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GLOBAL AND UNIFORM CONVERGENCE
OF SUBSPACE CORRECTION METHODS

FOR SOME CONVEX OPTIMIZATION PROBLEMS

XUE–CHENG TAI AND JINCHAO XU

Abstract. This paper gives some global and uniform convergence estimates
for a class of subspace correction (based on space decomposition) iterative
methods applied to some unconstrained convex optimization problems. Some
multigrid and domain decomposition methods are also discussed as special
examples for solving some nonlinear elliptic boundary value problems.

1. Introduction

This paper is devoted to convergence analysis for a class of iterative methods for
solving some convex optimization problems. It is well known that some iterative
methods, such as Newton’s method, can be proven to be globally convergent to
certain convex optimization problems. In this paper, we shall study the global
convergence property of a class of iterative methods that include multigrid and
domain decomposition methods.

Multigrid and domain decomposition methods have been studied extensively
in recent years for linear partial differential equations. Recent research (see for
example [37]) reveals that multigrid and domain decomposition methods can be
described and analyzed under a general framework based on space decomposition
and subspace correction (see also [3], [11], [27], [15], and [21]).

Naturally there is also a great deal of work on nonlinear problems. Some of
these methods are more or less straightforward extensions from the ones for the
linear problems, some of them are based on Newton’s method and the linearized
problems are solved by linear methods. Rather than going into the details of various
different techniques, let us just give a sample of references on these methods. For
the work based on the linearization approach, we refer to Bank and Rose [2], Cai
and Dryja [4], Rannacher [23], Deuflhard and Weiser [8], Xu [38, 39], and Axelsson
and Layton [1]. For the work based on multigrid or domain decomposition with
nonlinear smoothers or nonlinear local solvers, we refer to Lions [19], Mandel [20],
Gelman and Mandel [13], McCormick [21], Hackbusch and Reusken [16], Reusken
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[24], Dryja and Hackbusch [10], Kornhuber [17, 18], Tai and Espedal [33], and Zou
[40].

Our algorithms bear some of the natures of the methods of Mandel [20], Gel-
man and Mandel [13], McCormick [21], Kornhuber [17, 18] in the sense that we are
reducing the original minimization problem into a number of smaller minimization
problems and trying to guarantee a monotone decreasing of the cost functional.
The nonlinear approach of Hackbusch and Reusken [16] and Reusken [24] differers
from ours and the rate of convergence is in some sense local. The algorithm of Dryja
and Hackbusch [10] is the same as our parallel subspace correction algorithm, which
has also been studied earlier in [33, 30, 28], but our convergence results are quite
different. The convergence analysis presented here is valid for more general prob-
lems which can handle some nonlinear diffusion problems even when the nonlinear
diffusion coefficient is degenerate or singular (see Section 5).

The iterative methods we will study in this paper can be viewed as a straight-
forward extension of the subspace correction iterative method for linear problems
as described in [37] in a similar manner as in [19, 28, 33]. Of course, in various
special applications (such as multigrid and domain decomposition methods), these
methods are either almost identical or very similar to some methods studied in
the aforementioned literature. The main concern of this paper is to establish some
global and uniform convergence estimates for a class of subspace correction iterative
methods for some unconstrained convex optimization problems. Some of the tech-
niques used in this paper are based on earlier works ([28], see also [29], [30], [31],
[32], [22] and [33]). We would like to point out that most convergence estimates for
nonlinear problems in the existing literature are asymptotic in the sense that the
rate of convergence is attained only after sufficiently many iterations or the initial
guess is sufficiently close to the exact solution. But the convergence estimates we
will present are uniform and they are valid at the very first step of iteration.

The paper is organized as follows. In Section 2, the algorithms are proposed in
a general space decomposition setting. The needed conditions for the convergence
and also the convergence rate analysis are supplied in subsection 2.2. It is shown in
subsection 4.1 that the overlapping domain decomposition is a space decomposition
technique and its convergence does not depend on the mesh size and the number of
subdomains in case a proper coarse mesh is used. The corresponding interpretation
and estimates for multigrid methods is given in subsection 4.2. Applications to the
nonlinear p-Laplace equation are considered in Section 5.

2. An optimization problem and two subspace correction methods

In this section, we shall describe in an abstract fashion a general optimization
problem and two subspace correction iterative methods. Several applications of this
optimization problem can be found in Section 5. Optimal convergence estimates
will be established in the following subsection.

2.1. The optimization problem. Given a reflexive Banach space V and a convex
functional F : V 7→ R, we shall consider the nonlinear optimization problem

min
v∈V

F (v).(1)
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We assume that the functional F is Gateaux differentiable (see [5]) and there
exist constants K, L > 0, p ≥ q > 1 such that

〈F ′(w)− F ′(v), w − v〉 ≥ K‖w − v‖pV , ∀w, v ∈ V,
‖F ′(w)− F ′(v)‖V ′ ≤ L‖w − v‖q−1

V , ∀w, v ∈ V.
(2)

Here 〈·, ·〉 is the duality pairing between V and V ′( the dual space of V ). As a
direct consequence of (2), we have

K‖w − v‖pV ≤ 〈F ′(w) − F ′(v), w − v〉 ≤ L‖w − v‖qV , ∀w, v ∈ V.(3)

Under assumption (2), problem (1) has unique solutions (see [12, p. 35]). For some
nonlinear problems, the constants K and L may depend on v and w.

