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Abstract
Pediatric asthma incidence has been associated with exposure to nitrogen dioxide (NO2) in
ambient air. NO2 is predominantly emitted through fossil fuel use in land transportation, power
generation and the burning of solid biofuels in households. We simulated NO2 with a global
atmospheric chemistry model, combined with a land use regression model, to estimate NO2

exposure in all countries worldwide. The global asthma incidence among children and adolescents
attributable to NO2 was estimated by deriving an exposure-response function from a meta-analysis
which included epidemiological studies from multiple countries, baseline incidence rates from the
Global Burden of Disease and gridded population data. The sectoral contribution to pediatric
asthma from NO2 exposure (NO2-related asthma incidence: NINC) was estimated for different
source categories to provide guidance to mitigation policies. We estimate 3.52 (2.1–6.0) million
NINC per year globally, being about 14% of the total asthma incidence cases among children and
adolescents. We find that emissions from land transportation are the leading contributor to NINC
globally (∼44%), followed by the domestic burning of solid fuels (∼10.3%) and power generation
from fossil fuels (∼8.7%). Biogenic emissions which are not anthropogenically induced may
contribute ∼14% to the total NINC. Our results show large regional differences in source
contributions, as the domestic burning of solid fuels is a main contributor to NINC in India and
Nepal (∼25%), while emissions from shipping are the leading source in Scandinavian countries
(∼40%), for example. While only 5% of all children and adolescents live in areas where NO2

exceeds the WHO annual guideline of 21.25 ppb (40 µg m−3) for NO2, about 90% of the NINC is
found in regions that meet the WHO guideline, related to the uneven distribution of children and
adolescents in the population. This suggests the need for stricter policies to reduce NO2 exposure,
and revisiting the current WHO guideline to reduce the health risks of children and adolescents.

1. Introduction

Chronic respiratory diseases are among the leading
contributors to morbidity worldwide (Soriano et al
2017, Stanaway et al 2018,Murray et al 2020). Asthma
is a common respiratory condition leading to about
0.5 (95% confidence interval (CI) : 0.33–0.65)million

premature deaths per year, associated with the loss
of 22 (18–28) million disability adjusted life years
in 2017 among all age groups (Soriano et al 2017,
Stanaway et al 2018). Although the premature mor-
tality from asthma decreased by 17.5% from 1990 to
2017, asthma affected about 330 million people in
2016) and according to the Global Burden of Disease
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(GBD) its prevalence increased by 30% in the same
time period (Soriano et al 2017, Stanaway et al 2018).
In low- and middle-income countries, where access
to medical facilities and asthma medication is often
limited, the increase is expected to continue in future
(Foreman et al 2018, Global Asthma Network 2018).

Long term exposure to ambient air pollution
not only exacerbates pre-existing asthma (Friedman
et al 2001, Shima et al 2002, O’Connor et al 2008,
Guarnieri and Balmes 2014, Brandt et al 2015), but is
also a major driver of new asthma cases (Gauderman
et al 2004, Jerrett et al 2008, Gehring et al 2013,
Nishimura et al 2013, Guarnieri and Balmes 2014,
Wijga et al 2014, Gehring et al 2020). Some stud-
ies indicate that air pollution increases the risk
of the development of asthma during adulthood
(Jacquemin et al 2009, Modig et al 2009), while
infants (<5 years) are generally at greatest risk con-
sidering the immaturity of their lungs (USEPA 2008,
2016, Guarnieri and Balmes 2014). The human res-
piratory system develops fully in the first 18–20 years,
and during this period there is a higher intrinsic
risk for the development of asthma (USEPA 2016,
Gehring et al 2020). The asthma incidence rate is
about twice as high in young people (⩽19 years)
than among adults (>19 years) (Soriano et al 2017,
Stanaway et al 2018).

The GBD has not yet included the impact of air
pollutants on asthma. Recent studies demonstrate
associations between both long-term and short-term
ambient NO2 exposure and asthma incidence in chil-
dren, supported by experimental studies that charac-
terize a probable adverse effect of NO2 on the res-
piratory system (Gauderman et al 2004, Gehring et al
2013, Kudo et al 2013, USEPA 2016, Global Asthma
Network 2018, Stevens et al 2019). The biological
pathway of NO2 exposure leading to airway inflam-
mation, airflow obstruction and new asthma devel-
opment is also well established (Fukuto et al 2012,
Kim et al 2013, USEPA 2016, Stevens et al 2019). After
assessing the evidence from recent cohort studies on
exposure to NO2, the 2016 integrated science assess-
ment report by the United States Environmental Pro-
tection Agency (US EPA) changed the formulation
of causal determination from long-term exposure to
NO2 on respiratory effects from ‘sufficient to infer
a likely causal relationship’ in the 2008 Integrated
Science Assessment report to a ‘causal relationship’
(USEPA2008, p 201, 2016). TheWorldHealthOrgan-
ization (WHO) sets the annual guideline for NO2 at
40 µg m−3 (∼21.25 ppb at 25 ◦C temperature and 1
atmosphere pressure). However, this was proposed in
the early 2000swhen a robust basis for an annual aver-
age guideline for NO2 through direct health effects
was still lacking (WHO 2006).

