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1 Introduction and summary

Gauge theories are by definition invariant under gauge transformations, otherwise they are
anomalous and inconsistent. A simple manifestation of the anomaly is non-invariance of
the partition function Z[A] when the gauge field A is transformed to Ag,

Z[Ag] 6= Z[A]. (1.1)

Typical sources of anomalies are massless chiral fermions. As is well known, perturbative
anomalies are related to indices of Dirac operators in two-higher dimensions [3, 7, 8],
and the Atiyah-Singer index theorem allows us to describe them in terms of anomaly
polynomials. However, even when such perturbative anomalies are absent, there can also
be non-perturbative (global) gauge transformations which cannot be smoothly deformed
to the trivial one, under which theories are not invariant [56, 57].
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More generally, there are also fermion anomalies which are not as simply represented
as (1.1). Current understanding of anomalies is that they arise in the definition of the
partition function Z[A] itself, rather than its gauge transformations. In particular, chiral
fermions in d-dimensions can be realized as boundary modes of massive bulk theories in
(d+1)-dimensions, and the anomaly of the original d-dimensional boundary theory is given
by the partition function of the (d+1)-dimensional bulk theory [61, 63, 65], which is called
the invertible field theory [23].

Furthermore, this sort of argument is not restricted to the cases of fermionic fields, but
also incorporates the cases of bosonic fields. For example, we know that the contribution
of a 2-form field to the anomaly of ten-dimensional superstring theories is very important
for Green-Schwarz mechanism of anomaly cancellation [29]. They are studied at the per-
turbative level in the past, but they can also produce non-perturbative global anomalies.

Unfortunately, due to their conceptual subtleties as well as technical difficulties, the
global anomalies have not been thoroughly investigated for decades, especially in higher
dimensions. But thanks to the recent developments, they are now within range of analyses,
and this paper aims to obtain new results on the case of eight-dimensional theories.1

For the purpose of systematic studies of anomalies, an important point is as follows.
As we mentioned above in the context of fermions, the anomalies of a quantum field theory
(QFT) are believed to be captured by a one-higher dimensional invertible QFT. These
invertible field theories are known to be described in terms of bordism groups [21, 35, 37, 66,
68], and in particular, the information of the global anomalies of fermions in d-dimensional
G gauge theories on spin manifolds are encoded in the bordism group Ωspin

d+1(BG), where
BG is the classifying space of the gauge group G.2

Our focus will be on eight-dimensional (8d) N = 1 supergravity theories,3 where some
of the gauge groups G are known to be actually realized despite the possible anomalies. For
instance, many such theories can be realized by F-theory compactification on elliptic K3
surfaces [44, 45, 55], including those with “frozen” singularities [10, 50, 60].4 One curious
observation on these theories with known string-theory realizations is that, the rank of the
total gauge algebra of vector multiplets is either 18, 10, or 2. We will see in this paper
that the structure of anomalies are quite different between these three cases, due to the
difference in the structure of the 2-form field.

Let us recall some facts about the 2-form field. The field strength 3-form H of the
2-form field B in 8d N = 1 supergravity satisfies the equation of the form

dH = kgrav [Ngrav trR ∧R] +
∑
i

kGi [NGi trFGi ∧ FGi ] + · · · (1.2)

1See e.g. [2, 13, 17, 19, 22, 26, 32, 39, 41, 46, 51, 54] for a sampling of recent studies of global anomalies
in higher dimensions.

2In this paper we only consider spin structure as the spacetime structure, but it would also be interesting
to consider other structures such as pin− structure. See [46] for new constraints in eight and nine dimensions
when we take those additional structures into account.

3It would also be interesting to study how the anomalies of 7-branes in non-compact ten-dimensional
spaces are cancelled, possibly by a coupling to bulk RR-fields as discussed in [20].

4See also [13, 33, 46] and references therein for investigations of possible gauge groups in 8d supergravity
by bottom-up approaches.
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where R is the Riemann curvature tensor, FG is the field strength of the G gauge field,
Ngrav andNG are appropriate normalization factors such that Ngrav trR∧R andNG tr(FG∧
FG) correspond to the characteristic class by the Chern-Weil construction which represent
integral cohomology classes, and kgrav and kG are the gravitational and gauge Chern-Simons
levels.

We will show that the gaugino of any simple Lie algebra and the gravitino have anoma-
lies, and hence they must be cancelled by some mechanism. The situation in the three cases
mentioned above are as follows.

• rank 18 : kgrav(= 1) and kG are both odd for all known examples realized by string
theory, and therefore all the fermion anomalies can be cancelled by the 2-form field.

• rank 2 : kgrav = 0 for all known examples,5 and the anomaly of the gravitino cannot
be cancelled by the 2-form field. We claim that a topological 3-form Z2 gauge field
is responsible for the anomaly cancellation, and discuss its origin when the theory is
obtained by the compactification of M-theory on Klein bottle.

• rank 10 : we still do not have a complete understanding. This case includes the Sp(n)
gauge algebras which have an additional anomaly compared to other Lie algebras [26],
and also simply-laced Lie algebras with even kG.

The rest of the paper is organized as follows.
In section 2, we first take a bottom-up approach and compute the η-invariants of Dirac

operators D9 on nine-manifolds S1 × M8 for some special eight-manifolds M8 or gauge
bundles over them. The Atiyah-Patodi-Singer index theorem [5] tells us that they are in
fact bordism invariants, and as a result we obtain a partial list of generators of bordism
groups Ωspin

9 (BG) of classifying spaces BG of connected, simply-connected, compact simple
Lie groups G. In particular, we find that there is a universal global gauge anomaly to which
fermions in adjoint representation contribute for those gauge groups of interest, which has
not been identified by conventional analyses using homotopy groups π8(G).

In section 3, we turn to a top-down approach and compute various bordism groups
Ωspin

9 (BG) by Atiyah-Hirzebruch spectral sequences and Adams spectral sequences. The
results show that the list obtained in the last section is actually complete, and correspond-
ingly the possible global gauge anomalies are exhausted by those of fermions charged under
representations considered there. In addition, we also mention the (non simply-connected)
G = SO(n) case along the way.

In section 4, we examine the anomaly of 2-form fields and discuss the anomaly can-
cellation utilizing them, which can be thought of as an 8d analog of the Green-Schwarz
mechanism [29]. This in fact renders some of the apparently-noxious theories of fermions
anomaly-free, including those realized as low-energy effective theories of string theories,
just as in the original version in ten dimensions.

In section 5, we also take a look at some of the exceptions to the above, namely theories
with anomalies which cannot be cancelled by 2-form fields. We take up one of them and
argue that the anomaly is actually canceled in the end, but it requires topological degrees
of freedom.

5The possibility of realizing kgrav = 1 is not ruled out at the time of writing, and if realized, the details
will depend on the parity of kG. For the theoretical constraints on the value of kgrav, see [38].
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2 Some manifolds and fermion anomalies

In this section, we discuss some concrete examples of global anomalies of Weyl fermions in
eight-dimensional G gauge theories. The analysis in section 3 will show that these examples
in fact exhaust all possible anomalies for connected, simply-connected, compact simple Lie
groups G.

