (4.3) in any point x0 on the boundary of a maximal simplex in
Af. So, suppose x0 is an internal point of a simplex t G Af, 0 < dim T = k <
m.

An open neighborhood U of x0 in Mm will be called "normal" iff U is
combinatorially and metrically equivalent to a product Ik X Bm~k where Ik
is a fc-cube in t, containing x0, and Bm~k is a combinatorial disc of
dimension m — k; Bm~k can be chosen to be a combinatorial disc in Af,
containing x0 and "normal" to t (with respect to the Riemannian metric T).

We need the following:

Sublemma 4.4. If U is any normal neighborhood of x0 G t c Af, then

(i)       //'(C/)^/f'({x0},R),       i>0,

(ii)       £'(£/) =s.r7'({x0},R),       i>0. (4.4)

Proof of Sublemma 4.4. The proof of (i) follows easily by using the
classical homotopy operator h (see, e.g., de Rham [R]). Let ff G Af be any
simplex which contains x0, and let xa be the chosen coordinate system on a.
Let x,, be the coordinate system obtained from xB by translating the origin in
x0. Let o h» w„ be any form w in Qp( U). Then hu is a form defined locally,
whose restriction to o is

...     4     ßm(Af)    -»    0

Um
...    4     ^(Af)    -»    0

(4.3)
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<•>«(*<>)>   ÎOTP = °>

(hua)(x) = \   ¿'(-1)*"1 Çt"-xx^uu.... (tx) dt (4.5)
*-i •'o *

Adx¡> A ■ ■ • A<*x* A • • • AdxK      p > 1,
where

w = «,-,...^''' A • • • Adx^.

The formula (4.5) is clearly invariant under affine transformations, hence hu
satisfies the C"-compatibility conditions. Therefore hu G ílp~x(U(x0, r)).

The operator h satisfies the identities

w(x) - w(0) = hdu,   for w G 0°(I/),
(hd + dh)u = w,   for w G W(U),p > 1. (4.6)

The relations (4.6) imply 4.4(i).
The proof of 4.4(ii) is not straightforward. We prove it by induction on

dim Af.
For /m = 1, 4.4(ii) reduces at the smooth case (for its proof see de Rham [R]

or Schwartz [Sc]).

Sublemma 4.5. Let U0, U be two open normal neighborhoods of x0 G Af
( U0 n t, U n t are homothetic cubes) and U0 C U. Let us denote V = U —
U0. Then

H'(V) at H'{&»-\ R),       i > 0. (4.7)

Proof of Sublemma 4.5 will be given at the end of this section.
We have the exact sequence of complexes

0-»<3)«(Cf, K)-i>3)*(f/)-^q>*(p-)-»0 (4-8)
where 1 is inclusion while it is given by restriction of distributions to V.

The exact sequence (4.8) gives a long exact sequence in cohomology:

. . .-* Hp~x(V) ̂  Hp(U, V)XHp(U)XHp(V)XHp+x(U, V)-+_

(4.9)
We deduce from Sublemma 4.5 and (4.9)

H"(U, V)Xhp(U)   forl</><w-2, (4.10)
is an isomorphism; the last terms in (4.10) are

0^Hm~x(U, V)^1 Hm-X(U)^'RS^ Hm(U, V)XEm(U)^0.

(4.11)
Let T be any distribution in ^(U, V), 0 < p < m, and let us consider the
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distribution HT defined as
(HT )(u) = 7XAw)   for any w G ß*( U ). (4.12)

T being with compact support in U, HT is well defined (observe that hu is
not necessarily with support in U). H satisfies the identity

dHT + HdT = T for any T G <&(U, V), 0 < p < m - 1. (4.13)
Suppose dT = 0; then (4.13) yields T = dHT. Observe that HT does not

stay necessarily in SÙP~X(U, V) because the support of hu (for any w G
m%~\V)) is not necessarily in V. In any case, HT belongs to 6¡F~i(U) and
hence, here, HT is a coboundary. Therefore, if [ T] denotes the cohomology
class of T in HP(U, V), we have

L[7]=0Gâ'(i/). (4.14)