Since the conversion between NO and NO2 is
rapid, typically they are considered as the tracer
family NOx (Seinfeld and Pandis 2016). NOx is
predominantly emitted as NO by anthropogenic

activities involving the burning of fossil fuels (about
10% is directly emitted as NO2), but it rapidly reacts
with tropospheric ozone (O3) to form NO2. Pre-
vious health impact studies used satellite retriev-
als and land use regression (LUR) models to estim-
ate the exposure to NO2, and assumed the incid-
ent cases of asthma to be linked to transportation
related emissions (Anenberg et al 2018, Achakulwisut
et al 2019). While studies have shown that trans-
portation is a major source of NOx, other emis-
sion sectors like biomass burning, agricultural waste
burning, agricultural soils, power generation, indus-
tries, shipping and domestic solid fuel use also
emit significant amounts of NOx (Gerstle et al 1965,
Jaegle et al 2005, Tian et al 2013, Boersma et al 2015,
Janssens-Maenhout et al 2015, USEPA 2016, Ding
et al 2017, Degraeuwe et al 2019). Here, we combine
the outputs from an atmospheric chemistry model
and an LUR model to estimate the burden of incident
cases of asthma among children and adolescents from
the exposure to ambient NO2 and attribute it to dif-
ferent source categories. Our study adds to previous
work (Anenberg et al 2018, Achakulwisut et al 2019,
Khreis et al 2019) by using an atmospheric chemistry
model to distinguish the contributions by the above-
mentioned NO2 sources, to guide policies aimed at
regulating NO2 exposure.

2. Methods

2.1. Model setup and emission inventory
We used the ECHAM5/MESSy atmospheric chem-
istry (EMAC)–general circulation model at a T106
horizontal spectral resolution (1.12◦ × 1.12◦ latit-
ude × longitude), with 31 vertical hybrid terrain-
following and pressure levels up to 10 hPa in the
lower stratosphere (Sander et al 2005, Kerkweg et al
2006, Jöckel et al 2010, De Meij et al 2012, Pozzer
et al 2012, Lelieveld et al 2015, Joeckel et al 2016).
The core atmospheric model is the 5th genera-
tion European Centre Hamburg (ECHAM5) gen-
eral circulation model. EMAC includes sub-models
that represent tropospheric and stratospheric pro-
cesses and their interaction with oceans, land and
human influences. We used the Modular Earth Sub-
model System (MESSy, v.2.54, (Joeckel et al 2010))
to link submodels that describe emissions, atmo-
spheric chemistry, aerosol and deposition processes.
The gas phase and heterogeneous chemistry was sim-
ulated through the Module Efficiently Calculating
the Chemistry of the Atmosphere (MECCA) sub-
model (Sander et al 2011, 2019), which accounts for
the photochemical oxidation of natural and anthro-
pogenic emissions, also accounting for the volat-
ile organic compounds. The evolution of organic
aerosol compounds is simulated with the ORACLE
submodel (Tsimpidi et al 2014, 2018), which effect-
ively accounts for primary and secondary combustion
products from biofuel, fossil fuel, biomass burning
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and their chemical oxidation during any atmo-
spheric transport. Further, EMAC was nudged to
simulate actual meteorological conditions, applying
European Reanalysis Interim (ERA Interim) data for
a period of 2 years (2014–2015), using 2014 as model
spin-up.

We applied monthly varying sector-specific
anthropogenic emissions to themodel from theCom-
munity Emissions Data System (CEDS (Hoesly et al
2018)) at 0.5◦ × 0.5◦ resolution for the primary emit-
ted species like sulfur dioxide (SO2), oxides of nitro-
gen (NOx), carbon monoxide (CO), black carbon
(BC), organic carbon (OC), ammonia (NH3) and
speciated non-methane volatile organic compounds.
We improved the model emissions over India using
region-specific and updated emission inventories
(Venkataraman et al 2020). Biomass burning emis-
sionswere obtained from theGlobal Fire Assimilation
System (GFAS, Kaiser et al 2012). The emissions data
were then pre-processed by distributing them in six
emission heights; please see Pozzer et al (2009) for
further details on distribution of emission from dif-
ferent sources to the six emission heights. Ambient
NO2 exposure was first estimated for all sources and
then all source categories were removed one by one
to obtain the contribution of nine sectors to ambient
NO2 exposure (Lelieveld et al 2015, 2019a).

