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Photosynthesis is the process by which plants harvest sunlight to

produce sugars from carbon dioxide and water. It is the primary

source of energy for all life on Earth; hence it is important to

understand how this process responds to climate change and

human impact. However, model-based estimates of gross primary

production (GPP, output from photosynthesis) are highly uncer-

tain, in particular over heavily managed agricultural areas. Recent

advances in spectroscopy enable the space-based monitoring of

sun-induced chlorophyll fluorescence (SIF) from terrestrial plants.

Here we demonstrate that spaceborne SIF retrievals provide

a direct measure of the GPP of cropland and grassland ecosystems.

Such a strong link with crop photosynthesis is not evident for

traditional remotely sensed vegetation indices, nor for more

complex carbon cycle models. We use SIF observations to provide

a global perspective on agricultural productivity. Our SIF-based

crop GPP estimates are 50–75% higher than results from state-of-

the-art carbon cycle models over, for example, the US Corn Belt

and the Indo-Gangetic Plain, implying that current models severely

underestimate the role of management. Our results indicate that

SIF data can help us improve our global models for more accurate

projections of agricultural productivity and climate impact on crop

yields. Extension of our approach to other ecosystems, along with

increased observational capabilities for SIF in the near future,

holds the prospect of reducing uncertainties in the modeling of

the current and future carbon cycle.

crop productivity | carbon fluxes | Earth observation | carbon modeling |
spaceborne spectroscopy

The rapidly growing demand for food and biofuels constitutes
one of the greatest challenges for humanity in coming decades

(1). It is estimated that we must double world food production by
2050 to meet increasing demand (2), but the once rapid growth
seen in the “green revolution” has stalled, and even past advances
are threatened by climate change (3–5). Much of past yield im-
provement has focused on increases in the harvest index and
resistance to pests. However, all else being equal, the quantity of
photosynthesis places an upper limit on the supply of food and
fuels from our agricultural systems.
Ironically, we currently have very limited ability to assess

photosynthesis of the breadbaskets of the world. Agricultural
production inventories provide important information about
crop productivity and yields (6–8), but these are difficult to
compare between regions and lag actual production. Carbon
cycle models, based on either process-oriented biogeochemistry

or semiempirical data-driven approaches, have been used to
understand the controls and variations of global gross primary
production (GPP, equivalent to ecosystem gross photosynthesis)
(9) and to investigate the climate impact on crop yields (10).
However, uncertainty associated with inaccurate input data and
much simplified process descriptions based on the plant func-
tional type concept severely challenge the application of these
models to agricultural systems. Recent model intercomparisons
conducted as part of the North American Carbon Project found
that GPP estimates for crop areas varied by a factor of 2 (11).
The best available estimates of GPP of crop systems are from
direct measurement of carbon dioxide exchange by so-called flux
towers over agricultural fields (12). However, these generally
sample small areas (<1 km2) and are concentrated in North
America and Europe.
Remote sensing of reflectance-based vegetation parameters

has been used in the last decades to monitor agricultural
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resources (e.g., refs. 13, 14). The signal of the so-called spectral
vegetation indices convolves leaf chlorophyll content, biomass, can-
opy structure, and cover (15, 16), such that estimating actual pro-
ductivity from vegetation indices requires additional data and
modeling steps, both associated with considerable uncertainty.
Complementing reflectance-based indices, global space-based esti-
mates of sun-induced chlorophyll fluorescence (SIF) became avail-
able recently. SIF is an electromagnetic signal emitted in the 650- to
850-nm spectral window as a by-product of photosynthesis (e.g., refs.
17–19). The first global maps of SIF were derived using data from
the Greenhouse Gases Observing Satellite (GOSAT) (20–23). De-
spite the complicated photosynthesis-SIF relationships and the
convolution of the signal with canopy structure (16), SIF retrievals
showed high correlations with data-driven GPP estimates at global
and annual scales (21, 22), as well as intriguing patterns of seasonal
drought response in Amazonia (24, 25). Recently, a global SIF data
set with better spatial and temporal sampling than that from
GOSAT was produced using spectra from the Global Ozone
Monitoring Experiment-2 (GOME-2) instrument onboard the
MetOp-A platform (26) (see SI Appendix, SIF Retrievals).
Our attention is drawn to the remarkably high SIF returns

from the US Corn Belt (CB) region (Fig. 1). This highly pro-

ductive area (Fig. 2D) accounts for >40% of world soybean and
corn production (30). We hypothesize that the high SIF indi-
cates very high GPP for this area and report here on studies
that compare SIF retrievals to GPP models and flux tower data
with the aim of gaining a unique global perspective on crop
photosynthesis.

Results and Discussion

Looking at the spatial patterns of the maximum monthly gross
carbon uptake from model results in the north temperate region
(Fig. 2), we find a generally good agreement between the data-
driven approach (27), that relies on data from a global network
of micrometeorological tower sites (FLUXNET) (12), and the
median of 10 state-of-the-art global dynamic vegetation models
from the Trendy (“Trends in net land-atmosphere carbon ex-
change over the period 1980−2010”) project (28, 29), the former
showing somewhat larger values in a small region of the US CB
(Fig. 2 A and B) (see SI Appendix, Model-Based GPP Data). It
must be stated that the Trendy models do not include explicit
crop modules, so the results from our comparisons with process-
based models are intended to illustrate the potential impact of
such crop-specific modules on simulations over agricultural re-
gions. The SIF measurements, on the other hand, show large
differences between the US CB and the cropland and grassland
areas in Western Europe, with much enhanced SIF in the US CB
(Fig. 2C). This pattern is roughly consistent with the distribution
of C4 crops in the area, predominantly corn fields (Fig. 2D).
Is the photosynthesis signal in the SIF retrievals disturbed by
other factors, or is the US CB indeed much more productive
than any area in Western Europe, which is not captured by the
carbon models?
We compare year-round monthly means of flux tower-based

