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ABSTRACT 

 

This paper investigates the flat-wise compression behavior of an innovative cellular 

structure configuration. The considered layout has a hexagonal chiral geometry featuring 

cylinders, or nodes, joined by ligaments, or ribs. The resulting assembly is characterized 

by a number of interesting properties that can be exploited for the design of alternative 

honeycombs or cellular topologies to be used in sandwich construction. The flat-wise 

strength of the chiral geometry is investigated through classical analytical formulas for 

the linear buckling of thin plates and shells and a bifurcation analysis performed on a 

Finite Element model. The analytical expressions predict the global buckling behavior 

and the resulting critical loads, and can be directly compared with the results obtained 

from the Finite Element analysis. In addition, the Finite Element model also predicts 

local buckling modes, which should be considered to evaluate the possible development 

of localized plasticity. A sensitivity study is performed to evaluate the influence of the 

geometry of the chiral structure on its buckling strength. The study shows that the 

considered topology can offer great design flexibility, whereby several parameters can be 

selected and modified to improve the flat-wise performance. The comparison with 

traditional, hexagonal centro-symmetric structural  configurations concludes the paper 

and demonstrates the enhanced performance and the potentials of chiral noncentro-

symmetric designs. 
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1.   INTRODUCTION 

 

The multifunctional properties of cellular solids have generated great interest for their 

application in ultra-light structures. Their multi-physics characteristics are highly 

dependent on the architecture of the cells composing the material, which can be designed 

to enhance simultaneously mechanical, electromagnetic and thermal performances. The 

application of stronger and lighter structural assemblies and materials is particularly 

relevant to the aerospace and aircraft industries. Ongoing interests in such structures and 

improvements in manufacturing processes have contributed to the study and development 

of cellular solids of innovative shapes and topologies. Much interest has recently centered 

on cellular assemblies featuring a negative Poisson’s ratio behavior, also known as 

“auxetic” [1]. Materials having auxetic characteristics include special subsets of foams 

[2], long fiber composites [3], microporous polymers [1], as well as honeycombs [4]. In 

honeycombs, the negative Poisson’s ratio behavior implies a stiffening geometric effect, 

which leads to increased in-plane indentation resistance, shear modulus and compressive 

strength [4,5]. The auxetic behavior also leads to a synclastic curvature feature, which is 

extremely useful in manufacturing curved sandwich shells [6].  

This work takes into account an alternative and innovative configuration for cellular 

structures. The considered architecture has chiral geometry and was originally proposed 

by Prall and Lakes [7]. It is composed of circular elements (nodes) of equal radii joined 

by straight ligaments (ribs), which are tangent to the nodes (Figure 1). This configuration 

provides the cellular assembly with distinctive mechanical properties, such as high shear 

rigidity, negative Poisson’s ratio, and a deformation mechanism allowing high strains in 

the elastic range of the constitutive material. Herein this work, the authors aim at 

investigating the out-of-plane buckling behavior of a chiral assembly to estimate the 

potentials for its application as an alternative honeycomb design and to assess its strength 

under flat-wise compression (Figure 2). The out-of-plane properties of traditional 

honeycombs have been widely investigated in studies by Gibson and Ashby [8] and 

Zhang and Ashby [9], among others.  On the premises of the work presented by Prall and 

Lakes [7], Gibson and Ashby [8], and Zhang and Ashby [9], the out-of-plane uniaxial 

loading of chiral honeycombs (see Figure 2) is here analyzed through analytical formulas 
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and a linear buckling analysis carried out using the Finite Element (FE) package 

ANSYS
® 

 [10] The paper is organized in four sections. In section 1, a brief introduction is 

given. Section 2 describes the objectives of the work and the configuration of the 

considered geometry, in addition to the FE model and the analytical formulas used in the 

study.  Section 3 discusses results and comparisons with hexagonal structures. Finally, 

Section 4 summarizes the main results of the work and comments on their implications. 

 

 

 

 

 

 

 

2.   FINITE ELEMENT MODEL OF A CHIRAL CELLULAR STRUCTURE 

 

2.1 Overview and objectives 

 

The flat-wise compression of a chiral honeycomb assembly is investigated through a 

linear elastic explicit FE model, which is developed to evaluate the critical buckling loads 

of the considered cellular architecture. Linear buckling has in fact been identified [8,9] as 

one of the failure mechanisms for traditional hexagonal honeycombs under flat-wise 

compression. 