The sectors considered are (a) land transport-
ation (TRA) which includes emissions from road
transportation and railways, (b) industries (IND)
with emissions from iron and steel, paper and pulp,
chemical, food, solvent and other manufacturing, oil
refineries and fuel production, (c) domestic energy
use (DOM) by the burning of fuels in households for
cooking, lighting, domestic gas heating, diesel gener-
ators and biofuel use, (d) power generation (PGN) by
thermal, oil and gas based power plants, (e) agricul-
tural soils (AGS) that cause emissions from manure
and fertilizer application and cultivation practices,
(f) agricultural waste and residue burning (AWB),
(g) emissions from ships and other water navig-
ation (SHP), (h) biomass burning (BMB) which
includes tropical, savanna, middle and high latit-
ude forest fires, deforestation, savanna and shrub
fires and (i) biogenic emissions from soils and
plants (BGN).

2.2. Estimating the burden of incident cases of
asthma
A recent study performed an extensive review of epi-
demiological studies that reported impacts of long-
term exposure to NO2 on NINC in children and
adolescents (Anenberg et al 2018). Among five meta-
analyses (Gasana et al 2012, Takenoue et al 2012,
Anderson et al 2013, Bowatte et al 2015, Khreis et al
2017) identified by the study, Khreis et al (2017) is the
most recent and included the largest number of epi-
demiological studies. The exposure-response func-
tion (ERF) from Khreis et al (2017) was also used

by recent studies to estimate the total NINC in chil-
dren (Achakulwisut et al 2019, Khreis et al 2019).
Khreis et al (2017) included 41 epidemiological stud-
ies performed mostly in East Asia, Europe and North
America and reported an relative risk (RR) of 1.26
(95% confidence interval (CI) 1.10–1.37) per 10 ppb
increase in ambient NO2. The information from
(Khreis et al 2017) was utilized here to build an ERF
for impacts of NO2 on NINC using the following
relationship:

RR = expβ∆x, ∆x = max[0,(NO2 − LCC)]. (1)

β was first estimated by taking ln-RR of 1.12
(95% Uncertainty Interval: 1.08, 1.16) for a 10 ppb
increase in NO2. The β obtained was then used
to obtain the RR for exposure to NO2 using a
low-concentration cut-off (LCC: 0.8 ppb). The LCC
was selected based on the lowest concentration at
which health impact was recorded (Khreis et al 2017,
2019). We performed sensitivity studies with lower
(0 ppb) and higher LCCs’ (1 and 2 ppb). We eval-
uated the ERFs obtained from Khreis et al (2017)
against those from the other four meta-analyses
(Gasana et al 2012, Takenoue et al 2012, Anderson
et al 2013, Bowatte et al 2015) and found that the
estimates of NINCs from the ERFs drawn from
all the five studies overlap within their uncertainty
bounds (see: figures S1 and S12(b) (available online
at stacks.iop.org/ERL/16/035020/mmedia)).

The burden of NINC among children and adoles-
cents for 2015 was estimated using equation (2).
A similar relation was applied in our earlier stud-
ies (Lelieveld et al 2019b, Chowdhury et al 2020) to
estimate excess mortality

NINC =

(

RR− 1

RR

)

× p× BINC, (2)

where p is the exposed population with age⩽19 years
for 2015. The age profile of the population for 2015
was obtained from the GBD and was merged with
population data at∼1 km spatial resolution obtained
from Global Human Settlement Layers (Florczyk
et al 2019), resampled at 5 × 5 km spatial resol-
ution. Age-specific baseline incidence rates (BINC)
for the age classes <5, 5–9, 10–14 and 15–19 for
asthma were obtained for each country from the
GBD (https://vizhub.healthdata.org/gbd-compare/) .
All estimates of NINC in this study are accompan-
ied by 95% CIs. The 95% CI ranges were estimated
by combining the uncertainty of the BINCs obtained
from GBD and the uncertainty in the RR curves
estimated by 10 000 random samples over the log-
normal distribution of baseline incidence rates and
RR. 95% CI was obtained from the resulting 10 000
estimates of NINC for each grid. Subsequently, the
results were integrated and are presented at country
level.
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3. Results and discussions

3.1. Modeled NO2 exposure and bias-correction
The EMAC model simulated global, gridded NO2 at
15 min time intervals has been averaged, and the out-
put stored at monthly time periods. The spatial dis-
tribution of NO2

EMAC is depicted in figure S2(a). The
NO2

EMAC was then evaluated against annual averaged
in-situ observation data for 2015 (NO2

OBS), which
were collected from ∼5000 sites around the world.
The density of measurement locations is highest over
Europe, East Asia and North America. NO2