But, as ip, 1 < p < m — 2, is an isomorphism, we deduce

H"(U, F) = Hp(U) = 0,       \<p<m-2. (4.15)
(4.11) shows that tm_, is a monomorphism, hence the same argument can

be used in order to prove also that
Hm~x(U, V) = 0. (4.16)

Let T be any cocycle in ^(U). From (4.11) we get that im is an
epimorphism. Hence there exists a cocycle Tx G ^"(U, V) which stays in the
cohomology class of T. Tx having compact support in U, it makes sense to
compute Tx(u) for any w G ß°(t/); we have by (4.6)

Tx(u) = r,(w(x0) + hdu) = r,(w(x0)) + HTx(du)
= r,(w(x0)) + dHTx(u). (4.17)

Let 8   G ^(U) denote the Dirac distribution, i.e.,

8Xo(u) = w(x0)   for any w G ß°(U).

Therefore, from (4.17) we get

[T]=[Tx] = a[8x<>]GH>»(U), (4.18)
where a = 7*,(1).

We shall prove that

80 = dG,       GG¿¡r-x(U). (4.19)
Let us define

G(w) = tÍtTT f   hiuds   for any w G Ql0(U), (4.20)
\au\ Jgr/

where ds denotes the Riemann measure on dU induced by the flat metric T
on Af, and |3£/| denotes the measure of dU.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



global analysis ON PL-MANIFOLDS 77

We have, for any w G ßg(i/),

—lr —If(dG)u = G(du) = ——- /    hxduds = -—      (u - w(x0)) ds
\dU\ Jbu \ou\ Jsu

= w(o)-JL f   ds = 8 (u)
K'\du\Jau        x°y)

(observe that u\dU = 0). Therefore
Hm(U) = 0. (4.21)

At this point we know from (4.16) and (4.21) that (4.11) reduces to the
exact sequence

0^>Hm-x(U)-*R^>Hm(U, V)^0. (4.22)

We shall prove that dim Hm(U, V) > I; then (4.22) will imply that
Hm-\U) = 0,       Hm(U, V) m R. (4.23)

The Dirac distribution 8X is a cocycle in ^"(U, V). We shall prove that its
cohomology class in Hm(U, V) is not the null class. Suppose the contrary, say
8Xo = dS, S G 6¡r~x(U, V). Then for 1 G ß°(i/) we obtain the contradic-
tion

1 = 8Xo(l) = dS(l) = S(d 1) - S(0) = 0.
Therefore (4.23) is true.

Let us compute H°(U) = Ker d0. Let J1 G Ker d0. Then

0 - (dT)(u) = T(du)   for any w G ß£- '( U ). (4.24)
We observe that

ß£( U )/dQ%- \ U ) a Hm(Sm, R) sí R. (4.25)
Therefore dim H°(U) < 1.

Let/ G ß°(i/) be any constant function. Then/thought of as a distribu-
tion is a cocycle. For, let T} denote the distribution associated with/, i.e.,

Tf(u) = f fu= ff u   for any w G Q%(U).
Ju Ju

dTAu) =ffdu = 0.
Then we have

Therefore
H°(U) = H°(U) = R. (4.26)

Proof of Sublemma 4.5. If we show that the sequence of sheaves and
morphisms

Q-»R^g¡)0(F)4 gp'(F)4->6¡T(K)^0 (4.27)
is exact, then the Sublemma 4.5 is proved.
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We emphasize that exactness of (4.27) is simpler to show than exactness of
(4.3). This is produced by the fact that for any x0 G V, any normal neighbor-
hood is of the form

U= Ü x(-r,r) (4.28)
where U is a normal neighborhood of x0 in a combinatorial manifold of
dimension m — \. Really, if x0 is an interior point of a maximal simplex, it is
clearly true. If x0 is a point on the boundary of a maximal simplex o of the
decomposition Af, observe that in V any vertex of the decomposition Af is
avoided, and then any normal neighborhood of x0 is of the form (4.28).