 

2.2 Geometry and configuration 

 

The chiral honeycomb consists of cylinders or nodes that are connected by straight 

walls or ribs (Figure 1). The distance between the centers of adjacent nodes is denoted as 

R, while L and r denote respectively the length of the ribs, and the radius of the nodes. 

The angle θ characterizes the configuration of the chiral assembly, and is equal to 30˚ for 

a hexagonal configuration. The angle β describes the orientation of the ribs with respect 
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to the line joining the center of the nodes.  Finally, the thickness of the node and rib walls 

is described by the parameter t. The following relationships hold [7]: 

 

 
R

r2
sin =β , 

L

r2
tan =β  (1) 

 

 

2.3 Unit cell identification 

 

The analysis of the proposed architecture takes advantage of the structure’s spatial 

periodicity to reduce the computational effort, and to minimize the influence of end 

effects on the estimation of the critical buckling loads.  The present study is performed by 

considering an infinite assembly whose behavior is defined by a unit cell connected to its 

neighboring cells through periodic conditions.  The representative cell is selected as 

indicated by Papka and Kyriakides [11] and it is shown in Figure 3. The unit cell must 

possess the same geometry and degrees of freedom of the multicell honeycomb structure 

to simulate the modes of instability encountered by the entire assembly, and must be able 

to reproduce the main mechanisms of collapse. Both requirements are satisfied by the 

unit cell depicted in Figure 3.  The cell consists of a central node from which radial ribs 

expand to the perimeter nodes.  The perimeter ribs connecting the perimeter nodes are a 

distinct feature of chiral honeycombs, and therefore need to be included in the unit cell.  

They in fact affect the buckling response of the structure and their contribution is 

essential to comply with the first requirement for a unit cell [11].  An obvious final 

requirement is that the repeating the cell replicates a multi-cell layout, such as the one 

shown in Figure 1.a.  The perimeter nodes hence, have to be halved to achieve the ability 

of replicating a unit cell and obtain the complete assembly. 

 

2.4 Mesh and Element Description 

 

In the FE model, the semicircular lines constituting the halved-perimeter nodes are 

divided into six segments, while the straight lines constituting the ribs are divided into 
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five elements, as shown in Figure 4.a.  The element chosen for the FE model is the eight-

nodeSHELL93 in ANSYS
®
, with Hermite interpolation functions.  This element features 

6 degrees of freedom at each node describing translations and rotations in the x, y, and z 

directions. The shape functions are quadratic in both in-plane directions, x and y. In 

addition, the element features plasticity, stress stiffening, large deflection, and large strain 

capabilities.  The mesh for the model is composed of quadrilateral elements, as shown in 

Figure 4.b. 

 

2.5 Boundary and Symmetry Conditions 

 

In order to accurately portrait the buckling mechanism and reproduce conditions 

similar to flat-wise compression tests, the nodes on the upper edge of the unit cell are left 

completely unconstrained, while the displacements in the x, y, and z directions of the 

nodes on the lower edge are constrained to zero.  Furthermore, periodic boundary 

conditions relating displacements and rotations of the nodes on the cell perimeter are 

imposed to simulate the behavior of the cell as part of an infinite assembly.  Figure 5 

provides a graphical representation of the relationships imposed between the end nodes.  

Each node belonging to the cell boundary is constrained to move identically to its 

symmetry mate both in terms of displacements, and in terms of rotations, thereby 

simulating an infinite structure [11].  

 

2.6 Applied Loads and Eigenvalue Analysis 

 

The unit cell is loaded by a downward unit force along the z axis.  The applied load is 

distributed on the nodes belonging to the upper edge as shown in Figure 6. As described 

in Section 2.4, the element employed for the linear bifurcation analysis is a thin shell 

element. According to the classical approach to buckling analysis using the FE method 

[12], the stress, or geometric, stiffness matrix [Kσ] required to account for membrane 

stresses is evaluated through a pre-stress solution pass.  Specifically, a reference load is 

applied to evaluate the corresponding membrane forces Nx, Ny, and Nxy, which are then 

used for the computation of the matrix [Kσ]: 
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[ ] [ ] [ ] dxdyG
NN

NN
GK

yxy

xyxT

∫∫ 







=σ                          (2) 

