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1 Introduction

The facility layout problem consists of partitioning a rectangular facility of
known dimensions into departments with a given (fixed) area so as to min-
imize the total cost associated with the (known or projected) interactions
between these departments. This cost is modeled as the weighted sum of the
center-to-center distances between all pairs of facilities, where the pairwise
weights reflect transportation costs and/or adjacency preferences between de-
partments. If the height and width of the departments vary, then finding their
optimal (rectangular) shapes is also a part of the problem. This is a hard prob-
lem, in particular because any desirable layout must have no overlap among
the areas of the different departments. Versions of the facility layout problem
occur in many environments, such as flexible manufacturing and service center
layout, as well as in other engineering applications, such as the design of Very
Large Scale Integration (VLSI) circuits. Nearly all of the resulting problems
are known to be NP-hard.

Two types of approaches capable of yielding provably optimal solutions
have been proposed in the literature. The first type are graph-theoretic ap-
proaches which assume that the desirability of locating each pair of facilities
adjacent to each other is known. Initially, the area and shape of the depart-
ments are ignored, and each department is simply represented by a node in a
graph. Adjacency relationships between departments can now be represented
by arcs connecting the corresponding nodes in the graph. The objective is then
to construct a graph which maximizes the weight on the adjacencies between
nodes. We refer the reader to Foulds [27] for more details. The second type
of these approaches are mathematical programming formulations with objec-
tive functions based on an appropriately weighted sum of centroid-to-centroid
distances between departments. Exact mixed-integer linear programming for-
mulations were proposed in Montreuil [54], Meller et al. [53], and Sherali
et al. [64]. Non-linear programming formulations include the work of Castillo
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et al. [18, 19]. Most recently, Meller et al. [51] solved problems up to 11 de-
partments to global optimality.

Thus, most of the approaches in the literature that tackle realistically
sized problems are based on heuristics with no guarantee of optimality. These
include genetic algorithms, tabu search, simulated annealing, fuzzy logic, and
many others. Mathematical-programming-based heuristics can also be used to
provide high-quality solutions for large problems with 20 or more departments
[9, 17]. We refer the reader to the extensive bibliographies in the survey papers
of Meller and Gau [52], Mavridou and Pardalos [50], and Singh and Sharma
[67].

The survey of Meller and Gau [52] divides the research papers on facility
layout into three broad areas. The first is concerned with algorithms for tack-
ling the general layout problem as defined above. The second area is concerned
with extensions of the problem in order to account for additional issues which
arise in applications, such as designing dynamic layouts by taking time depen-
dency issues into account; designing layouts under uncertainty conditions; and
achieving layouts which optimize two or more objectives simultaneously. The
third area is concerned with specially structured instances of the problem.
One such special case that has been extensively studied occurs when all the
facilities have equal dimensions and the possible locations for the departments
are given a priori; this is the quadratic assignment problem (QAP) formulated
by Koopmans and Beckman [42]. Since the possible locations are fixed, the
problem reduces to optimize a quadratic objective over all possible assign-
ments of departments to locations. The QAP is NP-hard, and is in general a
difficult problem to solve. (Refer to chapter(s) on QAP/Comb Problems.)

In this chapter we will be concerned with two layout problems to which
cone optimization approaches have been successfully applied. The first one is
a specially structured instance of facility layout, namely the single-row facility
layout problem (SRFLP). The SRFLP consists of arranging a given number of
rectangular facilities next to each other along a line so as to minimize the total
weighted sum of the center-to-center distances between all pairs of facilities.
This problem is also known in the literature as the one-dimensional space
allocation problem; see, e.g., [58]. The SRFLP also has several interesting
connections to other known combinatorial optimization problems such as the
maximum-cut problem, the quadratic linear ordering problem, and the linear
arrangement problem. We explore some of these connections in Section 2.3.
Note that for the SRFLP, numerous approaches based on linear programming
(LP) have been proposed in the literature. Using integer LP methods, the
most effective such approach for determining exact solutions is a branch-and-
cut algorithm based on the recent model by Amaral [5].

The second problem arises from the application of facility layout to fixed-
outline floorplanning in VLSI circuit design. Fixed-outline floorplanning con-
sists of arranging a set of rectangular modules on a rectangular chip area so
that an appropriate measure of performance is optimized, and is hence a spe-
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cialized version of facility layout. The objective is typically to minimize total
wire length.

The impact to date of the cone optimization approaches for facility layout
problems, excluding its impact for the QAP addressed elsewhere in this book,
can be summarized as follows:

• Anjos and Vannelli [10] used a semidefinite programming (SDP) relaxation
to provide globally optimal solutions for SRFLP instances in the literature
with up to 30 departments that had remained unsolved for nearly 20 years.

• Hungerländer and Rendl [38] show that the SDP relaxation, when aug-
mented with valid inequalities and optimized using a suitable combination
of algorithms, can provide global optimal solutions for SRFLP instances
with up to 40 departments. Their approach can solve larger instances to
optimality than the approach by Amaral [5].

• Anjos and Yen [11] obtained tight global bounds for SRFLP instances
with up to 100 facilities using an alternate SDP relaxation. Their approach
consistently achieves optimality gaps not greater than 5%.

• Takouda, Anjos and Vannelli [69] provided non-trivial lower bounds for the
VLSI macrocell floorplanning problem. Furthermore, their second-order
cone programming (SOCP) formulations (described in Section 3.1) for the
area and aspect ratio constraints were key to the success of the two-stage
convex optimization-based methodology for floorplanning of Luo et al. [49]
and of the facility layout model of Jankovits [39], both of which provide
computational results outperforming those previously reported in the lit-
erature.

This chapter provides an overview of the SOCP/SDP models underpinning
this impact, and concludes with a summary of further research directions.