EMAC was
found to have a low-bias compared to ground-based
observations NO2

OBS across the globe (figure S2(b)).
The global population weighted NO2

EMAC was estim-
ated at 4.3 ppb. The low-bias in NO2

EMAC may be
due to: (a) its simulation at coarse horizontal resol-
ution (1.12◦ × 1.12◦) which averages out local gradi-
ents, this is especially relevant for urban areas and
other locationswith dense traffic, wheremixing ratios
are expected to be relatively high (below we will dis-
cuss the importance of traffic); (b), The lifetime of
NOx (NO + NO2) is short, typically of the order of
a few hours to a day, hence spatial-temporal gradi-
ents between sources and locations downwind can be
steep, which are not captured well at the applied hori-
zontal and time resolution. However, the EMAC tro-
pospheric column densities of NO2 compared well
with those from the ozone monitoring instrument
(Boersma et al 2018), indicating that sources and
sinks are overall well represented. Please see supple-
mentary information sections S1, figure S3 for more
details on the comparison.

The bias towards low values was most not-
able over densely populated regions, whereas in
background locations EMAC performs rather well
(figures S4(a) and (b), detailed description on iden-
tification of background sites across the globe is
provided in supplementary information sections S2).
To amend the low-bias in densely populated areas,
we utilized a publicly available LUR model (Larkin
et al 2017) with which a high-resolution NO2 data-
set was derived, henceforth referred to as NO2

LUR.
NO2

LUR was established for 2011 at 100 m resolution
globally, by using information from 5220 monitor-
ing sites located in 58 countries globally and predictor
variables like active fires, population density, proxim-
ity to major and minor roads, tree cover, impervious
surface area, normalized difference vegetation index,
water body and satellite retrieved NO2. NO2

LUR was
able to predict 54% of global variability, with a mean
absolute error of 3.7 ppb (see Larkin et al (2017) for
further details on formulation of NO2

LUR). The LUR
model was shown to perform better compared to
NO2

EMAC over the densely populated andurban areas,
and was able to capture the spatial variability over
such locations. However, it was found to overestimate
NO2 compared to observations over the background
locations (figure S5), with a mean bias (MB) of−44%

for NO2
OBS compared to NO2

LUR. Also note the high
values of NO2

LUR over the regions with sparse avail-
ability of predictor variables and low monitoring sta-
tion density (e.g. Saudi Arabia, Saharan Africa, Mid-
west USA, central Australia; see figure S5(a)). Sparse
availability of predictor variables also impacted the
efficiency of NO2

LUR in biomass burning dominated
regions of Central Africa (figure S5a).

To optimize the contributions of both NO2
EMAC

and NO2
LUR, we combined the two data sets with

information from the global human settlement layers
settlement model (GHS-SMOD). The GHS-SMOD
classifies each 1 km grid by population clusters
into eight broad settlement classes: urban center,
dense urban cluster, semi-dense urban cluster, sub-
urban/peri-urban, rural cluster, low density rural,
very low-density rural and water grid cells (see Flor-
czyk et al (2019), Melchiorri et al (2018) for more
details on GHSL-SMOD classifications). Merging
of the data was performed by first resampling the
NO2

LUR at 1 × 1 km resolution and then imple-
menting NO2

EMAC over the background grids while
using NO2

LUR over the other grids. The grid cells
with the GHSL-SMOD classifications low-density
rural and very low-density rural were considered as
background (more details on background grid clas-
sification in supplementary material section S2). A
sensitivity study was performed by also including
rural cluster grid cells into the background grid.
Subsequently, the merged NO2 exposure data were
weighted by population (of children and adolescents
⩽19 years) to obtain NO2

F (NO2
EMAC fused (‘F’) with

NO2
LUR) at 5 × 5 km resolution. Figures S6 and S7

depicts the algorithm for obtaining NO2
F by combin-

ing NO2
LUR and NO2

EMAC by summarizing globally
and also zooming in over a city.

The global population weighted NO2
LUR was

estimated at 9.8 ppb. Since 26% of the global
child and adolescent population were estimated
to reside in background grid locations (who were
assigned NO2

EMAC for exposure), the global popula-
tion weighted NO2

F was estimated to be lower at 8.1
ppb. The percentages of the population in all coun-
tries residing in background grid locations are depic-
ted in figure S8(a). A large proportion of the child
and adolescent population in Africa (31%) resides
in background locations. In India, China, USA and
Western Europe

∗

26%, 27%, 30% and 27% of the
total child and adolescent population reside in back-
ground locations. We estimated the global popula-
tion weighted NO2

F exposure over background grid
cells to be 2.9 ppb, compared to 6.3 ppb estimated
with NO2

LUR. The population weighted NO2
F expos-

ure at country-level is depicted in figure 1(a). We
find that South Korea, Kuwait and Qatar have the

∗

Countries considered in Western Europe: The Netherlands, Bel-
gium,Germany, France, Austria, Portugal, Spain, Switzerland, Lux-
embourg, Italy, Republic of Ireland and the United Kingdom.
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Figure 1. (a) Bias-corrected spatial distribution of exposure to annual mean NO2. (b) Comparison of NO2
F with NO2