First of all, fermion anomalies in d-dimensions are described by the Atiyah-Patodi-
Singer (APS) η-invariant in (d+ 1)-dimensions [57, 63, 65]. Let Dd+1 be the relevant Dirac
operator in (d+ 1)-dimensions6 and λi’s be its eigenvalues. The η-invariant is defined as7

η = 1
2

∑
λi 6=0

λi
|λi|

+ dim KerDd+1

 . (2.1)

Since the anomalies take the form of e−2πiη, we are interested in the values of η modulo Z.
Now let us focus on the d = 8 case. All the examples of 9-manifolds we discuss are of the

form S1×M8, where M8 is a closed 8-manifold possibly equipped with a G-bundle, and S1

is assumed to have the periodic (i.e. non-bounding) spin structure which gives the nontrivial
element of the bordism group Ωspin

1 (pt). On S1 ×M8, the Dirac operator is of the form

D9 = iγτ∂τ +D8 (2.2)

where D8 is the Dirac operator on M8, and τ is the coordinate of S1. Suppose that Ψ(τ, y)
is an eigenfunction of D9, where y is a coordinate system on M8. Then γτΨ(−τ, y) is
also an eigenfunction with the opposite-sign eigenvalue. Thus all nonzero modes λi 6= 0
appear in pairs with eigenvalues ±|λi|, and therefore cancel out in the definition (2.1) of
η. Also, KerD9 is the space of zero modes of D9, and these zero modes need to satisfy
∂τΨ(τ, y) = 0 and D8Ψ(τ, y) = 0 since (D9)2 = (i∂τ )2 + (D8)2 for non-negative operators
(i∂τ )2 and (D8)2. Thus dim KerD9 = dim KerD8 = indexD8 modulo 2Z. As a result,

η = 1
2 indexD8 mod Z (2.3)

and we only need to compute indexD8 mod 2.8
Let R be the Riemann curvature 2-form and F be the field strength 2-form for the

G-bundle. Suppose that the fermion is coupled to the G-bundle in a representation ρ.
Then, the index theorem states that

indexD8 =
∫
M8

Â(R) trρ exp F̃ =
∫
M8

(
1
24 trρ F̃ 4 − 1

48p1 trρ F̃ 2 + 7p2
1 − 4p2
5760 dim ρ

)
(2.4)

6See [65] for the details of the construction of Dd+1 from the d-dimensional data.
7Strictly speaking, this is not the “genuine” η but rather what is called ξ(s = 0) in the original paper [6],

but here we follow the conventional nomenclature.
8An intuitive meaning of the anomalies detected by indexDd mod 2 is as follows [57]. We consider

the path integral of the d-dimensional theory on Md. Fermions have zero modes with the index given by
indexDd. If the index is odd, the path integral measure is not invariant under the fermion parity (−1)F

which is just the 2π rotation of spacetime.
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where F̃ := i
2πF , Â(R) is the A-roof genus, and pi’s are the Pontrjagin classes given in

terms of R, which have degree 4i. We now want to consider the following 8-manifolds M8
possibly equipped with G-bundles:

• Quaternionic projective plane HP2. Its cohomology ring H∗(HP2;Z) is known to be
generated by a single generator x ∈ H4(HP2;Z) = Z such that

∫
HP2 x2 = 1. The

Pontrjagin classes are p1 = 2x and p2 = 7x2 respectively, and therefore the third
term of (2.4) vanishes.

• Bott manifold B. The Pontrjagin classes are p1 = 0 and p2 = −1440b where b is such
that

∫
B b = 1, and therefore the third term of (2.4) integrates to dim ρ.

• G-bundle PG → HP2. The base HP2 has a tautological quaternionic line bundle whose
structure group is Sp(1) = SU(2), and PG is obtained by using a map SU(2) → G

associated with a simple long root.

• G-bundle QG → S4 × S4. Taking an appropriate map SU(2)× SU(2)→ G discussed
below, we take a bundle over the first (resp. second) S4 with the unit second Chern
class for the first (resp. second) SU(2).

For more details on the facts about manifolds HP2 and B mentioned above, see e.g. [22,
section 5]. Let us use these manifolds to deduce some possible anomalies.

First, recall that the anomaly of a gravitino can be described by taking the tensor
product of the spinor bundle and TM8−R, where TM8 is the tangent bundle of M8 and R
is the trivial bundle, in place of a G-bundle [4]. Taking F = R correspondingly, one yields
tr F̃ 4 = 2(p2

1 − 2p2) and tr F̃ 2 = 2p1, and hence9

indexD8 =
∫
M8

(
p2

1 − 4p2
24 + 7p2

1 − 4p2
5760 (8− 1)

)
=
∫
M8

289p2
1 − 988p2
5760 . (2.5)

From this result, we see that the index for a gravitino is −1 on HP2 and 247 on B, both of
which are 1 mod 2.

Next, consider the bundle PG → HP2 constructed from a quaternionic Sp(1) = SU(2)
bundle. In the fundamental representation 2 of SU(2), we have tr2 F̃

4 = 2x2 and tr2 F̃
2 =

2x in terms of x ∈ H4(HP2;Z), and thus indexD8 = 0. On the other hand, in the adjoint
representation 3, we have tr3 F̃

4 = 32x2 and tr3 F̃
2 = 8x, and thus indexD8 = 1. Under

the map SU(2)→ G associated with a simple long root, the adjoint representation adj(G)
of generic G decomposes as10

adj(G)→ 3︸︷︷︸
indexD8=1

⊕ 2⊕ · · · ⊕ 2︸ ︷︷ ︸
indexD8=0

⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
indexD8=0

(2.6)

9Another view on the subtraction −1 is that, it takes the contribution from ghosts into account, which
amounts to removing that of a singlet fermion.

10In general, when we have a map (homomorphism) between groups H → G, a representation of G
decomposes into representations of H.

– 5 –
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and as a result we get indexD8 = 1 for adj(G). This is universal in the sense that it is true
for any compact simple Lie group G.

Finally, let us take up the bundle QG → S4 × S4. This was already discussed in [26],
and here we briefly review the argument. Under the map SU(2) × SU(2) → G which we
explain in a moment, suppose that a representation ρ of G decomposes as

ρ→ (2⊗ 2)⊕ odd ⊕ (ρ1 ⊗ 1)⊕ · · · ⊕ (1⊗ ρ2)⊕ · · · . (2.7)

This condition is satisfied, for example, in the following cases.

• Spin(n ≥ 4) has a subgroup SU(2) × SU(2) = Spin(4) ⊂ Spin(n). The fundamental
representation n of Spin(n) satisfies (2.7) for any n ≥ 4. The adjoint representation
of Spin(n) also satisfies (2.7) if n is odd.

• Sp(n ≥ 2) has a subgroup SU(2)×SU(2) ⊂ Sp(2) ⊂ Sp(n). The adjoint representation
satisfies (2.7). The antisymmetric representation n(2n− 1) also satisfies (2.7).

• F4 has a subgroup Spin(9) ⊂ F4 under which the adjoint representation decomposes
as adj(F4) → adj(Spin(9)) ⊕ 24, where 24 is the spinor representation of Spin(9).
Embedding SU(2) × SU(2) into Spin(9), the adjoint representation satisfies (2.7).
The 26-dimensional representation decomposes as 26→ 9⊕ 24⊕ 1 of Spin(9) and it
satisfies (2.7).

• G2 has a subgroup SU(2)×SU(2)
Z2

⊂ G2 and hence we have a map SU(2)×SU(2)→ G2.
The 7-dimensional representation decomposes as 7 → (2 ⊗ 2) ⊕ (1 ⊗ 3) and hence
satisfies (2.7).

For these groups and representations, we get indexD8 = 1. We remark that the adjoint
representation of G2 has indexD8 = 0 mod 2 for the bundle QG studied here.