2 Introduction to the Single-Row Facility Layout
Problem

An instance of the SRFLP is formally defined by n one-dimensional facilities
with given positive lengths `1, . . . , `n, and pairwise non-negative weights cij .
The objective is to arrange the facilities so as to minimize the total weighted
sum of the center-to-center distances between all pairs of facilities. If all the
facilities have the same length and all the non-zero weights are equal, the
SRFLP becomes an instance of the linear arrangement problem, see e.g. [46],
which is itself a special case of the QAP; see e.g. [20]. (For a survey on the
linear arrangement and other graph layout problems, we refer to [26].) Sev-
eral practical applications of the SRFLP have been identified in the literature,
such as the arrangement of departments on one side of a corridor in super-
markets, hospitals, or offices [65], the assignment of disk cylinders to files
[58], the assignment of airplanes to gates in an airport terminal [68], and the
arrangement of machines in flexible manufacturing systems, where machines
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within manufacturing cells are often placed along a straight path travelled by
an automated guided vehicle [36]. We refer the reader to the book of Heragu
[34] for more information.

Several heuristic algorithms for the SRFLP have also been proposed. We
point out the early work of Hall [30], the application of non-linear optimiza-
tion methods by Heragu and Kusiak [37], the simulated annealing algorithms
proposed independently by Romero and Sánchez-Flores [61] and Heragu and
Alfa [35], a greedy heuristic algorithm proposed by Kumar et al. [43], and
the use of both simulated annealing and tabu search by de Alvarenga et al.
[23]. However, these heuristic algorithms do not provide a guarantee of global
optimality, or an estimate of the distance from optimality.

Simmons [65] was the first to state and study the SRFLP, and proposed
a branch-and-bound algorithm. His subsequent note [66] mentioned the pos-
sibility of extending the dynamic programming algorithm of Karp and Held
[40] to the SRFLP, which was done by Picard and Queyranne [58]. Different
mixed-integer LP models have been proposed [2, 3, 37, 48], and the first poly-
hedral study of the so-called distance polytope for SRFLP was carried out
by Amaral and Letchford [6]. Most recently, the IP-based cutting-plane algo-
rithm of Amaral [5] can compute optimal solutions for instances with up to
35 facilities within a few hours of computing time. The polyhedral structure
of Amaral’s model has recently been studied by Sanjeevi and Kianfar [63].

At the time of writing, the state-of-the-art in terms of globally optimal
methods are the SDP-based approaches. The first SDP relaxation was pro-
posed in [7] where global bounds for instances with up to 80 facilities were
obtained using the spectral bundle solver SB [32, 33]. While this solver is able
to handle very large SDP problems, a major drawback is that its convergence
slows down significantly after several hours of computation. As a consequence,
instances with 80 facilities were the largest for which bounds could be obtained
in reasonable time in [7], and some of the optimality gaps were greater than
10%. Anjos and Yen [11] obtained bounds for instances with up to 100 fa-
cilities using the solver CSDP [14] and an alternate SDP relaxation. Their
approach consistently achieves optimality gaps not greater than 5% for even
extremely large instances of SRFLP. Most recently, Hungerländer and Rendl
[38] were able to obtain globally optimal solutions for instances with up to 40
facilities.

In the following, we will describe LP- and SDP-based approaches for SR-
FLP in more detail. It turns out that the models used are closely related to
an important combinatorial optimization problem called the maximum-cut
problem in an undirected graph. The latter asks for partitioning the nodes of
a graph into two sets such that the sum of the weights of edges with nodes
in different partitions is maximum. First, we introduce binary quadratic opti-
mization problems which are well known to be equivalent to the maximum-cut
problem. We then show that the convex hull of solutions feasible for SRFLP
is a special instance of a quadratic linear ordering problem which is known
to induce a face of a cut polytope. This gives some theoretical evidence that
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solution approaches for SRFLP based on the maximum-cut problem can lead
to effective algorithms. In fact, we describe how the most effective approaches
for solving SRFLP instances exploit the underlying cut-polytope structure.

2.1 Binary Quadratic Optimization and the Maximum-Cut
Problem

Let us consider some combinatorial optimization problem on a finite set E. We
denote the feasible solutions by I ⊆ 2E . The objective function c(I) =

∑
e∈I ce

is linear, where ce ∈ R for all e ∈ E. Without loss of generality, we want to
minimize c(I) over all I ∈ I. Let P ⊆ RE denote a polytope with the property
x ∈ {0, 1}E∩P if and only if x is the characteristic vector of a feasible solution.

The corresponding integer LP problem reads

min
∑
e∈E cexe

(P) s.t. x ∈ P
x ∈ {0, 1}E .

In the following, we focus on objective functions that are quadratic in the
variables x, i.e., we consider problems of the form

min
∑
e∈E cexe +

∑
e,f∈E;e 6=f cefxexf

(QP) s.t. x ∈ P
x ∈ {0, 1}E .

For problems defined on a graph G = (V,E) with variables correspond-
ing to edges, and for two edges e = {i, j} and f = {k, l}, we will use the
notations cef and cijkl interchangeably.

In order to linearize (QP) using the standard linearization, we introduce
a binary variable yef for each pair {e, f} with cef 6= 0, modeling xexf , along
with the constraints yef ≤ xe, yef ≤ xf , and yef ≥ xe + xf − 1.

The easiest example for (QP) is the quadratic unconstrained binary opti-
mization problem (QUBO), where we optimize in (QP) over the unit hyper-
cube without further constraints. It is well known that QUBO is equivalent
to the maximum-cut problem [31, 24]. Given a graph G = (V,E) with edge
weights we and W ⊆ V , the cut δ(W ) is defined as

δ(W ) = {{u, v} ∈ E | u ∈W, v 6∈W} .

Its weight is
∑
e∈δ(W ) we. The maximum-cut problem asks for a cut of maxi-

mum weight and is NP-hard for general graphs. The corresponding cut poly-
tope, i.e., the convex hull of incidence vectors of cuts, is well studied [12, 25],
and branch-and-cut implementations that are efficient in practice exist for its
solution [45, 60].

