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Abstract In this paper, we discuss the results of 2000–2100 simulations following the

emissions associated with the Representative Concentration Pathways (RCPs) with a

chemistry-climate model, focusing on the changes in 1) atmospheric composition

(troposphere and stratosphere) and 2) associated environmental parameters (such as

nitrogen deposition). In particular, we find that tropospheric ozone is projected to decrease

(RCP2.6, RCP4.5 and RCP6) or increase (RCP8.5) between 2000 and 2100, with variations

in methane a strong contributor to this spread. The associated tropospheric ozone global

radiative forcing is shown to be in agreement with the estimate used in the RCPs, except for

RCP8.5. Surface ozone in 2100 is projected to change little compared from its 2000

distribution, a much-reduced impact from previous projections based on the A2 high-

emission scenario. In addition, globally-averaged stratospheric ozone is projected to recover

at or beyond pre-1980 levels. Anthropogenic aerosols are projected to strongly decrease in

the 21st century, a reflection of their projected decrease in emissions. Consequently, sulfate

deposition is projected to strongly decrease. However, nitrogen deposition is projected to

increase over certain regions because of the projected increase in NH3 emissions.
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1 Introduction

In support of the analysis of future climate change (for instance as part of community

efforts such as the CMIP5 exercise (Taylor et al. 2009)), a set of pathways has been

generated to define a range of possible future atmospheric composition over the 21st

century (van Vuuren et al. 2011a). These pathways, referred to as Representative

Concentrations Pathways (RCPs) are derived from estimated emissions computed by a

set of Integrated Assessment Models (Masui et al. 2011; Riahi et al. 2011; Thomson et al.

2011; van Vuuren et al. 2011b) and, for each of these pathways, a rich dataset of

information regarding emissions, concentrations and land-use has been generated. For long-

lived greenhouse gases, these emissions have been converted into concentrations (and

consequently radiative forcing estimates) using the Model for the Assessment of

Greenhouse-gas Induced Climate Change (MAGICC, Meinshausen et al. 2011). However,

because of regional variations in emissions, it is important to perform the calculation of the

distribution of short-lived climate agents using a comprehensive three-dimensional

chemistry-climate model. It is the results of such calculations that are discussed in this

paper. As such, it is a follow-up to Lamarque et al. (2010), where, using the same model,

historical emissions (1850–2000) are used and the corresponding computed changes in

ozone and aerosols are discussed.

In addition to the changes in atmospheric composition mentioned above, emissions of short-

lived gases and aerosols lead to deposition of nitrogen and sulfate compounds that affect the

biosphere, on land and in the ocean (Billen et al. 2010; Butchart et al. 2010, and references

therein). In particular, specific thresholds for nitrogen deposition above which additional input

is detrimental to plants have been used to identify regions where past and future trends may

have adverse impacts (Bobbink et al. 1998; Dentener et al. 2006a; Galloway et al. 2008).

Conversely, nitrogen deposition may also influence the carbon cycle by stimulating plant

growth (Schlesinger 2009). None of those feedbacks are included in our study or in the RCP

projections. As such, it will be important to evaluate the response of the climate system (and

how it affects radiative forcing estimates) in more comprehensive models with explicit

representation of biogeochemistry and the carbon cycle.

The paper is organized as follows: in Section 2, we describe the model used for the

chemistry simulations, along with the experimental design. In Section 3, we focus on the

analysis of ozone changes, both tropospheric and stratospheric. Section 4 describes the

simulated aerosol changes. In both Sections 3 and 4, radiative forcing calculations are

included. We analyze nitrogen and sulfate deposition in Section 5. Discussion and

conclusions are in Section 6.

2 Model description and experimental design

In order to provide the distributions of future aerosol loadings, deposition rates and ozone

concentrations discussed later in this paper, we perform simulations with the same model

setup as used for providing the respective historical datasets, as described in Lamarque et

al. (2010). We use the global three-dimensional Community Atmosphere Model version 3.5

(Gent et al. 2009) modified to include interactive chemistry to calculate distributions of

gases and aerosols in the troposphere and the lower to mid-stratosphere. In order to limit

computational cost, this model only solves for the atmospheric and land portions of the

climate system, using pre-computed sea-surface temperatures and sea-ice extent as

boundary conditions.
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The model configuration used in this study includes a horizontal resolution of 1.9°

(latitude) by 2.5° (longitude) and 26 hybrid levels, from the surface to ≈40 km with a

timestep of 30 min; the transient simulations were performed continuously between 2001

and 2100. In order to simulate the evolution of the atmospheric composition over the model

vertical range, the chemical mechanism used in this study is formulated to provide an

accurate representation of both tropospheric and stratospheric chemistry (Lamarque et al.

2008). Specifically, to successfully simulate the chemistry above 100 hPa, we include a

representation of stratospheric chemistry (including polar ozone loss associated with

stratospheric clouds) from version 3 of MOZART (MOZART-3; Kinnison et al. 2007). The

tropospheric chemistry mechanism has a simplified representation of non-methane

hydrocarbon chemistry in addition to standard methane chemistry, extended from

Houweling et al. (1998) with the inclusion of isoprene and terpene oxidation and updated

to JPL-2006 (Sander et al. 2006). This model has a representation of aerosols based on the

work by Tie et al. (2001, 2005); i.e., sulfate aerosol is formed by the oxidation of SO2 in the

gas phase (by reaction with the hydroxyl radical) and in the aqueous phase (by reaction

with ozone and hydrogen peroxide). Furthermore, the model includes a representation of

ammonium nitrate that is dependent on the amount of sulfate present in the air mass

following the parameterization of gas/aerosol partitioning by Metzger et al. (2002). Because

only the bulk mass is calculated, a lognormal distribution is assumed for all aerosols using

different mean radius and geometric standard deviation (Liao et al. 2003). We use a 1.6 days

of exponential lifetime for the conversion from hydrophobic to hydrophilic carbonaceous

aerosols (organic and black). Natural aerosols (desert dust and sea salt) are implemented

following Mahowald et al. (2006a and b), and the sources of these aerosols are derived

based on the model-calculated wind speed and surface conditions.