GPP estimates at cropland and grassland sites in the United
States and Europe with SIF retrievals, GPP estimates from
carbon models, and spectral reflectance indices (Figs. 3 and 4
and SI Appendix, Comparison of Flux Tower-Based GPP with
Model GPP, SIF and Vegetation Indices). Data-driven model GPP
data are from the statistical model developed at the Max Planck
Institute for Biogeochemistry (MPI-BGC) (27) (Fig. 3B) and the
semiempirical moderate resolution imaging spectroradiometer
(MODIS) MOD17 GPP model (31) (SI Appendix, Fig. S4). The
same ensemble of 10 land surface models (28, 29) is used to
evaluate the performance of process-based models (Fig. 3C). We
present the comparisons in Fig. 3 without including the European
cropland sites, as we want to illustrate the strong differences

0.0 0.9 1.8 2.7 3.6 4.5
max(SIF) (mW/m2/sr/nm)

Fig. 1. Global map of maximum monthly sun-induced chlorophyll fluores-

cence (SIF) per 0.5° grid box for 2009. SIF retrievals are performed in

a spectral window centered at 740 nm (see Materials and Methods and SI

Appendix, SIF Retrievals). This maps illustrates the outstanding SIF signal

detected at the US CB, which shows the highest SIF return of all terrestrial

ecosystems. The maximum SIF over the largest part of the US CB region is

detected in July.
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Fig. 2. Spatial patterns of maximum monthly gross primary production (GPP) per 0.5° grid box for 2009 from data-driven (A) and process-based (B) models

together with maximum monthly SIF at 740 nm (C). The fraction of C4 crop area (mostly corn in this region) depicts the approximate area of the US Corn Belt

(D). The data-driven GPP data correspond to the MPI-BGC model (27), the process-based GPP corresponds to the median of an ensemble of 10 global dynamic

vegetation models from the Trendy (“Trends in net land-atmosphere carbon exchange over the period 1980−2010”) project (28, 29), and SIF was retrieved

from GOME-2 satellite measurements (26). The fraction of C4 crop data are described in Ramankutty et al. (6).
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between cropland and grassland GPP over the most homogeneous
ecosystems (the European cropland sites are highly fragmented,
which may not be properly sampled by the 0.5° resolution at which
we can grid the GOME-2 SIF retrievals; see SI Appendix, SIF
Retrievals). The comparison including all types of cropland and
grassland sites is provided in SI Appendix, Fig. S4.
We find that the peak monthly mean GPP derived from the

flux tower data in some of the US CB sites is very high
(>15 gC·m−2

·d−1), whereas for the grassland sites, monthly mean
GPP never exceeds 10 gC·m−2

·d−1 (Fig. 3). Process-based GPP
estimates compare well with the tower-based estimates over the
grassland sites but show a poor correlation over the US CB (Fig.
3C). Concerning the data-driven models, there is a clear non-
linear relation between flux tower and model GPP, showing that
models strongly underestimate GPP at cropland sites with high
fluxes. A piece-wise linear approximation reveals that deviations
from the linear relation appear at GPP > 10 gC·m−2

·d−1 for the
MPI-BGC estimates (Fig. 3B) and at GPP > 8 gC·m−2

·d−1 for
the MODIS MOD17 (SI Appendix, Fig. S4). We observe that
data-driven models produce similar peak GPP values for both
grasslands and croplands, and that grasslands have even a higher
GPP than croplands in results from the process-based models,
which is not reflected by tower-based estimates. We find that
SIF values exhibit a much stronger linear relationship with tower
GPP at these cropland and grassland sites (Fig. 3A), and that
a single linear model is able to link SIF with GPP for both
croplands and grasslands. On the other hand, the good agree-
ment between the model- and tower-based GPP estimates at
grassland sites, including similar peak values, suggests that the
direct comparison of flux tower data (typical footprint of <1 km2)
with SIF retrievals and model data at 0.5° is acceptable for
these sites.
Hence, the comparisons in Fig. 3 support the following claims:

(i) SIF captures high photosynthetic signals that are observed
from flux towers in the US CB, and (ii) the models under-
estimate crop GPP, in particular for the highly productive crop
sites at the US CB. The low correlation between the crop GPP
estimates by the process-based models at the US CB sites may be
explained by the lack of specific crop modules in the Trendy
model ensemble. Concerning the underestimation of crop GPP
by data-driven models, it can be argued that these cannot capture
the complex dynamics required to link stable and structurally
driven vegetation indices derived from remote sensing data with
a highly variable physiological measure such as crop photosyn-
thesis. On the other hand, those reflectance-based indices usually
underestimate “greenness” for very dense crop canopies with high

green biomass levels, such as cultivars with high fertilizer levels.
This can lead to the underestimation of GPP by the data-driven
models constrained by those vegetation indices.
The same flux tower-based GPP data set is compared with SIF