The results are summarized in table 1. Notice that all the representations discussed
above are real, so there are no perturbative anomalies for fermions charged under them,
and the anomalies detected by indexD8 mod 2 are all global anomalies. Correspondingly,
the η-invariants become bordism invariants as inferred from the index theorem, and from
table 1 we see that

Z⊕2
2 ⊂ Ωspin

9 (pt)
Z2 ⊂ Ω̃spin

9 (BG) (G = SU(n), E6,7,8)
Z⊕2

2 ⊂ Ω̃spin
9 (BG) (G = Spin(n ≥ 4), Sp(n ≥ 2), F4, G2)

(2.8)

where Ω̃spin
• is the reduced spin bordism group (i.e. Ωspin

• (X) = Ω̃spin
• (X) ⊕ Ωspin

• (pt)). It
is known that Ωspin

9 (pt) = Z⊕2
2 , and by using spectral sequences, we will further show that

the manifolds and bundles discussed above exhaust all the generators of Ω̃spin
9 (BG) for

connected, simply-connected, compact simple Lie groups G in the next section.
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indexD8 mod 2 HP2 B PG→HP2 QG→S4×S4

singlet fermion 0 1 − −
gravitino 1 1 − −

adj(G) (SU(n),Spin(2n),E6,7,8,G2) 0 dimadj(G) mod 2 1 0 if defined
adj(G) (Spin(2n+1),Sp(n),F4) 0 dimadj(G) mod 2 1 1

n of Spin(n)
n(2n−1) of Sp(n)

26 of F4

7 of G2

0 dimρ mod 2 0 1

Table 1. IndexD8 mod 2 on various manifolds for the fermion representations discussed in the
main text. For Spin(n) we only consider n ≥ 4, and for Sp(n) we only consider n ≥ 2.

3 Bordism group computation

In this section, we compute the spin bordism group Ωspin
d+1(BG) for some simple Lie groups

G’s. Roughly speaking, it is a group formed by equivalence classes of closed manifolds
equipped with spin structure and G-bundle, where two manifolds are defined to be equiv-
alent if there is a one-higher dimensional compact manifold connecting them. It can be
computed using various types of spectral sequences; for general introduction to spectral
sequences see e.g. [18, 31, 40], while we also refer to [27] for the introduction to Atiyah-
Hirzebruch spectral sequences aimed at physicists, and [9] for the introduction to Adams
spectral sequences.

3.1 Atiyah-Hirzebruch spectral sequence

For the Atiyah-Hirzebruch spectral sequence associated with the trivial fibration

pt −→ X −→ X, (3.1)

the E2-terms are given by ordinary homology groups Hp(X; Ωspin
q (pt)), and it converges to

the bordism group Ωspin
p+q(X).

3.1.1 SU(n) gauge anomaly

Let us first carry out an explicit computation for the X = BSU(n ≥ 5) case. The
(co)homology of BSU(n) is known to be

H∗(BSU(n);Z) = Z[c2, c3, c4, c5, . . .], (3.2)

– 7 –
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where ci ∈ H2i(BSU(n);Z) are Chern classes. One can easily fill in the E2-page of the
Atiyah-Hirzebruch spectral sequence as follows:

E2
p,q = Hp

(
BSU(n); Ωspin

q (pt)
)

9 Z⊕2
2 ∗ ∗ ∗ ∗

8 Z⊕2 ∗ ∗ ∗ ∗
7
6
5
4 Z Z ∗ ∗ ∗
3
2 Z2 Z2 Z2 ∗ ∗
1 Z2 Z2 Z2 Z⊕2

2 ∗
0 Z Z Z Z⊕2 Z⊕2

0 1 2 3 4 5 6 7 8 9 10

(3.3)

where the horizontal and vertical axes correspond to p and q respectively.

Here, the differentials d2 : E2
p,q → E2

p−2,q+1 for q = 0, 1 are known [52] to be the duals of
the Steenrod square Sq2 (composed with mod-2 reduction for q = 0). From the knowledge
on the cohomology of BSU(n), one can confirm that d2 : E2

10,0 → E2
8,1 is non-trivial since

Sq2c4 = c5 for mod-2 reduced Chern classes, while d2 : E2
8,1 → E2

6,2 is trivial, and also d4 :
E2

8,1 → E2
4,4 is obviously trivial as it should be a homomorphism. As a result, one is led to

Ω̃spin
9 (BSU(n)) = Z2 (3.4)

and this detects the universal anomaly of adjoint fermions in 8d SU(n) gauge theories
described in the previous section.

3.1.2 Sp(n) gauge anomaly

Similarly, for X = BSp(n ≥ 2), it is known that the (co)homology is

H∗(BSp(n);Z) = Z[q1, q2, . . .], (3.5)

– 8 –
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where qi ∈ H4i(BSp(n);Z). One can again easily fill in the E2-page of the Atiyah-
Hirzebruch spectral sequence as follows:

E2
p,q = Hp

(
BSp(n); Ωspin

q (pt)
)

9 Z⊕2
2 ∗ ∗

8 Z⊕2 ∗ ∗
7
6
5
4 Z Z ∗
3
2 Z2 Z2 ∗
1 Z2 Z2 Z⊕2

2

0 Z Z Z⊕2

0 1 2 3 4 5 6 7 8 9 10

(3.6)

Since E2
10,0 is empty opposed to the X = BSU(n ≥ 5) case, one is led to conclude that

Ω̃spin
9 (BSp(n)) = Z⊕2

2 (3.7)

where the additional Z2 should correspond to the subtler anomaly discussed in [26].
However, it is not always the case that the Atiyah-Hirzebruch spectral sequence is

adequate to obtain the desired bordism groups. In the next subsection, we will introduce
another spectral sequence which can be further exploited in such cases.

3.2 Adams spectral sequence

For the case of interest, the E2-terms of the Adams spectral sequence are given as

Es,t2 = Exts,tA
(
H̃∗(MSpin ∧X;Z2),Z2) =⇒ πst

t−s(MSpin ∧X)∧2 ' Ω̃spin
t−s (X)∧2 , (3.8)

and converge to the 2-completion of a stable homotopy group, which is isomorphic to that
of the desired (reduced) bordism group via the Pontrjagin-Thom construction. Here, A is
the mod-2 Steenrod algebra generated by certain cohomology operations, ExtR is a certain
functor in the category of (graded) R-modules which takes values in Abelian groups, and
MSpin is the Thom spectrum of the universal bundle over BSpin.

Using the Künneth formula, the (reduced) cohomology of a smash product is decom-
posed as

H̃∗(X ∧ Y ;Z2) ' H̃∗(X;Z2)⊗Z2 H̃
∗(Y ;Z2). (3.9)

Note that it is known [1, 21, 30] that

H̃∗(MSpin;Z2) ' A⊗A(1) (Z2 ⊕ Σ8Z2 ⊕ Σ10J ⊕M≥16) (3.10)

– 9 –
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where A(1) is the subalgebra of A generated by Sq1 and Sq2, J is a certain A(1)-module
called the joker, and M≥16 is also an A(1)-module which is trivial in degrees less than 16.
Then, the combination of the shearing isomorphism and the adjunction formula allows us
to rewrite the E2-terms as

Exts,tA(1)
(
(Z2 ⊕ Σ8Z2 ⊕ Σ10J ⊕M≥16)⊗Z2 H̃

∗(X;Z2),Z2). (3.11)

Fortunately, for simply-connected compact simple Lie groups G, things become significantly
easier since the lowest degree of elements in H̃∗(BG;Z) is 4, meaning that for t − s ≤ 11
the E2-terms can actually be reduced to

Exts,tA(1)
(
Z2 ⊗Z2 H̃

∗(X;Z2),Z2
)

= Exts,tA(1)
(
H̃∗(X;Z2),Z2

)
(3.12)

which converges to the (reduced) ko group. Therefore, for such G we have

Ω̃spin
d (BG) ' k̃od(BG) for d ≤ 11. (3.13)

3.3 G2 gauge anomaly

Now, let us look at the X = BG2 case. It is known [11, 43] that the cohomology of BG2
is p-torsion free for p ≥ 3, which assures that the full bordism group can be derived from
its 2-completion. Furthermore, the Z2 cohomology ring is given as

H∗(BG2;Z2) = Z2[y4, y6, y7], (3.14)

and the cohomology operations act as

Sq2y4 = y6,

Sq1y6 = y7.
(3.15)

Then, the A(1)-module structure of H∗(BG2;Z2) for the range of interest is represented as

•

•

•

•

•

•

•

•

• y4

y6

y7

(y4)2

y4y6

y4y7

(y6)2

(y7)2

y6y7

(3.16)

