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Abstract
The role of gut microbiota in humans is of great interest, and metagenomics provided the possibilities for
extensively analysing bacterial diversity in health and disease. Here we explored the human gut
microbiome samples across 19 countries, performing compositional, functional and integrative analysis.
To complement these data and analyse the stability of the microbiome, we followed 86 healthy Swedish
individuals over one year, with four sampling times and extensive clinical phenotyping. The integrative
analysis of temporal microbiome changes shows the existence of two types of species with a tendency
to vary in abundance with time, here called out�ow and in�ow species. Importantly, the former tends to be
enriched in disease, while the latter is enriched in health. We suggest that the decrease of disease-
associated out�ow and the increase of health-associated in�ow species with time may be a fundamental
albeit previously unrecognized aspect of the homeostasis maintenance in a healthy microbiome.

Introduction
Metagenomic studies of the human microbiome enable the characterization of the microbial and
functional diversity in health and disease1. Advances in metagenome assembly and various clustering
methods enabled the generation of metagenome species2-6. Most of these studies focused on unveiling
new uncultured genomes, while only few focused on investigating the functional potentials and dynamic
changes of the gut microbiome7-9. Understanding the functional and temporal behaviour of the
microbiome may have great implications for the identi�cation of its global signature in health and
disease10-12. Additionally, short-term perturbations may trigger gut microbiota dysbiosis and changes at
compositional and functional levels. Speci�cally, the negative selective microbe-microbe and host-
microbe interactions, in the context of metabolism or antimicrobial machinery, could be the main
mechanism underlying microbial dysbiosis13. Large-scale integration of microbiome functional changes
and their associations with clinical data may provide novel information on temporal changes in the
microbiome and host physiology14.

Herein, we integrated publicly available data from a large number of studies across different countries
from healthy and diseased individuals. The analysis is presented in an open-access Human Gut
Microbiome Atlas (www.microbiomeatlas.org), allowing researchers to explore for the �rst time an
integrative analysis on composition, functional, richness, diseases and region signatures for the gut
microbiota across 19 geographical regions and 20 diseases. This analysis was followed by investigating
the gut microbiome of healthy Swedish individuals with four times sampling across one year to study the
longitudinal variability of the microbiota. This revealed the tendency of disease-associated species to
decrease in abundance. In contrast, the health-associated species tended to increase in abundance. We
suggest that this dynamic contributes to the maintenance of gut microbial homeostasis in healthy
individuals. These �ndings were further validated by follow up sampling from same cohort with
additional two time points across 6 months.
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Human Gut Microbiome Atlas; Pan-metagenomics study on compositional and functional changes of
human gut microbiome

We performed large-scale integrative analysis of 4,880 publicly available shotgun metagenomics stool
samples, with at least 10 million high-quality sequencing reads from healthy and diseased cohorts from
19 different countries across �ve continents (Fig. 1a-b and Supplementary Table S1). We rare�ed all
metagenomic samples into 10 million reads per sample, which enable comparative analysis across
different cohorts. We created the Human Gut Microbiome Atlas (HGMA) using quantitative analysis of
shotgun metagenomics based on microbial genomes assembled using Metagenomic Species Pan-
genomes (MSPs) (Fig. 1c). The MSP number was increased from 1,661 (previous release5) to 1,989
(average number of genes 1,894 ± 1,616) (Methods), and their taxonomy was updated. We generated
gene counts and MSP abundances for all the samples using the 10.4 million gene catalogue15. We also
characterized the functions and phenotype of the MSPs in 7 different categories (KO, PFAM, CAZyme,
Mustard, JGI-GOLD phenotype, PATRIC virulence factor, and antiSMASH biosynthetic gene clusters) and
identi�ed co-conserved functional clusters across species (7,763 clusters) (Methods). This information
was completed with 344 newly sequenced longitudinal samples from 86 Swedish individuals, described
in detail in a subsequent section (Fig. 1d). All the data are freely available in the HGMA, without
restrictions, in the public open access database (www.microbiomeatlas.org) that is part of the Human
Protein Atlas program (https://www.proteinatlas.org). All MSPs and functions are highlighted together
with the 5,224 samples across 19 countries with disease and healthy cohorts.

Using the 3,039 samples obtained from healthy individuals across 18 countries, including westernized
and non-westernized regions, we uncovered the geographical distribution of the healthy gut microbiome.
To this end, we applied the unsupervised clustering method, monocle, to MSP abundance pro�les of the
3,039 samples (Methods)16,17. We observed that there were two distinct ordinations of non-westernized
and European samples of healthy subjects (Fig. 1e and Supplementary Fig. 1). Based on comparative
analysis across different regions, we also identi�ed 783 MSPs speci�cally enriched in certain countries
(See Methods, Extended Fig 1a-d, Supplementary Fig. 2 and Supplementary Table S2). Functional
annotation-based analysis across geographical clusters, revealed an enrichment of CAZymes for
degrading host mucins and storage carbohydrates in westernized population, where antimicrobial
resistance (AMR) and virulence factors were also more prevalent (Fig. 1f). Comparison of functions of
region-enriched MSPs in European countries and in US/China/Japan revealed that fosfomycin and
aminoglycoside resistance were the signi�cant AMR, as deduced from the explained variances of ANOVA
(Methods). Among the biosynthetic genes encoding the production of secondary metabolites, resorcinol,
lanthipeptide, bacteriocin and homoserine lactone were enriched in the European and US/China/Japan
populations. These secondary metabolites, together with AMR, appeared to be the key feature in the
westernized countries. 

To distinguish diseased and healthy microbiome from multiple cohorts, we performed a pan-
metagenomics association study (Pan-MGAS) of multiple disease cohorts (18 diseases across 28
cohorts from 11 westernized countries). We determined the enriched and depleted species in diseased

https://www.proteinatlas.org/
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compared to healthy control samples, with an effect size > 0.3 (Fig. 1g and Supplementary Table S3).
Speci�c species were either enriched or depleted in a certain disease(s), regardless of geographical
differences. For instance, in individuals with fatty liver disease, Gordonibacter urolithinfaciens and
Allisonella histaminifomans were depleted and enriched, respectively. We also found that species
associated with low gene richness18, such as Clostridium bolteae, were enriched in several diseases.
Similarly, Parvimonas micra was enriched in colorectal cancers, regardless of geographical differences.
Furthermore, Akkermansia muciniphila was often depleted in several diseases. A. muciniphila is
associated with improved intestinal barrier function and its depletion suggests intestinal barrier
disruption in these different diseases19. The analysis of the frequency of the enriched/depleted MSPs
among diseased cohorts showed that there were common species that could initially disrupt the
microbiome balance and cause gut dysbiosis or foster microbial symbiosis that promotes health (top-left
and top-right boxes in Fig. 1h, Supplementary Table S4).

Interestingly, we observed that MSPs commonly depleted in diseases were highly country-speci�c, while
commonly enriched MSPs were usually shared by several diseases and were less related to geographical
origins (Extended Fig. 1e-i and Supplementary Table S4). Moreover, we observed that MSPs commonly
enriched or depleted in diseases were associated with different temporal behaviours among healthy
individuals, as detailed in the following sections.