OBS at all
observational sites. The area between the 1:2 and 2:1 lines is shaded gray. R is the correlation coefficient, MB the mean bias
between NO2

OBS and NO2
F, and cp the percentage of measurement data that fall within the gray shaded region. (c) Global

distribution of the pediatric population exposed to NO2.

highest population weighted NO2
F exposure at 18.6,

17.4 and 17.2 ppb, respectively. Population weighted
NO2

F exposure for China, the USA and India were
estimated to be 12.5, 10.5 and 7.8 ppb, respectively.
Figure 1(b) depicts the comparison between NO2

OBS

and NO2
F across the world. The correlation coef-

ficient for comparison between NO2
OBS and NO2

F

(R = 0.66) is higher compared to comparison with
NO2

LUR (R = 0.63) and NO2
EMAC (R = 0.43).

A histogram of the pediatric population-NO2

exposure curve was generated using the global grid-
ded NO2

F (figure 1(c)). The distribution was built
by summing up the child and adolescent population
in 500 logarithmically spaced bins from <1 ppb to
47 ppb and was found to have a distinct peak at 8 ppb.
This feature is dominated by high exposure to NO2

F

among children and adolescents in India and China.
The child and adolescent population-NO2 exposure
distribution of the five major countries are depic-
ted in figure S9(a). We estimate that globally about
5% of all children and adolescents reside in areas
whereNO2

F exceeds the WHO annual guideline level.
These percentages are higher in South Korea (37%),
Qatar (22%), Japan (16%), Egypt (12%) and China
(10%) (figure S9(b)), while only ∼2% of the chil-
dren and adolescents in India andWestern Europe live
in areas where exposure exceeds the WHO guideline.
We performed a sensitivity analysis by considering
the GHSL-SMOD threshold to classify background
grid cells by combining the rural cluster with the low
density rural and very low-density rural grid cells as
background locations and then merging NO2

EMAC

and NO2
LUR to obtain NO2

FR. About 36% of the
global child and adolescent population lives in these
(rural cluster, low density rural, very low-density
rural) settlement grids (figure S8(b)). Global popu-
lation weighted NO2

FR was estimated to be 7.8 ppb.
Population weighted NO2

F was higher than NO2
FR

for all countries, and figure S8(c) depicts the percent-
age difference between population weighted NO2

F

and NO2
FR.

3.2. Burden of asthma incidence
Globally, we attribute 3.52 (2.16–6.05) million yr−1

NINC among children and adolescents to the long-
term exposure to NO2, among which 56.5%, 18.1%,
16.4% and 10.8% occur among population of ages
<5 years, 5–9 years, 10–14 years and 15–19 years,
respectively. This amounts to∼13%of the total incid-
ence. The NINC is highest in China, followed by
India, Brazil, the USA and Indonesia, in that order,
(figure 2, table 1). The numbers for the top nine
countries (ranked according to NINC) plus Western
Europe are listed in table 1. The supplementary data
present this information for all countries worldwide
considered in this study. The total burden of NINC
depends on the size of the exposed child and adoles-
cent population, BINC and NO2

F. For example, India
has the highest number of exposed children and
adolescents (520 million), being 1.75 times that in
China; however, the lower BINC in India (425 per
100 000 children and adolescent) compared to China
(917 per 100 000) and significantly lower population
weighted NO2

F (38% lower) in India result in 47%

5
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Figure 2. Incident cases of asthma among children and adolescents (NINC) attributed to exposure to ambient NO2
F .

Table 1. Incident asthma cases attributed to ambient NO2 exposure in children, and the percentage contribution of major source
categories in the countries with highest incidence plus Western Europe. Data of incident cases of asthma from exposure to NO2

F by
country are listed in SI DATA1.

Contribution from the major sectors (%)

Countries NINC (95% CI) in million TRA IND DOM PGN AGS AWB SHP BMB BGN

China 0.57 (0.33–0.96) 41.5 22.9 7.1 20.7 1.3 0.1 0.4 0.1 5.8
India 0.3 (0.17–0.52) 26.1 2.2 25.6 2.6 24.6 0.8 0.5 0.5 17
Brazil 0.2 (0.12–0.33) 53.4 7.5 2.3 4.6 3.3 0.2 6.8 5.3 16.6
United States of America 0.2 (0.12–0.3) 58.8 6.1 15.8 6.1 0 0 4.6 0.9 7.6
Indonesia 0.15 (0.09–0.24) 65.7 3.3 3 10.8 2.9 0 2 6.2 6.2
Mexico 0.13 (0.08–0.22) 73.4 3.3 3.6 2.7 1.8 0.1 1.9 2.1 11
Egypt 0.13 (0.08–0.22) 58.7 2.1 6.4 5.3 11.3 0.1 5.7 0 10.4
Pakistan 0.1 (0.06–0.17) 36.5 0.9 18.4 0.7 27.5 1.4 0.1 0 14.5
Nigeria 0.09 (0.06–0.18) 33 2.8 23.8 1.1 3.5 0.8 1.7 10 23.4
Western Europe 0.11 (0.06–0.17) 56.8 4 9 5.2 2 0 15.5 0.1 7.4