In order to establish the equivalence of the maximum-cut problem with
QUBO defined on m binary variables, we construct an auxiliary graph
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Glin = (Vlin, Elin) with m + 1 nodes [31, 24]. Glin contains a node for each
linear variable xe. For each non-zero quadratic term xexf in the objective,
Elin contains an edge between the nodes corresponding to xe and xf . Further-
more, an additional root node and edges from this node to all other nodes
are introduced. Then there exists a simple linear transformation between the
edge variables of Glin in the maximum-cut setting and the linear variables and
their products in the unconstrained quadratic optimization setting. Under this
transformation, P is isomorphic to the cut polytope of Glin.

If P is the unit hypercube in (QP), solving the resulting QUBO problem
thus amounts to determine a maximum cut in Glin, i.e., to optimize over a
cut polytope defined in the |Elin|-dimensional space. If P is a strict subset of
the unit hypercube, i.e., if additional constraints are present, these constraints
can be transformed as well and we derive that P is isomorphic to a cut poly-
tope with further linear constraints. In particular, all inequalities valid for the
cut polytope still yield valid inequalities for the linearized binary quadratic
problem.

Clearly, intersecting the cut polytope with arbitrary hyperplanes yields in
general a non-integer polytope. The structure of the convex hull of integer
points in the resulting polytope can be very different from a cut polytope.
In this case it is not clear whether the knowledge about the cut polytope
can help solving the linearized constrained optimization problem. Some ap-
plications exist in which no speed-up is observed when designing a solution
algorithm based on the cut polytope if the inequalities cut through the inte-
rior of the polytope. However, for the applications studied here and for several
further relevant applications, the linear constraints cut out a face of the cut
polytope. This is an important observation as then the convex hull of the
feasible solutions inherits the cut-polytope structure. Therefore, approaches
exploiting the cut-polytope structure can lead to effective solution algorithms.
This connection has been exploited in the work by Buchheim et al. [15] where
several different applications were studied for which the linear constraints
always induce faces of some cut polytope. General separation methods for
constrained quadratic problems of form (QP) were designed that can comple-
ment or replace detailed polyhedral studies of the polytope of the linearized
problem and that can be used as a black box. One of these routines consists
of exploiting the connection to the maximum-cut problem by separating in-
equalities known to be valid for the cut polytope. The methods were tested on
the quadratic linear ordering problem and the linear arrangement problem,
among others. We will introduce these applications in the next section. The
main contribution in [15] was to show that these general approaches lead to a
dramatic decrease of both the number of nodes in the enumeration tree and
the running time when compared to an algorithm that only uses the standard
separation routines for the well-studied polytope P from (QP).

In the next section, we introduce the quadratic linear ordering problem
which induces a face of a cut polytope. Subsequently, we observe that SRFLP
is a special quadratic linear ordering problem.
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2.2 The Quadratic Linear Ordering Polytope as a Face of a Cut
Polytope

Let π = (π1, . . . , πn) denote a permutation of [n] := {1, 2, . . . , n}. The corre-
sponding linear ordering variables x = (xij) ∈ Rn(n−1) for i 6= j are defined
as

xij =

{
1, if πi < πj

0, if πj < πi.
(1)

In practice, we can exploit xij = 1−xji and thus eliminate half of the variables
and only keep those with i < j. Given costs cij ∈ R for each pair of facilities
i, j, the linear ordering problem asks for optimizing a linear objective over the
convex hull of all valid vectors x. This convex hull is called the linear ordering
polytope PLO [29, 59]. This is an NP-hard problem. For a recent survey on
the linear ordering problem, we refer to the work by Charon and Hudry [21].

Allowing for products of linear ordering variables in the objective function,
the corresponding quadratic linear ordering problem (QLO) in its general form
is

min
∑

(i,j,k,l)∈I cijklxijxkl

(QLO) s.t. x ∈ PLO
xij ∈ {0, 1} ∀(i, j) ∈ J.

The index set I consists of all quadruples (i, j, k, l) such that xijxkl occurs
as a product in the objective function, while J is the set of all pairs (i, j) for
which a linear ordering variable xij is needed. As x2ij = xij for any binary
variable, (QLO) also takes linear terms into account.

In order to linearize the objective function, we introduce a new binary
variable yijkl for each (i, j, k, l) ∈ I, modeling the product xijxkl. (Note that
yijkl = yklij .) Applying the standard linearization, the corresponding lin-
earized quadratic linear ordering problem (LQLO) can be written as

min
∑

(i,j,k,l)∈I cijklyijkl

(LQLO) s.t. x ∈ PLO
xij ∈ {0, 1} ∀(i, j) ∈ J
yijkl ≤ xij , xkl ∀(i, j, k, l) ∈ I
yijkl ≥ xij + xkl − 1 ∀(i, j, k, l) ∈ I
yijkl ∈ {0, 1} ∀(i, j, k, l) ∈ I.

Buchheim et al. [16] introduced the above model for the so-called bipartite
crossing minimization problem. Additionally, a quadratic reformulation of the
constraints defining PLO was given: it was shown that a 0/1 vector (x, y)
satisfying yijkl = xijxkl is feasible for (LQLO) if and only if

xik − yijik − yikjk + yijjk = 0 ∀i < j < k s.t. (i, j, k, l) ∈ I for some l. (2)

Furthermore, the constraints (2) yield a minimum equation system for (LQLO).
Equations (2) were used by Lewis et al. [44] in order to derive penalty
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functions for the original linear ordering problem. Note that (LQLO) is a
quadratic binary optimization problem where the feasible solutions need to
satisfy further side constraints, namely those restricting the set of feasible so-
lutions to linear orderings. By proving validity of the corresponding inequality
xik−yijik−yikjk +yijjk ≥ 0 for each of the equalities appearing in (2), it was
shown in [16] that the hyperplanes (2) cut out faces of the cut polytope asso-
ciated to graph Glin. Exploiting this result, both IP- and SDP-based methods
originally designed for maximum-cut problems were used in [16] to solve the
quadratic linear ordering problem. It turned out that the SDP-based approach
outperformed the IP-based techniques. In the recent work by Hungerländer
and Rendl [38], equations (2) were also used for the quadratic linear order-
ing problem. The SDP-based method from [16] is improved by additionally
separating matrixcuts that were introduced by Lovász and Schrijver in [47].
The method is used for different applications of quadratic linear ordering, the
SRFLP being one of them. It turns out that the method can effectively solve
very large instances to optimality.