At this point we use an induction argument on dim Af. Suppose we have
proved the Poincaré Lemma 4.3, for all Af of dimension m — I. Hence we
may suppose that the sequence of sheaves and homomorphisms

0_>R_>6¡)0(¿7)4 gp'(t7)4 • • • 4 g¡)w-1(¿7)-»0 (4.29)

is exact, and we shall prove that (4.27) is exact. In order to perform this, we
use Schwartz's proof [Sc, Chapter IX] for the Poincaré lemma.

The basic tool used by Schwartz is convolution by the Heaviside distribu-
tion in order to construct primitives.

We shall show that the linear factor (—r,r) in (4.28) is sufficient for
constructing "partial convolutions" and then primitives.

Let us consider U X R d U X ( — r, r), and let (y, t) be a generic point in
Ü XR.

Lemma 4.6. Let T be a distributional form on U X R and S any distributional
form on R.

(i) Then it is possible to define a distributional form T®S on ÜxRxR,
such that, when U is an open set in Rm~x, then T ® S is the usual tensor
product of the distributional forms T, S.

(ii) Let ¡i: ÜxRxR-^ÜxRbethe map
H(y, t, s) = (y,t + s). (4.30)

Suppose T has compact support. Then it makes sense to define "partial convolu-
tion product" T * S on U X R as follows

(T* S)(u) = (r ® S)(n*u),   for anyuG ß*(Ü XR).       (4.31)
(iii) The partial convolution product satisfies

#T.3)-T.£. (4.32)

(For a sketch of the proof, see Appendix II.)
From now on, the exactness of (4.27) can be carried out as in Schwartz [Sc,

Chapter IX].
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5. Combinatorial Hodge theory. For any s G Z, let us define spaces of
harmonic forms

%P(M) = {w|w G HP(M), du = Q= 8u).

Theorem 5.1 (Combinatorial Hodge decomposition theorem). Let s be
any integer > 1. Then:

(i) D(£(Af) is finite dimensional for any 0 < p < m,
(ii) for any f G HP_X(M), 0 < p < m, there exist a unique h G %P(M) and

a unique u (mod %P(M)) in HP(M) such that

(1 + A)i_1/= (1 + AY~l(h + Au) = h + (1 + A)I_,Att (5.1)
in the distributional sense.

Proof. The proof is substantially the same as in the case of the Dirichlet
problem.

Let Bs(u, <f>) be the bilinear form defined on H*(M), s > 1,
Bs(u, <f>) = (du, ¿<f>),-1 + (8u, Ó», _ „       u,4> G H*(M). (5.2)

We have the "Gârding-equality":
Bs(u, <>) + (u, <*>),-1 = ("> <>)*   for any u,4> G H*(M ). (5.2')

We intend to determine the elements u G H*(M) which satisfy the equa-
tion

*,(«,*) = (/, <*>),-!   for any* G #;( Ai), (5.3)
where/is a given element in H*_ ,(Af ).

This last problem and the Dirichlet problem are expressed by the same
functional analysis problem. For its solution, see, e.g., Agmon [A, Theorem
8.5, p. 102].

It follows that the space of solutions in H*(M) of the homogeneous
equation Bs(u, <p) = 0 is finite dimensional and the equation (5.3) has solution
iff / is orthogonal (in the || H^^-norm) to the space of solutions of the
homogeneous equation (5.3). Notice that the space of solutions in H*(M) of
the homogeneous equation (5.3) is just %*(M). Indeed, if u is such a
solution, let us put <b = u in (5.3); we have

(du, du)s_x + (ok, ok),_, = 0, (5.4)

and hence du = 0 = 5k.
Suppose now k is a solution of the nonhomogeneous equation (5.3).
Take <f> G ß*(M) in (5.3) and remember (5.2). We get

(du, d<b)s_x + (8u, 8u)^x = (/, *),_,
or, as í > 1,

(k, 8d<b)s_, + (u, d8<b)s.x = (/, <b)s_, (5.5)
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which gives us

(«, A*),-,-(/, *),-,. (5.6)
Let/be any element in H*_X(M). Since %*(M) is finite dimensional, it is

closed in H*_X(M). Let h denote the projection (with respect to ( , ),_,), of/
on %*(M). Then/ — h is orthogonal to %*(M); hence the equation (5.3), or

(1 + A)s-1/- (1 + Ay~x(h + Au) (5.7)
has a solution. Theorem 5.1 is completely proved.