lower NINC. To adjust for the exposed population,
the rate of NINC (per 100 000 children and adoles-
cents) was calculated. The annual rate of NINC is
highest in the Middle East, e.g. in the United Arab
Emirates (UAE), Kuwait and Qatar [612 (412–1101),
564(367–992) and 446 (304–859) per 100 000 chil-
dren and adolescent, respectively]. The spatial dis-
tribution is depicted in figure S10(a). In Brazil, the
USA, China and India, the annual rate of NINC is
estimated at 313 (187–513), 235 (144–359), 193 (113–
324), and 57 (33–100) per 100 000, respectively. We
estimate that in Kuwait 32% of all pediatric NINC
may be attributed to NO2 exposure. The estimates
for China, Brazil, India, United States of America
and Western Europe are 22%, 14%, 13.8%, 19% and
18%, respectively (figure S10(b)). Using NO2

FR, we
attribute 3.33(2.06–5.78) million NINC to long-term
NO2 exposure. Using NO2

LUR, 4.07 (2.5–7.01) mil-
lion NINC (15.5% higher compared to NO2

F) was
estimated, which is close to the result (4 million)
obtained by a recent study that used the LUR model
(Achakulwisut et al 2019). Figure S11 depicts the per-
centage differences between NINC estimated using
NO2

LUR and NO2
F and NO2

FR. Large differences (up
to 55% in the sub-Saharan countries) were found
between NINC calculated with NOLUR and NO2

F in

the countries with a large fraction of background
grids (see figure S8). For China, India, Brazil and the
USA the difference was estimated at 3.8%, 12%, 12%
and 13.5% respectively.

3.3. Source sector attribution
The impacts of the nine aforementioned source cat-
egories was determined by omitting them one by one
from the total NOx emissions in the global model
results, following an earlier study (Lelieveld et al
2015). The relative difference between incident cases
of asthma estimated by the simulation with total NOx

and the simulation without emissions from a sector
determines the contribution by the sector. The source
contribution in the nine countries with highest NINC
burden and Western Europe are depicted in figure 3
and listed in table 1. Land transportation (TRA) is the
single largest contributor to NINC globally, account-
ing for 44%, followed by BGN, DOM, PGN, IND,
AGS, SHP, BMB and AWB with 14.1%, 10.3%, 8.7%,
7%, 6.6%, 4%, 5% and 0.4%, respectively. The source
contributions for all countries are presented in the
supplementary data.

TRA is the largest contributor to NINC in
most countries in East Asia, Central Asia, Europe,
North and South America (figure 4), associated with

6

https://stacks.iop.org/ERL/16/035020/mmedia


Environ. Res. Lett. 16 (2021) 035020 S Chowdhury et al

Figure 3. Contribution of the main sources of NO2
F to NINC in the nine countries plus Western Europe with the highest asthma

incidence from NO2
F exposure.

1.56(0.95–3) million yr−1 NINCs. In Mexico and the
USA, TRA contributes up to 73% and 59%, respect-
ively. In Iran, Iraq, Saudi Arabia, Qatar and Kuwait,
TRA is estimated to contribute to 60%–70% of the
total NINC. We found it to be associated with 42%,
57% and 54% of NINC in China, Western Europe
and Brazil, respectively. Its contribution is found to
be lower in India (26%) and Nepal (29%) where the
domestic use of solid fuels (DOM) is also a prevalent
source of ambient NO2 at the surface.

DOM is associated with 0.37 (0.22–0.63) mil-
lion yr−1 NINCs globally, of which almost 21% occur
in India (0.08 (0.04–1.33) million yr−1). In Nepal,
Pakistan and China, its contribution is 33.4%, 18.4%
and 8%, respectively. DOM is also a major contrib-
utor to NINCs in Central African countries such
as Rwanda (32%), Burundi (27%), Ethiopia (25%),
Uganda (25%) and Nigeria (24%). In Argentina, its
contribution to NINC is 42%. In high-income coun-
tries such as the USA (15%), Japan (11.4%) and Aus-
tralia (3%) the DOM contribution is comparatively
lower (figure 4). DOM contributes to 9% of NINC in
Western Europe.