2.3 The connection of SRFLP and Related Problems to the
Quadratic Linear Ordering Problem

In the following, we present an integer LP formulation of SRFLP. It will turn
out that SRFLP is a special instance of a quadratic linear ordering problem.

Let π = (π1, . . . , πn) denote a permutation of the indices [n] of the facili-
ties, so that the leftmost facility is π1, the facility to the right of it is π2, and
so on, with πn being the last facility in the arrangement. Given a permutation
π and two distinct facilities i and j, the center-to-center distance between i
and j with respect to this permutation is 1

2`i +Dπ(i, j) + 1
2`j , where Dπ(i, j)

denotes the sum of the lengths of the facilities between i and j in the order-
ing defined by π. Solving the SRFLP consists of finding a permutation of the
facilities that minimizes the weighted sum of the distances between all pairs
of facilities. In other words, the problem is:

min
π∈Πn

∑
i<j

cij

[
1

2
`i +Dπ(i, j) +

1

2
`j

]
,

where Πn denotes the set of all permutations of [n]. Note that here and in all
subsequent formulations of the SRFLP, the assumption that cij ≥ 0 ensures
that the facilities are placed next to each other, i.e., without holes in the
arrangement.

Simmons [65] observed that the crux of the problem is to minimize∑
i<j

cijDπ(i, j) over all permutations π ∈ Πn. It is also clear that Dπ(i, j) =

Dπ′(i, j), where π′ denotes the permutation symmetric to π, defined by
π′i = πn+1−i, i = 1, . . . , n. Hence, it is possible to simplify the problem by
considering only the permutations for which, say, facility 1 is on the left half
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of the arrangement. This type of symmetry-breaking strategy is important for
reducing the computational requirements of most algorithms, including those
based on LP or dynamic programming.

The SRFLP can be modeled as the optimization of a linear function over
the distance polytope. This polytope is the convex hull of distance vectors

d ∈ R
(n
2)

+ that can be realized by some arrangement of objects. In [6] it is
shown that the polytope lies in the cut cone, i.e., the convex cone generated
by all incidence vectors of cuts. It was shown that several well-known facet-
inducing inequalities for the latter also induce facets for the distance polytope.
However, when solving the SRFLP this way, running times can grow quickly.

Alternatively, the sum of the lengths of the facilities between i and j in the
ordering defined by π can be expressed in terms of products of linear ordering
variables as follows. A facility k lies between i and j if and only if either i is
before k and k is before j, or vice versa j is before k and k is before i. Thus,
D(i, j) can be written asD(i, j) =

∑
k `kxikxkj+

∑
k `kxjkxki, where xik is the

usual linear ordering variable modeling whether πi < πk or not. The objective
function terms are then summed up appropriately, the resulting cost vector
being called c′. Therefore, up to a constant, the SRFLP can be rewritten as
a specific quadratic linear ordering problem of the form

min
∑
i 6=j 6=k 6=i c

′
ijxikxkj

(QLO2) s.t. x ∈ PLO
xij ∈ {0, 1} ∀i, j ∈ {1 . . . n}, i 6= j.

If all object lengths and all non-zero weights equal 1, the application
(QLO2) is called linear arrangement problem. We noted above that the
quadratic linear ordering problem is isomorphic to a face of a cut polytope.
As a consequence, the same is true for the SRFLP and the linear arrangement
problem.

We note that SRFLP and linear arrangement in the formulation (QLO2)
only require products of linear ordering variables of the form xikxkj , whose
number is only O(n3). All other products xikxlj with pairwise different i, j, k, l
have cost coefficients equal to zero.

A more concise model of the SRFLP is achieved when rewriting D(i, j)
via betweenness variables. In fact, for the SRFLP it is not necessary to model
for each pair of objects their relation in the ordering. It is enough to know for
each pair of objects which facilities are between them. Betweenness variables
ζijk for facilities i, j, k are defined as

ζijk =

{
1, if department k lies between departments i and j,
0, otherwise.

The betweenness polytope is the convex hull of the incidence vectors of
feasible solutions, i.e.,

PBet = conv
{
ζ ∈ {0, 1}n(n−1)(n−2) : ζ arises from a permutation of 1, . . . , n

}
.
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Thus, by rewriting D(i, j) =
∑
k `kζijk, the SRFLP is the problem of op-

timizing a linear function over the betweenness polytope. The latter is well
understood, see e.g. Christof et al. [22]. A betweenness variable ζijk can be
written via linear ordering variables as ζijk = xikxkj + xjkxki. Therefore, the
betweenness problem is a quadratic linear ordering problem in which all prod-
ucts xijxkl with pairwise different i, j, k, l necessarily have zero contribution
to the objective function. As the betweenness problem is a specific quadratic
linear ordering problem in which only O(n3) cost coefficients can take non-
zero cost value, we immediately obtain that the betweenness polytope induces
a face of a cut polytope.

Recently, a different relation of the betweenness polytope to the cut poly-
tope was pointed out by Oswald et al. [57]. To this end, an undirected graph
GBet = (V,E) is set up that contains a node for each facility. An edge (i, j) ∈ E
between two facilities exists in GBet if the cost cij associated with i and j is
nonzero. The authors observe that for fixed k, a betweenness incidence vector
(ζijk) is the incidence vector of a cut in the graph GBet \ {k}. In the latter,
node k together with all its incident edges is deleted from the graph GBet. As
a consequence, the projection of the betweenness variables ζijk for fixed k is
isomorphic to the cut polytope associated with graph GBet \ {k}. Based on
this observation, Oswald et al. [57] suggest an exact solution approach for the
linear arrangement problem. One of their separation routines consists of sep-
arating odd-cycle inequalities in GBet \ {k}, for each k. Odd-cycle inequalities
are known to be facet-defining for the cut polytope. A similar exact branch-
and-cut approach could be designed for the slightly more general SRFLP.