For simplicity, we set

σ =
p

p− q + 1
, σ′ =

p

q − 1
, which satisfy

1
σ

+
1
σ′

= 1.

Note that σ ≤ p and the Hölder inequality holds
m∑
i=1

|ai|q−1|bi| ≤
( m∑
i=1

|ai|p
) q−1

p
( m∑
i=1

|bi|σ
) 1
σ

.(4)

The following lemma can be proved in a similar way as [12, p. 25], and the proof
can be found in [28].

Lemma 2.1. If condition (3) is valid, then

F (w) − F (v) ≥ 〈F ′(v), w − v〉+
K

p
‖w − v‖pV , ∀v, w ∈ V,(5)

F (w) − F (v) ≤ 〈F ′(v), w − v〉+
L

q
‖w − v‖qV , ∀v, w ∈ V.(6)

We shall use u to denote the unique solution of (1) which satisfies

〈F ′(u), v〉 = 0, ∀v ∈ V.(7)

It is an easy consequence of Lemma 2.1 that
K

p
‖v − u‖pV ≤ F (v)− F (u) ≤ L

q
‖v − u‖qV , ∀v ∈ V.(8)

2.2. Two subspace correction methods. We shall now present two iterative
methods for solving the optimization problem (1). The methods themselves here
are not new and they can be viewed as generalizations of multigrid and domain
decomposition methods studied in the literature. As demonstrated in Xu [37], this
type of algorithm can be conveniently described and studied in the framework of
space decomposition and subspace correction.

Space decomposition refers to a method that decomposes the space V into a sum
of closed subspaces, i.e., there are closed subspaces Vi ⊂ V, i = 1, 2, · · · ,m, such
that

V = V1 + V2 + · · ·+ Vm.(9)

This means that for any v, there exists vi ∈ Vi such that v =
∑m

i=1 vi. Following the
framework of [37] for linear problems, we consider two types of subspace correction
methods based on (9), namely the parallel subspace correction (PSC) method and
the successive subspace correction (SSC) method.

The parallel subspace correction method can be described as follows.
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Algorithm 2.1. Choose initial value u0 ∈ V and relaxation parameters αi > 0
such that

∑m
i=1 αi ≤ 1.

1. For n ≥ 0, if un ∈ V is defined, then find eni ∈ Vi in parallel for i = 1, 2, · · · ,m
such that

F (un + eni ) ≤ F (un + vi) , ∀vi ∈ Vi.(10)

2. Set

un+1 = un +
m∑
i=1

αie
n
i ,(11)

and go to the next iteration.

The successive subspace correction method can be described as follows.

Algorithm 2.2. Choose initial values u0 ∈ V .

1. For n ≥ 0, if un ∈ V is defined, find un+i/m = un+(i−1)/m + eni with eni ∈ Vi
sequentially for i = 1, 2, · · · ,m such that

F
(
un+(i−1)/m + eni

)
≤ F

(
un+(i−1)/m + vi

)
, ∀vi ∈ Vi.(12)

2. Go to the next iteration.

We note that the two algorithms above are well defined since the subspace prob-
lems (10) and (12) are uniquely solvable under the assumptions for F described
earlier (see [12])

For the convergence analysis to be presented in the following section, we shall
now introduce two positive constants that in some sense characterize the space
decomposition (9).

The first constant, denoted by C1, is the least constant satisfying the following
property: for any given v ∈ V , there exist vi ∈ Vi such that

v =
m∑
i=1

vi, and

(
m∑
i=1

‖vi‖σV

) 1
σ

≤ C1‖v‖V .(13)

The existence of such a constant in an infinitely dimensional Banach space is per-
haps not so obvious at first glance, but it can be verified by a simple application of
the open mapping theorem.

The second constant, denoted by C2, is the least constant satisfying the following
property: for any wij ∈ V, ui ∈ Vi and vj ∈ Vj the following inequality holds:

m∑
i,j=1

〈F ′(wij + ui)− F ′(wij), vj〉 ≤ C2

( m∑
i=1

‖ui‖pV
) q−1

p
( m∑
j=1

‖vj‖σV
) 1
σ

.

(14)

The existence of C2 is obvious by assumption (2). A simple application of the
Hölder inequality would give the rough upper bound

C2 ≤ Lm,

but better bounds may be obtained in applications.
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Remark 2.1. For some nonlinear problems, the constants K and L may depend on
v and w. However, we note that Algorithms 1 and 2 are energy decreasing, i.e.,
F (un) ≤ F (u0). Thus, it is easy to prove that there exists a constant C(u0) which
only depends on u0 such that

‖un‖V , ‖eni ‖V ≤ C(u0), ∀n, i,

under the condition that F is coercive, i.e.,

F (v)→∞ as ‖v‖V →∞.

Accordingly, one can observe from our analysis given later that we only need as-
sumption (2) on a bounded set S = {v| ‖v‖V ≤ C(u0)}. It is often true that K and
L are uniformly bounded on bounded sets. Therefore, we have stated assumption
(2) without explicitly mentioning the dependence of K and L on u and v. By
omitting this dependence, it offers simplicity and clarity in the analysis.