Any harmonic form h G %P(M) is, in particular, a ¿f-cocycle in ^(Af).
Let [h] denote its cohomology class in HP(M).

The map
Xsp:%P(M)^6Ùp(M),       0<p<m,    -oo <s < +oo,

A ■-*[*] (5.8)
will be called "Hodge homomorphism".

Theorem 5.2. (i) The Hodge homomorphism

Xf : 3Cf(Af ) -* Hp(M),       0 < p < m, (5.9)
is a monomorphism.

(ii) The Hodge homomorphism

Xp-X:%p-X(M)->Hp(M),       0<p<m, (5.10)

is an epimorphism.

Proof of Theorem 5.2(i). The idea of the proof is to show that if
h G 0C,*(Af), and the cohomology class of h is zero, then there exists a
sufficiently regular form u such that: du = h.

At this point we may proceed as in the classical case. Let T denote any
triangulation which is a refinement of the initial decomposition of Af. Let us
define a new space of distributions WX*(M, T) Ç /f*(Af) which contains
H*(M).

Definition 5.1. Let us define, for any 0 < r < dim Af,

W[(M, T) = {w|w G Hq(M) such that: (i) for any maximal simplex

ffa G T, u\oa G /ff (ffa, AT*ffa),

(ii) for any two maximal neighboring

simplices oa, ap, the equality

w|ffa = w|o^s holds in H¿(aa n oß)}.    (5.11)

Explanation. uy\oa n oß (y = a,ß) is the restriction of the form w to the
submanifold oa n oß of codimension 1; it belongs to /f¿(ffa n ff^), as a
particular case of the Sobolev trace theorem.
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Definition 5.2. Let

W[(M, T) = {w|w G W[(M, 7-), du G W[+X(M, T)},        (5.12)
d denoting strong exterior derivative.

Clearly, { WX(M, T), d }r is a complex, and let us denote it by W\*(M, T).

Lemma 5.1. (i) The triangulation T being finer than the fixed decomposition of
M, the inclusion

H[(M)QW[(M,T) (5.13)
holds,

(ii) if the triangulation T is sufficiently fine, then the inclusion

Q*(M)¿>Wf(M,T)¿>HS(M) (5.14)
induces isomorphisms in cohomology,

(iii) ifuG W\*(M, T) and h G H\*(M), then
(h,du) = (8h,u). (5.15)

Suppose for a while Lemma 5.1 has been proved, and let us end the proof
of Theorem 5.2(i).

Let h G 3C,(Af) and suppose xi(*) = 0. By Lemma 5.1(h), there exists a
u G W[- '(Af, T) such that

h = du. (5.16)
We have by (5.16), (5.15)

||A||o = (K h) - (h, du) = (SA, k) = (0, k) - 0; (5.17)
hence A = 0. Therefore Xir is a monomorphism.

Proof of Lemma 5.1.(i) If w G H\*(M), then Proposition 2.3 says that, for
any maximal simplex oa of T, the restriction w|ff0 belongs to H\*(oa); hence (i)
of Definition 5.1 is verified.

Condition (ii) of Definition 5.1 follows immediately because the elements
in HÎ(M) are limits of elements of class C00. Therefore w G W\*(M, T).

(ii) Let WX(M, T) denote the sheaf of germs of forms in W[(M, T). This
sheaf is fine; if we prove that the sequence

0^.R_> W°(M, T)-^>- • • 4 W[(M, T) 4 W[*\M, T)^>...
(5.18)

is exact, then the generalized de Rham theorem would complete the proof of
(ii).

We shall use Hörmander's [H] method of densities in order to prove
exactness of (5.18).

Let us check the exactness of (5.18) at the point x0 G Af. We suppose that
the triangulation T is sufficiently fine so that the interior of Stai^x,,, T) is
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simplicially equivalent to a subcomplex of Rm (otherwise we refine it). So we
may suppose that T satisfies this property for any point x0 G Af. Let

p: Int Star(xo, T ) -+ Rm (5.19)
be such a simplicial mapping.