Dynamic changes of gut microbiome composition; in�ow and out�ow species

We investigated the temporal changes in microbiome composition at the individual level by applying
Markov chain models (MCMs) to the MSPs identi�ed in the longitudinal cohort of 86 healthy Swedes
(Methods). This analysis enabled us to estimate the transition probability of individual MSPs from
presence to absence (out�ow probability) and vice versa (in�ow probability) across different sampling
times. We identi�ed two groups of MSPs preferably transiting from presence to absence or from absence
to presence; for brevity, we term them “out�ow species (OFS)” and “in�ow species (IFS)” respectively (Fig.
2a, Extended Fig. 2a-f, Supplementary Table S5). Clearly, declaring a species absent or present depends
on the detection threshold, which is in turn determined by sequencing depth. We performed the analysis
at three depth levels for 15, 10, and 5 million reads, and observed largely concordant results (Extended
Fig. 3). For instance, 35 IFS (90%) were detected at both 10 and 15 million reads levels, while 4 and 6
species were detected only at former and latter, respectively. Similar results were observed for OFS: 447
(88%) were detected at both levels, while 62 and 27 species were detected at 10 and 15 million reads only.
Overall, in�ow and out�ow probabilities were highly correlated at three different depth levels, with a slight
reduction for out�ows at 5 million reads (Supplementary Table S5).

To determine the robustness of these �ndings, we compared species-retaining probability (Kaplan-Meier
estimates) with out�ow probability, expected to be inversely proportional (Extended Fig. 4a and Methods).
We observed that the species that had lower out�ow probability, such as Bacteroides vulgatus and
Prevotella copri, indeed had the highest retaining probability, whereas those of higher out�ow probability
(e.g. Veillonella infantium and Streptococcus parasanguinis) had reduced retaining probability. The
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species retaining probabilities were correlated with their mean abundance (Extended Fig. 4b), even if the
associations did not appear signi�cant for any individual species based on Cox regression (p-values >
0.1, Extended Fig. 4c).

We observed that the changes of OFS abundances among 86 individuals (ΔOFS) were inversely correlated
with those of IFS (ΔIFS), i.e. suggesting competition between IFS and OFS (Spearman’s correlation =

-0.334, p-value = 4.6 × 10-8; Fig. 2b-c, Extended Fig. 2g). A higher abundance of OFS increased the gut
microbiome imbalance between different visits, as the similarity of the gut microbiome compositions
between the visits was decreased in 31 OFS-enriched individuals compared to 37 OFS-depleted
individuals (Wilcoxon one-sided test p-value < 0.01; Fig. 2d). IFS-enriched individuals maintained their gut
microbial composition such that it was similar between different time points (Extended Fig. 2h).
Interestingly, increasing abundance of IFS was associated with increasing gene richness, known to be
related to better health18, suggesting that IFS may be bene�cial (Spearman’s correlation = 0.206, p-value =
9.0 × 10-4; Fig. 2e and Extended Fig. 2i).

We hypothesised that IFS and OFS may differ in their growth rates, the former outgrowing the latter, and
tested this hypothesis in three ways. First, we estimated species growth rates from metagenomic
samples by Growth Rate InDex (GRiD) analysis 20 (Methods). For that, we strati�ed individuals into
groups, enriched in IFS or OFS and found that in both groups GRiD scores of IFS were higher than OFS;
they were the highest among IFS-enriched group (Fig. 2f-g). Second, we assessed species growth rates in
bioreactors inoculated with healthy human stool samples, via GRiD analysis (Fig. 2h-i, Methods). We
observed that the growth of IFS increased signi�cantly over 24 hours, whereas that of OFS did not
change, demonstrating that IFS could outgrow the OFS. Third, we used genome scale modelling to
simulate species growth rates21-24 (Methods) on four different putative diets (high �bre and high protein
for plant- and animal-based diets) for highly prevalent 34 OFS and 30 IFS. The predicted growth rates of
the IFS were signi�cantly higher than of OFS (Fig. 2j-k, Supplementary Table S6). Furthermore, the
reaction essentiality analysis indicated that the out�ow GEMs were signi�cantly dependent on the
substrate, often displaying amino acid auxotrophy (Supplementary Figure 3 and 4). We suggest that the
differences in growth rates and substrate dependence between IFS and OFS could underlie the
directionality of the gut microbiome dynamics we report.

To test whether the in�ow and out�ow assignments of species deduced from the analysis of the four
time points in our cohort persist over time, we collected and analysed two additional time points with 6
months intervals from the same individuals (Fig. 2l-m). Furthermore, to examine whether the assignments
de�ned from a Swedish study are also found in other, geographically different regions, we analysed two
publicly available cohorts, from Italy and US9,25(Fig. 2n-q). In all cases, for both IFS and OFS, the
transition probabilities were well correlated with those found for the �rst time points of our longitudinal
cohort (Spearman's correlation coe�cients > 0.56) for all comparisons). We conclude that IFS and OFS
are largely conserved and are thus a global feature of the human gut microbiome.

Enrichment of IFS and OFS species determines richness, dysbiosis, and host physiology
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To further explore links between gene richness and IFS and OFS, we determined the gene richness
distribution of HGMA samples and grouped healthy samples as either high or low gene richness (HGR
and LGR) based on the top and bottom 25% gene counts of HGMA samples, respectively (Extended Fig.
5a-c). We then identi�ed species enriched in HGR and LGR by comparing MSP abundances: total 759
MSPs were enriched in HGR and 95 MSPs were enriched in LGR (|Log2 fold change| > 2, Wilcoxon rank

two-sided test adjusted p-value < 10-3) (Supplementary Table S7). Interestingly, LGR-enriched MSPs were
signi�cantly enriched in OFS (i.e. higher out�ow probability), while no enrichment was observed for HGR-
enriched MSPs (Fig. 3a-b). Low gene richness was previously associated with a risk of developing
chronic diseases related to the metabolic syndrome; the enrichment of disease associated OFS in LGR
individuals was thus coherent with that observation18. We observed similar species enriched with low
gene richness and associations with metabolic phenotypes (Extended Fig. 5d).

To investigate the impacts of IFS and OFS species on host physiology, we next examined the association
of IFS and OFS with clinical parameters among healthy individuals (Supplementary Table S8). We traced
the changes in 40 clinical parameters of 86 Swedish individuals (Supplementary Table S9) and linked
them with the abundances of IFS and OFS species using linear mixed effect models (Methods). We found
that IFS abundances were associated with muscle composition (p-value = 0.018, Fig. 3c), thus showing
associations with microbial core metabolism such as amino acid metabolism, whereas OFS abundances
were associated with a more diverse spectrum of clinical parameters, such as blood glucose, urate, B-type
natriuretic peptide (BNP), ApoA1, and erythrocyte particles (p-value < 0.05). Interestingly, the OFS
abundances were positively associated with BNP as a key heart failure marker (Extended Fig. 6c-g,
Supplementary Table 10). 