 

where [G] is a matrix whose terms are obtained from the appropriate differentiation and 

ordering of the shape functions. The geometric stiffness matrix is usually computed for a 

set of reference loads, here denoted as {R}ref, which, for simplicity, are usually of unit 

magnitude. The geometric stiffness matrix corresponding to other load levels can be 

generally expressed as: 

 

 [ ]
ref

KK σσ λ=][ , with  { } { } refRR λ=              (3) 

 

where λ is a scalar multiplier.  Letting {δD} be the buckling displacements relatively to 

{D}ref, i.e. the displacement caused by the reference load, and given that the external 

loads do not change at a bifurcation point, the following relations hold: 

 

 [ ] [ ]( ){ } { } refcrrefrefcr RDKK λλ σ =+                (4) 

 

and 

 

 [ ] [ ]( ){ } { } refcrrefrefcr RDDKK λδλ σ =++                        (5) 

 

Subtracting equation (4) from equation (5) yields, 

 

 [ ] [ ]( ){ } 0=+ DKK
refcr δλ σ                (6) 

 

which represents the condition at which the smallest root λcr defines the smallest external 

load producing a bifurcation of the equilibrium state, i.e. more precisely: 

 

 { } { } refcrcr RR λ=                (7) 
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The eigenvalue buckling solution required for the evaluation of λcr from equation 

(7) is performed through Block Lanczos Extraction Method, which is particularly 

computationally efficient for models with a large number of constraint equations. The 

mode shapes {δD} associated with the computed eigenvalues are then obtained through 

an expansion pass. In the current analysis, the mode shapes are extracted and observed to 

evaluate and identify local buckling mechanisms, which need to be differentiated from 

global buckling modes. 

 

2.7 Analytical evaluation of buckling loads 

 

Axially loaded deformable bodies may encounter instability under certain loading 

conditions, thus failing prematurely.  Instability is a phenomenon of interest for thin shell 

structures, since the associated critical loads can be much smaller than the forces causing 

material collapse. The considered chiral honeycomb is composed of straight walls (ribs) 

that connect cylindrical shells (nodes), as shown in Figure 1. The buckling characteristics 

of the elementary components of a unit cell can be studied through analytical expressions 

found in the literature for plate and shell structures. The analytical results can be then 

used to validate the FE model, and to obtain insights regarding the overall buckling 

behavior of the considered assembly. The advantage of the developed FE model relies in 

its capability to predict global as well as local buckling modes, while generally analytical 

expressions for buckling of shells and plates only describe global buckling phenomena. 

Each straight rib can be considered as a thin-plate structure constrained along the 

edges parallel to the loading direction. Results for this configuration are well known and 

can be found, for example, in [13].  The first buckling load Pcr is given by: 

 

 ( ) L

tKE
P

s

s

cr

3

21 υ−
=                (8) 

 

where K is a numerical coefficient which depends on the boundary conditions applied 

along the edges parallel to the load. According to [8], K is equal to 2.0 for simply 
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supported edges, and K = 6.2 for clamped boundaries. Given the particular conditions that 

characterize the rib/node connection in the chiral cell, K has been selected as 5.2, through 

an iterative process based on a trial-and-error procedure. It is worth observing that this 

value lies between those corresponding to simply supported and fixed boundary 

conditions.  From a physical point of view, this observation partially justifies the choice 

of K=5.2, as the rib of the chiral structure is modeled as rigidly connected to elastic, and 

therefore deformable, shells. Also in equation (8), Es and νs respectively are the Young’s 

modulus and the Poisson’s ratio of the material, t is the thickness of the plate, and L is the 

length of the rib measuring the distance between the two constrained edges.  

The buckling behavior of axially loaded cylinders strongly depends on the cylinder’s 

length-to-diameter ratio [13]. Short cylinders typically first show ring buckling modes, 

moderately long cylinders present diamond modes, while long cylinders basically behave 

as long columns. A convenient parameter to classify cylinders as “short” or “long” can be 

expressed as [15]: 

 

 ( )2

2

1 s
t

r

r

b
Z υ−















=               (9) 