Domain decomposition methods, multilevel methods and multigrid methods can
be viewed as different ways of decomposing finite element spaces into sums of sub-
spaces. See subsections 4.1 and 4.2 for examples of some decompositions of a finite
element space and the corresponding estimates for constants C1 and C2. If F is
strictly convex, then the iterative solutions of the algorithms converge to the true
solution, i.e., they are in a neighbourhood of the true solution. Therefore, we just
need to estimate (2) and (14) for v, w and wij from a neighbourhood of the true
solution. For linear problems, estimate (14) is a consequence of the well-known
strengthened Cauchy-Schwartz inequality (see Xu [37]).

3. Convergence analysis

Under the assumptions described above, we shall derive in this section uniform
convergence rates for both the PSC and SSC iterative algorithms.

Let u be the exact solution of (1) and un be the nth iterate of algorithm P or S.
We need to estimate the rate of reduction of the error u− un for each iteration.

To obtain a sharp estimate of this kind, it is important to use an appropriate
measurement. For our problem, we find it is convenient to use the measurement

dn = F (un)− F (u).(15)

Thanks to (8), dn is more or less like a norm of u− un.

3.1. Main results. We shall now state the theorems for the convergence rates of
Algorithms 2.1 and 2.2. For convenience of exposition, we introduce the parameter

r =
p(p− 1)
q(q − 1)

.

The convergence for Algorithms 2.1 and 2.2 can be stated as:

Theorem 3.1. Assume that the space decomposition satisfies (13), (14) and the
functional F satisfies (2). Then for both Algorithms 2.1 and 2.2, we have:

1. If p = q, then there exists a constant δ ∈ (0, 1) depending on p, q,K, L,C1

and C2 (see (32)) such that

dn ≤ δdn−1 ≤ δnd0, ∀n ≥ 1.(16)



6 XUE–CHENG TAI AND JINCHAO XU

2. If p > q, then there exists a positive constant c0 depending on d0, p, q,K, L,C1

and C2 (see (33)) such that

dn ≤ dn−1

(1 + c0d
r−1
n−1)

1
r−1

≤ d0

(1 + c0d
r−1
0 n)

1
r−1

, ∀n ≥ 1.(17)

This theorem states that when p = q, the convergence of both algorithms is
geometric. In case that p > q, the convergence can be slow, i.e., dn = O

(
(rn)−

1
r−1

)
.

Especially, when r is very big, 1
1−r ≈ 0 and the convergence can be very slow. Using

the fact that σ ≤ p, we see that it is impossible to have r < 1. In order to have
r = 1, we must require p = q.

3.2. A technical lemma. The proof of our first main result needs the following
technical lemma.

Lemma 3.2. Given r > 1 and η > 0, if a ∈ (0, a0] and b > 0 satisfy the inequality

b+ ηbr ≤ a,(18)

then there exists a constant ξ0 = ξ0(a0, η, r) ∈ (0, 1), depending only on a0, η and
r, such that

b ≤
(
η(r − 1)ξ0 + a1−r) 1

1−r < a.(19)

Proof. For the given a > 0, η > 0, r > 1, consider the ordinary differential equation{
dy
dt = −ηyr, t > 0,
y = a at t = 0.

(20)

Its solution is given by

y(t) =
(
η(r − 1)t+ a1−r) 1

1−r .(21)

Consider the function

E(ξ) ≡ y(ξ) + η(y(ξ))r − a.

Note that if E(0) = ηar > 0 and y(ξ) ≤ y(0) = a, we have

E′(ξ) ≥ −ηar − η2ra2r−1

and

E(ξ) = E(0) +
∫ ξ

0

E′(t)dt ≥ ηar − η2ra2r−1ξ − ηarξ ≥ ηar(1 − ηrar−1
0 ξ − ξ).
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Thus, for ξ0 = 1
ηrar−1

0 +1
, E(ξ0) ≥ 0, namely

y(ξ0) + η(y(ξ0))r ≥ a.(22)

A combination of (18) and (22) tells that

b+ ηbr ≤ y(ξ0) + η(y(ξ0))r.

By monotonicity of the relevant function, we conclude that

b ≤ y(ξ0).

This proves the lemma.

3.3. Proof of the main theorem. We are now in a position to present the details
of the proof of our main theorem, namely Theorem 3.1.

Using (11), the convexity of F and (5), we deduce that

F (un)− F (un+1) = F (un)− F
(
un +

m∑
i=1

αie
n
i

)
= F (un)− F

( m∑
i=1

αi(un + eni ) +
(

1−
m∑
i=1

αi

)
un
)

≥ F (un)−
m∑
i=1

αiF (un + eni )−
(

1−
m∑
i=1

αi

)
F (un)

=
m∑
i=1

αi

(
F (un)− F (un + eni )

)

≥ −
m∑
i=1

αi〈F ′(un + eni ), eni 〉+
K

p

m∑
i=1

αi‖eni ‖
p
V

=
K

p

m∑
i=1

αi‖eni ‖
p
V .

(23)

For notational simplicity, we introduce

wnj = un +
j∑
i=1

αie
n
i .