Next, we associated the common depleted and enriched species in diseases (Fig. 1h), from Pan-MGAS
analysis of 18 diseases, to the IFS and OFS. The commonly depleted MSPs had a greater tendency to be
IFS (Fig. 4a-b). On the contrary, the commonly enriched species (top-right, Fig. 1h) were likely to be OFS,
compared to the depleted species across all diseases. Out of the 23 commonly enriched species in
diseases (enriched in at least 3 different disease cohorts), 14 (61%) were OFS species, signi�cantly more
than the OFSs species within all species detected in the cohorts (36%) (Chi-square test, p-value = 0.015,
Supplementary Table S4). In addition, among the 14 OFS species, 5 (36%) were opportunistic pathogens
reported previously 26 (Chi-square test, p-value = 10-9). These observations support the view of
microbiome dynamics lowering the abundance of potentially harmful species in healthy adults.

Functional understanding of region-enriched species, IFS and OFS

Our functional analysis indicated that the IFS species were enriched in core metabolism, essential for
energy homeostasis and for biosynthesis of macromolecules (i.e., amino acids, carbohydrates and fatty
acids; Fig. 4c and Supplementary Table S11 and S12, Methods). They were also enriched in: (i) processes
associated with increased survival, such as sporulation, cobalamin biosynthesis (CobS), and
sirohydrochlorin cobaltochelatase (CbiK); (ii) secondary metabolites (bacteriocin); (iii) proteins related to
starch and plant-based �bre use (CAZymes GT5, GH13, GH51); (iv) anaerobic phenotypes
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(Supplementary Table S11). By contrast, the OFS species were enriched in accessory metabolism, such
as biodegradation of xenobiotics (benzene, toluene, ethylbenzene, and xylenes - BTEX), paralleled by that
of ABC transporters, possibly involved in the import of xenobiotics, suggesting that exposure to pollutants
may promote their appearance (Fig. 4d, Extended Fig. 6a-b, and Supplementary Table S11). They were
also enriched in (i) active sugar transport (i.e., phosphotransferase system (PTS); (ii) virulence factors
(VFs) and trigger factors; (iii) putative competence protein ComGF and type IV secretion systems, the
latter two being important mechanisms for horizontal gene transfer27. Finally, those microbes tended to
be facultative anaerobes and microaerophiles.

Out�ow enriched-functional clusters showed distinct links to gut microbiome dysbiosis

            To better understand potential impact of IFS and OFS at the functional module level, we identi�ed
co-conserved functional clusters of microbiome by applying an unsupervised clustering approach on
MSPs (Fig. 4e, Extended Fig. 7 and Methods). This analysis provided a better representation of microbial
functions than single annotations or known pathway de�nitions (e.g. KEGG) (Extended Fig. 8). From the
community detection algorithm, we identi�ed 7,763 functional clusters, 6,297 singletons, and 591
representative clusters (Methods, Supplementary Table 13). For example, antimicrobial resistance and
secondary biosynthetic genes were found to be singletons and not co-conserved with other functional
genes. After excluding singletons and unreliable functional clusters detected in less than three species,
we retained 591 representative clusters of microbial functions. One of the two largest clusters (CL-12 in
Supplementary Table 13, named “comm-cluster” herewith) was over-represented among many
commensal species, while the other (CL-10, named “patho-cluster”) was enriched in a few pathobionts,
such as Klebsiella spp., Enterobacter spp., and E. coli. Interestingly, the comm-cluster was enriched with
genes involved in the biosynthesis of amino acids indicative of functions enriched in IFS species. In
contrast, the patho-cluster was enriched in functions associated with the uptake of several substrates,
again indicative of transporters enriched in OFS species. These included siderophore, ion, amino acid,
and vitamin transport, thus competing with host and commensal bacteria. We also found other enriched-
functional clusters, such as butyrate metabolism, propionate metabolism, vitamin B12, coenzyme
metabolism, chemotaxis, ATPase, and mobile genetic elements (i.e., integrase and transposase) and the
CRISPR-cas system (Fig. 4e); a number of these were correlated with phylum-level taxonomy (Extended
Fig. 7c).

We next projected the functional clusters on enriched/depleted MSPs in HGMA disease cohorts (Fig. 4f
and Supplementary Fig. 5: hypergeometric tests, p-value < 10-3). We found that many of disease-enriched
functional clusters were enriched in the OFS species, for example, isoprenoid biosynthesis, competence
proteins for DNA  transformation, key signatures of OFS species, virulence factors, and nutrient uptake
(e.g. ascorbate and mannose). It has been previously shown that isoprenoid biosynthesis initiates the
majority of secondary metabolism28. However, we found a few functional clusters associated with
species depleted in diseases, such as the CRISPR-cas system (i.e., the bacterial immune system) and
teichoic acid transport.
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Discussion
We have performed a comprehensive integrative analysis of global and temporal gut microbiomes, and
we provide an open access HMGA portal (http://microbiomeatlas.org). Con�rming previous
observations29, we have described the gut microbiome regional speci�city, which needs to be taken into
account before using the gut microbiome for the strati�cation of patients or for designing intervention
studies. Beyond previous observations, our function-based analysis indicates that the western-enriched
bacteria might dominate the gut microbial community with the production of antimicrobial peptides and
homoserine lactone, which may inhibit their competitors.

Previous studies reported the temporal stability of the gut microbiome composition in an individual7–9,
implying oscillations around an average value. Our integrative analysis of temporal microbiome changes
in a longitudinal study of healthy individuals has shown the existence of directionality of compositional
variations: there are two types of species with a tendency to either increase or decrease in abundance
with time, termed in�ow or out�ow species, respectively. Importantly, out�ow species include most of the
known opportunistic pathogens, while in�ow species are essentially devoid of them. Remarkably, our
function-based analysis indicates that out�ow species might have a negative impact on host physiology,
as they have enriched accessory metabolism and secretion of virulence factors. Most interestingly,
out�ow species tend to be enriched in different diseases while, in contrast, the in�ow ones tend to be
enriched in healthy individuals. We suggest that the tendency for the former to decrease and the latter to
increase in healthy individuals is a previously unrecognized facet of the gut microbiome homeostasis.

The out�ow species tend to be facultative anaerobes and to have an oral origin (e.g., Streptococcus spp.).
This observation suggests an increase in oral microbial transmission to the gut, possibly due to a
decrease in gut microbiome resilience. Enrichment of oral species in the gut has been observed in several
diseases30,31, and we suggest that increased mouth to gut microbial �ow could be one of the global
features of dysbiosis.

We have described the temporal dynamics of the gut microbiome through the discovery of out�ow and
in�ow species. The enrichment of in�ow species in healthy populations could possibly be due to their
involvement in the storage carbohydrate degradation, such as starch and �bre, accounting for their higher
persistence. We consider two mechanisms of out�ow species enrichment in disease. First, the out�ow
species were enriched in competence mechanisms, facilitating import of genetic elements such as AMR,
possibly conferring selective advantage in the gut. Enrichment of drug e�ux mechanisms in out�ow
species might also confer resistance to antibiotics and other medications used in disease treatments.
Second, the out�ow species may plunder nutrient uptake from the host and utilize simple
monosaccharides to increase their abundance. Metabolic modelling indicates that IFS are favoured by
common diets. It is known that short-chain fatty acids (SCFAs) have an important impact on microbe-
microbe interactions and host physiology. However, we also observed that the comm-cluster that
comprises the biosynthesis of amino acids and folate metabolism may have a larger impact on the
resilience of the gut microbiome and host physiology. We observed that the enrichment of the patho-
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cluster could gradually or instantly perturb the gut ecosystem and shift it to either short-term gut
imbalance or a persistent dysbiotic state.