– 10 –
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where the straight lines and curved lines represent the actions of Sq1 and Sq2 respectively.
Namely, as an A(1)-module one has

Σ4Q⊕ Σ8Z2 ⊕ Σ10J (3.17)

where Q and J are the “named” A(1)-modules. Correspondingly, the associated Adams
chart which pictorially describes the E2-page Exts,tA(1)

(
H̃∗(BG2;Z2),Z2

)
is given [9] by

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

where the horizontal and vertical axes correspond to t−s and s respectively. Here, the dots
denote the Z2-generators in Exts,tA(1)(H

∗(BG2;Z2),Z2), while the vertical (resp. sloped)
lines represent the action by h0 ∈ Ext1,1

A(1)(Z2,Z2) (resp. h1 ∈ Ext1,2
A(1)(Z2,Z2)). The

possibly-nontrivial differentials are the ones with the source at (t − s, s) = (10, 0) and
would hit the classes in t − s = 9, but such differentials are not consistent with the ac-
tion of h1, and therefore there are no differentials at all. As a result, the Adams spectral
sequence converges as follows:

d 0 1 2 3 4 5 6 7 8 9 10 11

Ω̃spin
d (BG2) 0 0 0 0 Z 0 0 0 Z⊕2 Z⊕2

2 Z⊕3
2 0

(3.18)
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Comparing the degree-9 part with the Atiyah-Hirzebruch spectral sequence

E2
p,q = Hp

(
BG2; Ωspin

q

)
9 Z⊕2

2 ∗ ∗ ∗ ∗
8 Z⊕2 ∗ ∗ ∗
7
6
5
4 Z Z ∗ ∗
3
2 Z2 Z2 Z2 Z2 ∗
1 Z2 Z2 Z2 Z2 Z2

0 Z Z Z2 Z

0 1 2 3 4 5 6 7 8 9

(3.19)

one indeed notices that there is another type of global (non-perturbative) gauge anomaly
for gauge group G2 which corresponds to the E2

7,2, in addition to the universal one cor-
responding to the E2

8,1. We claim this to be the traditional anomaly captured by the
homotopy group π8(G2). The fact that the representation 7 has the anomaly associated
to π8(G2) has been shown in [26].

3.4 F4 gauge anomaly

Similar but a little more complicated case is X = BF4. The mod-2 (co)homology is known
to be

H∗(BF4;Z2) = Z[y4, y6, y7, y16, y24] (3.20)

where the action of cohomology operations are the same as BG2

Sq2y4 = y6,

Sq1y6 = y7,
(3.21)

which leads to the same analysis on the Adams spectral sequence for the range of interest.
However, this time there are 3-torsions [53] (but p-torsion free for p ≥ 5), and correspond-
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ingly the E2-page of the Atiyah-Hirzebruch spectral sequence becomes

E2
p,q = Hp

(
BF4; Ωspin

q

)
9 Z⊕2

2 ∗ ∗ ∗ ∗
8 Z⊕2 ∗ ∗ ∗
7
6
5
4 Z Z ∗ ∗
3
2 Z2 Z2 Z2 Z2 ∗
1 Z2 Z2 Z2 Z2 Z2

0 Z Z Z2 Z⊕ Z3

0 1 2 3 4 5 6 7 8 9

(3.22)

Fortunately, the 3-torsion part is irrelevant for our purpose as one can read off, and in
the same way as discussed in the G2 case, there is an additional Z2 in E2

7,2 which should
correspond to the traditional anomaly captured by π8(F4). Again, it is known that the
adjoint representation of F4 has the anomaly associated to π8(F4) [26].

3.5 E6,7,8 gauge anomaly (and 2-form fields)

For our purpose, the classifying spaces BE6,7,8 can be identified with the Eilenberg-
MacLane space K(Z, 4), since they are homotopically equivalent at the range of inter-
est [12, 34] as

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·

πd(BE6) 0 0 0 Z 0 0 0 0 0 Z 0 Z Z4 0 0 Z · · ·

πd(BE7) 0 0 0 Z 0 0 0 0 0 0 0 Z Z2 Z2 0 Z · · ·

πd(BE8) 0 0 0 Z 0 0 0 0 0 0 0 0 0 0 0 Z · · ·

(3.23)

Although the situation is complicated since K(Z, 4) is known to have 3-torsion in the
cohomology as BF4 does, one can nevertheless compute the bordism groups [25, 49].

The Z2-cohomology is known [48] to be

H∗(K(Z, 4);Z2) = Z2[u4, u6, u7, u10, u11, u13, . . .] (3.24)

where
Sq2u4 = u6, Sq4u6 = u10, Sq1u10 = u11,

Sq1u6 = u7, Sq6u7 = u13, Sq2u11 = u13.
(3.25)
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Then, the relevant A(1)-module can be represented as

•

• •

•

• •

• •

•

•

•

• u4

u6

u7

(u4)2

u4u6

u4u7

(u6)2

(u7)2

u6u7 u13

u11

u10

(3.26)

which is namely
Σ4Q⊕ Σ8Z2 ⊕ Σ10J ⊕ Σ10Q̃ (3.27)

where Q̃ is a new (unnamed) module, and the corresponding Adams chart is given [25] as

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

According to [25], there are nontrivial differentials as shown by dotted lines, and corre-
spondingly the Adams spectral sequence converges as

d 0 1 2 3 4 5 6 7 8 9 10 11

Ω̃spin
d (K(Z, 4)) 0 0 0 0 Z 0 0 0 Z⊕2 Z2 Z⊕2

2 0
(3.28)
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In particular, the degree-9 part turns out to be

Ω̃spin
9 (K(Z, 4)) = Z2 (3.29)

which further describes the E6,7,8 gauge anomaly based on the aforementioned reasoning.
As will be discussed in section 4, this group also captures the anomaly of dynamical

2-form fields, and as a result allows us to explain the cancellation of the universal gauge
anomalies by the 2-form fields.

3.6 SO(n) gauge anomaly

The cohomology of BSO(n) is also known [11, 43] to be p-torsion free for p ≥ 3, so let us
also look at the G = SO(n) case. The Z2 cohomology ring is well known and given as

H∗(BSO(n);Z2) = Z2[w2, w3, . . .], (3.30)

where wi’s are the Stiefel-Whitney classes, on which the cohomology operations act as

Sq1wi = (i− 1)wi+1,

Sq2wi =

 i− 1
2

wi+2 + w2wi.
(3.31)

Although SO(n) is not simply-connected, the lowest degree of elements in H̃∗(BSO(n);Z)
is 2, meaning that one can derive the bordism group as in the previous case for t− s ≤ 9,
which is barely sufficient for our purpose. The A(1)-module structure of H∗(BSO(n);Z2)
for the range of interest (with large enough n) is represented as

•
• • •
• • •

• • • • • •
• • • • • • •

• • • • • • •
• • • • • • • •
• • • • • • •

• • • •
• • • •
• •
• •
•
•
w2

w4

(w2)3 w6

(w2)4 (w2)2w4 (w4)2 w8

w2w3w4

(3.32)
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which is namely

Σ2J⊕Σ4A(1)⊕Σ6A(1)⊕Σ6A(1)⊕Σ8Z2⊕Σ8A(1)⊕Σ8A(1)//E(1)⊕Σ8A(1)⊕Σ9A(1) (3.33)

and the corresponding Adams chart is

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

As before, there are no differentials from t − s ≤ 9, and the Adams spectral sequence
converges as

d 0 1 2 3 4 5 6 7 8 · · ·

Ω̃spin
d (BSO(n)) 0 0 Z2 0 Z⊕ Z2 0 Z⊕2

2 0 Z⊕3 ⊕ Z⊕2
2 · · ·

(3.34)

and the degree-9 part contains at least two Z2’s corresponding to (t − s, s) = (9, 0) and
(9, 1) which cannot be killed by differentials from t− s = 10.