Let / G W[(M, T)Xo be such that df = 0 (here d denotes strong exterior
derivative). Let us suppose, for simplicity, that/is defined on all Sta^x,,, Af).

Let/ denote the transfer of / by p ~ ' in Rm, i.e.,/ = (p" ')*/.
Let ß = p(Int Star(xo, T)).
Observe that / G W[(ü, T') for a suitable triangulation T of ß. Observe

also that df = 0 in the strong sense.

Sublemma 5.2. If f G WX(Q, 7") and df = 0 in the strong sense, then df = 0
in the weak sense (with respect to all classical Cx-forms on ß).

We shall postpone the proof of Sublemma 5.2.

Lemma 5.3 (Hörmander [H, Theorem 4.2.5]). Let ß be a pseudoconvex open
set in C" and let 0 < s. Then the equation 3k = fhas a solution in Wf£x(Q, loc)
for every f G Wp-q+ '(ß, loc) such that df = 0.

Hörmander's theorem remains valid (with the same proof) if we substitute
C" by Rm, o by d, and Wf-^Q, loc) by /f/(ß, loc). / belongs to #0r(ß) and
df = 0 in the weak sense. Therefore, there exists a k G H,r(ß, loc) such that
du = f in the weak sense, and hence du — f in the strong sense. Then the
germ at x0 of p*K belongs to ^["'(Af, T)Xo and du = fin the strong sense,
which proves the exactness of (5.18).

Proof of Sublemma 5.2. Let p be any C "-form on ß, Supp p <s ß. Let the
ffa denote all maximal simplices of the decomposition T.

We have

(¿pA/~ = 2   f 4>A/=2  i{d{p/\J)-(-\y*p9/\dJ)
JQ or    Joa «    Jo.

= 2  (   PA/-(-l)degP2   [ PA0 = 2   f PA/-0;    (5.20)
"    Jdo„ o    Jo. <*     Jdo„

hence df = 0 in the weak sense.
Proof of Lemma 5.1 (iii). We have

(A, du) = 2   fduA*h

= 2 /(¿(«A* A)

= 2   f  "A *A-(-l)degB2   ( "Ad *h
<*    JBoa "    Jaa

= (-l)degu2   f uAd*h = (u,8h). (5.21)

(-\)^uuAd*h)
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Notice that it is important for A to belong to H\*(M); indeed in (5.21) we
have used the fact that * A G W\*(M, T), which implied the relation

V    f   k A  * h = 0.

Remark 5.1. The spaces
lim W\(M, T),       0 <r < m,

T

aie combinatorial invariants.
Proof of Theorem 5.2.(ii) Let y be any cohomology class in HP(M).

Theorem 4.1 allows us to find a ¿/-cocycle w G ß'XAf) with [w] = y. In
particular, w stays in HP(M). By Theorem 5.1 there exists an element
u G HP(M) such that

w = Hu + Au, (5.22)

where Hu is the orthogonal projection of w on the space of harmonic forms
3CJ (Af ). The formula (5.22) can also be written in the sense of distributions

« = Hu + d8u + 8du. (5.23)

Let us apply d to both sides of (5.23); we get 0 = du = d8du.
As 88du = 0, by Proposition 3.2 we deduce that 8du G %tx(M).
Therefore both Hu + 8du and w stay in the same cohomology class in

HP(M); Theorem 5.2 is completely proved.

6. Combinatorial analogue of the signature operator. In analogy with the
signature operator defined on smooth Riemannian manifolds, let us define
the operator D — d + 8.

Proposition 6.1. If u G ¿7*, and Du = 0, then du = 0, 8u = 0.