For all the simulations, the initial conditions correspond to the distributions of all

chemically active species from the January 1 2001 results of the transient simulation (1850–

2000) described in Lamarque et al. (2010). For each RCP one simulation has been

performed. Results are presented for all the RCPs: RCP2.6, also known as RCP3PD,

RCP4.5, RCP6 and RCP8.5.

At the lower boundary, the time-varying (monthly values) zonal-averaged distributions

of CO2, CH4, H2, N2O and all the halocarbons (CFC-11, CFC-12, CFC-113, HCFC-22,

H-1211, H-1301, CCl4, CH3CCl3, CH3Cl and CH3Br) are specified following the datasets

described in Meinshausen et al. (2011), except for H2 which is kept at a constant 500

ppbv. Emissions from anthropogenic activities and biomass burning (natural and

anthropogenically-forced) are taken from the various RCPs. Note that the biomass

burning emissions vary amongst RCPs and in time, following changes in land-use;

however, no climate feedback with fire frequency is included. Finally, the natural

emissions of ozone precursors and of sulfur compounds (from non-eruptive volcanoes,

Dentener et al. 2006b) are kept constant (i.e. set at their value in 2000) for the whole

duration of the simulations. While reasonable for the historical period (Lathière et al.

2006), this is an assumption that will need to be evaluated in future studies, especially for

the case of biogenic volatile organic compounds (VOC) emissions, which can be climate

and CO2-dependent (Guenther et al. 2006; Young et al. 2009).

As no climate model simulations forced by the RCPs were available at the time our

simulations were performed, we have used previously generated monthly-mean time-

varying sea-surface temperatures (SSTs) and sea-ice distributions using analogous (see

Table 1) AR4 simulations by CCSM-3 (Meehl et al. 2007). The choice of the closest

analogue to the Supplemental Report on Emission Scenarios (SRES)-based climate

simulations is driven by its estimated total radiative forcing at 2100 (Meehl et al. 2007).
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Because of the proximity in overall radiative forcing between the RCPs and the SRES

(Table 1), it can be expected that the projected climate used in our simulations will be

within the range from intermodel differences and climate noise (as defined in section

9.2.2.1. of Ramaswamy et al. 2001) of the corresponding RCPs. Since the RCP-driven

climate simulations are not available for analysis yet, the full analysis of this impact will

need to be performed elsewhere.

While the simulations presented here cannot be fully representative of future climates

under the RCPs, we provide some general description of the simulated changes as these will

impact atmospheric chemistry. In particular, changes in temperature, water vapor and

precipitation affect reaction and removal rates (Murazaki and Hess 2006). As found in the

CCSM3 full climate model simulations (Meehl et al. 2007), the various projections lead to

an increase in surface temperature (Fig. 1). Its latitudinal distribution (Fig. 2) indicates the

well-documented polar amplification. In terms of humidity-based diagnostics (precipitation,

total moisture in atmosphere and cloud cover), we find an overall increase during the 21st

century, with RCP8.5 leading to the largest signal (Figs. 1 and 2), very similar in essence to

the SRES-driven projections (Meehl et al. 2007).

The anthropogenic emissions used for the simulations described in this paper are listed in

Table 2; they are described in more details in the various specific papers in this issue and

evaluated in Granier et al. (2011). Except for NH3, global emissions of all ozone and

aerosol precursors across all RCPs are projected to decrease by the end of the 21st

century. At the same time, regional trends strongly vary. There is also a peak value for

most emissions around 2010–2030. Of all emissions presented in Table 2, sulfur

emissions show the most rapid decrease, reaching less than a quarter of the 2000 estimates

by the end of the 21st century. Many of the other emissions are reduced by a factor of 2

over the same period.

3 Ozone

In this section, we discuss the results from the simulations described above and focus on the

analysis of ozone (tropospheric and stratospheric), both on its distribution of ozone and its

associated radiative forcing.

3.1 Analysis of present-day distribution of tropospheric ozone

Before estimating the changes in ozone between 2000 (or 1850) and 2100, we first evaluate

the ozone distribution from the model results (5 year average, 2000 conditions) from the

historical simulation (Lamarque et al. 2010) against available observations spanning the

Table 1 Specification of the AR4 simulations by CCSM3 (Meehl et al. 2007) used to obtain sea-surface

temperatures necessary for the RCP simulations discussed in this paper. Radiative forcing from the SRES

projections (W/m2, second column) are estimated from Figure 9.13 in Ramaswamy et al. (2001)

RCP simulation Scenario used in CCSM3 simulation

RCP2.6 Commitment

RCP4.5 B1 (4.2 W/m2)

RCP6 A1B (6.1 W/m2)

RCP8.5 A2 (8.0 W/m2)
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troposphere and lower stratosphere over the whole globe. Analysis of present-day surface

and mid-troposphere ozone concentrations and recent trends are discussed in Lamarque et

al. (2010). In particular, it is shown there that the present-day conditions are quite well

reproduced; trends in the Northern mid-latitudes are somewhat underestimated, but other

Fig. 1 Time evolution of annual mean globally-averaged surface temperature (upper left),. vertically-

integrated moisture content (upper right), total (convective and large-scale) precipitation (bottom left) and

cloudiness (bottom right). All results shown as the departure from the 2000 mean. Red curve: RCP2.6. Green

curve: RCP4.5. Black curve: RCP6. Blue curve: RCP8.5. Results for 1850-2000 are from Lamarque et al.