In summary, there exist different connections of SRFLP to the cut polytope
and the cut cone. The model by Letchford et al. [6] relates SRFLP to the
cut cone by observing that the latter contains the distance polytope. If the
SRFLP is modeled via the quadratic linear ordering problem, a face of a cut
polytope is induced. The latter polytope is defined for the graph Glin. Using
the betweenness formulation instead, for each object k the projection of the
problem is isomorphic to the cut polytope on the graph GBet \ {k}.

We note that the model via quadratic linear ordering is more general than
the betweenness approach in the sense that every betweenness variable can
be expressed via products of linear ordering variables, but not vice versa.

In the next section, we present the currently most effective LP-based ap-
proach by Amaral [4] which is based on a betweenness model. In Section 2.5,
we obtain matrix-based formulations and SDP relaxations using the quadratic
linear ordering model (QLO2).

2.4 The Betweenness-Based LP Formulation of Amaral for SRFLP

Although not explicitly stated, Amaral’s model is implicitly based on the con-
nection to the cut polytope as observed by Oswald et al. [57]. We explain this
in more detail in the following. Amaral [4] used the betweenness formulation
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based on variables ζijk for SRFLP. The objective function of the SRFLP can
then be expressed as

∑
i<j

cij

1

2
(`i + `j) +

∑
k 6=i,j

`kζijk

 (3)

Let an index of an object be denoted by i, j, k, or d. To obtain an LP
relaxation of the SRFLP, Amaral proposes to optimize (3) subject to the
following partial description of PBet in which the objects i, j, k, d are always
chosen pairwise different:

ζijk + ζikj + ζjki = 1, for all {i, j, k} ⊆ {1, . . . , n}, (4)

ζijd + ζjkd − ζikd ≥ 0, for all {i, j, k, d} ⊆ {1, . . . , n}, (5)

ζijd + ζjkd + ζikd ≤ 2, for all {i, j, k, d} ⊆ {1, . . . , n}, (6)

0 ≤ ζijk ≤ 1, for all {i, j, k} ⊆ {1, . . . , n}. (7)

Equation (4) can easily be understood from the fact that the equalities
ζijk = 1, ζikj = 1, and ζjki = 1 are mutually exclusive (by definition of
ζijk). Using the equivalence ζijk ≡ xikxkj + xjkxki based on linear ordering
variables, it follows that (4) is equivalent to the minimum equation system (2)
known for the quadratic linear ordering problem. Without loss of generality,
we assume i < j < k and rewrite (4) as

ζijk + ζikj + ζjki = 1⇔ (xikxkj + xjkxki) + (xijxjk + xkjxji)

+ (xjixik + xkixij) = 1

⇔ xik(1− xjk) + xjk(1− xik) + xijxjk+

(1− xjk)(1− xij) + (1− xij)xik + (1− xik)xij = 1

⇔ 2 (xik − xijxik − xikxjk + xijxjk) = 0.

Using the recent observation of Oswald et al. [57] that for a fixed object
d, the incidence vectors of betweenness vectors are incidence vectors of cuts
in the graph GBet \ {d}, it can be checked that (5) and (6) are precisely the
triangle inequalities known to be facet-defining for the cut polytope. Indeed,
projecting the inequalities accordingly and denoting the variables by ζp, (5)
and (6) read for pairwise different i, j, k:

ζpij + ζpjk − ζ
p
ik ≥ 0, for all {i, j, k} ⊆ {1, . . . , n}, (8)

ζpij + ζpjk + ζpik ≤ 2, for all {i, j, k} ⊆ {1, . . . , n}, (9)

These are exactly the triangle inequalities stating that a cut either contains
zero or two edges from a triangle. They can be generalized to the odd-cycle
inequalities that state in algebraic terms that a cycle and a cut can only
coincide in an even number of common edges, see e.g. [25]. Alternatively,
one can also check that (5) and (6) are the triangle inequalities by using the
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equivalence ζijk ≡ xikxkj + xjkxki and working through the classical linear
transformation between the maximum-cut problem and QUBO.

Amaral proposes a further class of valid inequalities for PBet that can be
used as cuts to improve the LP relaxation. They are as follows:

Proposition 1 [4] Let β ≤ n be a positive even integer and let S ⊆ {1, . . . , n}
such that |S| = β. For each r ∈ S, and for any partition (S1, S2) of S\{r}
such that |S1| = 1

2β, the inequality∑
t<q,t∈S1,q∈S1

ζtqr +
∑

t<q,t∈S2,q∈S2

ζtqr −
∑

t∈S1,q∈S2

ζmin{t,q},max{t,q},r ≤ 0 (10)

is valid for PBet.

It is easy to check that for β = 4, (10) is a triangle inequality of the form (5).
Again, the inequalities (10) can be interpreted as inequalities for the cut

polytope. For the corresponding graph GBet \ {r}, the inequality (10) takes
the form

ζp(E(S1)) + ζp(E(S2))− ζp(δ(S1)) ≤ 0 (11)

where for a node set U the usual abbreviation ζp(E(U)) =
∑
e∈E(U) ζ

p
e is used.

The inequality (11) is a so-called clique inequality [25] that is here switched
along the cut δ(S1). Clique inequalities are known to be valid and facet-
inducing for the cut polytope. Their exact separation is however NP-hard, and
so often heuristic separation procedures are used in practice. Amaral does not
use a general separation routine for arbitrary values of β in (10) but proposes
separating inequalities with β = 6 by enumeration. The corresponding class
of clique inequalities are often called pentagonal inequalities.

Unlike for the LP relaxation, the triangle inequalities are not included
explicitly in the SDP relaxations that are presented in Section 2.5. However,
they can be added as valid inequalities there, and so can any other valid
inequalities for the cut polytope. Furthermore, theoretical results in Section
2.7 below show that when certain triangle inequalities are present in either
the LP or the SDP relaxation, a number of the pentagonal and of the so-
called hexagonal inequalities automatically hold as well (see Section 2.7 for
the definition of these classes of inequalities).