3.7 Spin(n) gauge anomaly

Also, the Z2 cohomology of BSpin(n) is known [47, Theorem6.5] to be

H∗(BSpin(n);Z2) ' H∗(BSO(n);Z2)/J ⊗ Z2[w2h(∆θ)] (3.35)

where h ≈ n/2 and J is an ideal generated by

w2,

Sq1w2,
...

Sq2h−1
Sq2h−2 · · ·Sq1w2

(3.36)
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and therefore effectively removes w2, w3, w5, w9, . . . from the (3.32), resulting in

• •

• •

• •

• •

• •

• •

•

•

• w4

w6

w7

(w4)2

w4w6

w4w7

(w6)2

(w7)2

w6w7 w13

w11

w10

w8

w12

(3.37)

for large enough n. The corresponding Adams chart is (cf. [25])

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

with no differentials at all. As a result one obtains

d 0 1 2 3 4 5 6 7 8 9 10 11

Ω̃spin
d (BSpin(n)) 0 0 0 0 Z 0 0 0 Z⊕3 Z⊕2

2 Z⊕3
2 0

(3.38)

3.8 Z2 3-form fields

Here we also compute the bordism group for X = K(Z2, 4) for later use in section 5. It is
supposed to capture the anomalies of 3-form Z2 gauge fields, in a similar vein to the 2-form
fields’ case.
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The Z2 cohomology of the Eilenberg-MacLane space K(Z2, 4) is known [43, 48] to be

H∗(K(Z2, 4);Z2) = Z2[ u4,

Sq1u4, Sq2u4, Sq3u4,

Sq2Sq1u4, Sq
3Sq1u4, Sq

4Sq1u4,

Sq4Sq2u4, Sq
5Sq2u4, Sq

6Sq3u4, Sq
4Sq2Sq1u4, . . .],

(3.39)

where the generators with more than two Steenrod squares irrelevant to our purpose are
omitted. The A(1)-module structure of H∗(K(Z2, 4);Z2) for the range of interest is repre-
sented as

•

•

• •

• • •

• •

• • •

• • •

• •

• •

• •

•

•

• u4

Sq1u4

Sq2u4

Sq3u4 Sq2Sq1u4

Sq3Sq1u4

Sq4Sq1u4

(Sq1u4)2

(u4)2 + Sq3Sq1u4

u4Sq
1u4 + Sq4Sq1u4

Sq4Sq2u4

Sq5Sq2u4

Sq6Sq3u4

u4Sq
2u4

(3.40)
which is namely

Σ4A(1)⊕ Σ8Z2 ⊕ Σ9A(1)//E(0)⊕ Σ10Q̃⊕ Σ10A(1) (3.41)
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and the corresponding Adams chart is

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

Although the (part of) towers at t− s = 9 inevitably interfere with that at t− s = 8, there
is no differential which can kill the other (t− s, s) = (9, 1) element, and it is guaranteed to
survive. Therefore, one can deduce

Ω̃spin
9 (K(Z2, 4))∧2 ⊃ Z2 (3.42)

and it is inferred that Z2 3-form fields carry (at least) an order-2 anomaly.

3.9 Structure of generator manifolds

The sloped lines in Adams charts representing h1 ∈ Ext1,2
A (Z2,Z2) correspond to multi-

plication πst
1 (pt) × πst

• (−) → πst
•+1(−) in terms of stable homotopy groups [31]. Under

the Pontrjagin-Thom construction, this multiplication can be geometrically interpreted as
[S1]×[M ]→ [S1×M ], whereM is a manifold representing an element [M ] ∈ Ω̃spin

• (X), and
also S1 is a representative manifold of the nontrivial element of πst

1 (pt) ' πst
1 (MSpin) =

Ωspin
1 (pt) = Z2. In particular, the elements of Ω̃spin

9 (X) obtained in this section which
stem from elements of Ω̃spin

8 (X) by a sloped line are represented as [S1 ×M8] for some
[M8] ∈ Ω̃spin

8 (X), and this is in fact how we obtained the examples of representative mani-
folds in section 2.

Moreover, for the elements [Mt] ∈ Ω̃spin
t−0 (X) coming from Adams filtration s = 0,

i.e. Es=0,t
2 = Exts=0,t

A(1)
(
H̃∗(X;Z2),Z2) = Homt

A(1)
(
H̃∗(X;Z2),Z2), there may be a simple

interpretation in terms of cohomology (see e.g. [22]). Let f : Mt → X be a representative
of an element of Ω̃spin

t (X) and let us label an element in the row s = 0 by a cohomology
class ct ∈ Ht(X;Z2). Then the integral

∫
Mt
f∗ct ∈ Z2 (or more precisely the evaluation of

f∗ct by the fundamental class of Mt) has a nontrivial value.
As an example, consider the case X = K(Z, 4). We have the element u4 ∈

H4(K(Z, 4);Z2). Taking a map f : HP2 → K(Z, 4) such that the pullback f∗u4 is (a
Z2 reduction of) x ∈ H4(HP2;Z), the cohomology class (u4)2 has a nontrivial value as∫
HP2 f∗(u4)2 = 1 ∈ Z2. In this way, we see that this f : HP2 → K(Z, 4) represents
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a nontrivial element of Ω̃spin
8 (K(Z, 4)), which can be detected by the cohomology class

(u4)2 ∈ H8(K(Z, 4);Z2).
Similarly, in the case of X = K(Z2, 4), we have seen that the cohomology class labelling

the nontrivial element of Ω̃spin
8 (K(Z2, 4)) is (u4)2 + Sq3Sq1u4, but since f∗(Sq1u4) = 0 on

HP2, the argument reduces to that of K(Z, 4). The nontrivial element of Ω̃spin
9 (K(Z, 4)) =

Z2 (or the analogous element of Ω̃spin
9 (K(Z2, 4))) is simply obtained by multiplying S1 as

discussed above.

4 Anomaly cancellation via 2-form fields

In the previous sections, we have found that a fermion in the adjoint representation always
has an anomaly for any simple Lie group G, which is detected by G-bundles PG → HP2

(×S1). Also, a gravitino had a pure gravitational anomaly detected by HP2 (×S1) which
cannot be cancelled by spin 1/2 fermions. However, we know that both an adjoint fermion
(namely gaugino) and a gravitino are realized in string theory with N = 1 supersymmetry
in 8-dimensions for G = SU(n), Spin(2n), Sp(n), E6,7,8 (e.g. by F-theory), so there must be
a mechanism to cancel these anomalies. In this section, we discuss anomaly cancellation via
2-form fields, which is exactly a non-perturbative version of the Green-Schwarz mechanism.

4.1 2-form fields

A dynamical 2-form field B in d spacetime dimensions yields two conserved currents je ∼
∗dB (where ∗ is the Hodge star) and jm ∼ dB, and correspondingly the theory actually
possesses electric 2-form U(1) symmetry and magnetic (d−4)-form U(1) symmetry. Modern
understanding of the Green-Schwarz mechanism (and its relatives) is that, it should be
interpreted as describing a ’t Hooft anomaly of these higher-form symmetries [28], which
enables the cancellation against other anomalies after turning on their background gauge
fields Ae and Am [32].

Our claim is that the global anomaly of the theory when it is coupled to the 3-form
field Ae corresponds to an element of Hom(Ω̃spin

d+1(K(Z, 4)),U(1)).11 Here, K(Z, 4) appears
because the topology of the background 3-form field Ae is classified by its 4-form flux (or
more precisely its integral-cohomology version). For our purpose, Ae will be taken to be a
Chern-Simons 3-form of the G gauge field. To explain the anomaly, we construct a (d+ 1)-
dimensional bulk theory which hosts the original theory on the boundary. We follow the
discussions in [32] suitably modified according to the present situation.