Finally, the integration of metagenomics data from a large number of studies spanning �ve continents
provides valuable knowledge for researchers interested in the impact of the microbiome on individual
health parameters. The open-access atlas will be updated routinely with the new publicly available gut
metagenomics data, including the recently announced one million microbiome project aimed at providing
comprehensive open-access metagenomics data from multiple research centres. In this manner, in-depth
analysis of the impact of the gut microbiome on health and disease will be used to facilitate future
studies to reveal the key role of the gut microbiome in human maintaining health.

Methods
Metagenomics species pan-genome (MSP) creation

1601 metagenomic samples used to build the Integrated Gene Catalog of the human gut microbiome
(IGC2) were downloaded from the European Nucleotide Archive. Using the Meteor software suite1, reads
from each sample were mapped against the IGC2 catalog and a raw gene abundance table was
generated. This table was submitted to MSPminer2 that reconstituted 1,989 clusters of co-abundant
genes named Metagenomic-Species Pangenomes (MSPs). Quality control of each MSP was manually
performed by visualizing heatmaps representative of the normalized gene abundance pro�les. In
addition, MSPs completeness and contamination was assessed by searching for 40 universal single copy
marker genes3 and by checking taxonomic homogeneity.

MSP taxonomic annotation with phylogenetic tree

MSPs taxonomic annotation was performed by aligning all core and accessory genes against nt and
NCBI WGS (version of September 2018 restricted to the taxa Bacteria, Archaea, Fungi, Viruses and
Blastocystis) using blastn (version 2.7.1, task = megablast, word_size = 16)4. The 20 best hits for each
gene were kept. A species-level assignment was given if  more than 50% of the genes matched the
RefSeq reference genome of a given species, with a mean identity ≥ 95% and mean gene length coverage≥ 90%. The remaining MSPs were assigned to a higher taxonomic level (genus to superkingdom), if more
than 50% of their genes had the same annotation.

40 universal phylogenetic markers genes were extracted from the MSPs with5. MSPs with less than 5
markers were discarded. Then, the markers were separately aligned with MUSCLE6. The 40 alignments
were merged and trimmed with trimAl7. Finally, the phylogenetic tree was computed with FastTreeMP8

and visualized with iTOL9.

Phylogenetic placement was further used to improve and correct taxonomic annotation.

Wellness study population, sample collection, extraction, library prep and sequencing
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The wellness study is an ongoing prospective cohort study based on the Swedish CArdioPulmonary
bioImage Study (SCAPIS) with 30,154 individuals enrolled at ages between 50 and 64 years recruited
from random sampling of the general Swedish population. A total of 101 healthy individuals were
recruited in the study and followed longitudinally for two years. Examinations in SCAPIS include imaging
to assess coronary and carotid atherosclerosis, clinical chemistry, anthropometry, and extensive
questionnaires, as previously described10. All participants provided written informed consent. The study
protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki.

Total genomic DNA was isolated from 100-120 mg of faces using a repeated bead beating method.
Brie�y, faces samples were placed in Lysing Matrix E tubes (MP Biomedicals) and extracted twice in lysis
buffer (4% w/v SDS; 500 mmol/L NaCl; 50 mmol/L EDTA; 50 mmol/L Tris·HCl; pH 8) with bead beating at
5.0 m/s for 60 s in a FastPrep®-24 Instrument (MP Biomedicals). After each bead-beating cycle, samples
were heated at 95ºC for 5 min and then centrifuged at full speed for 5 min at 4ºC. Supernatants from the
two extractions were pooled and a 600 μL aliquot from each sample was puri�ed using the QIAamp DNA
Mini kit (QIAGEN) in the QIAcube (QIAGEN) instrument using the procedure for human DNA analysis.
Samples were eluted in 200 μL of AE buffer (10 mmol/L Tris·Cl; 0.5 mmol/L EDTA; pH 9.0).. 1 ug of
extracted DNA from each faeces sample were prepared for sequencing using Illumina TruSeq DNA PCR-
Free sample prep kit and sequenced paired-end, 125bp on an Illumina HiSeq 2500 sequencer.

Functional annotation of the gut gene catalog and MSP

IGC2 catalog was annotated for the Antibiotic Resistant Determinants (ARD) described in Mustard
database (v1.0) (http://www.mgps.eu/Mustard/)11. Protein sequences were aligned against 9,462 ARD
sequences using blastp 2.7.1+ (option -evalue = 10-5). Best-hit alignments were �ltered for identity ≥ 95%
and bidirectional alignment coverage ≥ 90% (at query and subject level), giving a list of ARD candidates
belonging to 30 families. Annotation of the carbohydrate-active enzymes (CAZymes) of the IGC2 catalog
was performed by comparing the predicted protein sequences to those in the CAZy database and to
Hidden Markov Models (HMMs) built from each CAZy family12, following a procedure previously
described for other metagenomics analysis13. Proteins of IGC2 catalog were also annotated to KEGG
orthologous using Diamond (version 0.9.22.123)14 against KEGG database (version 82). Best-hit
alignments with e-value ≤ 10-5 and bit score ≥ 60 were considered. Proteins involved in virulence factors
of PATRIC15,16 were matched against IGC217 by BLASTP (best identity > 50%, e-value < 10-10). Phenotype
of MSP were manually checked and annotated based on JGI-GOLD phenotype (organism metadata)18.
We identi�ed biosynthetic genes of MSP with the use of standalone anti-SMASH program with minimal
run option, focused on core detection modules (version 5)19. Loading antiSMASH into Amazon cloud
computing (AWS) as docker image, we executed its mining process per MSP in a massive parallel setting.

Quality control/normalization of gene counts and species abundance pro�ling

We �ltered out human reads and then mapped metagenomic data (Supplementary Table 1) on IGC2
catalogue of human gut metagenome by METEOR1 and based on the aligned reads, we estimated the
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abundance of each reference gene of the catalogue, normalizing multiple mapped reads by their numbers
and summing up normalized counts for a given gene. Reducing the variability by sequencing depths,
gene count values were downsized into 10 million reads per sample; and any samples less than 10
million mapped reads were excluded from our dataset. Normalized gene counts were used for the
quanti�cation of MSP abundance by R momr (MetaOMineR) package20,21. MSP abundances were
estimated by the median abundance of the 25 marker genes representing the robust centroid of gene
clusters of MSP. Sample metadata of all metagenomics data such as sequencing platform, geography,
age, body-mass index, gender and the data source were provided under HGMA
(http://microbiomeatlas.org).

Tracing the diversi�cations of healthy metagenomic samples of different geography

After the quanti�cation and per-million scaling of MSP abundance pro�les, we employed trajectory
analysis in R monocle ver.2 package to identify how samples were clustered22. In short, we selected the
species pro�les of all normal samples from different geographical origins and reduced the sample
pro�les into two dimensions by advanced nonlinear reconstruction algorithm, DDRTree. Based on the
reduced two-dimensional components, we presented how samples were closely clustered as branches in
scatter plots. Based on reduced pro�les, we also calculated centroids and standard deviations of samples
of given countries, except Finland population in toddlers (2 years).