Amaral also shows that the size of the LP relaxation can be reduced
by projecting the feasible set into a lower-dimensional space. We refer the
reader to [4] for details. Very recently, Sanjeevi and Kianfar [63] have inde-
pendently shown that several of the valid inequalities from Amaral are indeed
facet-defining. The classes of inequalities studied there are well known to be
facet-defining for the cut polytope. It is an interesting fact that they remain
facet-inducing when considering only the convex hull of the SRFLP incidence
vectors which induce a face of this cut polytope.
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2.5 Matrix-Based Formulations and SDP Relaxations

In the sections above, we discussed integer LP-based solution approaches
where it is convenient to formulate models in binary variables that either
take value zero or value one. In this section, we introduce SDP relaxations
where the variables are usually assumed to take values in {±1}. We start
by presenting the quadratic formulation of the SRFLP proposed by Anjos et
al. [7]. The latter is basically a modeling via the quadratic linear ordering
problem given in (QLO2) but written in ±1 instead of binary variables. Their
model can be described as follows.

For a given permutation π of [n], for each pair of integers ij with 1 ≤ i <
j ≤ n, define a binary ±1 variable such that

Rij :=

{
1, if πj < πi,
−1, if πi < πj .

In this definition, the order of the subscripts matters, and Rij = −Rji. In
fact, Rij determines a linear ordering on the objects.

Given a particular assignment of ±1 values to the Rij variables, if this
assignment represents a permutation of [n], then the condition that

if i is to the right of j and j is to the right of k, then i is to the right of k

must be enforced. Equivalently, if Rij = Rjk then Rik = Rij . This necessary
transitivity condition can be formulated as a set of quadratic constraints:

RijRjk −RijRik −RikRjk = −1 for all triples 1 ≤ i < j < k ≤ n. (12)

Interestingly, (12) is exactly the set of equations (2), written in ±1 vari-
ables. After (12) was introduced in [7] for SRFLP, it was shown in [16] that
the latter is a minimum equation system for the quadratic linear ordering
problem (QLO).

The objective function of the SRFLP can be expressed as

∑
i<j

cij

1

2
(`i + `j) +

∑
k 6=i,j

`k

(
1−RkiRkj

2

)
upon observing that RkiRkj = −1 if and only if facility k is between i and j.
The resulting formulation of the SRFLP is:

min K −
∑
i<j

cij
2

[∑
k<i

`kRkiRkj −
∑

i<k<j

`kRikRkj +
∑
k>j

`kRikRjk

]
s.t.

RijRjk −RijRik −RikRjk = −1 for all triples i < j < k
R2
ij = 1 for all i < j

(13)
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where K :=

(∑
i<j

cij
2

)(
n∑
k=1

`k

)
. Note that if every Rij variable is replaced by

its negative, then there is no change whatsoever to the formulation. For this
reason, the formulation (13) and the subsequent matrix-based formulations
and corresponding SDP relaxations implicitly account for the symmetry in
the SRFLP.

Let ρ ∈ {±1}(
n
2) denote an assignment of values to the Rij variables. Hence

define the set:

Rn :=
{
ρ ∈ {±1}(

n
2) : RijRjk −RijRik −RikRjk = −1 ∀1 ≤ i < j < k ≤ n

}
and consider the function f : Rn → Πn defined by

f(ρ) = (π1, . . . , πn), where πk :=
Pk + n+ 1

2

and
Pk :=

∑
j 6=k

Rkj =
∑
j<k

−Rjk +
∑
j>k

Rkj for k = 1, 2, . . . , n. (14)

We have the following fact:

Theorem 1 The function f : Rn → Πn is a bijection.

This result follows from Buchheim et al. [16] and the earlier work of Murata
et al. [55] who demonstrated that for every layout in two dimensions, there
exists a finite representation via so-called sequence-pairs. This technique has
been applied with great success in VLSI floorplanning, the original application
in [55], and also in two-dimensional facility layout [51, 71]. An independent
proof in terms of the variables and structure used here was given in Anjos and
Yen [11].

Following [7], we obtain a formulation of the SRFLP in the space of real
symmetric matrices by fixing an ordering of all pairs ij such that i < j, and
defining the vector

v := (Rp1 , . . . , Rp(n
2)

)T ,

where pk denotes the kth pair ij in the ordering. Using v, we construct the
rank-one matrix X := vvT whose rows and columns are indexed by pairs ij.
By construction, Xpi,pj = RpiRpj for any two pairs pi, pj , and therefore we
can formulate the SRFLP as:

min K −
∑
i<j

cij
2

[∑
k<i

`kXki,kj −
∑

i<k<j

`kXik,kj +
∑
k>j

`kXik,jk

]
s.t.

Xij,jk −Xij,ik −Xik,jk = −1 for all triples i < j < k
diag (X) = e
rank (X) = 1
X � 0

(15)
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where diag (X) represents a vector containing the diagonal elements of X, e
denotes the vector of all ones, and X � 0 denotes that X is symmetric positive

semidefinite. Note that X ∈ S(n
2) , the set of symmetric matrices of dimension(

n
2

)
.
Removing the rank constraint from (15) yields an SDP relaxation. Note

that in general the SDP problem only provides a lower bound on the optimal
value of the SRFLP, and not a feasible solution, unless the optimal matrix
X∗ happens to have rank equal to one. A standard way to tighten linear
or semidefinite relaxations of integer optimization problems is, as mentioned
earlier, to add inequalities (such as the triangle inequalities) that are valid for
the integer feasible points. The SDP relaxation of (15) with a straightforward
scheme to iteratively add violated triangle inequalities was used in [10] to
solve SRFLPs with up to 30 facilities to global optimality for the first time.