(2010)

Fig. 2 Zonal distribution of

decadal average (2090-2099) of

surface temperature and total

precipitation. Red curve: RCP2.6.

Green curve: RCP4.5. Black

curve: RCP6. Blue curve:

RCP8.5
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latitude bands are well captured. Here, we show (Fig. 3) a comparison for a set of

ozonesonde stations results at 200 hPa (i.e. in the upper troposphere and lower stratosphere,

where most of the ozone radiative forcing of surface temperature resides (Lacis et al.

1990)). Most stations have a well-reproduced seasonal cycle, with a slight underestimate of

springtime values in the tropical regions (stations Naha, Hilo and Natal), possibly due to too

strong convective activity in the model (bringing low ozone from the surface into the upper

troposphere) at that time of the year.

Overall, the evaluation (along with additional recent studies discussing and evaluating

simulations performed with this model, e.g. Sanderson et al. 2008; Shindell et al. 2008;

Anenberg et al. 2009; Fiore et al. 2009; Reidmiller et al. 2009; Jonson et al. 2010;

Lamarque and Solomon 2010) indicates that the model is quite accurate in its

representation of present-day ozone in the troposphere and lower stratosphere. Additional

information on present-day and historical ozone trends can be found in Lamarque et al.

(2010).

Table 2 Total (anthropogenic+shipping+aircraft+biomass burning) global emissions for ozone precursors

and aerosols: Tg(species)/year, except NOx emissions expressed as Tg(NO2)/year

2000 2010 2020 2040 2060 2080 2100

CO RCP2.6 1067.2 1028.8 982.5 878.1 779.2 663.7 607.8

RCP4.5 1069.0 1061.8 1002.3 953.1 778.5 558.0 477.3

RCP6 1068.8 1048.8 1028.3 1049.7 996.1 873.0 792.2

RCP8.5 1069.4 1029.6 1052.0 951.2 841.1 757.2 690.3

NOx RCP2.6 125.3 128.8 120.0 98.4 89.4 67.8 52.5

RCP4.5 125.5 124.1 117.3 107.0 84.0 62.6 59.3

RCP6 125.7 124.0 115.6 107.2 93.0 65.5 52.9

RCP8.5 125.5 129.6 138.3 121.4 104.0 95.2 86.2

NMVOC RCP2.6 210.5 216.2 212.6 192.0 166.4 138.6 125.5

RCP4.5 210.8 211.7 196.0 202.3 179.9 150.3 140.0

RCP6 210.8 213.3 212.0 221.8 214.1 191.8 172.1

RCP8.5 210.8 214.6 224.4 217.9 201.2 188.6 176.2

BC RCP2.6 7.8 8.8 8.5 5.7 4.4 3.7 3.4

RCP4.5 7.8 8.1 7.8 6.8 5.5 4.1 3.9

RCP6 7.8 8.1 7.7 7.4 6.5 5.1 4.4

RCP8.5 7.8 7.8 7.5 6.1 5.2 4.7 4.2

OC RCP2.6 35.9 37.6 37.6 32.3 29.7 26.9 25.3

RCP4.5 35.9 34.7 30.5 27.9 24.9 20.4 19.4

RCP6 35.9 37.1 36.8 36.7 35.7 33.3 32.2

RCP8.5 36.0 34.9 34.1 31.4 28.4 26.4 23.9

NH3 RCP2.6 48.0 52.7 57.7 64.7 71.1 77.0 81.6

RCP4.5 48.5 51.3 52.6 56.3 55.8 53.6 52.9

RCP6 48.6 53.3 52.1 60.8 69.0 73.9 74.9

RCP8.5 48.6 52.7 58.8 67.8 73.7 77.5 81.6

SO2 RCP2.6 107.5 107.9 85.6 39.3 27.4 19.5 12.9

RCP4.5 107.8 111.9 102.9 69.6 41.4 25.5 22.5

RCP6 107.7 107.4 95.1 83.3 69.8 30.0 21.9

RCP8.5 107.7 101.5 96.1 65.6 45.4 36.9 25.7
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3.2 Change in tropospheric ozone burden

Integrated between the surface and 200 hPa (i.e., integrated over the troposphere), the

globally-averaged change between 1850 and 2100 for each RCP is shown in Fig. 4. The

model simulates a historical change between 1850 and 2000 of ≈9 Dobson Units (DU)

comparable to the model-range (8.9–10.8 DU for chemistry-climate models with

tropospheric and stratospheric chemistry) documented in Gauss et al. (2006). Beyond

2000, tropospheric ozone is expected to increase over its 2000 level only in the case of

RCP8.5, at least beyond 2050. The gobal emission totals of important ozone precursors

(NOx, CO, VOCs) are not strikingly different between RCPs (except NOx for which the

RCP8.5 emissions in 2100 are ≈30% larger than in the other RCPs); however, the methane

emissions (and therefore concentrations) in RCP8.5 are significantly larger than in the other