Identi�cation of region-enriched species from geographically distinct cohorts

We selected healthy samples of 17 countries after excluding matched controls of two-year old subjects of
Finland T1D cohort and redundant samples of subjects with multiple measurements (i.e. multiple visits).
Among 17 countries, we estimated effect sizes for Wilcoxon signed rank (one-sided) tests23 of different
MSP abundances of two different countries. As one-sided tests were used, we set the lower bound of
effect sizes as zero and the upper bound of effect sizes as one, avoiding negative and in�nite values.
Based on estimated effect sizes, we identi�ed signi�cantly enriched species having medium effect sizes
of speci�c country (effect size ≥ 0.3), compared to six or more countries, and de�ned those species as
“region-enriched” species.

Next we categories species if enriched in 1) European countries, 2) non-westernized countries, and 3)
China/Japan/US and identi�ed contrasted functions among those three clusters of countries by
multivariate regressions as follows:

Yi = Ei βEi + Ni βNi + Ci βCi + ϵ
where Yi indicates a function regard to species i like CAZyme, antibiotics resistance, anti-SMASH, and
virulence factor (if a given function exists in species i, Yi =1, otherwise Yi = 0), ϵ indicates an intercept,

βEi
2, βNi

2, and βCi
2 are regression coe�cients for Ei, Ni, and Ci, respectively and Ei, Ni, and Ci are categorial

variables that indicate the region-enrichment of species i:
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Ei = 1 if i ∊ species enriched in any of European countries, otherwise Ei = 0

Ni = 1 if i ∊ species enriched in any of non-westernized countries, otherwise Ni = 0

Ci = 1 if i ∊ species enriched in China, Japan, or US, otherwise, Ci = 0)

Functions signi�cantly associated with enrichment of any of three geographical clusters were identi�ed
based on F-tests of regressions (p-value < 0.01; βEi, βNi, βCi > 0) and quaternary plots were shown based

on squared regression coe�cients (βEi
2, βNi

2, βCi
2) normalized by their total sum.

Modelling temporal changes of normal gut microbiota during a year

First, we chose samples with sequential visits of given subjects and counted presence/absence of all
MSPs detected in samples. To decide detection limit here, we �tted all non-zero abundance of MSPs into
gamma distribution after per-million scaling and log2-transformation using R �tdistrplus package. Based
on estimated shape and rate parameters from �tted gamma distribution, we counted species presence
only when its abundance exceeded a percentile (>1%) based on the gamma distribution.
Presence/absence pro�les were �tted into two-state Markov chain model (i.e. states of presence and
absence) to estimate state transition probabilities between presence and absence (R markovchain
package). We did not include species of 100% prevalence, i.e., Blautia wexlerae (msp_0076) to Markov
chain model. Here we estimated in�ow probability of state transition from absence to presence, and
out�ow probability of state transition from presence to absence. For the estimation of species-retaining
probabilities, we modeled presence/absence pro�les as “events” and estimated the retaining probability
from the survival rates of Kaplan Meier estimates using R survival and survminer packages.

For the validation of in�ow and out�ow from same Swedish wellness cohort, we additionally followed the
two more visits (by every three months) and processed metagenomics data of 67 subjects (134 samples)
after excluding subjects of missing visits and low sequencing depth less than 10 million reads. For the
validation of in�ow and out�ow from independent cohorts, we processed metagenomics data from Italy
(DINAMIC cohort) and US (HPFS cohort) after excluding subjects of missing visits and low sequencing
depth less than 10 million reads. In HPFS cohort, we only took six-months interval samples of individuals,
excluding one-day interval samples. We counted presence/absence of MSPs from the abundance pro�les
in a similar way of calculation in Swedish wellness cohort, and calculated state transition probabilities
between presence and absence (i.e. in�ow and out�ow) after �tting presence/absence pro�les into two-
state Markov chain model.

Based on estimated in�ow and out�ow probabilities, we identi�ed IFS (Pin�ow > 0.3, and Pout�ow < 0.3)
and OFS (Pout�ow > 0.3 and Pin�ow < 0.3) and calculated scaled abundance of IFS (ZIFS) and OFS
populations (ZOFS) like below.
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where i is a given MSP belonging to IFS or OFS, Ai is the abundance of species i, ui is mean abundance of
species i over all wellness cohort samples (344 samples), σi is the standard deviation of species i over all
wellness cohort samples, j is a given sample of wellness cohort, and n is the total number of IFS or OFS.
Based on scaled abundance of single MSP (zij), we calculated the aggregated z-score of all IFS species
and OFS species (ZIFS and ZOFS, respectively) by summing scaled MSP abundance for n species, where

ZIFS and ZOFS follows standard normal distribution, independent of n value24.

Microbial functions associated with IFS and OFS

In�ow/out�ow scores of MSPs were tested their associations with function/phenotype annotations of
given MSPs (i.e. presence/absence of functions) using univariate linear regressions. We selected
signi�cant associations of microbial functions to in�ow/out�ow scores when adjusted p-values of
predictor variables (i.e. microbial functions) < 10-3 and regression coe�cients > 0.

Associations between MSP abundance pro�les and clinical metadata

Scaled abundance of IFS and OFS species populations together (ZIFS and ZOFS, respectively) were tested
their associations with clinical parameters with considering random effects of individuals by linear
mixed-effect models using R lme4 packages (p-values < 0.05) like below:

Yi = ZIFS βIFS + ZOFS βOFS + ui + ϵ
where Y is clinical parameter, βIFS and βOFS are coe�cients of �xed effect variables, ZIFS and ZOFS,
respectively, ui is a random intercept for subject i, and ϵ is residual.

In addition, we tested associations of single MSP with clinical parameters of given samples of wellness
cohorts by linear mixed effect models like below:

Yij = Ai βi + uj + ϵ, i ∊ IFS or OFS, Ai = species abundance

where Y is clinical parameter, βi is coe�cient of �xed effect variable, Ai, uj is a random intercept for
subject j, and ϵ is residual. We identi�ed signi�cant associations between MSP abundance and clinical
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parameters based on explained variance of �xed effect calculated using R MuMIn package (explained
variance > 10%).

Fecal fermentation in ARCOL bioreactor

M-ARCOL is a one-stage fermentation system run under semi-continuous conditions that simulates the
main physicochemical and microbial conditions encountered in the human colonic ecosystem25. It
consists of pH and temperature controlled, stirred (400 rpm), airtight glass vessels inoculated with fecal
samples from human volunteers and maintained under anaerobic conditions by the sole activity of
resident microbiota. The set-up in this study consisted in a main bioreactor containing the luminal-
associated microbiota and a connected glass compartment with mucin beads to simulate the mucus-
associated microbiota. The system was operated to simulate the colonic conditions of healthy human
adults as described earlier (temperature 37°C, pH 6.3, retention time 24 h)25,26. The experiments were
conducted in duplicate with fecal samples from two donors (one male and one female, ranging in age
from 24 to 50 years, with no history of antibiotic or probiotic treatment 3 months prior the beginning of
the study)25. Following fecal inoculation of the bioreactor, fermentations were conducted for a total
duration of 9 days, including 1 day under fed batch and the following 8 days under semi-continuous
mode. Samples were collected daily in the bioreactor.