retrievals and the enhanced vegetation index (EVI) extracted
from the MODIS MOD13C2 product (15) in Fig. 4. This com-
parison illustrates that spectral reflectance indices, similar to the
GPP models, do not scale linearly with GPP for these biomes
despite the good representation of the temporal patterns: The
highest EVI values for grassland sites are close to the values for
some of the cropland sites, whereas GPP is very different. On the
other hand, it is difficult to find a global baseline value for EVI
to indicate the total absence of green vegetation activity. The
minimum EVI value depends on the soil nature and especially on
the presence of snow (32), which can be observed in the relatively
high variability of EVI in the months in which no photosynthetic
activity is observed (Fig. 4 C and D). This poses a problem for the
identification of start- and end-of-season times in phenological
studies based on reflectance-based remote sensing data (32). The
SIF observations, in turn, drop to zero following photosynthesis,
which provides an unambiguous signal of photosynthetical activity.
The linear relationship between SIF data and flux tower GPP

observed in Fig. 3A may be rationalized by considering that

GPP=PAR× fPAR×LUEP; [1]

where PAR is the flux of photosynthetically active radiation
received, fPAR is the fractional absorptance of that radiation,
and LUEP is the efficiency with which the absorbed PAR is used
in photosynthesis (33). SIF may be similarly conceptualized as

SIFðλÞ=PAR× fPAR×LUEFðλÞ× fescðλÞ; [2]

where λ is the spectral wavelength (∼740 nm in our GOME-2
retrievals; see Materials and Methods and SI Appendix, SIF
Retrievals), LUEF is a light-use efficiency for SIF (i.e., the frac-
tion of absorbed PAR photons that are re-emitted from the
canopy as SIF photons at wavelength λ), and fescðλÞ is a term
accounting for the fraction of SIF photons escaping from the
canopy to space. These equations can be combined making the
dependence on light implicit,

GPP≈ SIFðλÞ×
LUEP

LUEFðλÞ
; [3]

where we assume fescðλÞ≈ 1 because of the low absorptance of
leaves in the near-infrared wavelengths at which we perform the
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Fig. 3. Comparison of monthly mean GPP estimates at cropland flux tower

sites in the US Corn Belt and grassland sites in Western Europe. Flux tower

GPP estimates are compared with sun-induced fluorescence (SIF) observa-

tions at 740 nm (A) and with GPP estimates from the MPI-BGC data-driven

model (27) (B) and from process-based models [median of an ensemble of

10 dynamic global vegetation models (28, 29)] (C). Each symbol depicts a

monthly average for a 0.5° grid box and those months in the 2007–2011

period for which flux tower data were available (see SI Appendix, Table S1).

The P value is <0.01 in all of the comparisons. The dashed line in B and C

represents the 1:1 line. Similar comparisons but including also Western

Europe cropland sites are provided in SI Appendix, Fig. S4.
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SIF retrievals and the relatively simple plant structure and high
leaf area index of grasses and crops (34).
Empirical studies at the leaf and canopy scale indicate that the

two light-use efficiency terms tend to covary under the conditions
of the satellite measurement (35–37). Hence, the SIF data should
provide information on both the light absorbed and the efficiency
with which it is being used for photosynthesis. Vegetation indices
derived from reflectance measurements from spaceborne instru-
ments such as MODIS (15) and knowledge of the solar angle and
atmospheric condition can be used to estimate PAR × fPAR (Eq.
1), but LUEP is a free parameter. These data from the CB are
consistent with LUEP being much higher for intensively managed
crops than for native grasslands or less managed crops.
Based on the linear relationship obtained from the comparison

of SIF with tower-based GPP at all of the US and Western Europe
cropland and grassland flux tower sites [GPP(SIF) = −0.10 + 3.72 ×
SIF; see SI Appendix, Comparison of Flux Tower-Based GPP with
Model GPP, SIF and Vegetation Indices and Derivation of Spatially-
Explicit Crop GPP Estimates], we have produced unique global
estimates of annual crop GPP. Even though tower data outside
the US CB and Western Europe were not available for the
derivation of the empirical GPP−SIF relationship, we assume it
to hold for all of the ecosystems in which GPP is driven by
canopy chlorophyll content such as croplands and grasslands
(14). We have compared our SIF-based crop GPP estimates with
the GPP predicted by ensembles of state-of-the-art data-driven
(9) and process-based (28, 29) biogeochemistry models (see SI
Appendix, Model-Based GPP Data). We evaluate the consistency
of the different GPP estimates with the agricultural yield statis-
tics from the National Agriculture Statistics Service of the US
Department of Agriculture (USDA NASS) (38) (only North
America, years 2006–2008) and the data set by Monfreda et al.
(7) (global coverage, year 2000). These inventories provide large-
scale cropland net primary production (NPP, biomass pro-
duction by plants) estimates by combining national, state, and
county-level census statistics with maps of cropland areas (see SI
Appendix, NPP Data from Agricultural Inventories).
The comparison between our annual crop GPP estimates and

the NPP from the USDA NASS inventory at the US CB shows
that SIF-based GPP estimates are, similar to the flux tower
comparisons, more linearly related to the inventory-based NPP
than the model GPP (Fig. 5). Again, data-driven GPP estimates
show a strongly nonlinear relationship with the inventory-based
NPP, whereas the comparison with the process-based GPP
estimates presents more scatter compared with the SIF-based
and the data-driven estimates. The same conclusions hold for the
comparison of the different GPP estimates over the US CB and
Western Europe with the NPP data set from Monfreda et al. (7)
(see SI Appendix, NPP Data from Agricultural Inventories). As-
suming that annual GPP and NPP covary linearly across the
entire US CB area, this result confirms our initial statement that
GPP models substantially underestimate the photosynthetic up-
take of highly productive crops. However, it is challenging to
relate GPP and yield-based NPP estimates in a quantitative way,
as it is difficult to account for heterogeneous land cover given the
coarse resolution of current SIF retrievals. For example, much of
Northern Europe is a mosaic of forests (which have low SIF) and
agricultural fields. This may partly explain the apparently lower
productivity of European agricultural regions.
Continuing the comparison of model estimates to SIF-based