RCPs (van Vuuren et al. 2011a), leading to a tropospheric mixing ration ranging from 1,500

ppbv to 3,750 ppbv. Such difference amongst RCPs in methane mixing ratios will strongly

impact tropospheric ozone, much more so than the difference in NOx emissions as

summarized in Table 2 of Fiore et al. (2002). This is therefore the main driver behind the

estimated tropospheric ozone change in the 21st century.
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Fig. 3 Comparison of simulated present-day ozone (in ppbv) at 200 hPa (upper troposphere/lower

stratosphere) with the ozonesonde-based climatology of Logan (1999). Black dots are the observations,

dashed line shows model results. The stations displayed a range of latitudes from Arctic (Resolute, top left)

to Antarctica (Syowa, bottom right)
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Using the scaling factor of 0.042 W/m2/DU (Ramaswamy et al. 2001) to compute the

ozone radiative forcing associated with the previously described change in tropospheric

ozone, we find that our estimated globally- and annually-averaged radiative forcing

between 1850 and 2000 is in good agreement with the IPCC-AR4 best estimate between

1750 and 2005 (Table 2.12 in Forster and Ramaswamy, 2007). To facilitate the

comparison with our simulated change with respect to 1850, we have corrected (in

Fig. 4) the 1750-referenced radiative forcing estimate by –0.05 W/m2, as calculated in

Meinshausen et al. (2011). In the case of RCP8.5, the additional tropospheric ozone

(between 2000 and 2100) is expected to increase the radiative forcing by an additional

0.2 W/m2 by 2100, while the other projections lead to a decrease in the radiative forcing

of tropospheric ozone between 0.07 and 0.2 W/m2. It is however clear that the radiative

forcing by tropospheric ozone strongly varies regionally (Shindell et al. 2003) but this is

not documented here.

It is worth noting that the estimated tropospheric ozone radiative forcing (and hence

concentration perturbation) estimated in MAGICC for the RCP8.5 (and to a lower extent

RCP4.5) case is noticeably lower than in our model simulations. This lower forcing is likely

a combination of the limited applicability of the chemistry parameterizations (Prather and

Ehhalt 2001) currently used in MAGICC and the lack of consideration of the increased flux

Tropospheric ozone column (surface-200 hPa)

Fig. 4 Time evolution of the globally averaged tropospheric ozone column (and associated radiative

forcing), shown as the departure from the 1850 mean. Red curve: RCP2.6. Green curve: RCP4.5. Black

curve: RCP6. Blue curve: RCP8.5. Filled squares at year 2100 indicate the MAGICC estimated radiative

forcing for each corresponding RCP. In addition, the AR4 mean and range estimates of the tropospheric

ozone forcing are added (black line). Note that the AR4 and MAGICC estimates have been corrected by -

0.05 W/m2 to take into account the radiative forcing between 1750 and 1850

Fig. 5 Time evolution of the

globally averaged stratospheric

(above 200 hPa) ozone column,

shown as the departure from the

1850 mean. Red curve: RCP2.6.

Green curve: RCP4.5. Black

curve: RCP6. Blue curve:

RCP8.5. Results for 1850-2000

are from Lamarque et al. (2010)
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of ozone from the stratosphere to the troposphere (Stevenson et al. 2006; Hegglin and

Shepherd 2009), a result of stratospheric ozone increase (Eyring et al. 2010a) and increased

stratospheric circulation (Rind et al. 2001; Garcia et al. 2007; Lamarque et al. 2008) in

relation to increasing greenhouse gases. A more detailed discussion is provided in the next

section. It is however important to note that the overall uncertainty in tropospheric ozone

forcing is rather large (Fig. 4).

3.3 Change in stratospheric ozone burden

As a smaller contributor to the overall radiative forcing of climate (Forster et al. 2007),

stratospheric ozone is not as important on the global scale, at least in terms of radiative

forcing. It is however important in the polar regions where the stratospheric ozone trends

have been shown to impact the dynamical structure of the atmosphere (Thompson and

Solomon 2002). The evaluation of our model in simulating recent stratospheric ozone is

discussed in Austin et al. (2010) and Eyring et al. (2010a and b), with overall good

performance, except for a smaller than observed ozone depletion in the Southern

Hemisphere associated with too-warm simulated temperatures. All RCPs have similar

emission and concentration trajectories for the ozone-depleting substances (except N2O);

everything else being equal, all RCPs will therefore provide similar ozone changes in the

stratosphere. However, additional changes in stratospheric composition (and in this case,

mostly CO2 as it is the largest contributor in terms of impact on stratospheric temperatures

during the 21st century) can affect the vertical circulation in the stratosphere, and

consequently lead tochanges in the distribution of ozone (Rind et al. 2001; Butchart et al.

2006; Garcia et al. 2007). It can therefore be expected that stratospheric ozone will be

different between the various RCPs. Indeed, as indicated in Fig. 5, the simulated 2100

stratospheric (0–200 hPa) ozone in this model is expected to recover to at least pre-1950

levels in all cases. The RCP2.6, RCP4.5 and RCP6 simulations produce a 2100

stratospheric ozone recovery to pre-1950 levels while the RCP8.5 simulation produced

2100 stratospheric ozone levels higher than the pre-1950 (and even 1850) levels. As in the

case of tropospheric ozone, the radiative forcing associated with RCP8.5 stratospheric

ozone projection will lead to a quite different value than the MAGICC estimated value,

which is only tied to the equivalent effective stratospheric chlorine (EESC) levels and do

not take into account such chemistry-climate couplings.