 

where b is the cylinder’s axial length, r is the cylinder’s radius, and t is the wall 

thickness. A cylinder is described as short if Z<2.85, whereas long cylinders are 

characterized by Z>2.85. The cylinders in the chiral honeycomb belong by far to the latter 

category, as demonstrated by the values listed in Table 1, which are computed for b=0.14 

m, r=16 mm and for wall thickness t varying between 0.1 and 1 mm. The critical 

buckling stress for long cylinders can be expressed as [13]: 

 

 ( ) r

tE

s

s

cr
213 υ

σ
−

=              (10) 

 

and the corresponding critical axial load is given by: 
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The geometric parameters for the considered chiral cell are listed in Table 2. For this 

configuration, the critical load for a plate as given by equation (8) is always lower than 

that of the cylinder representing a node in the chiral assembly. Values of the critical stress 

computed for the configuration listed in Table 2 and wall thickness t varying between 0.1 

and 1 mm are listed in Table 3, where the critical stress given by equation (10) for shells 

is compared to that of the plate given by equation (8) normalized by the load-carrying 

area. These analytical results clearly show how the global buckling behavior of the chiral 

honeycomb cell is dominated by the collapse of the ribs. This conclusion agrees well with 

the results of the FE analysis presented in the following sections. In addition, the FE 

model provides information regarding local buckling limits and critical loads, which are 

also important if local plasticity or the insurgence of localized cracks is to be avoided. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Parametric Analysis 

 

The first step in surveying the chiral structure’s response to simple compression under 

uniaxial-loading consists in observing the effects of various parameters that define the 

geometry of the unit cell. The influence of the wall thickness t is initially considered.  

Results for varying rib length to node center ratios L/R (see Figure 1), are then illustrated. 

The results obtained from the numerical analysis are compared to analytical models 

presented in section 2.7. The comparison is only made in terms of global buckling modes, 

as the theories referenced in section 2.7 are all limited to global behavior only. However, 

the sensitivity of local buckling to the cell configuration is also investigated, as in most 

applications it is desirable to avoid plastic deformations of a structure’s honeycomb core.  

In the following sections, global buckling modes are also used to compare chiral 
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honeycombs to traditional hexagonal honeycombs, in an effort to ensure a conservative 

comparison of the two honeycomb geometries.  

The parameter values used in surveying the effects of varying wall thickness t are 

again those summarized in Table 1. Values of thickness varying between 4101 −×  and 

3101 −×  m, which are typical for metallic honeycombs, are considered. The lower limit of 

the range is selected on the basis of convergence limits encountered during the FE 

buckling analysis, while the upper value for t is limited by the thin-wall assumption. The 

comparison of the global buckling loads predicted by the FE model and by equation (8) is 

given in Table 4, and it is shown graphically in Figure 7. An example of the 

corresponding buckling modes as predicted by the FE model is shown in Figure 8.a, 

which demonstrates how the mechanism of global buckling is governed by the collapse 

of the ribs. The plot of Figure 7 also presents the variation of the first or lower buckling 

mode predicted by the FE model. These loads correspond to local instabilities, and cannot 

be directly compared to the analytical results. For a rib thickness varying between 

4101 −×  and approximately 4104 −× m, the local buckling load is on average 15% lower 

than the global-buckling load. A representative local buckling mode is shown in Figure 

8.b. 

The second step in the parametric analysis consists in observing the effects of the 

ratio L/R, with the objective of investigating the effect of rib length and distance between 

node centers on the buckling strength of the chiral assembly. The considered wall 

thickness t is selected equal to 0.22 mm, and the radius of the nodes r is maintained 

constant and equal to the value listed in Table 1, so that the influence of the rib length L 

on the buckling loads is isolated from that of the node radius. Given r, and imposing the 

L/R ratio, one can calculate the angle β, which, from equation (1) can be found as: 

 

 






= −
R

L
cos 1β              (12) 

 

The corresponding values of L and R can be again found from equations (1). All other 

geometrical parameters and material properties are constant and equal to the values listed 

in Table 1. Figure 9 illustrates the variation in cell geometry as the ratio L/R is increased 
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from 0.74 to 0.998. It is worth observing that the cells shown in Figure 9 have different 

overall dimensions, as varying L/R corresponds to modifying the relative density of the 

assembly. The corresponding buckling loads are summarized in Table 5, and their 

variation with respect to L/R is plotted in Figure 10.  The critical buckling loads (global) 

obtained from the numerical analysis again closely agree with the values predicted by 

equation (8).  The plot of Figure 10 shows that critical loads for local and global buckling 

converge as L/R approaches 1. This trend is confirmed by the corresponding buckling 

modes, where deformations corresponding to the lowest buckling load appear localized 

for low values of L/R, and tend to achieve global features as L/R increases (Figure 11).  