Proof. We have for any <p = (d + 8)*, with ¥ G ß*(Af),
0 = ((</+ 8 )u, <p) = (k, (d + 8 )<p) = (u, (d8 + 8d)*)

= (du, d*) + (8u, 8*). (6.1)
Let {V„}n be a sequence in ß*(Af) converging to u in the || ||,-norm. Then

we have from (6.1)

0 = lim [(du, dVn) + (Su, «*„)] = (du, du) + (ou, ôk).        (6.2)
n—*oo

Hence du = 0 = 5k.
In this section we use some constructions and results of Atiyah-Singer

[A.S., §6].
Let

Jig» - Hp(M ) ®R C,       %p = %P(M) ®R C, (6.3)
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for any 0 < p < dim Af, — oo < s < + oo, and

E* = © Hp(M ),       %; = © 3Ç.
Suppose Af is even dimensional, dim Af = 21.
Let Tp: Hp -» H¡"~p, m = dim Af, be defined such that

rp(a) = i*-»*' *a, (6.4)

and

r = © V /7> -» A;*. (6.5)
/>

It is easy to check that r2 = 1.
Let 7fJ± denote the eigenspaces of t corresponding to the eigenvalues ± 1.

As in the smooth case, we can prove that
Dr = - tD. (6.6)

From now on let D * denote the restrictions of D to H,*. From (6.6) we
deduce that

Z>±(/7f) £//<*. (6.7)
The operators D+, D~ are adjoint to one another, i.e. for any w G Hx+,

9 G Hx~, we have
(D+u,9) = (u, D~9) (6.8)

where ( , ) denotes the canonical hermitian scalar product which arises from
the scalar product in H*(Af ).

Let "Xf = X,* n Hx~. It is clear that %* is invariant under t; hence 3C*
decomposes as

SC,* = ÜC,+ © DC," (6.9)
where 9Cf are the eigenspaces of t in 3C*.

It is known that any compact oriented PL-manifold is a Poincaré complex,
that is

(«.Í)HÍ«AA       « G Ä*(Aa, R),   ß G 7f «(A/, R),
•/Ai

is a nondegenerate pairing.
In particular, if dim M = 21 = 4X, then

a,ßr^(a,ßy=jaAß,       «,ß G 77^(Af, R), (6.10)

is a nondegenearte bilinear form and it will be called the Poincaré scalar
product.

The signature of the bilinear form (6.10) is by definition the signature of Af,
written Sig Af.
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Let us define

R = Xf 3Cf C H^M, R),
R = X?y? C//Ä(Af,C),

and let S denote the orthogonal complement of R in //^(Af, R) with respect
to the Poincaré scalar product.

Proposition 6.2. If M is a compact, oriented, PL-manifold without
boundary, with flat Riemannian metric, dim Af = 4ju, and R,S are defined as
above then

(i)    H2*(M, R) = R © 5,
(ii)    the restriction of the Poincaré scalar product (6.11)

to R,S is still nondegenerate.

Proof, (i) Let R * = xf^^f • From (6.9) we deduce that R = R + © R ~.
Let A„A2 G R + ; then

<A„ A,> = (A„ * h2) = (A„ hj. (6.12)
Let A„A2 G R~; then

<A„ A2> = (A„  . A2) = (A„ -A2) = - (A„ A2). (6.13)
Let A, G R +,h2 G R '; then

(A2, A,) = (A2,  * A,) = <A2, A,> - <A„ A2>
= (A„  » A2) = (A„ -A2) = - (A„ A^; (6.14)

hence <A,, A2> = 0.
(6.12)-(6.14) show that the Poincaré scalar product restricted to R is still

nondegenerate.
(ii) Let ex,. . ., er be an orthonormal base in R + (with respect to < , » and

let er+1,. . ., er+s be an orthonormal base in R ". Let er+J+1,. . ., er+s+l be
such that ex, . . . , er, er+x, . . . , er+s, er+s+x, . . . , er+s+t is a base in
//2"(Af, R).

Let / = 2, x'e¡, x' G R, be any element in S. Then, if <e„ e,> = aip
I < i < r + s, r + s+l<j<r+s + t,we have

0 = <e,,/> = x' + 2 auxJ,        Ki <r,
r+s+l<j<r+s+t

0 = <<?,,/> = -x* + 2 akjXJ>       r + 1 < k < s.   (6.15)
r+s+i<j<r+s+t

From these equations we deduce that dim S = t, because we can take
x'+s+x,. . ., xr+s+t arbitrary, while x\ ..., xr+s are given by (6.15).