3.4 Change in zonally-averaged surface ozone

Previously projected changes in surface ozone (Prather et al. 2003) under the A2x

scenario have indicated annual mean changes between 2000 and 2100 of approximately

25 ppbv in the Northern tropical to extra-tropical regions (with a maximum around 25ºN)

and a minimum in the Southern hemisphere of 12 ppbv. The reduction in NOx emissions

in RCP2.6, RCP4.5 and RCP6 (along with similar or decreasing methane concentrations)

generate a reduction in surface ozone in 2100 compared to 2000 for those simulations

(Fig. 6). In contrast, the RCP8.5 projection provides a slight increase of approximately 5

ppbv. This is much less than the corresponding value in Prather et al. (2003) for the A2

scenario, which had continually increasing NOx emissions through 2100. The widespread

distribution of the increase (along with the fact that even RCP8.5 has decreasing

emissions for ozone precursors between 2000 and 2100) suggests that this is related to the

aforementioned increase in methane (Fiore et al. 2002), but more analysis is needed to

confirm this hypothesis. It will be important to identify if the much-reduced surface ozone
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response (compared to A2 projections discussed in Prather et al. 2003) is a robust feature

amongst a variety of models.

4 Aerosols

Aerosols are a strong component of the radiative forcing associated with anthropogenic

emissions. This is achieved through a combination of direct radiative forcing and cloud-

aerosol interactions (indirect effects), as summarized in Forster et al. (2007). In the

simulations discussed here, only the direct effects are considered. In the discussion of the

results, we therefore focus on the evolution of the distribution of sulfate, black and organic

carbon and ammonium nitrate aerosols. Our model consists of a bulk representation

(Lamarque et al. 2005a), leading to an external mixing assumption for all radiative

calculations. The importance of this latter assumption is discussed below.

4.1 Comparison with present-day observations

The main contributor (at the global scale) to aerosol radiative forcing between pre-industrial

and 2000 is sulfate (Schulz et al. 2006). Comparison of simulated sulfate with 1990s

observations from remote sites around the globe (Fig. 7) indicates that in many locations,

the model is within a factor of 2 of the observations, except for a few stations in the tropical

regions. In addition, the seasonal cycle (not shown) is also quite well reproduced at those

stations, indicating an overall reasonable representation of present-day sulfate aerosols.

Furthermore, comparison with the Interagency Monitoring of Protected Visual Environ-

ments (IMPROVE) network (Malm et al. 2004) indicate a satisfactory representation of

surface sulfate over the United States in the late 1990s, and in particular over the polluted

Northeast (Fig. 8). Analysis of the historical evolution of sulfate in Lamarque et al. (2010)

also shows a reasonable comparison with respect to ice-core deposition observations over

Greenland and overall agreement (burden and lifetime) with the multi-model results of

Schulz et al. (2006).

In terms of the CAM-chem simulated aerosol optical depth (computed at 550 nm,

referenced hereafter as AOD), the annual global average (including natural and

anthropogenic sources for all aerosols but ammonia) for present-day is 0.115, in

agreement with the satellite-based estimate (valid over the ocean) of 0.10–0.15 by

Mishchenko et al. (2007) but lower than recent satellite-based global estimates (Chung et

al. 2005; Remer et al. 2008). Our present-day simulated value represents an increase of

0.0315 over the 1850 conditions (0.08). This anthropogenic increase is very much in

Fig. 6 Latitudinal distribution of

zonally-averaged surface ozone

2091-2100 minus 2000-2009.

Red curve: RCP2.6. Green curve:

RCP4.5. Black curve: RCP6.

Blue curve: RCP8.5
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agreement with the average AeroCom results (Schulz et al. 2006). While the AeroCom

reference point is 1750 instead of 1850, the overall AOD associated with anthropogenic

emissions in 1850 (and therefore the potential increases between 1750 and 1850) is,

however, quite small in our simulation.

4.2 Change in aerosol optical depth and burden

Globally averaged, the simulated AOD after 2000 (Fig. 9) is decreasing similarly for all

RCPs, following the strong decrease in anthropogenic emissions (van Vuuren et al.

2011a), especially for anthropogenic SO2 (decreases in black carbon and organic carbon

anthropogenic emissions during the 21st century are not quite as rapid). The projection

in all RCPs is a drastic reduction in emissions from some previous 2100 estimates, such

as the emissions based on the SRES A2 scenario (as discussed in Adams et al. (2001)).

This is especially true for sulfate and the carbonaceous aerosols. This difference is not as

large for ammonia emissions, although the RCP emissions (see Table 2) are lower than

the value used in the A2 estimate (88.8 Tg(N)/year, 2100 anthropogenic emissions only,

as defined in Adams et al. (2001)). While the ammonia emissions are increasing in all

RCPs, the simulated global burden of ammonium aerosols in 2100 is in the range 0.37–

0.48 Tg(NH4), a decrease from the present-day value of 0.55 (in very good agreement
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Fig. 7 Comparison of modeled and measured 1990s surface sulfate concentrations (in μg/m3). Each dot

represents a specific station (see Barth et al., 2000 and references therein), spanning the globe. All sites are

sampling the remote regions
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with the present-day estimate in Adams et al. 2001). This decrease is associated with the

lower NOx emissions, leading to a slower conversion to ammonium nitrate. It is

important to remember that this result might depend very much on the details of the

aerosol equilibrium calculation (Metzger et al. 2002), and therefore could be model-

dependent.