Let Q be an action in (d + 1)-dimensions describing the anomaly in d-dimensions in
question. For the purpose of this paper, we are merely concerned with global anomalies
and thus Q is taken to be an element of Hom(Ω̃spin

d+1(K(Z, 4)),U(1)), but we remark that the
discussions below can in principle be generalized to the case where perturbative anomalies
are present, especially the case of the original 10d Green-Schwarz mechanism.12

11For more general case with nonzero perturbative anomaly, the anomalies should correspond to elements
of the Anderson dual (ĨΩspin)d+2(K(Z, 4)) of the bordism group [21, 68].

12We leave it for future work to describe the details of the 10d case.
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Let us introduce a dynamical 3-form field C and a dynamical (d − 3)-form field D,
both in (d+1)-dimensional bulk.13 All the p-form fields are normalized so that their fluxes
are integer-valued. Then, we take the Euclidean action given by

S = −1
2

∫
Wd+1

( 1
e2 dC ∧ ∗dC + 1

e′2
dD ∧ ∗dD

)
+2πi

∫
Wd+1

D∧d(C−Ae)+2πi·Q(C) (4.1)

where e and e′ are parameters, and ∗ is the Hodge star. The product ee′ has mass dimension
1. More precise definitions of “p-form fields” and terms like “

∫
D ∧ dC ” are given by the

theory of differential cohomology [16].14

First, let us consider the above theory on a closed (d+1)-manifoldWd+1 (i.e. ∂Wd+1 =
∅). After taking the limit e, e′ →∞, the kinetic term can be neglected. Carrying out the
path integral over D which serves as a Lagrange multiplier setting C → Ae, we get

S → 2πi ·Q(Ae). (4.2)

In this way, the bulk theory only depends on the background field Ae, and does not have
any dynamical degrees of freedom.

Next, let us put the theory on a manifold Wd+1 with boundary ∂Wd+1 = Md. Here
we impose a standard Dirichlet-type boundary condition such that

C|∂Wd+1 = 0, D|∂Wd+1 = 0. (4.3)

Under this boundary condition, the second and third terms of (4.1) indeed make sense
for the following reason [32]. Take any manifold W ′d+1 with the same boundary Md but
with the opposite orientation to Wd+1, so that we can glue them to get a closed manifold
Wclosed = Wd+1 ∪W ′d+1. Since C and D vanish on the boundary Md = ∂Wd+1, we can
trivially extend them by demanding that they are zero on W ′d+1. In this way, we get field
configurations on the entire manifold Wclosed. Then, we define the values for 2πi

∫
D ∧

d(C − A) and 2πi · Q(C) on Wd+1 to be those on Wclosed, which can be safely obtained.
These values do not depend on the choice of W ′d+1; the possible difference between two
choices W ′d+1 and W ′′d+1 is given by the action evaluated on W ′d+1 ∪W

′′
d+1, where W

′′
d+1 is

the orientation reversal of W ′′d+1,15 and the value of 2πi
∫
D∧ d(C −A) is zero since D = 0

on W ′d+1 ∪W
′′
d+1. The value of 2πi · Q(C) is also zero because C = 0 on W ′d+1 ∪W

′′
d+1

and we have assumed that Q is determined by an element of Hom(Ω̃spin
d+1(K(Z, 4)),U(1)).

Notice that the reduced bordism group Ω̃spin
d+1(K(Z, 4)) is used rather than Ωspin

d+1(K(Z, 4)),
and it is implicitly assumed that Q(0) = 0.

13This can be thought of as an analog of the realization of chiral fermions as boundary modes of massive
fermions in one-higher dimensions; the dynamical 2-form field B in question corresponds to a chiral fermion,
which is to be realized as a boundary mode of a “massive” dynamical 3-form field C.

14See e.g. [24, 32] for reviews aimed at physicists.
15This is a general property of action which is local. Usually the locality is imposed by the requirement

that an action S evaluated on Wd+1 is given by an integral of a Lagrangian density as S(Wd+1) =
∫

Wd+1
L.

However, this need not be the case in general. More general statement is that, an action S satisfies
S(Wd+1 ∪W ′d+1)−S(Wd+1 ∪W ′′d+1) = S(W ′d+1 ∪W

′′
d+1) mod 2πi, where Wd+1 ∪W ′d+1, Wd+1 ∪W ′′d+1, and

W ′d+1 ∪W
′′
d+1 are all closed.
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As we have argued, there are no dynamical degrees of freedom inside the bulk. There-
fore, all the degrees of freedom are localized near the boundary. These degrees of freedom
are described as follows. For simplicity, let us first consider the case where the background
field is set to zero, Ae = 0. We also assume that Q(C) is either cubic in C or topological so
that it is irrelevant for the linearized equations of motion. Then the equations of motion
in the Lorentzian signature metric (rather than the Euclidean signature metric) is

(−1)d · d(∗FD) = 2πe′2 · FC , d(∗FC) = 2πe2 · FD, (4.4)

where FC := dC and FD := dD are the field strengths. Let τ ≤ 0 be the coordinate
orthonormal to the boundary such that the boundary is located at τ = 0 and the bulk is
in the region τ < 0. The equations of motion have localized solutions of the form

FC = d(e2πee′τ ) ∧ FB, FD = e′

e
· d(e2πee′τ ) ∧ ∗dFB (4.5)

where FB is a 3-form which depends only on the coordinates of the boundary manifold Md,
and ∗d is the Hodge star on the boundary. The boundary condition (4.3) is satisfied since
the differential form dτ becomes zero when it is pulled back to the boundary τ = 0. These
expressions for FC and FD are solutions of the equations of motion, if FB satisfies

dFB = 0, d(∗dFB) = 0. (4.6)

Therefore, FB is interpreted as the field strength of a 2-form field B as FB = dB, where
the 2-form fields are the boundary degrees of freedom. The above solution is exponentially
localized near the boundary with the length scale (2πee′)−1, so it is completely localized
in the limit ee′ →∞.

When we turn on the background field Ae, one of the equations of motion is changed
to (−1)dd(∗FD) = 2πe′2(FC − FAe), where FAe = dAe. Let us define a 3-form at the
boundary by

H := (−1)d
2πe′2 · ∗d+1FD|τ=0. (4.7)

Note that, although the pullback of FD to the boundary is zero by the boundary
condition (4.3), its Hodge dual ∗FD need not be zero at the boundary; indeed, if Ae = 0,
then H = FB = dB from the solution (4.5). On the other hand, since the pullback of FC
is zero at the boundary, we have

dH = −FAe , (4.8)

meaning that H can actually be written as H = dB −Ae.

4.2 Anomaly cancellation

Let us recapitulate the above results. We introduced a theory which is defined on (d+ 1)-
manifolds possibly with boundaries. Inside the bulk, there are no dynamical degrees of
freedom and the partition function is 2πi · Q(Ae). When boundaries exist, there is a
localized degree of freedom which is namely a 2-form field B. This means that the 2-form
field on the d-dimensional boundary has the anomaly described by Q(Ae).
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Now we can discuss the anomaly cancellation. Recall that the homotopy groups of the
classifying space BE8 are the same as those of the Eilenberg-MacLane space K(Z, 4) up to
very high dimensions (3.23), so that one can identify K(Z, 4) and BE8 for the present pur-
pose. More concretely, E8-bundles on a manifoldX are classified by the homotopy classes of
classifying maps f : X → BE8, and they correspond one-to-one with characteristic classes
f∗y ∈ H4(X;Z) ' [X,K(Z, 4)] associated with the generator y ∈ H4(BE8;Z), if dimX <

15. This fact can be shown by obstruction-theoretic argument as represented in [58].
Then, let us take the action Q of 9d bulk to be the nontrivial element of

Hom(Ω̃spin
9 (K(Z, 4)),U(1)) = Hom(Ω̃spin

9 (BE8),U(1)) = Z2. (4.9)