The critical loads, hence, appear to be very dependent upon the ratio L/R. The possibility 

of obtaining configurations with significantly different properties while maintaining the 

overall geometry is one of the most attractive characteristics of this innovative 

honeycomb configuration.  The results here presented show that simply changing the rib 

length or the distance between node centers, without changing material or wall thickness, 

dramatically increases the strength of the assembly when undergoing flatwise 

compression, and strongly modifies the deformation patterns associated with the onset of 

instability. 

 

 

3.2 Comparison with Traditional centro-symmetric structures  

 

The attractive characteristics of the chiral configuration as an alternative for 

applications in sandwich structures can be confirmed through a direct comparison with 

the compressive strength of traditional hexagonal and re-entrant honeycomb structures. 

The influence of the relative density on the buckling strength of chiral noncentro-

symmetric configurations is investigated by varying the ratio L/R in the range between 

0.74 and 0.998.  As opposed to section 3.1, however, the parameters r and R are allowed 

to vary, while the rib length L and the wall thickness t are maintained constant and 

respectively equal to 0.07 m and 0.5 mm. The considered unit cell for the hexagonal 

honeycomb is depicted in Figure 12. The wall thickness is selected equal to that of the 

chiral geometry, and the parameters h and l are also selected equal to the value of L for 
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the chiral structure. The internal angle θh is varied between -30
o
 to 30

 o
, in order to 

analyze the buckling strength of both hexagonal and re-entrant honeycombs.   Examples 

of the geometries obtained by varying the parameter θh are shown in Figure 13. Auxetic 

honeycombs are here considered as they have demonstrated a higher compressive 

strength than traditional honeycombs as a result of their re-entrant configuration. The 

increased strength of auxetic honeycombs is documented in [9,16]. The load carrying 

area for hexagonal honeycombs, i.e. the area occupied by the considered unit cell on the 

xy plane, is given by: 

 

[ ]hhhexagon lhlA θθ sin/cos2 2 +=                                                                              (13) 

 

While the area of the chiral cell shown in Figure 3 can be expressed as: 

 

θπ sin34 22 LrAchiral +=                                                                                            (14) 

 

The areas expressed in equations (13) and (14) are used for the computation of the 

relative density of the hexagonal and chiral topologies, which are respectively given by: 

 

( ) l

t

lh

lh

hhs










+
+

=
∗

θθρ
ρ
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            (15) 

 

( )
θπ

π
ρ
ρ

sin34

64
22

*

Lr

Lrt

s +
+=              (16) 

 

The variation of the relative densities with respect to the parameters varied during the 

analysis, i.e. the internal angle θh for hexagonal honeycombs, and the L/R ratio for the 

chiral structure, is shown in Figure 14. Figure 15 shows a direct comparison of the unit 

cell geometries for L/R and θh at the limits of the considered ranges of variation. The 

buckling strength of the two cellular configurations is here compared in terms of the 

critical stress. Equations (15) and (16), and the plot of Figure 14 however show that the 
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relative densities for the considered set of parameters are different. Hence, the critical 

stress obtained for each configuration is normalized with respect to the corresponding 

relative density in order to obtain a normalized equivalent strength, which accounts for 

the amount of material in each considered unit cell. In the FE analysis, the critical stress 

is obtained from the critical load resulting from the stability analysis, divided by the area 

defined in equation (14). The critical stress for the hexagonal honeycomb is not computed 

using Finite Elements, but through analytical formulas found in the literature [9,16]. 