We can choose er+s+x, .. . , er+s+l in S. The Poincaré scalar product in
this new base is given by a matrix of the form
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I* 0      I

I 0 151

As the Poincaré scalar product is nondegenerate, it is det A # 0, and
therefore det B =£ 0, which shows that the Poincaré scalar product, restricted
to S, is nondegenerate (its matrix in the base er+s+x, .. ., er+î+' is B).

Let us define
Index D = dim Ker D + -dim Ker D ~.

Theorem 6.3. Let M be any compact, oriented, PL-manifold with
Riemannian metric, 3Af = <i>, of dimension 4¡i. Then

Index D = Sig Af + 9
where

9= -Sig(S,<,». (6.16)

Proof. The proof of the fact that Index D depends only on the Hodge
homomorphism in the middle dimension proceeds as in the smooth case (see
Atiyah-Singer [A.S., §6D-

From Theorem 5.2(i), we have

3C^+ * R+,        A?*" « R -. (6.17)
From Proposition 6.1 and repeating the specific argument from [A.S., §6],

we obtain

Index D = dim y*** - dim 3£?*-. (6.18)
From (6.17), (6.18) we deduce

Index D = dim R + -dim R ~. (6.19)
But, from Proposition 6.2 we obtain

Sig Af = Sig(Ä, < , » + Sig(S, < , »
= (dim R + - dim R ") + Sig(S, < , ». (6.20)

Now (6.16) is a direct consequence of (6.19) and (6.20).

Appendix I. Partition of unity. As before, Mm denotes a combinatorial
manifold with a flat metric T.

Let / be a C °° real function on Af. Let x be any point in Af ; let t G Af
denote the unique simplex of Af which contains x as an interior point.

We say that/has "property F" in x iff, for every m-simplex om, r G am G
Af, there exists a small neighborhood U of x, U c ff™, such that for any
segment I c om, x G I, which is normal to t, the function f\(l n U) is
constant.
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We define
F = {/|/ G C°°(Af, T),/has property F in any point x G Af }.

It is clear that for any two disjoint closed sets Ax, A2 in Af, there exists an
f G F which separates them. Therefore, for any locally finite open covering
of Af there exists a subordinate partition of unity with function in F.

Appendix n. Proof of Lemma 4.6 (Chapter 3, §4). We need the following:

Proposition ILL Let U be a closed star neighborhood in the combinatorial
manifold Mm~x of dimension m — I.

Let xa (ff any (m — \)-simplex in U) denote fixed affine coordinates as in
II. 1, and let t denote the standard coordinate on R.

Then for any u G ß*(t? X [— 1, 1]), there exists a sequence of forms

w' Gß*(£/)®Rß*([-l, 1]),        1</<oo,

íkcA that for any maximal simplex a G U, and for any partial derivative Dxt,

lim    sup  d;X<i -«<,,/) = °;

here I indexes components of forms.

Proof of Proposition II. 1. The argument used by de Rham [R, Theorem
2] for proving the same result in the case of smooth manifolds can be used,
although in our case a technical difficulty appears: partial derivatives with
respect to the x„'s do not lead to smooth forms on U X [1, 1]. Fortunately,
dru/dtr, 0 < r < oo, is a C°°-form on Ü X [-1, 1].

We may assume that Supp uazU X (— 1, 1).
Let e > 0 be any positive number and let p be any positive integer. There

exists a 8 > 0 such that for any t', t" G (- 1, 1), \t' - t"\ < 8,

(dxxy...(dxm-xy°dtp   ' (dxxY...(dxm~xYdtp
<e.

Let N be such that l/N < 8/3. Let {<*>,}, 1 < j < N, be a partition of unity
on [— 1, 1] such that diam Supp qp, < §5, and let choose t} G Supp %.

Then we define the form
N     IP

P{X, 0=2  •£?"(*» ';>,(')>dt"

and let Q denote thepth order primitive of P, i.e.,

jpQ{xt -l)-0,       0 </•</>-!,

— Q(x, t) = P(x, t).
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From now on, the proof of Proposition II. 1 goes on as in de Rham [R, p. 8],
with the same notations.

The proof of Lemma 4.6 follows from Proposition II. 1 as in the case of
smooth manifolds. For its proof see Schwartz [Sc].
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