It is easy to see that

F ′
(
un +

m∑
j=1

αje
n
j

)
− F ′(un).(24)

From the property (13) of the space decomposition, there exists vi ∈ Vi such that

un+1 − u =
m∑
i=1

vi and

(
m∑
i=1

‖vi‖σV

) 1
σ

≤ C1‖un+1 − u‖V .(25)
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We now use (7), (23), (24) and (2) to deduce that〈
F ′(un+1)− F ′(u), un+1 − u

〉
= 〈F ′(un+1), un+1 − u〉 =

m∑
i=1

〈
F ′(un+1), vi

〉
=

m∑
i=1

〈
F ′(un+1)− F ′(un + eni ), vi

〉
(26)

=
m∑
i=1

〈
F ′
(
un +

m∑
j=1

αje
n
j

)
− F ′(un + eni ), vi

〉
=

m∑
i=1

〈
F ′
(
un +

m∑
j=1

αje
n
j

)
− F ′(un), vi

〉
+

m∑
i=1

〈
F ′(un)− F ′(un + eni ), vi

〉
=

m∑
i=1

m∑
j=1

〈
F ′(wnj )− F ′(wnj−1), vi

〉
+

m∑
i=1

〈
F ′(un)− F ′(un + eni ), vi

〉
≤ C2

( m∑
j=1

‖(αjenj )‖pV
) q−1

p
( m∑
i=1

‖vi‖σV
) 1
σ

+C2

m∑
i=1

‖eni ‖
q−1
V ‖vi‖V

≤ C2

( m∑
j=1

αpj‖enj ‖
p
V

) q−1
p
( m∑
i=1

‖vi‖σV
) 1
σ

+
C2

α
q−1
p

min

( m∑
i=1

αi‖eni ‖
p
V

) q−1
p
( m∑
i=1

‖vi‖σV
) 1
σ

(27)

≤ C2|αmax|
(p−1)(q−1)

p

(
m∑
i=1

αi‖eni ‖
p
V

) q−1
p

· C1‖un+1 − u‖V

+C2|minαi|−
q−1
p

(
m∑
i=1

αi‖eni ‖
p
V

) q−1
p

· C1 ‖un+1 − u‖V(28)

≤ C1C2

(
α

(p−1)(q−1)
p

max + α
− q−1

p

min

)
·
[ p
K

(
F (un)− F (un+1)

)] q−1
p · ‖un+1 − u‖V .

In the above, αmax and αmin are used to denote

αmax = max
1≤i≤m

αi, αmin = min
1≤i≤m

αi.
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By assumption (2) and relation (8), we have

〈F ′(un+1)− F ′(u), un+1 − u〉
‖un+1 − u‖V

≥ K‖un+1 − u‖p−1
V ≥ K

[ q
L

(F (un+1)− F (u))
] p−1

q

.(29)

Defining

C∗ =

C1C2

(
α

(p−1)(q−1)
p

max + α
− q−1

p

min

)
K


p
q−1

p

K

(
L

q

)r
,(30)

one gets from (28) and (29) that

(dn+1)r ≤ C∗(dn − dn+1).(31)

If r = 1, then from (31) we obtain that

dn+1 ≤ δdn with δ =
C∗

1 + C∗
.(32)

Next, we consider the case that r > 1. If dn = 0 for an n ≥ 1, then (31) tells us
that dk = 0, ∀k ≥ n. In this case, Theorem 3.1 is correct. Now, let us assume that
dn > 0, ∀n ≥ 1. Relation (31) is equivalent to

dn+1 +
1
C∗

(dn+1)r ≤ dn.

An application of Lemma 3.2 ensures that there is an ξ0 = ξ0(d0, C
∗, r) ∈ (0, 1)

such that

dn+1 ≤
(
r − 1
C∗

ξ0 + d1−r
n

) 1
1−r

.

Checking on the value of ξ0 from Lemma 3.2, it is easy to see that

c0 =
(r − 1)ξ0

C∗
=

r − 1
rdr−1

0 + C∗
.(33)

By induction, it follows that

dn+1 ≤
(
2c0 + d1−r

n−1

)− 1
r−1

≤ · · ·(34)

≤
(
(n+ 1)c0 + d1−r

0

)− 1
r−1 .(35)

This proves the theorem for Algorithm 2.1.
Now we proceed with the proof of the theorem for Algorithm 2.2. Notice

F (un)− F (un+1) =
m∑
i=1

[
F (un+i/m)− F (un+(i−1)/m)

]
.(36)

As un+ i
m is the minimizer of (10), we get by (5)

F (un+(i−1)/m)− F (un+i/m) ≥ K

p
‖eni ‖

p
V .(37)

Thus, estimates (36) and (37) together tell us that

F (un) ≥ F (un+1)(38)
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and

F (un)− F (un+1) ≥ K

p

m∑
i=1

‖eni ‖
p
V .(39)

Similarly to the proofs for (27)–(29), there holds for any vi ∈ Vi, which satisfies∑m
i=1 vi = un+1 − u, the relation

〈F ′(un+1)− F ′(u), un+1 − u〉

=
m∑
i=1

〈
F ′(un+1)− F ′(un+(i−1)/m + eni ), vi

〉
=

m∑
i=1

m∑
j≥i

〈
F ′(un+j/m)− F ′(un+(j−1)/m), vi

〉
(40)

≤ C2

( m∑
j=1

‖enj ‖
p
V

) q−1
p
( m∑
i=1

‖vi‖σV
) 1
σ

.

Let vi be given as in (25) and using estimates (39) and (40) to obtain

〈F ′(un+1)− F ′(u), un+1 − u〉

≤ C2

[( m∑
i=1

‖eni ‖
p
V

) q−1
p
]( m∑

i=1

‖vi‖σV
) 1
σ

≤ C1C2

( m∑
i=1

‖eni ‖
p
V

) q−1
p

· ‖un+1 − u‖V(41)

≤ C1C2

(
p

K
[F (un)− F (un+1)]

) q−1
p

· ‖un+1 − u‖V .