4.3 Direct radiative forcing estimates

Using the CCSM4 radiative transfer model (see description and references in http://www.

ccsm.ucar.edu/models/ccsm4.0/cam/), we compute as a measure of radiative forcing the

clear-sky change in shortwave radiation at the top of the atmosphere associated with a

specific change in aerosol amount. In particular, this approach is directly comparable with

the results from the AeroCom model intercomparison (Schulz et al. 2006). In all cases

discussed below, the radiative forcing calculation is performed by computing the net

shortwave flux at the top of the atmosphere using the same conditions (temperature, water

vapor, surface conditions, long-lived greenhouse gases, ozone and aerosols) except for the

specific aerosol considered (see Table 3); in summary, we perform two radiative transfer

calculations, one with the 1850 specific aerosol distributions and one with the 2000

Fig. 9 Time evolut ion of

globally-averaged aerosol optical

depth at 550 nm annual 1850-

2100. Red curve: RCP2.6. Green

curve: RCP4.5. Black curve:

RCP6. Blue curve: RCP8.5.

Results for 1850-2000 are from

Lamarque et al. (2010)
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Fig. 8 Comparison of modeled and measured surface sulfate concentrations (in μg/m3). Each dot represents

a specific station over the IMPROVE network (Malm et al. 2004). See text for details
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distribution of the same aerosol type (e.g. black carbon for example), with surface

conditions, temperature and other state variables held fixed at the unperturbed values. The

global annual average of the difference of these calculations defines the radiative forcing

since 1850. Note that the calculations are performed under the assumption of external

mixing of aerosols. The significance of this assumption is discussed below.

Our estimate of the clear-sky direct radiative forcing from aerosols in year 2000 (–

0.8 W/m2, with respect to 1850) is similar to the multi-model mean of the AeroCom models

(–0.68±0.28) in Schulz et al. (2006). Also, the black carbon radiative forcing computed

here for year 2000 (0.1 W/m2) is very comparable to the AeroCom results for fossil-fuel

black carbon (i.e., the portion that significantly changed over the historical period, Schulz et

al. 2006), which averaged 0.12±0.04 W/m2. It is however on the low end of published

estimates (e.g.. Chung and Seinfeld 2005; Bond et al. 2010; Jacobson 2010 and references

therein); furthermore, many models are biased low against observations (Koch et al. 2009).

It is however important to note that, following Cooke et al. (1999), the Optical Properties of

Aerosols and Clouds (OPAC) optics for soot aerosols are used for black carbon. OPAC

treats soot as hydrophobic, so that its optic properties are not affected by ambient humidity

(Collins et al. 2002). This will lead to an underestimate of the soot radiative forcing.

Furthermore, as discussed in Jacobson (2000, 2001) and Chung and Seinfeld (2005), the

external mixture assumption will also lead to an underestimate of the overall radiative

forcing of black carbon. It will therefore be important to estimate the black carbon radiative

forcing in another aerosol model where internal mixture and/or hygroscopicity are

considered.

Using the same methodology, we find that, in all cases, the RCP-projected direct

radiative effect of aerosols in 2100 (Table 3) is considerably reduced from the 2000

estimates, in agreement with the evolution of their emissions. It is interesting to note that

the relative role of ammonium nitrate, especially under the RCP2.6 projection (and to a

lesser extent RCP8.5) becomes significantly larger than for the historical period,

emphasizing the importance of performing chemistry simulations with adequate represen-

tation of the sulfate-dependent ammonium nitrate as described by Adams et al. (2001),

Schaap et al. (2004) and Myhre et al. (2006).

4.4 Change in the regional distribution of aerosols

In this section, we discuss the change over time of the latitudinal distribution of the zonally-

averaged aerosol burden. This is illustrated in Fig. 10 with black carbon and sulfate total

columns. We see that there is a shift in the 21st century towards more tropical regions than

during the 20th century, where the Northern mid-latitudes dominated the signal. It is

particularly striking that the projections for black carbon emphasize the growth (followed

by a slow decline in the second part of the century) over Africa (near the Equator) in all

Table 3 Clear sky radiative forcing (W/m2) with respect to 1850. See text for details

2000 2100 RCP2.6 2100 RCP4.5 2100 RCP6 2100 RCP8.5

Black carbon 0.10 0.01 0.02 0.03 0.04

Organic carbon −0.05 −0.02 0.00 −0.04 −0.02

Ammon. nitrate −0.05 −0.10 −0.05 −0.07 −0.10

Sulfate −0.81 −0.13 −0.21 −0.22 −0.29

Total −0.81 −0.24 −0.24 −0.36 −0.37
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RCPs. On the other hand, the sulfate signal, when present, is limited to the latitudinal bands

poleward of 15°N, emphasizing the role of Asian emissions. Overall, in the Northern mid-

latitudes, the aerosol conditions at the end of the 21st century are projected to be similar to

those in the 1950s.

5 Nitrogen and sulfate deposition

Reactive nitrogen, from natural and anthropogenic emissions of nitrogen oxides and

ammonia, is deposited over land and ocean through a variety of processes (namely, wet and

Fig. 10 Time evolution of column-integrated, zonally-averaged annual amount of black carbon (left) and

sulfate (right) 1850-2100. Results for 1850-2000 are from Lamarque et al. (2010). Note different scale for

each column
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dry deposition) such that it can potentially act as a fertilizer, with an impact on vegetation in

non-agricultural areas (Holland et al. 1997; Bouwman et al. 2002; Holland et al., 2005;

Lamarque et al. 2005b; Dentener et al. 2006a; Thornton et al. 2007; Reay et al. 2008).