From a computational perspective, the main limitation of the SDP relax-
ation of (15) is that it has O(n3) linear constraints; this limits the size of
instances that can be tackled with it. This motivated Anjos and Yen [11] to
consider an alternative formulation, obtained by reducing the number of the
linear constraints in the following way:

min K −
∑
i<j

cij
2

[∑
k<i

`kXki,kj −
∑

i<k<j

`kXik,kj +
∑
k>j

`kXik,jk

]
s.t.

n∑
k=1,k 6=i,j

Xij,jk −
n∑

k=1,k 6=i,j
Xij,ik −

n∑
k=1,k 6=i,j

Xik,jk = −(n− 2) for all i < j

diag (X) = e
rank (X) = 1
X � 0.

(16)
It is straightforward to prove that the two formulations are equivalent (but
not their SDP relaxations).

Theorem 2 [11] The feasible sets of (15) and (16) are equal.

Removing the rank-one constraint from (16) again yields an SDP relaxation.
Although the number of linear constraints in this relaxation is nowO(n2), with
a corresponding favourable impact on the computational time and memory
requirements of a primal-dual interior-point algorithm, it turns out that the
quality of the solution appears to deteriorate only slightly, yielding optimality
gaps not greater than 5% for instances with up to n = 100. A summary of
the results reported in [11] is provided in Table 1.

2.6 SDP-based Heuristic to Obtain a Layout

The SDP relaxations of (15) and (16) are closely related to the basic SDP
relaxation for the maximum-cut problem used in the ground-breaking paper
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Table 1. Bounds for some extremely large instances

Number of Number of Range of gaps Average
departments instances CPU time

56 5 3.49% - 4.47% 3h 03m
64 5 2.80% - 5.15% 9h 00m
72 5 2.89% - 4.03% 23h 20m
81 5 3.44% - 4.97% 2d 0h 24m
100 5 3.18% - 3.81% 9d 17h 0m

of Goemans and Williamson [28]. However, we cannot use their randomized
hyperplane rounding procedure because it does not guarantee that we will
obtain a valid representation of a permutation. This is because it does not
ensure that the equality constraints (12) hold, and hence the result may not
represent a valid permutation. One possibility is to use a heuristic to fix the
result, as is done in [38]. Alternatively, a different rounding procedure, based
on Theorem 1, was proposed in [7] to obtain a permutation from the optimal
solution to the SDP relaxation.

The procedure is as follows: If X∗ is the optimal solution to the SDP
relaxation, then each row of X∗ corresponds to a specific pair i1 j1 of facilities.
Therefore, for any row of X∗, if we set Ri1 j1 = +1, then we can scan the other
entries of the row and assign the value Xi1 j1,i2 j2 to the variable Ri2 j2 , for
every pair i2 j2 6= i1 j1. (Note that every value assigned to an Rij is in the
interval [−1, 1] because every feasible X for the SDP is a correlation matrix.)
Using these values, we compute

ωk =
1

2

n+ 1 +
∑
j 6=k

Rkj


for k = 1, . . . , n.

The motivation for the values ωk comes from the fact that if X∗ is rank-
one, then ωk = πk, k = 1, . . . , n, where the πk define the bijection in Theorem
1, and hence the ωk define a permutation of [n]. In general, rank (X∗) > 1
and thus ωk ∈ [1, n], so the SDP-based heuristic obtains a permutation of [n]
by sorting the values ωk. The sorting can be in either decreasing or increasing
order (since the objective value is the same), and since the procedure implicitly
sets Ri1 j1 = +1, we choose the order that places i1 to the right of j1. The
output of the heuristic is the best layout found by considering every row in
turn.

2.7 On the Facial Structure of the Relaxations

Consider the following set of solutions feasible for both the SDP relaxation of
(15) and the LP relaxation (4)-(7) under the aforementioned mapping between
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their variables:

Xn :=
{
X ∈ S(n

2) : −1 ≤ Xij,kl ≤ 1,

Xij,jk −Xij,ik −Xik,jk = −1 ∀ 1 ≤ i < j < k ≤ n
}
.

It is straightforward to check that a number of triangle inequalities automat-
ically hold for every X ∈ Xn.

Lemma 1 If X ∈ Xn, then for every triple of pairs (i1, i2), (i1, i3), and
(i2, i3), where i1 < i2 < i3, the entries of X satisfy

Xi1i2,i1i3 +Xi1i2,i2i3 +Xi1i3,i2i3 ≥ −1, Xi1i2,i1i3 −Xi1i2,i2i3 −Xi1i3,i2i3 ≥ −1,

−Xi1i2,i1i3 −Xi1i2,i2i3 +Xi1i3,i2i3 ≥ −1,−Xi1i2,i1i3 +Xi1i2,i2i3 −Xi1i3,i2i3 ≥ −1.

Proof: Since X ∈ Xn, we know Xi1i2,i2i3 −Xi1i2,i1i3 −Xi1i3,i2i3 = −1, and
therefore the fourth inequality trivially holds. Now,

Xi1i2,i2i3 +Xi1i2,i1i3 +Xi1i3,i2i3 = Xi1i2,i2i3 +Xi1i2,i1i3 + (1 +Xi1i2,i2i3 −Xi1i2,i1i3)

= 1 + 2Xi1i2,i2i3 ≥ −1,

and hence the first triangle inequality above holds. The other two inequalities
follow similarly.

We have thus observed that 4
(
n
3

)
triangle inequalities of the form (8-9)

automatically hold for all the feasible matrices of Xn. If we consider the ad-
dition of the remaining triangle inequalities, we obtain the following (tighter)
set of feasible solutions:

X4n = Xn ∩ {X ∈ S(n
2) : Xp1,p2 +Xp1,p3 +Xp2,p3 ≥ −1, Xp1,p2 −Xp1,p3 −Xp2,p3 ≥ −1,

−Xp1,p2 −Xp1,p3 +Xp2,p3 ≥ −1,−Xp1,p2 +Xp1,p3 −Xp2,p3 ≥ −1,
∀ p1, p2, p3 : {p1, p2, p3} 6= {(i1, i2), (i1, i3), (i2, i3)}
for any i1 < i2 < i3}.

We now show that a number of facet-defining inequalities of the cut polytope
are implicitly enforced in X4n .