The rest of the proof is the same as the proof for Algorithm 2.1.

Remark 3.1. If there is no extra condition on the decomposed spaces, the condition∑m
i=1 αi ≤ 1 is sufficient and also necessary for the convergence of Algorithm 2.1.

In Remark 4.1 of [32, p. 146], an example is given which shows that if
∑m

i=1 αi > 1,
then Algorithm 2.1 can be divergent. For overlapping domain decomposition with a
suitable coloring, condition

∑m
i=1 αi ≤ 1 is nearly optimal. However, for multigrid

methods, as we shall discuss later, the upper bound of
∑m
i=1 αi with which the

algorithm is convergent can be much larger than 1. The upper bound depends on
matrix E = (εij), where εij satisfies

〈F ′(wij + ui)− F ′(wij), vj〉 ≤ εij‖ui‖q−1
V ‖vi‖V , ∀wij ∈ V, ∀ui ∈ Vi, ∀vj ∈ Vj .

If the decomposed spaces are orthogonal, it is easy to determine the upper bound
of
∑m

i=1 αi. In computations for general decomposed spaces, a line search to find
the value of t, such that the functional

g(t) = F

(
un + t

m∑
i=1

eni

)
is attaining its minimum value, would be appropriate. To find such a t, we do not
need to solve any system of equations, and we only need to evaluate the functional
values, which is not computationally expensive.
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4. Space decomposition for W 1,p(Ω)

In this section, we consider a special Banach space V = W 1,p(Ω) and then
discuss the estimations of the corresponding constant C1 and C2 introduced in
Section 2. We first discuss a domain decomposition method and then discuss a
multigrid algorithm.

4.1. Overlapping domain decomposition. In this subsection, we show how an
overlapping domain decomposition to decompose a finite element space can be used.

Let {Ωi}Mi=1 be a quasi-uniform finite element division or a coarse mesh of Ω, and
Ωi has diameter of order H . For each Ωi, we further divide it into smaller simplices
with diameter of order h. In the case that Ω has a curved boundary, we shall also
fill the area between ∂Ω and ∂ΩH ; here Ω̄H =

⋃M
i=1 Ω̄i with finite elements with

diameters of order h. We assume that the resulting elements form a shape regular
finite element subdivision of Ω (see Ciarlet [7]). We call this the fine mesh or the
h-level subdivision of Ω with mesh parameter h. We denote Ω̄h =

⋃
T ∈Th T̄ to

be the fine mesh subdivision. Let SH0 ⊂ W 1,∞
0 (ΩH) and Sh0 ⊂ W 1,∞

0 (Ωh) be the
continuous, piecewise rth order polynomial finite element spaces, with zero trace on
∂ΩH and ∂Ωh, over the H-level and h-level subdivisions of Ω, respectively. More
specifically,

SH0 =
{
v ∈W 1,∞

0 (ΩH)
∣∣ v|Ωi ∈ Pr(Ωi), ∀i

}
,

Sh0 =
{
v ∈ W 1,∞

0 (Ωh)
∣∣ v|T ∈ Pr(T ), ∀T ∈ Th

}
.

For each Ωi, we consider an enlarged subdomain Ωδi consisting of elements T , T ∈ Th
with dist(T ,Ωi) ≤ δ. The union of Ωδi covers Ω̄h with overlaps of size δ. Let us
denote the piecewise rth order polynomial finite element space with zero traces on
the boundaries ∂Ωδi as Sh0 (Ωδi ). Then one can show that

Sh0 = SH0 +
∑

Sh0 (Ωδi ).(42)

For the overlapping subdomains, assume that there exist m colors such that each
subdomain Ωδi can be marked with one color, and the subdomains with the same
color will not intersect with each other. For suitable overlaps, one can always choose
m = 2 if d = 1;m ≤ 4 if d = 2;m ≤ 8 if d = 3 (see Figure 1). Let Ω′i be the union
of the subdomains with the ith color and

Vi = {v ∈ Sh0 | v(x) = 0, x 6∈ Ω′i}.
By denoting subspaces V0 = SH0 , V = Sh0 , we find that decomposition (42) means

V = V0 +
m∑
i=1

Vi,(43)

and so the two level method is a way to decompose the finite element space. Follow-
ing an argument in [35], let {θi}mi=1 be a partition of unity with respect to {Ω′i}mi=1,
i.e., θi ∈ C∞0 (Ω′i ∩ Ω), θi ≥ 0 and

∑m
i=1 θi = 1. It can be chosen so that

|∇θi| ≤ C/δ, θi(x) =
{

1 if distance (x, ∂Ω′i) ≥ δ and x ∈ Ω′i,
0 on Ω\Ω′i.