Everything else being equal, these additional N inputs into ecosystems can potentially lead to

an increased carbon sink (Reay et al. 2008). Sulfate deposition, on the other hand, has been

linked to a decrease in tree growth as a result of acidification (Savva and Berninger 2010).

We focus here on the analysis on land. For that purpose, we display in Table 4 the

equivalent to Table 2 (simulation S1) of Dentener et al. (2006a); our table shows the

average nitrogen deposition rate over specific region (see their definition at http://www.pbl.

nl/en/themasites/image/background/regions/index.html). A very good agreement is found

between our estimate and the multi-model mean from Dentener et al. (2006a), with

maximum values over 1,000 mg(N)/m2/year (a threshold for plant sustainability, as

described in Bobbink et al. 1998; Dentener et al. 2006a) situated mostly over Eastern

Europe and South and East Asia, reflecting patterns in regional and upwind emissions

(Lamarque et al. 2005b).

In addition, we show in Table 5 the projected evolution of nitrogen deposition (only the

total NOy+NHx is listed) to 2100. We find that many regions (in bold) are projected to

Table 4 Nitrogen deposition for present-day conditions: mg(N)/m2/year

Nitrogen deposition 2000 All land (mg(N)/m2/year) Natural vegetation (mg(N)/m2/year)

Region NOy NHx Total NOy NHx Total

Canada 108.95 94.91 203.85 123.47 95.57 219.05

USA 328.53 249.49 578.02 313.64 209.74 523.38

Mexico 214.35 214.30 428.65 222.30 211.36 433.66

C. America 117.68 97.29 214.97 115.95 92.86 208.82

Brazil 117.38 259.87 377.25 117.32 252.03 369.35

Rest of S. Amer. 96.74 179.42 276.15 103.94 198.96 302.90

N. Africa 95.64 50.01 145.65 196.37 125.13 321.51

W. Africa 215.19 204.32 419.51 291.41 293.37 584.78

E. Africa 164.30 170.68 334.98 186.80 218.46 405.26

S. Africa 160.71 154.47 315.18 168.64 166.45 335.09

W. Europe 330.22 466.61 796.82 324.37 419.53 743.89

C. Europe 500.35 569.02 1069.37 484.00 538.28 1022.29

Turkey 300.74 415.59 716.33 298.62 401.56 700.17

Ukraine 457.01 429.52 886.53 456.47 423.59 880.06

Kazakhstan area 162.23 96.82 259.05 175.06 112.20 287.26

Russia 154.17 170.18 324.35 139.79 168.96 308.75

Middle East 167.73 84.37 252.10 205.96 127.75 333.71

South Asia 334.44 686.76 1021.21 349.51 680.44 1029.95

Korea region 573.90 469.84 1043.74 570.56 465.41 1035.97

East Asia 365.79 617.20 982.99 427.86 700.39 1128.25

Southeast Asia 250.08 385.22 635.30 245.43 377.20 622.63

Indonesia 169.61 746.11 915.72 155.26 695.13 850.39

Japan 397.71 284.83 682.53 396.48 283.30 679.77

Oceania 57.76 68.58 126.35 58.10 66.79 124.90

Greenland 22.14 9.53 31.68 28.61 12.30 40.91
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experience an increase in nitrogen deposition by the end of the 21st century under the

RCP2.6 and RCP8.5, mostly related to the projected changes in NH3 emissions (related to

agricultural activities). Some regional average deposition rates are, based on our single

model projection, reaching values above 2,000 mg(N)/m2/year, comparable to rates of net N

mineralization for some ecosystems (Schlesinger 1997) .

Similarly, as can be expected from the large decrease in anthropogenic emissions of SO2,

sulfur deposition rates (Table 6) are projected to be much lower than in 2000 for all regions.

Note that our simulated rates of year 2000 sulfur deposition are in good agreement with the

results of Dentener et al. (2006a). Note that the existence of significant deposition rates at

all times over a limited number of regions (such as Japan) is a reflection of the inclusion of

natural sources of sulfur compounds such as volcanoes (Dentener et al. 2006b).

6 Discussion and conclusions

We have presented and analyzed results from a set of simulation with a comprehensive

three-dimensional chemistry-climate model. These simulations focused on the representa-

tion of short-lived radiative forcing agents (aerosols and gases) following the emissions

Table 5 Nitrogen deposition: mg(N)/m2/year. Bold indicates increase between 2000 and 2100