In situ metagenomic measurement of growth rate by Growth Rate Index (GRiD) scores

The GRiD software (v1.3)27 was used to calculate the growth rate index from the metagenomic samples
from Swedish wellness cohorts and fecal samples inoculated into bioreactor and fermented after 24
hours. Brie�y, this software calculates the growth rate by mapping the metagenomics reads to microbial
genomes and calculates the coverage ratio between the origin and terminus of replication as a proxy for
the growth rate. Since GRiD is sensitive to the representativeness and quality of the genome used, we
created a GRiD custom database representative to the gut microbiota, consisting only of high-quality
draft genomes from the MGnify database28. First, we matched the msp gene clusters to the MGnify
genomes using a BLASTN procedure, with a 95% identity threshold. Then we kept only the MGnify
genomes passing these criteria: (1) >=95% gene completion, <=5% contamination, (3) <=100 contigs. This
resulted in a GRiD database of 36 in�ow genomes (92% of all IFS) and 194 out�ow genomes (38% of all
out�ow species). Finally, the GRiD growth rate values were considered only when: (1) the genome
displayed at least 1X coverage in the metagenome (using the –c 1.0 parameter), (2) the genome
displayed a species heterogeneity of <=0.3 (as recommended by the authors), in order to remove spurious
growth rate index.

Reconstruction of Genome Scale metabolic Model (GEM) and constrained based modelling for in�ow
and out�ow MSPs

We used the GEMs of  30 IFS species and 34 OFS species with high prevalence (≥ 10%) and taxonomy
annotated at species-level (i.e. excluding unclassi�ed MSPs) using our recently reconstructed GEMs29
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and KEGG orthology (KO) annotation of the gut catalogue. The KO pro�le of each MSP were mapped into
KBase metabolic model 30 as reference model to provide reaction pro�les. Regarding the reaction pro�les
the context speci�c GEMs were reconstructed and the functionality of the models was checked based
provided biomass objective function and the gap �lling was done using the COBRA toolbox and the
reference model. To investigate the response of the IFS and OFS MSPs to environmental changes and
calculate the perturbations, we used four different diets i.e. high protein- and �bre- plant based diets and
high-protein and �bre omnivorous diets. The composition of the diet was converted to mmol/gDW*hour
for the simulation in anaerobic situation and the growth rate for each model were predicted for each diet
using constraint-based modelling. To check the dependence of the IFS and OFS species to the
compounds as input or medium and autotrophy, we performed an essentiality analysis in which the
inability of each MSP to synthesize the metabolites was simulated by closing the corresponding
exchange reactions; decreased growth rate shows the dependence of the MSP to the metabolites for
growth.

Gene richness and species associated with high and low gene richness

Gene counts (i.e. mapped read counts) of all dataset samples were downsized into 10 million reads by R
momr (MetaOMineR) package. Based on detected genes from downsized gene count pro�les, we
identi�ed gene richness of given samples. We �rst examined top-25% and bottom-25% gene richness of
all HGMA samples and by Wilcoxon two-sided tests we compared species abundance between two
groups of healthy samples: high gene richness (HGR) group for samples < �rst quartile of richness (Q1);
and low gene richness group (LGR) for samples > third quartile of richness (Q3).

Pan-metagenomics association studies (Pan-MGAS)

First, we selected of healthy and disease samples without interventions and redundant measurement (i.e.
multiple visits) and performed comparative analyses of chosen samples (number of selected samples
were shown in Supplementary Table 1). We estimated the effect sizes of Wilcoxon signed rank (one-
sided) tests for MSP enrichment and depletion in diseases, compared to healthy controls of given
country23 and identi�ed we identi�ed signi�cantly enriched or depleted species having medium effect
sizes (effect size ≥ 0.3). Manhattan plots of pan-MGAS based on effect sizes were plotted with R qqman
package.

Unsupervised clustering of co-conserved functions of gut microbiota

We calculated Jaccard index among functional annotations to check how many species were sharing
given a pair of functions together. We selected highly shared pairs of functions (Jaccard index >= 0.75)
and merged into functional co-occurrence network using R igraph package31. Functional clusters within
the network were identi�ed by unsupervised community detection, short random work algorithm
(cluster_walktrap function)32,33 and identi�ed singleton functions within the network as well. Among non-
singleton functional clusters, we selected representative functional clusters if functions of given
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functional clusters were found more than three species, thereby excluding functional clusters sparsely
annotated over MSPs. Associated MSPs to functional clusters were chosen if given MSP covered more
than 75% functions of given functional cluster.

Declarations
Data availability

All primary HGMA data together with the newly sequenced data are freely available without restrictions in
the public open access database (https://www.microbiomeatlas.org) that is part of the Human Protein
Atlas program (https://www.proteinatlas.org).

Code availability

The R package used to perform modelling temporal changes of microbiome for in�ow and out�ow
analysis together with functional clusters including unsupervised clustering of co-conserved functions of
gut microbiota can be found at our GitHub repository link: https://github.com/sysbiomelab/mPackage.
The modeling of temporal changes can be applied

directly to any sets of longitudinal microbiome data. The functional cluster analysis can be applied on
gene counts and species abundances. The other pipeline scripts for analysis are also publicly shareable
and available upon reasonable request from the corresponding author.

Acknowledgements

This study primarily was supported by Engineering and Physical Sciences Research Council (EPSRC),
EP/S001301/1, Biotechnology Biological Sciences Research Council (BBSRC) BB/S016899/1, Science
for Life Laboratory, the Knut and Alice Wallenberg Foundation and the Erling Persson Foundation.
Additional funding was from the Metagenopolis grant ANR-11-DPBS-0001. DL and JP were supported by
the Bio-Synergy Research Project (2012M3A9C4048758) of the Ministry of Science and ICT through the
National Research Foundation. SL was supported by Global University Project, “GIST Research Institute
(GRI) IIBR” grants funded by the GIST in 2021, and the Bio-Synergy Research Project
(2021M3A9C4000991) and the National Research Foundation of Korea (NRF) grant (NRF-
2021R1C1C1006336) of the Ministry of Science, ICT through the National Research Foundation. TwinsUK
is funded by the Wellcome Trust, Medical Research Council, European Union, Chronic Disease Research
Foundation (CDRF), Zoe Global Ltd and the National Institute for Health Research (NIHR)-funded
BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy’s and St Thomas’
NHS Foundation Trust in partnership with King’s College London. We thank the entire staff of the
MetaGenoPolis at INRAE, Human Protein Atlas program (HPA), Centre for Host-Microbiome Interactions,
the Science for Life Laboratory, the National Genomics Infrastructure for providing assistance in massive
parallel sequencing, and Swedish National Infrastructure for Computing at SNIC through Uppsala
Multidisciplinary Center for Advanced Computational Science (UPPMAX) under Project SNIC 2020-5-222,

https://www.proteinatlas.org/


Page 19/27

SNIC 2019/3-226, SNIC 2020/6-153 and King’s College London computational infrastructure facility,
Rosalind (https://rosalind.kcl.ac.uk) for high performance computing.