crop GPP over the globe (Figs. 6 and 7 and SI Appendix, Deri-
vation of Spatially-Explicit Crop GPP Estimates), spatial patterns
of SIF-based crop GPP estimates differ from data-driven models
by 40–60% in the US CB area and by 50–75% in some regions of
the Indo-Gangetic Plain, the North China Plain, and the Sahel belt
in Africa. Smaller differences within 0–10% are found in Europe.
In terms of area-integrated annual GPP estimates (SI Appendix,
Table S2), the largest differences are found in the US CB region
(+43% for the data-driven models and +18% for the process-
based models) and the Indo-Gangetic Plain (+55% and +39%,
respectively). A remarkable difference of −38% is also obtained

between the SIF- and the process-based model estimates in the
cropland areas between Brazil and Argentina. This area is often
specified in biogeochemistry models as C4 grasslands, which
have higher productivity than the C3 grasslands. Despite the
relatively important local differences, the global cropland GPP
estimated from SIF is in excellent agreement with the data-
driven models (17.04 ± 0.19 PgC·y−1 and 17 ± 4 PgC·y−1, re-
spectively), whereas a difference about −12% is found with the
process-based models (global cropland GPP of 20 ± 9 PgC·y−1).
These annual GPP numbers must be compared with the 14.8
PgC·y−1 given by Beer et al. (9) for croplands, and 123 PgC·y−1 for
the total of all biomes.
Time series of SIF- and model-based crop GPP over some

selected agricultural regions give insight into the differences
observed in the annual GPP estimates (Fig. 7). The variation
range of the monthly GPP estimates from SIF observations
agrees well with the estimates from data-driven models in all of
the selected cropland regions, which supports the consistency of
our approach of scaling SIF to GPP using direct comparisons
between GOME-2 SIF data and flux tower-based GPP. Also, the
seasonal variations of data-driven and SIF-based GPP estimates
are in general very consistent in all regions, and especially in
Western Europe and China (Fig. 7 B−D). Estimates over the US
CB and the Indo-Gangetic Plain also show the same phenological
trends, but the SIF-based GPP estimates over the US CB are
systematically higher than data-driven estimates by about 20%
throughout the year (Fig. 7A). Over India, both GPP estimates
coincide for the so-called Rabi crops sown in winter and har-
vested in the spring, but SIF-based GPP is about 40% higher
than data-driven GPP for the Kharif or monsoon crops sown
around June and harvested in autumn (Fig. 7C). This large dif-
ference in the estimated crop GPP over India in autumn explains
the time shift of the global SIF-based crop GPP with respect to
the data-driven models (Fig. 7F). On the other hand, the tested
process-based models from the Trendy ensemble compare very
well with data-driven models and SIF over the Western Europe
region despite the lack of crop-specific modules in the Trendy
models. We hypothesize that this is due to the fact that West
European crops mostly follow the seasonality of grasslands, by
which crops are often represented in the models. However, these
models fail to describe crop phenology at the other regions and,
more significantly, the multiple cropping in China and India. A
time shift of the peak GPP estimates at the US CB with respect to
SIF-based and data-driven GPP can be explained by modeling
uncertainties associated to irrigation and also by the fact that
sowing and harvesting time in the US CB is different from the
lifetime of natural grassland (peak in June), as opposed to Western
Europe. Also, process-based models substantially underestimate
the peak GPP values for the US CB, India, and China regions, and
tend to overestimate GPP in South America, which explains the
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Fig. 5. Comparison of net primary production (NPP) estimates over the US

Corn Belt (35°N–50°N, 80°W–105°W) from the USDA agricultural inventory

(8) with crop GPP estimates from SIF retrievals (A) and data-driven and

process-based model ensembles (B and C). Points correspond to 1° grid boxes

with fraction of cropland area higher than 20%. GPP and NPP values are

given in per-total-area units (see SI Appendix, NPP Data from Agricultural

Inventories). The squared Pearson’s correlation coefficient r2 and the P value

of the comparisons are shown. An analogous comparison with the inventory-

based NPP from Monfreda et al. (7), which also includes Western Europe, can

be found in SI Appendix, NPP Data from Agricultural Inventories.
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spatial patterns observed in the annual GPP comparisons in Fig. 6.
These results illustrate the need for specific crop modules in global
dynamic vegetation models.
Considering the growing pressure on agricultural systems to

provide for an increasing food and biofuel demand in the world, a
global, time-resolved, and accurate analysis of crop productivity is

critically required. Crop-specific models or improved process-
based biogeochemistry models including explicit crop modules
could provide projections of agricultural productivity and climate
impact on crop yields (e.g., refs. 39–41). However, local in-
formation such as meteorology, planting dates and cultivar
choices, irrigation, and fertilizer application are needed. In this
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differences between annual SIF-based crop GPP estimates and the output of data-driven models (C and E) and process-based models (D and F). Spatially

explicit GPP is derived through the scaling of SIF retrievals with the relationship GPP(SIF) = −0.10 + 3.72 × SIF (see SI Appendix, Derivation of Spatially-Explicit

Crop GPP Estimates). Cropland GPP is given in per-total-area units. The absolute difference ΔGPP is calculated as GPP(SIF) − GPP(model), and the relative
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Fig. 7. (A–F) Time series of monthly crop GPP de-

rived from SIF retrievals, process-based models, and

data-driven models over different cropland regions

in 2009. GPP area averages are weighted by the

fraction of cropland area per grid box. Data-driven

GPP corresponds to the MPI-BGC data-driven model

(27). Process-based GPP estimates are calculated

as the median of the monthly GPP estimates from

the Trendy process-based model ensemble (28, 29)