If we take the background 3-form field Ae on X = HP2 such that its 4-form flux FAe is equal
to the generator x ∈ H4(HP2;Z), then Q(Ae) = 1

2 mod Z on HP2×S1. This is because the
E8 adjoint fermion had a nontrivial anomaly detected by the E8-bundle PE8 → HP2 as seen
in section 2 (which corresponds to the nontrivial element of Hom(Ω̃spin

9 (BE8),U(1)) = Z2),
and the characteristic class f∗y ∈ H4(HP2;Z) is equal to x for the bundle PE8 . More
generally, if the flux is FAe = mx (m ∈ Z), then the anomaly is given by Q(Ae) = m

2 mod Z.
To cancel the anomaly of the adjoint fermion for generic G detected by the bundle

PG → HP2, we proceed as follows. Take Ae to be the Chern-Simons 3-form associated
with the group G such that its restriction to SU(2) via SU(2) → G gives a Chern-Simons
3-form for SU(2) with an odd level, where the map SU(2) → G is the one used in the
construction of the bundle PG. This is always possible for simply-connected G, so suppose
that G is simply-connected for the moment. Then, we have H i(BG;Z) = 0 for i < 4 and
H4(BG;Z) = Z, where the generator c of the latter corresponds to an “instanton number”
if we consider a classifying map f : X → BG and integrate the pullback f∗c on a 4-manifold
X. This “instanton number” of G pulls back to that of SU(2) under the map SU(2)→ G,
and thus c pulls back to the generator of H4(BSU(2);Z).

The reason that we allow any odd Chern-Simons level kG is that our anomaly is Z2
valued; it must be odd for the anomaly of an adjoint fermion to be cancelled by 2-form
fields. But note that, at the level of the present analysis, we can only determine it modulo
2.16 The level kG appears in the equation (4.8) where FAe is now the 4-form constructed
from the gauge field strength FG,

dH = kG · NG tr(FG ∧ FG), (4.10)

with NG being an appropriate normalization factor such that NG tr(FG ∧FG) corresponds
to the characteristic class f∗c by the Chern-Weil construction.

Having chosen Ae to be a Chern-Simons 3-form as above, we get an anomaly Q(Ae)
of the gauge group G from the 2-form field. By checking its value on the bundles PG →
HP2 (×S1), we see that the anomaly of the fermion in the adjoint representation of G
is cancelled by Q(Ae). More generally, we can explicitly check the anomaly cancellation
for each generator manifold (equipped with G-bundle) of the bordism group. Thus, we
conclude that the fermion in the adjoint representation of G = SU(n), Spin(2n), E6,7,8, G2

16It would be interesting to find a further restriction on kG.
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can be cancelled by the 2-form. (The situation is the same for a product group G =
G1 ×G2 × · · · of them.)

We remark that when G is not simply-connected, it is not necessarily true that
we can take such a generator c ∈ H4(BG;Z) which pulls back to the generator of
H4(BSU(2);Z) [14, 62]. The situation is similar for a more general gauge group

G = G1 ×G2 × · · · ×H1 ×H2 × · · ·
Z

(4.11)

where Gi’s are simple and simply-connected, Hj ’s are groups whose adjoint fermions do
not have the anomaly under discussion (such as Hj = U(1)), and Z is a center. We want
a Chern-Simons 3-form for G such that if we restrict to SU(2) via SU(2) → Gi → G, we
get an SU(2) Chern-Simons 3-form with an odd level. Such a Chern-Simons 3-form always
exists if Z is trivial, but more generally its existence depends on the global topology π1(G).
This point has been essentially discussed in [13], where it was found that this constraint
(along with others) gives very good agreement with the gauge groups explicitly realized in
F-theory, at least for the case of rank 18.

Finally let us incorporate a gravitino. It has a pure gravitational anomaly which is
detected by HP2. It can be cancelled as follows. In this paper we have been assuming that
manifolds are spin, so the structure group of the tangent bundle is Spin(d) in d-dimensions.
This group has the Chern-Simons 3-form whose field strength is half the first Pontrjagin
class, p1/2. We add the Chern-Simons 3-form of this structure group to Ae with an odd
level. Since the first Pontrjagin class of HP2 is p1 = 2x, we have p1/2 = x. Thus we see
that the anomaly of the gravitino is cancelled in the same way as that of adjoint fermions
by replacing f∗c with p1/2. The equation for H is now given by

dH = kgrav [Ngrav trR ∧R] +
∑
i

kGi [NGi trFGi ∧ FGi ] + · · · (4.12)

where the notation is similar to (4.10) and the ellipses denote possible terms which are
not relevant for the present purposes. In particular, kgrav and kGi are the Chern-Simons
levels for the gravity and the gauge group Gi, respectively. For the purpose of the anomaly
cancellation by the 2-form field, we need to take them to be odd.

5 Anomaly cancellation via topological degrees of freedom

In string theory, there are some situations in which the mechanism discussed in section 4
is not sufficient to fully explain the anomaly cancellation. Let us mention three exam-
ples. Actually, the first two of them are obtained by S1 compactification of 9-dimensional
theories, so let us mention these 9-dimensional theories.

• M-theory on Klein bottle, or equivalently, Type IIA string theory on S1 with a
nontrivial holonomy of the Z2 symmetry (−1)FL which flips the sign of one of the two
spinors of the 10-dimensional N = (1, 1) supersymmetry. After the compactification,
there is an N = 1 supersymmetry in 9-dimensions and hence a single gravitino, but
kgrav = 0.
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• M-theory on Möbius strip, or equivalently, E8 × E8 heterotic string theory on S1

with a nontrivial holonomy of the Z2 symmetry which exchanges two E8’s. After
the compactification, we have a single E8 gauge group in 9-dimensions, but kE8 = 2
(which is the sum of the two Chern-Simons levels of the original E8’s).

• Type IIB string theory with three O7−-planes, one O7+-plane, and eight D7-branes
on T 2/Z2. Putting n D7-branes on top of the O7+-plane, we get an Sp(n) gauge
group. As discussed in section 2, an adjoint fermion has an anomaly for n ≥ 2 which
is detected by the bundle QG → S4 × S4. The subtlety of this anomaly was already
discussed in [26].

In 8d N = 1 supergravity, the only ranks of the total gauge group which are known to be
realized in string theory are 18, 10, and 2 [46]. The mechanism discussed in section 4 works
in the case of rank 18, where all known examples have odd kgrav (= −1) and kG (= 1).17

On the other hand, the first example above is the case of rank 2, and the second and third
examples are the cases of rank 10.

Here we focus our attention on the first example mentioned above. We argue that
there is a topological degree of freedom, namely a 3-form Z2 gauge field, which cancels the
anomaly of a gravitino.

5.1 Topological degrees of freedom

To see the topological degree of freedom and its effect on the topology of spacetime, we
first recall some facts about M-theory [22, 59]. M-theory contains a 3-form field C, and
its 4-form flux G is known to satisfy the shifted quantization condition [59]. Let [2G]2 ∈
H4(X11;Z2) be a mod-2 reduction of an (orientation-bundle twisted) integral cohomology
class 2G ∈ H4(X11; Z̃). Then we have

[2G]2 = w4, (5.1)

where w4 ∈ H4(X11;Z2) is the fourth Stiefel-Whitney class. Also, M-theory has parity (or
orientation-reversal) symmetry, under which C is odd and the sign is flipped, C → −C
(and correspondingly G→ −G).

Now, consider a manifold X11 = M9×KB, where M9 is a 9-dimensional spin manifold
and KB is a Klein bottle. The Kaluza-Klein reduction of C in the KB compactification
contains components Cµνρ which are independent of the coordinates of KB and whose
three indices are in the direction of M9. These components become a 3-form field on M9
which we also denote as C by abuse of notation. However, this 3-form C on M9 is severely
constrained. By going around a loop in KB along which the orientation is reversed, the sign
of C is flipped since C is parity-odd. On the other hand, C is independent of the coordinates
of KB. These two facts conspire to conclude C = −C up to gauge transformation, which
then imply G = −G or equivalently 2G = 0.