These formulas are based on classical expressions for cellular materials [8], linear-

buckling theories and equation (8) for plate-like structures. The expression of the critical 

stress for honeycombs with internal angle θh  as found in [9,16] is: 

 

 ( ) ( )
( )

( )
3

23

*

cossin

2

1

2


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s

el θθν
σ           (17) 

 

Figure 16 presents a comparison of the normalized linear buckling stress for chiral, 

auxetic and hexagonal honeycombs. Both global and local buckling are presented for the 

chiral architecture to emphasize that also its linear local buckling load is higher per unit 

weight than the global critical load of auxetic and hexagonal configurations. It is 

important to observe how changing the chiral configuration, in this case through the 

variation of the L/R ratio, produces strong changes in the normalized critical stress, to 

demonstrate once again the design flexibility of this innovative configuration. Hexagonal 

honeycombs, on the contrary, feature strength characteristics which only depend on the 

relative density of the assembly. This is clearly demonstrated by the corresponding curve 

shown in Figure 16, which shows that the strength of traditional honeycombs, if 

normalized with respect to the relative density, does not change with respect to changes 

in the internal angle of the layout. Another important observation is that the difference in 

buckling performance for the two considered geometries becomes very relevant as the 

ratio L/R increases. These final observations are very important to highlight the potential 

benefits of applying the chiral geometry for the design of innovative sandwich 

configuration with higher flat-wise strength. 
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4.   CONCLUSIONS 

 

The flat-wise compression of chiral honeycomb configurations is analyzed through a 

FE model and simple analytical relations. The analysis is based on linear buckling theory, 

which is usually accepted when considering the strength of honeycomb structures under 

flat-wise loads. The analytical study is based on formulas for thin-plate and long 

cylindrical shells found in the literature. The results from the FE model and the analytical 

formulas are compared with excellent agreement. The comparison is however limited to 

the global buckling loads, as local buckling phenomena for the considered structure can 

only be evaluated through the FE model. The numerical investigations hence provide 

information regarding both local and global buckling, conveying comprehensive 

information regarding the buckling behavior of this innovative cellular configuration. 

Global buckling of the honeycomb walls is typically considered as a limiting factor for 

flat-wise compressive loads and for the global structural integrity of sandwich structures 

with honeycomb core. Local buckling however should be considered if localized 

plasticity and subsequent damage is to be avoided. 

The investigations presented in this paper are also completed by a comparison of the 

performance of chiral cellular structures with that of traditional hexagonal and re-entrant 

configurations. The comparison is performed by evaluating, for each configuration, the 

critical stress normalized by the corresponding relative density. The critical stress for 

hexagonal honeycombs is computed using an analytical formula that predicts linear 

global buckling of re-entrant and hexagonal honeycombs. The comparison shows that 

chiral topologies perform generally better in terms of both global and local , and that its 

local buckling loads are higher than those causing global collapse of traditional 

honeycombs. Furthermore, the strength of hexagonal structures is mostly influenced by 

their relative density, while substantial improvements can be obtained in chiral 

honeycombs even by keeping the relative density, and therefore the weight of the 

structure, constant. The presented results show the potentials of chiral structures as 

alternative configurations for sandwich components having great design flexibility and 

significantly superior flat-wise compression strength. 
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Figure 12:   Geometric parameters of a typical hexagonal honeycomb. 

Figure 13:  Hexagonal unit-cells with θh = -25˚ (a), θh = -10˚ (b), θh = 0˚ (c), θh = 10˚ (d), 
θh = 30˚ (e). 
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Figure 16:  Chiral and hexagonal honeycombs buckling stress normalized by relative 
density. 



 
 

 TABLES 
 

Table 1: Variation of the Z parameter versus wall thickness t for the cylinder of the 
chiral assembly (cylinder radius r=16 mm) 

 

t [mm] Z 

0.1 11564 

0.19 6086 

0.28 4130 

0.37 3125 

0.46 2514 

0.55 2103 

0.64 1807 

0.73 1584 

0.82 1410 

0.91 1271 

1 1156 

 
 
 

Table 2: Geometric parameters and material properties of the chiral-honeycomb 
cell used for investigating the effects of wall thickness on the critical load. 

 
 

L 0.0832 m 

θ 30˚ 

r 0.016 m 

R 0.0892 m 

b 0.14 m 

Es 91022 ×.  Pa 

νs 0.33 

 

 
 
 
 
 
 
 
 
 
 



 
Table 3: Analytical critical buckling stress for cylinder and ribs of the chiral cell. 

Variation with respect to the wall thickness. 
 