(see also SI Appendix, Table S2).
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work, we have demonstrated that spaceborne SIF retrievals can
provide realistic estimates of photosynthetic uptake rates over
the largest crop belts worldwide without need of any additional
information. This finding indicates that SIF data can help us
improve our current models of the global carbon cycle, which we
have shown to substantially underestimate GPP in some large
agricultural regions such as the US CB and the Indo-Gangetic
Plain. The launch of the Orbiting Carbon Observatory-2 and the
Sentinel 5-Precursor satellite missions in 2014 or 2015 will
enormously improve the observational potential for SIF, up to
a 100-fold increase in spatiotemporal resolution (42, 43). This
will especially benefit measurements over the typically frag-
mented agricultural areas, which suggests that SIF-based esti-
mates of crop photosynthesis will soon become a unique data set
for both an unbiased monitoring of agricultural productivity and
the benchmarking of carbon cycle models.

Materials and Methods

We have used monthly averages of SIF retrievals (26) from the GOME-2 in-

strument onboard the MetOp-A platform to produce unique estimates of

global cropland GPP. GOME-2 SIF retrievals are performed in the 715- to

758-nm spectral window. Single retrievals are quality-filtered and aggre-

gated in a 0.5° grid. The GOME-2 SIF data set used in this study covers the

2007–2011 time period (see SI Appendix, SIF Retrievals).

Ensembles of process-based and data-driven biogeochemistry models have

been analyzed to assess the ability of global models to represent crop GPP

(see SI Appendix, Model-Based GPP Data). The process-based model ensemble

comprises the 10 global dynamic vegetation models (CLM4C, CLM4CN,

HYLAND, LPJ, LPJ-GUESS, OCN, Orichidee, SDGVM, TRIFFID, and VEGAS) in-

cluded in the Trends in net land carbon exchange over the period 1980–2010

(Trendy) project (28, 29). It must be noted that these models do not include

explicit crop modules. The data-driven model ensemble consists of the

MTE1, MTE2, ANN, KGB, and LUE models used by Beer et al. (9). In addition,

monthly GPP estimates from the MPI-BGC data-driven model (27), which

corresponds to the MTE1 in the data-driven model ensemble, and the MODIS

GPP product (MOD17) (31) have been compared with monthly flux tower-

based GPP over croplands and grasslands to evaluate the ability of data-

driven models to reproduce GPP at those biomes. Cropland GPP is calculated

from the SIF observations and the model ensembles as the product of the

total GPP in each 0.5° grid box by the fraction of cropland area given by

Ramankutty et al. (6) (see SI Appendix, Derivation of Spatially-Explicit Crop

GPP Estimates). EVI data in Fig. 4 and SI Appendix, Comparison of Flux

Tower-Based GPP with Model GPP, SIF and Vegetation Indices, have been

extracted from the MODIS MOD13C2 product (15).

Flux tower-based GPP estimates covering the 2007–2011 period were

extracted from 14 sites in Midwest United States and Western Europe. Sites

correspond to the Ameriflux and the European Fluxes Database networks.

Only the most spatially homogeneous sites have been selected to enable

direct comparisons with the SIF observations and the GPP model outputs

available in 0.5° grid cells. The relationship GPP = −0.1 + 3.72 × GPP derived

from the comparison of GOME-2 monthly SIF composites with flux tower

GPP data has been used to scale SIF to GPP (see SI Appendix, Comparison of

Flux Tower-Based GPP with Model GPP, SIF and Vegetation Indices).

Large-scale NPP estimates have been derived from the USDA-NASS (38)

and Monfreda et al. (7) agricultural inventory data sets. The USDA inventory

covers North America and the 2006–2008 period. It is based on a statistical

method to upscale county-level crop NPP data from the USDA National

Agricultural Statistics Service (8, 38). The inventory by Monfreda et al. (7) is

for 2000. It is based on the aggregation of 175 crop classes in a 5 min by

5 min grid. Inventory-based NPP is converted from per-harvested-area to per-

total-area units through scaling by the fraction of harvested area, following

Monfreda et al. (7) (see SI Appendix, NPP Data from Agricultural Inventories).
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1 SIF retrievals

We use SIF data derived from spectral radiance measurements by the GOME-2 instrument onboard

the Eumetsat’s MetOp-A platform launched in October 2006. Details can be found in [1]. GOME-

2 measures in the 240–790 nm spectral range with relatively high spectral resolution (∼0.2–0.4 nm),

signal-to-noise ratio (∼1000–2000), and a footprint size of 40×80 km2. SIF retrievals are performed

in the 715–758 nm spectral window overlapping the second peak of the SIF emission. The retrieval

method disentangles SIF from the spectral signals of atmospheric absorption and scattering and of

surface reflectance which affect the measured top-of-atmosphere radiance. The retrievals are quality-

filtered and binned in a 0.5◦ lat-lon grid. GOME-2 data between 2007 and 2011 have been used in this

work.

Fig. S1 presents SIF retrievals from GOME-2 and GOSAT’s Fourier Transform Spectrometer (FTS)

data over the northern temperate region. NDVI from the MODIS MOD13C2 product is also shown

for reference. The retrieval approach applied to the GOSAT data is described in Guanter et al. [2].