Let Ih be an interpolation operator which uses the function values at the h-level
nodes. For any v ∈ V , let v0 ∈ V0 be the L2 projection of v, namely, (v0, φH) =
(v, φH), ∀φH ∈ V0, and vi = Ih(θi(v − v0)). They satisfy v =

∑m
i=0 vi, and
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Figure 1. The coloring of the subdomains and the coarse mesh grid

Lemma 4.1. For any s ≥ 1,(
‖v0‖s1,p +

m∑
i=1

‖vi‖s1,p

) 1
s

≤ C(m+ 1)
1
s

(
1 +

(
H

δ

) p−1
p

)
‖v‖1,p.(44)

The proof of the lemma above is essentially similar to the well-known case of
s = p = 2, except we need to use the following W 1,p stability estimate for L2

projection: ∫
Ω

|∇v0|pdxdy ≤ C
∫

Ω

|∇v|pdxdy.

This stability result is easy to prove by using, for example, the local L2-projection
technique in [36] (for details, see [34]). Estimate (44) shows that for overlapping
domain decomposition, the constants in (13) and (14) are

C1 = C(m)

(
1 +

(
H

δ

) p−1
p

)
, C2 = Lm.

By requiring δ = c0H , where c0 is a given constant, we have that C1 and C2 are
independent of the mesh parameters h and H , the number of subdomains. So if
the proposed algorithms are used, their error reductions per step are independent
of these parameters.

4.2. Multigrid decomposition. In this subsection, we discuss the application of
our theory to multigrid methods. From the space decomposition point of view,
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a multigrid algorithm is built upon the subspaces that are defined on a nested
sequence of finite element partitions.

We assume that the finite element partition T is constructed by a successive
refinement process. More precisely, T = TJ for some J > 1, and Tj for j ≤ J are a
nested sequence of quasi-uniform finite element partitions, i.e., Tj consist of finite
elements Tj = {τ ij} of size hj such that Ω =

⋃
i τ
i
j for which the quasi-uniformity

constants are independent of j (cf. [7]), and τ lj−1 is a union of elements of {τ ij}.
We further assume that there is a constant γ < 1, independent of j, such that hj
is proportional to γ2j .

As an example, in the two dimensional case, a finer grid is obtained by connecting
the midpoints of the edges of the triangles of the coarser grid, with T1 being the given
coarsest initial triangulation, which is quasi-uniform. In this example, γ = 1/

√
2.

We can use much smaller γ in constructing the meshes, but the constant C1 is
getting larger when γ is becoming smaller (see (46)).

Corresponding to each finite element partition Tj , a finite element spaceMj can
be defined by

Mj = {v ∈ W 1,p(Ω) : v|τ ∈ P1(τ), ∀ τ ∈ Tj}.
Each finite element spaceMj is associated with a nodal basis, denoted by {φij}

nj
i=1

satisfying
φij(x

k
j ) = δik,

where {xkj }
nj
k=1 is the set of all nodes of the elements of Tj . Associated with each

such nodal basis function, we define a one dimensional subspace as

Mi
j = span (φij).

On each level, the nodes can be colored so that the neighboring nodes are always of
different colors. The number of colors needed for a regular mesh is always a bounded
constant; call it mc. Let V kj , k = 1, 2, · · · ,mc be the sum of the subspaces Mi

j

associated with nodes of the kth color on level j. Letting V = MJ , we have the
following trivial space decomposition:

V =
J∑
j=1

mc∑
k=1

V kj .(45)

Each subspace V kj contains some orthogonal one dimensional subspaces Mi
j , and

so the minimization problems (10) and (12) for each V kj can be done in parallel
over the one dimensional subspacesMi

j .

4.2.1. Estimation of the constant C1. For any j ≤ J , let Qj be the L2 project
operator to the finite element space Mj at level j. For any v ∈ V , define vj =
(Qj −Qj−1)v ∈ Mj. A further decomposition of vj is given by

vj =
nj∑
i=1

νij with νij = vj(xij)φ
i
j .

Let vkj , k = 1, 2, · · · ,mc be the sum of νij associated with the nodes of the kth color
on level j. It is easy to see that

vj =
mc∑
k=1

vkj =
nj∑
i=1

νij .
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Denote Ωkj the union of the support sets of the basis functions associated with the
kth color nodes on level j. We estimate
mc∑
k=1

∣∣vkj ∣∣σ1,p =
mc∑
k=1

( ∑
xij∈Ωkj

∣∣vj(xij)∣∣p ∣∣φij∣∣p1,p)
σ
p

≤ Ch
σ(d−p)

p

j

mc∑
k=1

( ∑
xij∈Ωkj

∣∣vj(xij)∣∣p)σ
p

.

In the above, we have assumed that Ω ⊂ Rd, d = 1, 2, 3, · · · . Using the inequality
mc∑
k=1

|ak|σ ≤
( mc∑
k=1

|ak|p
)σ
p (
mc

)1−σp
,

we get that
mc∑
k=1

∣∣vkj ∣∣σ1,p ≤ Ch σ(d−p)
p

j (mc)1−σp
( nj∑
i=1

∣∣vj(xij)∣∣p)σ
p

≤ Ch−σj ‖vj‖σ0,p.

Here, we have used the fact that, in the finite element space, an Lp norm is equiv-
alent to some discrete Lp norm, namely

‖vj‖p0,p ∼= hdj

nj∑
i=1

∣∣vj(xij)∣∣p .
As a consequence,

J∑
j=1

mc∑
k=1

‖vkj ‖σ1,p ≤ C
J∑
j=1

h−σj ‖vj‖σ0,p

≤ C
J∑
j=1

h−σj

∥∥∥(Qj −Qj−1

)
v
∥∥∥σ

0,p
≤ C

J∑
j=1

h−σj

∥∥∥Qj(I −Qj−1

)
v
∥∥∥σ

0,p

≤ C
J∑
j=1

h−σj

∥∥∥(I −Qj−1

)
v
∥∥∥σ

0,p
≤ C

J∑
j=1

h−σj hσj−1 ‖v‖
σ
1,p(46)

≤ Cγ−2σJ ‖v‖σ1,p ,
which proves that

C1
∼= J

1
σ ∼= | log h| 1σ .