 

t  [mm] 
Cylinder 

σσσσcr  [KPa] 

Plate 

σσσσcr [KPa] 

0.1 8409.7 17.7 

0.19 15978.4 63.8 

0.28 23547.1 138.6 

0.37 31115.8 242.0 

0.46 38684.5 374.0 

0.55 46253.2 534.7 

0.64 53821.9 724.0 

0.73 61390.6 941.9 

0.82 68959.3 1188.5 

0.91 76528.0 1463.7 

1 84096.7 1767.6 

 
 

Table 4: First global buckling load: comparison between analytical and FE 
predictions for varying wall thickness t 

 

t [mm] 
Pcr [N] 

(Analytical) 
Pcr [N] 

(FE) 

0.1 1.9 1.9 

0.19 12.7 13.1 

0.28 40.6 41.8 

0.37 93.8 95.7 

0.46 180.2 182.9 

0.55 308.1 311.2 

0.64 485.4 488.5 

0.73 720.3 722.9 

0.82 1020.9 1021.9 

0.91 1395.3 1393.2 

1 1851.6 1844.4 

 
 
 
 
 
 
 



 

Table 5: First global buckling load: comparison between analytical and FE  
                predictions for varying L/R ratio. 
 
 

L/R 
ββββ    

[deg] 
L 

[m] 
R 

[m] 
Pcr [N] 

(Analytical) 
Pcr [N] 

(FE) 

0.74 42.3 0.04 0.05 46.6 44.4 

0.75 41.4 0.04 0.05 44.8 42.9 

0.77 39.6 0.04 0.05 43 41.4 

0.78 38.7 0.04 0.05 41.3 39.9 

0.79 37.8 0.04 0.05 39.6 38.4 

0.8 36.9 0.04 0.05 37.8 36.9 

0.82 34.9 0.05 0.06 36.1 35.3 

0.83 33.9 0.05 0.06 34.4 33.8 

0.84 32.9 0.05 0.06 32.7 32.3 

0.86 30.7 0.05 0.06 30.9 30.7 

0.87 29.5 0.06 0.06 29.2 29.2 

0.88 28.4 0.06 0.07 27.4 27.5 

0.89 27.1 0.06 0.07 25.6 25.9 

0.91 24.5 0.07 0.08 23.7 24.1 

0.92 23.1 0.08 0.08 21.7 22.3 

0.93 21.6 0.08 0.09 19.7 20.3 

0.95 18.2 0.09 0.1 17.5 18.2 

0.96 16.3 0.11 0.11 15.1 15.9 

0.97 14.1 0.13 0.14 12.3 12.9 

0.99 8.1 0.18 0.19 8.9 9.6 

0.998 3.6 0.51 0.51 3.2 2.7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

FIGURES 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 

 
(b) 

 

Figure 1: A chiral cellular structure (a) and details of its main geometrical 
parameters (b), (from [7]). 

 
 
 
 
 
 

rθ

R 

t 

x

y
L

β



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Flat-wise compression of a chiral structure. 
 



 
 

 
Figure 3. Unit cell of the chiral honeycomb. 

 
 



 
 

(a) 
 

 
(b) 

 

Figure 4: Lines divisions in the unit cell (a) and considered FE mesh (b). 
 



 
 

 
Figure 5: Periodic conditions imposed on the end nodes. 

 
 
 
 



 

 
 

Figure 6: Schematic of loading configuration and considered boundary conditions. 
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Figure 7: Variation of global and local buckling loads for increasing wall thickness t. 
 
 
 
 
 
 
 
 
 
 
 



 
 

(a) 

 
(b) 

 

Figure 8: First global (a) and local (b) buckling modes for the chiral. 
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Figure 9: Chiral unit-cell with r=0.016 m, and L/R equal to  0.997 (a), 0.985 (b), 
0.933 (c), 0.85 (d), and 0.74 (e). 
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Figure 10: Variation of global and local buckling loads for increasing L/R ratios. 
 
 



 

 
 

(a) 

 
(b) 

 

Figure 11: Buckled chiral unit cell: L/R=0.74 (a), L/R=0.995 (b). 



 
 

Figure 12: Geometric parameters of a typical hexagonal honeycomb. 
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Figure 13:  Hexagonal unit cells with θh = -25˚ (a), θh = -10˚ (b), θh = 0˚ (c), θh = 10˚ 
(d), θh = 30˚ (e). 
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Figure 14: Hexagonal and chiral honeycomb relative densities. 
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Figure 15: Comparisons of hexagonal and chiral honeycomb cells. 
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Figure 16: Chiral and hexagonal honeycombs buckling stress normalized by relative 
density. 