Power generation from fossil fuels (PGN) is a
major source of NO2 as well (Tian et al 2013). It is
associated with 0.3 (0.18–0.51) million yr−1 NINCs
globally. In Russia, the Philippines and China it is
a major contributor to NINC with 25%, 23% and
21%, respectively. Its role is considerably less in the
USA (6.3%), Western Europe (5%), Brazil (4.6%)
and India (2.6%). Emissions from fuel combustion in
industries and industrial processes (IND) contribute
comparatively less.With a global fraction of∼7%, it is
associated with 0.24 (0.15–0.41) million yr−1 NINCs.
It is relatively important in Japan (12%), South Korea
(16%) and China (17.8%) while in most western
high-income countries its contribution is comparat-
ively low (4–8%).

The application of manure and fertilizers to soils
for agriculture (AGS) is the next largest contributor
at 6.6% accounting for 0.23 (0.14–0.4) NINCs. Use
of nitrogen-based fertilizers has increased over time
and is largely driven by intensive farming practices.
In South Asia (e.g. India, Pakistan, Nepal, Bhutan
and Bangladesh) where intensive farming is predom-
inant, AGS contributes ∼20% to the total NINC.
In Europe and North America, the contribution is
small (up to 5%). Agricultural waste and residue
burning is a minor contributor to NINC with 0.01
(0.006–0.02) million yr−1.

NOx from ship emissions (SHP) is expected to
result in NINCs in coastal locations, major har-
bors and countries with coastlines adjacent to the
major shipping routes. Globally, SHP is associated
with 0.14 (0.09–0.23) million yr−1 NINCs. In Scand-
inavian countries it is a relatively large contributor to
NINC, e.g. in Denmark (69%), Sweden (48%), Nor-
way (44%) and Finland (20%). It also contributes
significantly in island states, e.g. Iceland (65%), the
UK (17%), Ireland (37%), Australia (16%) and New
Zealand (14%).

Biomass burning, forest and grassland fires
(BMB) account for 5% or 0.18 (0.11–0.31) mil-
lion yr−1 NINCs globally. It plays a major role in
sub-Saharan and particularly central African coun-
tries (figure 4) where it can contribute more than
60%. It contributes ∼15% in Southeast Asia (e.g.
Cambodia, Laos, Indonesia). BMB is also import-
ant (6%–10%) in South America and Australia.
BGN from natural vegetation and soil is associ-
ated with 0.49 (0.31–0.87) million NINCs. It was
found to be a major contributor to NINCs in
sub-Saharan, central and south African countries
(12%–20%). In China, USA, Brazil and India it
contributes about 6%, 7.5%, 16.7% and 16.9%
respectively.
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Figure 4. Global maps of the major source contributions (a) TRA, (b) IND, (c) DOM, (d) PGN, (e) AGS, (f) AWB, (g) SHP,
(h) BMB, (i) BGN to incident cases of asthma (NINC) caused by the exposure to ambient NO2

F.

3.4. Uncertainties and assumptions
All estimates of NINC in this study are accompan-
ied by 95% CIs. The 95% CI ranges were estim-
ated by combining the uncertainty of the BINCs and
the uncertainty in the RR curves by distributing the
RR and BINCs lognormally across the 95% CIs to
obtain 10 000 estimates of NINC for each grid cell,
from which the overall 95% CIs were estimated (see
Chowdhury et al (2020) for details). Several other
limitations may affect the results presented in this
study. Firstly, the model was simulated to estimate
NO2 exposure at 1.12◦ × 1.12◦ horizontal resolu-
tion, which may be responsible for averaging out the
local scale gradients in NO2 exposure (USEPA 2016,
Larkin et al 2017, Achakulwisut et al 2019). Neverthe-
less, this was alleviated by merging the model sim-
ulations (of 2015) with fine resolution LUR model
calculations of NO2 (of 2011). However, the source
attribution was performed at the coarse model resol-
ution and applied to the merged NO2

F data, assum-
ing only the steep NO2 concentration gradients in the
vicinity of sources, e.g. in urban centers, and not the
emission strengths of the sources, which are not well
represented.

Secondly, the main results of this study were
obtained by using an LCC of 0.8 ppb, following the
lowest concentration at which causality was noted in
a recent analysis (Khreis et al 2017). We performed
sensitivity calculations by considering no threshold
(i.e. LCC = 0 ppb), and threshold levels of 1 ppb and
2 ppb (based on Achakulwisut et al (2019)) (figure
S12(a)). The estimates of NINC were 12% higher and
3% and 16% lower when LCC was changed to 0, 1
and 2 ppb respectively (figure S12(a)). We estimated
3.93 (2.41–6.75) million, 3.42 (2.09–5.87) million
and 2.95 (1.8–5.06) million incident cases of asthma

from exposure to NO2 per year among children and
adolescents using 0, 1 and 2 ppb as LCC, respectively,
which corresponds to 14.5%, 12% and 10.9% of the
total global incidence of asthma, respectively.