Author contributions

S.S., S.D.E. and M.U. conceived the project. S.L. and S.S. led the design and analysis of the data. S.L.
developed the temporal pipeline, analysis and made the �gures. L.E. and M.U. provided the wellness gut
metagenomics samples. M.A., F.P., E.L. and S.D.E. generated the MSPs, performed quality check and
taxonomy update. N.P. annotated the updated gut gene catalog. L.E.M and S.B.D performed the
bioreactor fermentation experiment on healthy human stool samples. M.A. performed the GRiD analysis
on bioreactor. G.B. applied metabolic models and performed simulations. M.A., V.M. and F.P. performed
the analysis on the Italian and American cohorts for validation. N.B., C.P., S.V., D. R. and A.H. analyzed
part of the data and prepared the materials for the HGMA. K.F. and F.J. developed the HGMA website. V.L.
and B.H. annotated the gut catalog with new CAZymes. J.P. and D.L. annotated the secondary
metabolites of the gene catalog. M.A. and G.B. contributed to testing the pipeline, statistical and
functional analysis. S.S., S.L., M.U. and S.D.E wrote and drafted the manuscript. L.A.E, D.L.S, A.M., G.P.
J.N. provided critical feedback on the data and manuscript. All authors read, edited and reviewed the
manuscript.

Competing interests

The authors declare no competing �nancial interests.

Additional information

Correspondence and requests for materials should be addressed to S.S. or D.E. or M.U.

References
1          Pons, N. e. a. a platform for quantitative metagenomic pro�ling of complex ecosystems.,
<http://www.jobim2010.fr/sites/default/�les/presentations/27Pons.pdf> (2010).

2          Plaza Onate, F. et al. MSPminer: abundance-based reconstitution of microbial pan-genomes from
shotgun metagenomic data. Bioinformatics 35, 1544-1552, doi:10.1093/bioinformatics/bty830 (2019).

3          Sunagawa, S. et al. Metagenomic species pro�ling using universal phylogenetic marker genes.
Nature Methods 10, 1196-1199, doi:10.1038/nmeth.2693 (2013).

4          Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J
Mol Biol 215, 403-410, doi:10.1016/S0022-2836(05)80360-2 (1990).

5          Kultima, J. R. et al. MOCAT: a metagenomics assembly and gene prediction toolkit. PLoS One 7,
e47656, doi:10.1371/journal.pone.0047656 (2012).

http://www.jobim2010.fr/sites/default/files/presentations/27Pons.pdf


Page 20/27

6          Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Res 32, 1792-1797, doi:10.1093/nar/gkh340 (2004).

7          Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment
trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973,
doi:10.1093/bioinformatics/btp348 (2009).

8          Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2--approximately maximum-likelihood trees for large
alignments. PLoS One 5, e9490, doi:10.1371/journal.pone.0009490 (2010).

9          Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation
of phylogenetic and other trees. Nucleic Acids Res 44, W242-245, doi:10.1093/nar/gkw290 (2016).

10        Bergstrom, G. et al. The Swedish CArdioPulmonary BioImage Study: objectives and design. J
Intern Med 278, 645-659, doi:10.1111/joim.12384 (2015).

11        Ruppe, E. et al. Prediction of the intestinal resistome by a three-dimensional structure-based
method. Nat Microbiol 4, 112-123, doi:10.1038/s41564-018-0292-6 (2019).

12        Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-
active enzymes database (CAZy) in 2013. Nucleic Acids Res 42, D490-495, doi:10.1093/nar/gkt1178
(2014).

13        Svartstrom, O. et al. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen
microbiome provide new insights into microbial plant biomass degradation. ISME J 11, 2538-2551,
doi:10.1038/ismej.2017.108 (2017).

14        Buch�nk, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat
Methods 12, 59-60, doi:10.1038/nmeth.3176 (2015).

15        Mao, C. et al. Curation, integration and visualization of bacterial virulence factors in PATRIC.
Bioinformatics 31, 252-258, doi:10.1093/bioinformatics/btu631 (2015).

16        Gillespie, J. J. et al. PATRIC: the comprehensive bacterial bioinformatics resource with a focus on
human pathogenic species. Infect Immun 79, 4286-4298, doi:10.1128/IAI.00207-11 (2011).

17        Wen, C. et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing
spondylitis. Genome Biol 18, 142, doi:10.1186/s13059-017-1271-6 (2017).

18        Mukherjee, S. et al. Genomes OnLine database (GOLD) v.7: updates and new features. Nucleic
Acids Res 47, D649-D659, doi:10.1093/nar/gky977 (2019).

19        Blin, K. et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary
identi�cation. Nucleic Acids Res 45, W36-W41, doi:10.1093/nar/gkx319 (2017).



Page 21/27

20        Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers.
Nature 500, 541-546, doi:10.1038/nature12506 (2013).

21        Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59-64,
doi:10.1038/nature13568 (2014).

22        Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14,
979-982, doi:10.1038/nmeth.4402 (2017).

23        Fritz, C. O., Morris, P. E. & Richler, J. J. Effect size estimates: current use, calculations, and
interpretation. J Exp Psychol Gen 141, 2-18, doi:10.1037/a0024338 (2012).

24        Ideker, T., Ozier, O., Schwikowski, B. & Siegel, A. F. Discovering regulatory and signalling circuits in
molecular interaction networks. Bioinformatics 18 Suppl 1, S233-240,
doi:10.1093/bioinformatics/18.suppl_1.s233 (2002).

25        Deschamps, C. et al. Comparative methods for fecal sample storage to preserve gut microbial
structure and function in an in vitro model of the human colon. Appl Microbiol Biotechnol 104, 10233-
10247, doi:10.1007/s00253-020-10959-4 (2020).

26        Thevenot, J. et al. Enterohemorrhagic Escherichia coli O157:H7 survival in an in vitro model of the
human large intestine and interactions with probiotic yeasts and resident microbiota. Appl Environ
Microbiol 79, 1058-1064, doi:10.1128/AEM.03303-12 (2013).

27        Emiola, A. & Oh, J. High throughput in situ metagenomic measurement of bacterial replication at
ultra-low sequencing coverage. Nat Commun 9, 4956, doi:10.1038/s41467-018-07240-8 (2018).

28        Mitchell, A. L. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res 48,
D570-D578, doi:10.1093/nar/gkz1035 (2020).

29        Bidkhori, G. et al. The Reactobiome Unravels a New Paradigm in Human Gut Microbiome
Metabolism. bioRxiv, 2021.2002.2001.428114, doi:10.1101/2021.02.01.428114 (2021).

30        Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase.
Nat Biotechnol 36, 566-569, doi:10.1038/nbt.4163 (2018).

31        Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal,
complex systems 1695, 1-9 (2006).

32        Pons, P. & Latapy, M. in International symposium on computer and information sciences.  284-293
(Springer).

33        Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357,
doi:10.1126/science.aan2507 (2017).