17The values kgrav = −1 and kG = 1 are famous in the 10d heterotic string theories. We can compactify
them on T 2 to get 8d theories. From the duality between heterotic strings and F-theory [44, 45, 55], we
have kgrav = −1 and kG = 1 for all 8d theories realized by F-theory.
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From (5.1), this means that the condition w4 = 0 must be imposed on 9-dimensional
manifolds M9 in the low energy theory after the compactification on KB. In general, we
believe (although do not show generally) that such a condition cannot be “put by hand”.
For example, in the case of the previous section, an analogous topological condition is that
the right hand side of (4.12) is cohomologically trivial; this is not imposed by hand, but
is realized by the 2-form field B. In a similar way, locality presumably requires that the
condition w4 = 0 is imposed by a 3-form Z2 gauge field, which is described as follows. Let
w4 ∈ Z4(M9;Z2) be an explicit cocycle representing w4, i.e. w4 = [w4]. Then the fact that
w4 is trivial means that there is another cochain v3 ∈ C3(M9;Z2) such that

δv3 = w4, (5.2)

where δ is the coboundary operator. This equation is analogous to (4.12). It does not
completely specify v3. Indeed, let v′3 be another cochain satisfying the same equation.
Then we have δ(v3 − v′3) = 0 and hence there is an ambiguity of v3 − v′3 ∈ Z3(M9;Z2).
This gives some topological degrees of freedom. It is likely that we should impose a gauge
equivalence condition v3 ∼ v3 + δu2 for cochains u2 ∈ C2(M9;Z2). If so, the degrees of
freedom contained in v3 is described by H3(M9;Z2). This kind of structure is called the
(degree-4) Wu structure [41, 42].

We remark that if we replace w4 by w2 and consider oriented manifolds instead of spin
manifolds in the above discussion, the corresponding (degree-2) Wu structure would be a
spin structure. In that case, w2 = 0 implies the existence of a spin structure, and a choice
of v1 such that δv1 = w2 corresponds to a choice of an explicit spin structure.18 Mere the
existence of a spin structure is not enough for locality; we need explicit spin structures on
manifolds.19

In the present situation of M-theory compactified on KB, there is a perfect candidate
for such a 3-form Z2 gauge field. We have discussed that the consistency requires that
C = −C or 2C = 0 onM9 up to gauge transformations. This does not imply C = 0; rather,
it implies that C is torsion. Thus C itself is a 3-form Z2 gauge field onM9. More explicitly,
when it is integrated over 3-cycles, it takes values 0 or 1

2 mod Z. Thus we can identify

C ∼ 1
2v3 mod Z, (5.3)

18The fact that v1 corresponds to a spin structure can be seen as follows. Consider the SO(d) bundle
associated with the tangent bundle of the manifold, and let gij be transition functions between two patches
Ui and Uj which take values in SO(d). Letting ĝij be a lift of gij to Spin(d), the cocycle (w2)ijk may be
defined as ĝij ĝjkĝki = (−1)(w2)ijk . If we define g̃ij = (−1)(v1)ij ĝij , we get g̃ij g̃jkg̃ki = 1 and it gives a
Spin(d) bundle. Thus, a choice of v1 gives a spin structure.

19One can find two manifolds Nd and N ′d with a common boundary ∂Nd = ∂N ′d such that spin structure
exists on Nd and N ′d, but not on Nd ∪N ′d. Thus, “the existence of a spin structure” (rather than explicit
spin structure) is not a local concept. For example, take N4 to be a half K3 surface with the boundary T 3

(which is obtained by e.g. an elliptic fibration over a hemisphere), and N ′4 to be D2 × T 2. These manifolds
N4 and N ′4 can be glued without any problem if we do not care about spin structures, but they cannot be
glued keeping spin structures consistent. A simpler example in the case of pin+ structure rather than spin
structure is to take N2 to be a crosscap with the boundary S1, and N ′2 to be D2. By gluing them, we get
a real projective space RP2 which does not possess a pin+ structure.
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where we only consider modulo Z corresponding to the gauge equivalence. Although we
do not try to make all mathematical details precise,20 this identification suggests the
desired result (5.2) since we may think that G ∼ δC and hence 2G ∼ δv3, while we also
had 2G ∼ w4 in (5.1).

5.2 Anomaly cancellation

We have discussed the existence of topological degrees of freedom v3 which is an explicit
trivialization of the cocycle w4 representing w4. Now we would like to discuss how it is
relevant for the anomaly cancellation. For this purpose, we use the results of [22, 59]. It
was found there that the gravitino in 11-dimensional supergravity has an anomaly, but this
anomaly can be cancelled by a cubic Chern-Simons term of the 3-form C, which is roughly
1
6C∧G∧G+I8(R)∧C where I8(R) is an 8-form constructed from the Riemann curvature R.
The anomaly of the 11-dimensional gravitino is represented by a 12-dimensional invertible
field theory. Although this is nonzero, it is equal (with the opposite sign) to the integral
of the 12-form 1

6G∧G∧G+ I8(R)∧G as far as the 4-form G satisfies the condition (5.1).
Thus the sum of the anomaly of the gravitino and the integral of this 12-form is zero.

Now let us restrict our attention to the case Y12 = W10 × KB, where W10 is a spin
manifold with w4 = 0. The Klein bottle also has w4 = 0, and we can take G = 0 consistently
with the condition (5.1). Then the contribution from the 12-form is zero, and hence the
contribution from the gravitino must be also zero according to the results of [22, 59]. Our
theory is obtained by the dimensional reduction on KB, so we conclude that the evaluation
of the gravitino anomaly on manifolds W10 with w4 = 0 is zero.

What we have found above is the fact that the anomaly of the gravitino is zero if the the-
ory is formulated in the bordism category of manifolds with Wu structure. After the explicit
path integral over the topological degrees of freedom v3, the Wu structure is “integrated
over” and we expect to get a topological quantum field theory (TQFT) which is defined in
the bordism category of manifolds with spin structure. This is analogous to the situation
that the sum over spin structures give a “bosonic” (non-spin) theory which does not depend
on spin structure. Now the question is whether the (non-Wu) spin-TQFT reproduces the
anomaly of the gravitino. The construction of a class of TQFTs relevant to the current sit-
uation been given in [36, section 2.4]. The anomaly of the TQFT coupled to a background
Z2 4-form field is classified by Ω̃spin

9 (K(Z2, 4)), and this anomaly trivializes when the back-
ground is turned off. The construction of [36] works in this kind of situation. We have found
in section 3.8 and 3.9 that the group Ω̃spin

9 (K(Z2, 4)) contains an element represented by
HP2×S1 with a nontrivial background ofH4(HP2;Z2) turned on. By taking the background
Z2 4-form to be w4, we get the desired anomaly which cancels against the gravitino anomaly.

We leave the rank 10 cases mentioned at the beginning of this section (e.g. the case of
E8 with level 2 and the case of Sp(n)) for future work. Some of the rank 10 theories are
constructed in heterotic string theories [15], and the results of [54] suggests that fermion

20For a more precise definition of C, one must consider the M2-brane partition function and its anoma-
lies [64]. The requirement is as follows. Let N3 be the worldvolume of an M2-brane, and Z(N3)
be the (anomalous) partition function of the degrees of freedom on the M2-brane. Then the product
Z(N3) exp(2πi

∫
N3
C) must be well-defined.
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anomalies may be zero as long as the 2-form field is regarded as a background field imposing
the (twisted) string structure (4.12). The explicit path integral over the 2-form field is
subtle, but the appropriate action for the 2-form field may be obtained by the construction
along the lines of [36, 67]. It is important to understand what (topological) degrees of
freedom exist in the theory. The same question also arises in Type IIB string theory [17].
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