Thirdly, the Khreis et al (2017) meta-analysis
included epidemiological studies from East Asia,
Europe and North America, therefore missing out on
epidemiological evidence from the rest of the world.
Also, an ERF derived from a single-pollutant epi-
demiological model was used to assume a causal rela-
tionship between NO2 exposure and asthma incid-
ence (because multipollutant models that adjust for
other co-pollutants are currently not available). Non-
etheless, the evidence is suggestive of more robust
associations asthma incidence with NO2 exposure,
than for other air pollutants like PM2·5 (Anderson
et al 2013, USEPA 2016). However, it may be possible
that the reported associations are sensitive to control
for co-pollutants which may potentially change the
estimates presented in this study. A sensitivity study
was performed by estimating the NINC based on ERF
curves from other available meta-analyses (figure S1).
It was found that all the estimates of NINCs overlap
within the uncertainty bounds (figure S12(b)).

A recent study by Holst et al (2020) that inspected
association of multiple pollutants on onset of asthma
found that only PM2.5 remained significantly associ-
ated with asthma after controlling for other pollut-
ants (NO2, PM10) among children of parents with
asthma and mothers who smoked during pregnancy.
However, after adjusting for parental asthma, par-
ental income and parental education, a significant
association was obtained for NO2 and new incid-
ence of asthma among children. Another recent study
(Gehring et al 2020) found stronger association of
long-term exposure to NO2 and incidence of asthma
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among children and adolescents compared to expos-
ure to PM2.5. Nonetheless, we estimated the incident
cases of of asthma from long-term exposure to PM2.5

(PINC) simulated by the EMAC model as a sensitiv-
ity study to our estimates of NINC (supplementary
information section S3). Globally, we estimated PINC
to be∼2 times higher than NINC, which is consistent
with a previous study (Annenberg et al 2018). How-
ever we emphasize that, unlike for long-term expos-
ure to NO2, there is no consensus among studies that
associate exposure to long-term exposure to PM2.5

with incidence of asthma (Gasana et al 2012, Ander-
son et al 2013, Guarnieri and Balmes 2014, USEPA
2016). We reiterate that our estimates of NINC and
PINC are not additive considering significant overlap
between them due to the use of single-pollutant epi-
demiological models in this study in absence of mod-
els that control for co-pollutants. We refer to supple-
mentary information section S3 for further discus-
sion.

4. Summary and conclusions

We estimate that 3.52 (1.2–7.2) million yr−1 new
incident cases of asthma in children and adolescents
are attributable to exposure to ambient NO2. Our res-
ult is slightly lower than that of a recent study (Achak-
ulwisut et al 2019), which used exposure obtained
from an LUR model only, but is three times that
from a prior study (Anenberg et al 2018). We com-
bined results from a global LUR model for NO2 with
atmospheric chemistry model simulations to obtain
the NO2 exposure metric. We estimate that globally
5% of all children and adolescents live in areas where
NO2 exposure exceeds the WHO annual guideline of
21.25 ppb (theWHOguideline of 40µgm−3 was con-
verted to ppb at standard temperature and pressure).
However, ∼90% of the total NINC burden occurs in
locations where the WHO annual guideline is met.
This calls for revisiting the WHO annual guideline
(WHO 2006) for NO2. It was formulated in 2006
when a robust basis for the guideline from epidemi-
ological studies was not yet available (WHO 2006,
USEPA 2008). If the areas where the WHO guideline
for NO2 is currently exceeded would actually meet
the guideline, ∼2% [0.07 (0.04–0.11) million yr−1]
of the NINC could be averted. Note that we do not
account for the effect of NO2 in causing exacerbations
of symptoms in children and adolescents with pre-
existing asthma, and hence we provide a lower limit
of the full effect.

To help direct policy decision making, we provide
the first estimates of source sector specific contri-
butions of NO2-induced NINC, whereas previous
work attributed the exposure generally to traffic
related sources (Anenberg et al 2018, Achakulwisut
et al 2019). Nevertheless, our results corroborate the
suggestion that land transportation (TRA) is the

leading contributor to NINC, with a global average
of 44%. In the USA and Mexico, the TRA contribu-
tions are very high, 58.8% and 73.4%, respectively.
In Western Europe the contributions vary between
50% and 65%. In India and Nepal, where the burning
of solid fuels in households is ubiquitous (Lelieveld
et al 2015, Chowdhury et al 2019), this source sector is
prevalent (∼25%). In China the industrial sector and
power generation from fossil fuels together contrib-
ute ∼35% to NINC. In central Africa, biomass burn-
ing is the single largest contributor to NINC (>70%).
Our results suggest that targeted air quality control
measures and tightening of the WHO guideline for
ambient NO2 are needed to substantially reduce the
burden of new asthma incident cases in children and
adolescents.
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