2000 RCP2.6 2100 RCP4.5 2100 RCP6 2100 RCP8.5 2100

Canada 203.85 141.13 137.63 172.87 194.49

USA 578.02 446.66 441.58 438.26 612.83

Mexico 428.65 543.73 381.65 418.15 592.31

C. America 214.97 318.33 218.42 287.59 277.41

Brazil 377.25 464.68 315.65 481.35 555.85

Rest of S. Amer. 276.15 407.72 266.26 405.47 412.57

N. Africa 145.65 123.24 116.37 156.86 193.05

W. Africa 419.51 575.14 460.10 535.81 640.15

E. Africa 334.98 547.05 393.98 497.43 690.00

S. Africa 315.18 445.68 265.85 358.93 536.28

W. Europe 796.82 498.70 530.31 961.26 750.74

C. Europe 1,069.37 784.16 641.84 1,063.87 1,524.25

Turkey 716.33 627.02 638.63 744.70 725.73

Ukraine 886.53 683.33 436.92 800.88 1,296.48

Kazakhstan area 259.05 369.39 179.50 184.61 298.50

Russia 324.35 225.96 199.69 233.75 345.72

Middle East 252.10 294.48 201.71 286.31 403.22

South Asia 1,021.21 2,189.30 1,414.41 1,531.02 1,750.92

Korea region 1,043.74 1,080.09 865.16 941.03 1,009.24

East Asia 982.99 1,341.66 889.06 1219.83 1,094.84

Southeast Asia 635.30 910.77 582.23 601.82 823.77

Indonesia 915.72 990.67 305.86 1,011.67 537.69

Japan 682.53 444.00 406.94 511.41 745.57

Oceania 126.35 144.46 125.82 139.80 165.77

Greenland 31.68 11.81 16.92 15.33 25.26
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from the recently developed Representative Concentration Pathways (RCPs). These

projections will be used in a number of research activities that will be assessed in the

Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report.

Using a set of observations representative of present-day conditions, we have shown that

the model forced by the 2000 emissions provides a reasonable representation of

atmospheric composition. In addition, we have shown that the model response to the

20th century emissions (Lamarque et al. 2010) is in agreement with previously published

estimates of ozone and aerosol radiative forcings (except for a low black carbon radiative

forcing); note that this can of course only ensure consistency with previous studies and may

not reflect the real value of the specific quantity discussed. Based on this positive

evaluation, we have documented and discussed projections for ozone (tropospheric and

stratospheric), tropospheric aerosols and deposition (nitrogen and sulfate). In particular, we

have shown that the tropospheric ozone radiative forcing by 2100 will vary strongly

between RCPs, a consequence of the variations in precursor emissions and methane

concentrations (Meinshausen et al. 2011). In that calculation, we have also shown that the

tropospheric ozone radiative forcing estimate from MAGICC is underestimated for RCP8.5,

most likely from a lack of representation of the stratospheric circulation changes under a

high-CO2 scenario. The projections of aerosol loading are quite similar amongst RCPs,

Table 6 Sulfur deposition: mg(S)/m2/year

2000 2100 RCP2.6 2100 RCP4.5 2100 RCP6 2100 RCP8.5

Canada 155.5 20.7 31.3 24.6 34.1

USA 473.2 36.9 63.0 40.2 51.6

Mexico 421.5 65.4 114.0 64.4 82.9

C. America 185.0 88.5 105.2 89.8 80.9

Brazil 113.5 47.7 63.2 57.1 65.9

Rest of S. Amer. 150.9 84.9 94.9 109.1 108.4

N. Africa 106.3 28.7 73.4 52.6 45.3

W. Africa 135.8 101.9 110.4 78.8 120.2

E. Africa 133.8 67.3 88.2 65.7 94.7

S. Africa 145.9 159.7 77.7 58.8 122.3

W. Europe 480.3 72.3 113.5 83.0 82.8

C. Europe 993.8 93.7 164.8 112.3 109.3

Turkey 684.0 128.0 181.6 106.4 117.4

Ukraine 823.3 69.7 131.1 87.9 91.1

Kazakhstan area 241.7 31.1 51.5 43.3 86.0

Russia 212.1 34.8 45.4 42.6 55.2

Middle East 269.7 39.6 64.7 78.9 138.4

South Asia 415.8 75.3 157.0 255.4 292.7

Korea region 1,164.9 223.3 247.0 278.9 279.2

East Asia 669.9 68.2 93.3 167.2 113.6

Southeast Asia 363.9 111.4 123.7 219.2 158.7

Indonesia 389.2 291.3 247.9 326.4 244.6

Japan 1,024.3 531.6 541.5 564.8 564.5

Oceania 117.6 54.3 76.5 60.8 62.7

Greenland 34.9 10.9 12.3 11.5 13.1
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except for NH3, which acquires in RCP2.6 and RCP8.5 a relatively more prominent role,

especially with respect to nitrogen deposition. Projected nitrogen deposition in RCP2.6 and

RCP8.5 shows increase in a number of regions around the globe. It is however important to

note that these estimates could be very model-dependent due to the inherent difficulties in

modeling ammonia chemistry (this system is quite sensitive to the ratio of sulfate and

ammonium/ammonia, with ammonium nitrate formation promoted when all sulfate is

neutralized) and its deposition, mostly through precipitation processes.

Contrary to projections under the SRES A2x scenario (Prather et al. 2003), the emissions

provided by the RCPs lead to surface ozone projections for 2100 that signal improvements

over present-day conditions. In particular, at least in a zonal-average sense, surface ozone is

projected to worsen little, if not improve, over the 2000 conditions, even in the RCP8.5

projection. It is clear however that more analysis of the specific conditions under which high-

pollution events occur is needed to fully identify the projected pollution regimes in 2100.

Beyond the points mentioned above, the application of the RCP emissions as discussed

in this paper have by design (e.g., use of prescribed sea-surface temperatures or CO2 and

CH4 concentrations) or by lack of process representation (e.g. carbon cycle or wetland

emissions) ignored some potentially strong feedbacks between various portions of the Earth

system. In particular, the importance of considering SRES-generated sea-surface temperatures

remains to be discussed. Similarly, the RCP emission projections provide a new paradigm under

which existing simple estimating formulas (such as in MAGICC) for concentrations and/or

radiative forcings likely need to be revisited.
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