The retrieval of SIF from GOSAT data is much simpler than that for GOME-2 thanks to the very

high spectral resolution of the GOSAT’s FTS (∼0.025 nm), which allows to use narrow fitting win-

dows (hence simpler modeling of the background surface reflectance) and to resolve individual solar

Fraunhofer lines (i.e. free from contamination by atmospheric absorption, mostly O2 in this spectral

range). GOSAT/FTS measurements consist of round field-of-views of about 10 km diameter separated

by hundreds of kilometers. The random component of the single-retrieval error is high, in the range of

50–100%, due to the narrow fitting window used for the retrieval and the relatively low signal-to-noise

ratio (∼100–300) of the FTS. Global composites of monthly SIF from GOSAT retrievals are typically

produced by averaging in 2◦ gridboxes. Despite the noise and the low spatial resolution of the GOSAT

SIF composites, we consider them to be highly accurate (free from systematic errors) due to the sim-

plicity of the retrieval approach based on narrow fitting windows and solely Fraunhofer lines. Therefore,

2
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Fig. S 1: Monthly composites (July 2009) of SIF retrievals from GOSAT/FTS and MetOp-A/GOME-2 mea-

surements. NDVI from the MODIS MOD13C2 product is also shown for reference. GOME-2 retrievals are for

a spectral fitting window centered around 740 nm (715–758 nm) and are gridded in 0.5◦ cells, whereas GOSAT

retrievals are for a narrow window at 757 nm and are gridded in 2◦ cells.

the good comparison between the spatial patterns in the GOSAT and the GOME-2 SIF supports the

consistency of the GOME-2 SIF data used in this work, and in particular of the outstanding SIF levels

observed at the Midwest US in the GOME-2 data (Fig. 1–2 of the main text). Slight differences in the

spatial patterns of GOSAT and GOME-2 SIF can be explained by the lower precision of the GOSAT

retrievals, which leads to noisier SIF composites, and the different overpass times (morning for MetOp-

A, noon for GOSAT) which makes the latitudinal differences in the solar flux received in the north and

the south to be greater for GOSAT than for GOME-2. The absolute SIF values differ for GOME-2

and GOSAT-FTS because of the different retrieval wavelengths and instantaneous illumination fluxes

associated to the overpass time of each satellite.

2 Model-based GPP data

We have used global GPP estimates from ensembles of data-driven and process-based models as follows:

3



• Data-driven models are based on the calculation of GPP with empirical and semi-empirical

relationships between GPP and a series of diagnostic variables (e.g. vegetation parameters such

as the fraction of absorbed photosynthetically active radiation and meteorological variables such

as short-wave radiation or vapor pressure deficit). As representative of state-of-the-art data-driven

methods, we have used annual GPP estimates from 5 of the data-driven models described in Beer

et al. [3], namely MTE1, MTE2, ANN, KGB and LUE. These models differ with each other in

how the relationship between the diagnostic variables and GPP is expressed.

In addition, monthly GPP estimates from the MTE1 model, referred to as Max Planck Institute

for Biogeochemistry (MPI-BGC) model [4] in the main text, and from the MODIS GPP model

(MOD17) [5] are used in the comparison with flux tower GPP in Fig. 2 of the main text and

Fig. S4, respectively. The MPI-BGC GPP data set is produced through the global upscaling of

site measurements of carbon dioxide fluxes. This is based on a Model Tree Ensemble approach

for a statistical formulation of the relationship between GPP and vegetation parameters derived

from remote sensing data and meteorological variables from re-analysis products. MOD17 GPP is

derived from a production-efficiency approach consisting in the formulation of GPP as the product

of absorbed photosynthetically-active radiation derived from satellite and meteorological data and

tabulated light use efficiency.

• Process-based models or dynamic global vegetation models (DGVMs), are based on mathe-

matical representations of physiological and ecological mechanisms driving productivity among

other vegetation responses. The DGVMs in our ensemble of process-based models are part of the

Trendy activity1 intended to intercompare Trends in net land - atmosphere carbon exchange over

the period 1980–2010. We have use the CLM4C, CLM4CN, HYLAND, LPJ, LPJ-GUESS, OCN,

Orichidee, SDGVM, TRIFFID, and VEGAS models. Model outputs were available at different

spatial resolutions. The data from the LPJ, LPJ-GUESS, Orchidee and VEGAS models were

simulated at 0.5◦×0.5◦ resolution, CLM4C and CLM4CN at 2.5◦×1.875◦, and OCN, TRIFFID

and HYLAND other at 3.75◦× 2.5◦. All 10 models have been resampled to the 0.5◦ grid used for

the SIF measurements, the data-driven model ensemble and the NPP inventories.

Fig. S2 shows the median and the standard deviation of the annual GPP from the 5 data-driven

models from Beer et al. [3] and the 10 process-based Trendy models from Piao et al. [6], Sitch et al. [7]

that we have used in this study. The median of the annual GPP from the two model ensembles shows

similar absolute values, although there are some spatial differences, especially in North America. The

spread of GPP estimates is significantly smaller for the data-driven models than for the process-based

models.

1http://dgvm.ceh.ac.uk/node/9
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Fig. S 2: Median (top row) and mean absolute deviation (bottom row) of annual GPP estimates in North

America and Western Europe from the data-driven and process-based model ensembles used in this work. Details

about each model ensemble can be found in Beer et al. [3] and Piao et al. [6], Sitch et al. [7], respectively.