In proving inequality (46), we have used the stability in Lp of the L2-projection [9]
and the error estimate for L2-projections (see [7]).

4.2.2. Estimation of the constant C2. From condition (5), we see that

〈F ′(wij + ui)− F ′(wij), vj〉 ≤ L‖ui‖q−1
V ‖vj‖V .(47)

However, in order to estimate the constant C2, we need to use a finer estimate than
(47). For any w, u, v ∈ V , we need the functional F to satisfy

〈F ′(w + u)− F ′(w), v〉 ≤ L‖u‖q−1
1,p,supp(u)∩supp(v) ‖v‖1,p,supp(u)∩supp(v).

(48)

In the above and also later, supp denotes the support set of a function. For any
u ∈ Mi

j and v ∈ Mk
l , j ≤ l, we note that the size of supp(u) ∩ supp(v) is at most

the size of supp(v). Thus since u is piecewise linear,

‖u‖1,p,supp(u)∩supp(v) ≤ Cγ
2d
p |j−l|‖u‖1,p, ∀u ∈ Mi

j, ∀v ∈Mk
l .(49)
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Let w ∈ V, u ∈ V ij and v ∈ V kl . We decompose u and v as

u =
nj∑
α=1

uα, uα = u(xαj )φαj , v =
nk∑
β=1

vβ , vβ = v(xβl )φβl ,

i.e., functions u and v are decomposed into functions from the one dimensional
subspaces of the same colors. We shall assume that the following inequality is valid
for the above decomposition:

〈F ′(w +
∑

uα)− F ′(w),
∑

vβ〉 ≤
∑
α

∑
β

〈F ′(w + uα)− F ′(w), vβ〉.
(50)

The above inequality is often a consequence of the orthogonality of the one dimen-
sional subspaces of the same color and the fact that u is zero at the nodes that do
have the color of u.

From (50), (48), (49) and the orthogonality of the one dimensional subspaces of
the same color, it is easy to see that

〈F ′(w + u)− F ′(w), v〉 ≤ Cγ
2d(q−1)

p (l−j)L
∑
α

∑
β

‖uα‖q−1
1,p ‖vβ‖1,p

= Cγ
2d(q−1)

p (l−j)L‖u‖q−1
1,p ‖v‖1,p, ∀u ∈ V ij , v ∈ V kl , j ≤ l.

For j > l, we shall have

〈F ′(w + u)− F ′(w), v〉 ≤ Cγ 2d
p (j−l)L‖u‖q−1

1,p ‖v‖1,p, ∀u ∈ V ij , v ∈ V kl .

Denoting γ0 = γ
2d
p max(q−1,1), we get from the above two estimates

〈F ′(w + u)− F ′(w), v〉 ≤ Cγ0
|j−l|L‖u‖q−1

1,p ‖v‖1,p, ∀u ∈ V ij , v ∈ V kl .
(51)

To estimate the constant C2 we need the next lemma, which extends a result of
[27, p.184].

Lemma 4.2. Let A = (Aijθij) be an n1 × n2 matrix. Then

‖Ax‖`σ ≤ max
j

(∑
i

|θij |σ
) 1
σ

max
i

(∑
j

|Aij |σ
′
) 1
σ′

‖x‖`σ .

Lemma 4.3 (Proof of Lemma 4.2). The Cauchy-Schwarz inequality gives

‖Ax‖σ`σ =
∑
i

∣∣∣∣∑
j

Aijθijxj

∣∣∣∣σ

≤
∑
i

(∑
j

|Aij |σ
′
) σ
σ′
(∑

j

|θij |σ|xj |σ
)

≤ max
i

(∑
j

|Aij |σ
′
) σ
σ′ ∑

j

(∑
i

|θij |σ|xj |σ
)

≤ max
j

(∑
i

|θij |σ
)

max
i

(∑
j

|Aij |σ
′
) σ
σ′ ∑

j

|xj |σ,

which proves the lemma.
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As a consequence of Lemma 4.3, we easily get the following corollary which
generalizes a well-known result from linear algebra (see [25, p.3-38]).

Corollary 4.1. Let A = {Aij} be a symmetric matrix; then

‖Ax‖`σ ≤
(

max
i

∑
j

|Aij |
)
‖x‖`σ .

Proof of Corollary 4.1. It is easy to see that

|Aij | = |Aij |
1
σ′ |Aij |

1
σ .

The Corollary is an easy consequence of Lemma 4.2 by setting Aij := |Aij |
1
σ′ and

θij := |Aij |
1
σ .

For a given uij ∈ V ij and vkl ∈ V kl , an application of (4) gives

mc∑
i=1

mc∑
k=1

‖uij‖
q−1
1,p ‖vkl ‖1,p ≤ mc

( mc∑
i=1

‖uij‖
p
1,p

) q−1
p
( mc∑
k=1

‖vkl ‖σ1,p
) 1
σ

.