Page 22/27

Figures

Figure 1

Characterization of the global gut microbiome in health and disease. Pan-metagenomics studies of
health and disease. Corresponding datasets were publicly shared as a resource: human gut microbiome
atlas (HGMA). a, geographical distribution of the datasets used in this study (the number of the samples
is shown in parentheses). b, types of disease datasets of shotgun metagenomics used in this study. c, the
work�ow of the metagenomic species pan-genome (MSP) quanti�cation together with functional
characterization. In total, 5,224 shotgun metagenome samples, including 344 Swedish longitudinal
samples, were aligned against the gene catalogue of the human gut microbiome and quanti�ed at the
level of MSP. All healthy samples (3,039) were used for the analysis of the global gut microbiome of
healthy individuals, and all disease samples (2,185) were used for pan-disease analysis. For the
functional characterization of human gut MSPs, we annotated respective genes with 19,540 features of
microbial function/phenotype databases and identi�ed 7,763 functional clusters better representing
microbial functions. d, characterization of temporal changes of 86 Swedish healthy individuals (Swedish
wellness cohort, S3WP) during a year (total 344 samples). e, monocle ordination of the gut microbiome in
healthy samples. Individual samples from non-westernized countries, European countries, and
US/China/Japan were coloured yellow, purple, and grey, respectively. f, contrasted functions among
region-enriched species originated from three different geographical clusters, that is, non-westernized
countries, European countries, and US/China/Japan. Based on functional annotations of CAZyme,
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antimicrobial resistance (AMR), secondary metabolism (antiSMASH), and virulence factors (PATRIC
database), we checked the enrichment of functions in a given geographical cluster. Enrichment of species
with respective functions was checked by ANOVA of multiple regressions, considering association of
geographical clusters as dependent variables of regressions. g, pan-metagenomics association studies
(Pan-MGAS) of 28 cohorts from 18 different diseases and 11 countries (n=2,185). We identi�ed
signi�cantly enriched/depleted species of cohorts based on effect sizes (ESs) of Wilcoxon one-sided
tests (ES ≥ 0.3). We found species enriched with diseases in different countries such as A.
histaminiformans (NAFLD), and species depleted, such as G. urolithinfaciens (NAFLD). h, Jitter plots of
frequency of the signi�cantly enriched/depleted cohorts of all MSPs were calculated: total frequency of
enriched/depleted cohorts (|number of enriched cohorts| + |number of depleted cohorts|) and subtracted
frequency between enriched cohorts and depleted cohorts (|number of enriched cohorts| - |number of
depleted cohorts|). Point colours changed from red (left) to blue (right) according to x-axis values.
Common enriched/depleted species among cohorts were identi�ed when total frequency ≥ 3 and
absolute subtracted frequency ≥ 2. Note: The designations employed and the presentation of the
material on this map do not imply the expression of any opinion whatsoever on the part of Research
Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning
the delimitation of its frontiers or boundaries. This map has been provided by the authors.
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Figure 2

Changes in in�ow and out�ow species populations linked to gene richness and host physiology. a,
modelling the temporal changes of species by Markov chain models (MCMs) estimating the state
transition probabilities between absence and presence under detection limit (left top), in�ow and out�ow;
dotted lines with a cross and gold arrows represent a failure and success to detect a species, respectively
(left bottom). In�ow vs out�ow score plot (right panel) identi�es in�ow species (IFS) (e.g. A.
butyriciproducens and B. obeum), out�ow species (OFS) (e.g. V. parvula and H. e�uvia) or species that
often change state between visits (E. coli, S. salivarius). b, we determined abundance changes between
visits (t and t+1) and compared the total changes of IFS and OFS (ΔIFS and ΔOFS, respectively). In short,
ΔIFS and ΔOFS were determined by differences of scaled total abundance between visits (i.e. Δ = Zt+1 -
Zt) (See Methods). We observed negative correlation of abundance changes by visit between IFS species
(ΔIFS) and OFS species populations (ΔOFS) (Spearman’s ρ = -0.334, p-value = 4.6×10-8). c, we compared
the mean abundance of OFS species in visits (μOFS) and abundance changes between visits (∆OFS).
The mean abundance of OFS species in visits was determined by the mean of scaled total abundance of
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OFS species in two sequential visits (i.e. μOFS = ½ × (Zt + Zt+1)). The higher the mean OFS species
abundance (μOFS ≥ 2), the more its abundance changes between visits either increasing (∆OFS > 2) or
decreasing (∆OFS < -2). d, Individuals enriched with OFS species at certain visits (μOFS ≥ 2) had
signi�cantly lower intra-individual similarity (Wilcoxon one-sided test P = 0.0034). e, we observed that
individuals with an increase in IFS species abundance were signi�cantly positively correlated with an
increase in richness (Spearman’s ρ = 0.206, p-value = 9.0×10-4). We estimated physiological properties of
IFS and OFS species by growth rate estimations by GRiD scores (f-i) and genome-scale metabolic
modelling (j-k). We estimated GRiD scores of IFS and OFS species from (f) individuals highly enriched
with IFS species and (g) individuals highly enriched with OFS species and observed higher GRiD scores of
IFS species. In additional experiments of bioreactor fermentation of human faeces, we observed higher
GRiD scores of IFS species after 24 hours, compared to original feces samples, whereas OFS species
remained to be lower in GRiD scores at 24 hours. We evaluated our �ndings in�ow/out�ow scores
estimated from Swedish cohort of four visits with those from (l-m) additional two more visits, (n-o)
American HPFS cohort and (p-q) Italian DINAMIC cohort. We compared in�ow scores (l, n, p) and out�ow
scores (m, o, q) between different datasets.

Figure 3

In�ow and out�ow were associated with signatures of gene richness, and clinical parameters among
healthy individuals. a-b, comparison of in�ow (a) and out�ow (b) probability between high gene richness
(HGR)- and low gene richness (LGR)-enriched MSPs; LGR-enriched species have a higher probability of
out�ow (Wilcoxon one-sided test P = 1.1×10-6). c, IFS/OFS species abundances were signi�cantly
associated with clinical parameters by linear mixed effect models (p-value < 0.05). Signi�cant positive (+)
and negative associations (-) are marked on a heatmap (size proportional to signi�cance). Increase of IFS
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species abundance was associated with increase of muscle mass, whereas increase of OFS species was
associated with increase of BNP, a heart failure marker.

Figure 4

In�ow and out�ow were associated with disease signatures from pan-disease analysis, together with
biodegradation of xenobiotics and host nutrient hijacking. a-b, we observed signi�cant differences in
in�ow (a) and out�ow (b) probability between common enriched and depleted MSPs in diseases (from
Fig. 1h) (Wilcoxon one-sided tests p-values < 0.05). we observed that common depleted species were
higher in in�ow, whereas common enriched species were higher in out�ow. c-d, radar plots showing the
fraction of functional classes enriched in either (c) in�ow or (d) out�ow, tested by linear mixed effect
models (adjusted p-value < 10-3). The in�ows were enriched in core metabolism and out�ow in accessory
metabolism (e.g., BTEX contaminants). e, we identi�ed functional clusters co-conserved across different
species and distinguished functional clusters found in many species or few species (x-axis). Y-axis
indicates the size of functional clusters. Here we identi�ed two largest clusters enriched in pathobionts
(CL-10, patho-cluster) and commensal bacteria (CL-12, comm-cluster), respectively. f, frequency of
functional clusters associated with enriched/depleted MSPs in diseases: total frequency of enriched
cohorts and depleted cohorts per functional cluster (|number of enriched cohorts| + |number of depleted
cohorts|, y-axis) and subtracted frequency between enriched cohorts and depleted cohorts per functional
cluster (|number of enriched cohorts| - |number of depleted cohorts|, x-axis). Functional clusters
signi�cantly associated with out�ow species (hypergeometric tests P < 0.01) were mostly associated with
depleted MSPs in diseases (points coloured purple). Points were plotted in a jittered setting to avoid
overlaid points.
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