3 Comparison of flux tower-based GPP with model GPP, SIF and

vegetation indices

We used fourteen eddy flux sites from the FLUXNET network [8] (Table S1). Six of these sites are

located in crop fields in the US Corn Belt. The remaining eight stations include five crop sites and three

grassland sites located across Europe. Sites have been selected on the basis of landscape homogeneity in

the GOME-2 grid and on data availability in the period of interest (2007–2011). To determine landscape

homogeneity, we used land cover type data from the MODIS Collection 5 MCD12C1 product (Friedl

et al. [9]) and EVI data from the MODIS MOD13C2 product (Huete et al. [10]), both with spatial

resolution of 0.05◦. For a site to be selected for the study, the dominant vegetation cover type at the

flux site (either cropland or grassland) must represent more than 60% of the GOME-2 pixel area, and

the standard deviation of the EVI must be less than 0.10 (see Table S1). We used the Level 4 data

product for the six US crop sites from the AmeriFlux website2, and from the GHG-Europe database3

for the eight Europe sites. Monthly GPP values were used in our investigation. GPP is estimated by

partitioning the observed net flux into GPP and ecosystem respiration as discussed in Reichstein et al.

[11] and Papale et al. [12].

For each site, SIF was extracted based on the coordinates of the flux tower, and averaged to monthly

means when at least 5 SIF retrievals were available. Three US crop sites (US-IB1, Ne2-3, Ro1) are very

close to big cities. To avoid signal contamination from urban areas, we extracted SIF from a nearby pixel

fulfilling the homogeneity criteria. Given that flux measurements are usually representative of a large

area in homogeneous landscapes (i.e., US-IB1 is representative of central Illinois), we assumed that SIF

(or EVI and NDVI) from nearby grid boxes can represent the footprint of the flux towers. Monthly SIF

2http://ameriflux.ornl.gov/
3http://www.europe-fluxdata.eu/

5



and GPP were averaged over the 2007–2011 observation period for each month to minimize uncertainties

due to the different spatial scales of the SIF retrievals and the flux tower data. This uncertainties occur

because both corn and soybean fields exist in the GOME-2 footprint for the US flux sites. A mixed

signal of corn and soybean is therefore sampled by the GOME-2 footprint, while the eddy covariance

tower measured flux either from corn or soybean for each year. Multi-year averaging may help reduce

this mismatch.
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Reflectance-based vegetation indices derived from satellite observations [e.g. 10, 25] provide infor-

mation about vegetation greenness (i.e. a combination of biomass, chlorophyll content and structural

effects) and have also been reported to be good indicators of gross primary production [e.g. 26]. The

data-driven GPP models combine these reflectance-based proxies for green biomass and canopy light

interception with meteorological inputs modulating photosynthesis at the ecosystem scale.

To complete the comparison of model GPP with fluorescence and tower-based GPP discussed in

the main text, we have also analyzed the relationship between flux tower GPP and the normalized

difference vegetation index (NDVI) [27], the enhanced vegetation index (EVI) [10], both extracted from

the MOD13C2 product, and the MERIS terrestrial chlorophyll index (MTCI) [28]. The NDVI is the

most widely used vegetation index in the last decades. The EVI is a modification of the NDVI intended

to improve the response of the NDVI for high green biomass levels and to reduce the sensitivity to

atmospheric effects. The MTCI is designed to provide a high sensitivity to chlorophyll content through

the sampling of the so-called red-edge window between the red and the near-infrared spectral regions.

Fig. S3 displays maps of the EVI, NDVI and MTCI for July 2009 and the same area as the GPP

and SIF maps shown in Fig. 2 of the main text (please, note that maximum monthly values instead

of July values are plotted in Fig. 2 of the main text, so this comparison is only approximate). The

data-driven GPP from the MODIS MOD17 product is also shown. The NDVI appears to be close to

saturation in the most densely vegetated areas of North America and Europe. This is not happening

for the EVI, which shows a somewhat higher signal in the midwest and the east coast of the US than

in Europe, in line with the spatial patterns of SIF and GPP MPI-BGC (Fig. 2 of the main text). No

significant differences between Europe and the US are observed in the MOD17 GPP data. On the other

hand, the spatial patterns of the MTCI at the US Corn Belt are the most similar ones to those of SIF.

This could be due to the fact that both SIF and the MTCI are most sensitive to canopy chlorophyll

content for the high levels of leaf-area index found at the peak of the growing season for the corn and

soybean crops in the US Corn Belt.

The same three indices have been compared with flux tower-based GPP estimates as we have done

with MPI-BGC GPP, process-based GPP from the Trendy models and SIF in Fig. 3 of the main text.

Results are shown in Fig. S4, in this case also including the European crop sites not included in Fig. 3

of the main text. Points to be noted are (i) the relatively bad comparison between GPP and both

EVI and NDVI for the US crops, (ii) the good correlation between EVI and GPP when the comparison

is performed for all three biomes, (iii) the lower values of EVI and MTCI at the grasslands sites,

which agrees with SIF and the tower-based GPP, but not with the data-driven GPP estimates, and

(iv) the good performance of the MTCI to track GPP in the US crops. These results, together with

the conclusions extracted from Fig. 3 of the main text, support our approach of selecting SIF as the

best input to upscale cropland GPP from the tower footprint to the regional scale. The relationship

GPP(SIF)=−0.10+3.72×SIF) is used for this upscaling.
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Fig. S 3: Maps of GPP from the MODIS MOD17 product, NDVI and EVI from the MODIS MOD13C2 product

and the MERIS MTCI for July 2009 and the same region of the GPP and fluorescence maps displayed in Fig. 2

of the main text. Please, note that maximum monthly values instead of July values are plotted in Fig. 2 of the

main text, so the comparison is only approximate.
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Fig. S 4: Similar to Fig. 3 of the main text but including the European cropland sites. Tower-based GPP is

compared with SIF, GPP MPI-BGC and GPP MOD17 (top) and with EVI, NDVI and MTCI data (bottom).
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4 Derivation of spatially-explicit crop GPP estimates

The monthly composites of SIF at 0.5◦ are scaled to GPP with the linear relationship derived from the

comparison of SIF with flux tower-based GPP shown in Fig. S4a (GPP(SIF)=−0.10+3.72×SIF). Model-

based GPP maps are generated as the median GPP per grid cell from the data-driven and process-based

model ensembles described before. We have estimated crop GPP from the total GPP in the grid box by

multiplying the total GPP by the fraction of cropland area in the gridbox described in Ramankutty et al.