Using the above inequality and Corollary 4.1, we get that
J∑
j=1

J∑
l=1

mc∑
i=1

mc∑
k=1

γ
|j−l|
0 ‖uij‖

q−1
1,p ‖vkl ‖1,p

≤ Cmc

J∑
j=1

J∑
l=1

γ
|j−l|
0

( mc∑
i=1

‖uij‖
p
1,p

) q−1
p
( mc∑
k=1

‖vkl ‖σ1,p
) 1
σ

(52)

≤ Cmc

(
max
j

J∑
l=1

γ
|j−l|
0

)( J∑
j=1

mc∑
i=1

‖uij‖
p
1,p

) q−1
p

·
( J∑
l=1

mc∑
k=1

‖vkl ‖σ1,p
) 1
σ

≤ Cmc

1− γ0

( J∑
j=1

mc∑
i=1

‖uij‖
p
1,p

) q−1
p

·
( J∑
l=1

mc∑
k=1

‖vkl ‖σ1,p
) 1
σ

.

From (14), (51) and (52), we conclude that the constant C2 is independent of the
mesh size h and the number of levels J for decomposition (45).

Remark 4.1. In the case that p = q, the estimations we have derived for the con-
stants C1 and C2 are also valid for the decomposition

V =
J∑
j=1

nj∑
i=1

Mi
j,(53)

i.e., the coloring is not necessary for implementing the algorithms.

Remark 4.2. We would like to note that the multigrid algorithm described in this
section is not quite optimal and it needs O(nJ lognJ ) operations in each iteration.

5. An application

In this section we give some problems to which our algorithms and theory can
be applied without going into the details of analysis. Other applications are also
possible: for example, the eigenvalue problem in Chan and Sharapov [6, 26] and
also some other nonlinear partial differential equations for minimum surface, super-
conductivity and porous media flows.
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We consider the following nonlinear problem:{
− ∇ · (|∇u|s−2∇u) = f in Ω ⊂ Rd (1 < s <∞),

u = 0 on ∂Ω.(54)

For equation (54), we assume f ∈ W−1,s′(Ω), 1
s + 1

s′ = 1. By standard tech-
niques, it can be shown (see [12]), that (54) possesses a unique solution which is
the minimizer of

min
v∈W 1,s

0 (Ω)

[
1
s

∫
Ω

|∇v|s − 〈f, v〉
]
.

Even with very smooth data, the solution u may not be in the space W 2,s
0 (see

Ciarlet [7, p. 324]). When s is close to 1 or is very big (s � 2), it is difficult to
solve this problem numerically. It can proven that conditions (2) are valid for this
problem (see p. 319 and p. 325 of Ciarlet [7]). More precisely, we have for

V = W 1,s
0 (Ω), F (v) =

∫
Ω

(
1
s
|∇v|s − fv)dx

the following estimates:

〈F ′(v)− F ′(w), v − w〉 ≥ ‖v − w‖s1,s, if s ≥ 2;(55)

〈F ′(v)− F ′(w), v − w〉 ≥ α
‖v − w‖21,s

(‖v‖1,s + ‖w‖1,s)2−s , if 1 < s ≤ 2;(56)

‖F ′(v)−F ′(w)‖V ′ ≤ β(‖v‖1,s+‖w‖1,s)s−2‖v − w‖1,s, if s ≥ 2;(57)

‖F ′(v)− F ′(w)‖V ′ ≤ β‖v − w‖s−1
1,s , if 1 < s ≤ 2.(58)

In the above, α and β are independent of v and w and are strictly positive. The
proof of (55) and (57) is given in p. 319 of Ciarlet [7]. The proof of (56) and (58) can
be found in Glowinski and Marrocco [14]. Corresponding to condition (2), these
estimates imply that

p = s, q = 2 if s ≥ 2;

p = 2, q = s if 1 < s ≤ 2.

It is apparent that the functional F is coercive:

F (v) ≥ 1
2s
|v|s1,s − C3‖f‖s

′

−1,s′

for some constant C3. From this and (55)–(58) it is easy to see that K and L are
uniformly bounded on the bounded set S = {v| ‖v‖V ≤ C(u0)}. Choosing C(u0)
large enough, we can see that all the u and v, where we have applied assumption
(2), are in fact in S.

An application of Theorem 3.1 gives the rate of convergence, i.e.,

dn ≤ (Cn)−
2

s(s−1)−2 , for s > 2;

dn ≤ δnd0, for s = 2;

dn ≤ (Cn)−
s(s−1)

2−s(s−1) , for 1 < s < 2.

The constant C only depends on d0,K, L,C1, C2 and s.
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We would like to point out that similar results can be obtained for a more general
problem

min
v∈W 1,s

0 (Ω)

∫
Ω

1
2
a(|∇v|2) + f(v).(59)

We assume that a is strictly convex and f is convex and both are differentiable.
If Vi are the domain decomposition subspaces, then corresponding subspace prob-

lem (10) or (12) is a nonlinear problem in each subdomain, which has a smaller
size than the original problem. For some minimization methods, convergence and
computing time depend on the size of the problem. Thus by first reducing the
problem into smaller size problems and then minimizing, we may gain efficiency.
If Vi are the multigrid nodal basis subspaces, then the subspace problem is a one
dimensional nonlinear problem and we can use efficient minimization routines to
solve the one dimensional problems.
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