[29] and downloadable from http://www.geog.mcgill.ca/~nramankutty/Datasets/Datasets.html.

As a result, we obtain the cropland GPP per unit total area, as shown in Fig. 6a of the main text.

Comparison of annual, area-integrated crop GPP estimated from SIF and the data-driven and process-

based models are provided in Table S2.

Table S 2: Annual, area-integrated GPP estimates over the US Corn Belt (35–50◦N, -105–80◦E), Western

Europe (35–55◦N, -10–25◦E), India (23–33◦N, 70–90◦E), China (30–49◦N, 110–135◦E), South America (−40–

−20◦N, −45–−70◦E), and the globe from the median of the data-driven and process-based biogeochemistry

model ensembles and the scaled SIF. These regions match those used to produce Fig. 7 of the main text. Relative

∆GPP is calculated as SIF-based GPP minus model GPP over model GPP. Uncertainties are derived from the

standard deviation of the ensembles in the case of the GPP models and from the errors in the slope and intercept

in the linear regression in Fig. S4a for the scaled SIF.

Crop GPP (PgC y−1)

US CB WestEur India China SouthAm Global

GPP(Data-Driven) 1.1±0.2 1.3±0.3 0.8±0.3 0.73±0.16 0.95±0.15 17±4

GPP(Proc.-based) 1.3±0.5 1.5±0.6 0.9±0.4 0.9±0.3 1.2±0.4 20±9

GPP(SIF) 1.54±0.06 1.30±0.05 1.23±0.06 0.90±0.05 0.81±0.04 17.0±0.2

∆GPP(Data-Driven) 43% 0% 55% 24% −14% 3%

∆GPP(Proc.-based) 18% −14% 39% −1% −38% −12%

Crop area (106 km2) 1.2 1.3 1.0 0.9 0.7 16.5

5 NPP data from agricultural inventories

The SIF- and model-based crop GPP estimates have been compared with crop net primary productivity

(NPP) estimates derived from agricultural inventories to produce Fig. 5 of the main text. Large-

scale NPP estimates have been provided by the agricultural inventory data sets described in USDA-

NASS [30] and Monfreda et al. [31]. The USDA NPP inventory was estimated using a statistical

method that includes factors for dry weight, harvest indices, and root:shoot ratios multiplied by yield

data from the National Agricultural Statistics Service (NASS). This method has been documented and

published by Hicke and Lobell [32], Hicke et al. [33], Prince et al. [34]. U.S. county-level estimates

of croplands production (P, in units of MgCy−1) dataset is available in http://cdiac.ornl.gov/

carbonmanagement/cropcarbon/. Data from the three most recent years (2006–2008) was used for
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Fig. S 5: Crop NPP per harvested area in North America from the global inventory by Monfreda et al. for 2000

(a) and the USDA inventory (2006 and 2008) [33].

comparison. To derive the spatial distribution of cropland GPP, county-level NPP (kgCm−2y−1) was

collocated in ArcGIS to a layer of the cultivated area of the US during 2008–2012. To compute NPP, we

divide P by the total crop area of each county. The cultivated layer data is available from USDA NASS

database at http://www.nass.usda.gov/research/Cropland/Release/index.htm.. Regarding the

global inventory by Monfreda et al., it is based on the aggregation of 175 crop classes in a 5 min by

5 min grid following a method similar to the one proposed by Prince et al. [34] for the US. Monfreda

et al. data corresponds to the year 2000.

Both USDA-NASS and Monfreda et al. NPP data sets are derived from the crop yields, and have

units of per-harvested-areas (Fig. S5). NPP is converted from per-harvested-area to per-total-area units

through the multiplication by the fraction of harvested area as described in Monfreda et al. (Fig. S6).

The fraction of harvested area is calculated by summing the fraction of harvested area for each of

the 175 crop classes considered by Monfreda et al. (data available from http://www.geog.mcgill.ca/

~nramankutty/Datasets/Datasets.html).

The comparison of NPP from the USDA inventory with GPP from the SIF retrievals and the data-

driven and process-based models for the US Western Corn Belt is shown in Fig. 5 of the main text. The

same comparison for the NPP from Monfreda et al. for both the US and Western Europe is displayed

in Fig S7.
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Fig. S 6: Cropland area and net primary production data sets from Ramankutty et al. [29] and Monfreda et al.

[31] The fraction of cropland area expresses the ratio of cropland to total area in each 0.5◦ grid cell. The harvest

ratio is the ratio of harvested-to-cropland area. The fraction of harvested area has been calculated from single

fractions of harvested area provided by Monfreda et al. [31] for a total of 175 crop classes. The NPP per total

area is calculated as the product of the original per-harvested-area NPP data from Monfreda et al. by the fraction

of harvested area.
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Fig. S 7: Same as Fig. 5 of the main text but for the NPP data set from the agricultural inventory by Monfreda

et al. and showing results also for the Western Europe area (40–55◦N, -5–15◦E).
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