First, we consider the pentagonal inequalities. For each subset of pairs
{p1, . . . , p5} corresponding to rows and columns of X, there are 16 such in-
equalities and they can be represented as:∑

1≤i<j≤5

δiδjXpi,pj ≥ −2,

where δk ∈ {−1, 1}, k = 1, 2, 3, 4, 5. Hence there are 16
((n

2)
5

)
valid pentagonal

inequalities in total. It is proved in [8] that for X4n , 90
(
n
4

)
of those inequalities

automatically hold.



18 Miguel F. Anjos and Frauke Liers

Lemma 2 [8] Suppose that X ∈ X4n , and (from the definition of X4n ) con-
sider any five pairs p1, . . . , p5 that satisfy

Xp1,p4 −Xp1,p2 −Xp2,p4 = −1, (17)

Xp1,p5 −Xp1,p3 −Xp3,p5 = −1. (18)

Then for all choices of δi ∈ {−1, 1}, i = 1, 2, 3, 4, 5, such that (δ1δ2−1)(δ1δ3−
1)(δ1δ4 + 1)(δ1δ5 + 1) = 0, the pentagonal inequality∑

1≤i<j≤5

δiδjXpi,pj ≥ −2

holds. This gives a total of 15 pentagonal inequalities.

Lemma 2 leads to the following theorem.

Theorem 3 [8] Suppose that X ∈ X4n , and consider any choice 1 ≤ i1 <
i2 < i3 < i4 ≤ n. Then for each of the following sets of row indices for X,
precisely 15 pentagonal inequalities hold:

{(i1, i2), (i1, i3), (i1, i4), (i2, i3), (i2, i4)},
{(i1, i2), (i1, i3), (i1, i4), (i2, i3), (i3, i4)},
{(i1, i2), (i1, i3), (i1, i4), (i2, i4), (i3, i4)},
{(i1, i2), (i1, i3), (i2, i3), (i2, i4), (i3, i4)},
{(i1, i2), (i1, i4), (i2, i3), (i2, i4), (i3, i4)}, and

{(i1, i3), (i1, i4), (i2, i3), (i2, i4), (i3, i4)}.

Hence, for X ∈ X4n , the 90
(
n
4

)
pentagonal inequalities described above auto-

matically hold.

One can also consider the hexagonal inequalities: They are the inequalities
obtained from

2

6∑
t=2

δ1δtXp1,pt +
∑

2≤s<t≤6

δsδtXps,pt ≥ −4

by permutation of the pairs and where δk ∈ {−1, 1}, k = 1, . . . , 6, for every
6-tuple of pairs p1, . . . , p6.

Using the same approach as for proving Theorem 3, one can show that a
number of hexagonal inequalities are implicitly enforced.

Theorem 4 [8] Suppose that X ∈ X4n , and that for the set of pairs {p1, . . . , p6}
corresponding to rows and columns of X, the following hold:

Xp1,p4 −Xp1,p2 −Xp2,p4 = −1, Xp1,p5 −Xp1,p3 −Xp3,p5 = −1,

Xp2,p6 −Xp2,p3 −Xp3,p6 = −1, and Xp4,p6 −Xp4,p5 −Xp5,p6 = −1.
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Then for all choices of δk ∈ {−1, 1}, k = 1, 2, 3, 4, 5, 6, the hexagonal inequal-
ities

2

6∑
j 6=i,j=1

δiδjXpi,pj +
∑

j 6=i,k 6=i,1≤j<k≤6

δjδkXpj ,pk ≥ −4, i = 1, . . . , 6,

hold.

Hence, 192
(
n
4

)
hexagonal inequalities automatically hold for X ∈ X4n .

3 VLSI Floorplanning

In this section, we introduce the application of SDP to the VLSI macrocell
floorplanning problem. The general VLSI floorplanning problem consists of
arranging a set of rectangular modules on a rectangular chip area so that
an appropriate measure of performance is optimized. The resulting layout is
called a floorplan. In the macrocell context, the modules are soft, meaning
that the area of each rectangular module is assumed to be fixed while its
height and width are allowed to vary subject to given aspect ratio constraints
[62, 70]. The floorplanning of soft modules is an important problem because
it takes advantage of the fact that at this stage of the physical design process,
the rectangular modules have not themselves been laid out in detail yet, and
so the floorplanner can do a better job if it is allowed to change the dimensions
of the modules in a controlled manner.

Specifically, the VLSI macrocell floorplanning problem consists of parti-
tioning a given rectangular chip into N modules with fixed areas so as to
minimize the total cost associated with interactions between these modules
and with Np fixed I/O pads located all around the chip. For this problem,
Takouda et al. [69] presented the first formulation using a mixed-integer cone
optimization model motivated by the success of the SDP approach to SRFLP.

3.1 A Mixed-Integer Cone Optimization Formulation for
Floorplanning

The VLSI macrocell surface is modeled as a wF × hF rectangle with given
area aF . We set the origin of our system of coordinates at the center of the
chip. A module i is a wi×hi rectangle with given area ai and centroid (xi, yi).
We denote by wmax

i (and respectively wmin
i , hmax

i , hmin
i ) the given maximum

length (resp. minimum length, maximum width, minimum width) of each
module. The pads are determined by their coordinates, and are denoted using
the letters p, q, r while the modules are denoted by i, j, k. We finally assume
that the cost of the connection per unit of distance between modules i, j is
denoted by cij and the cost per unit of distance between a module i and a
pad p is γip. The variables are (xi, yi), hi and wi for each module i, and the
objective is to minimize the total weighted connection cost.
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Area constraints

We relax the area constraint wihi = ai for each module as

wihi ≥ ai. (19)

This convex relaxation can be expressed as a semidefinite constraint:(
wi
√
ai√

ai hi

)
� 0, (20)

which is well defined since ai > 0. Convexifying the area constraints is a
reasonable approach for floorplanning in view of the following lemma, and the
fact that the condition

∑
i ai = aF holds for nearly all macrocell floorplanning

problems.

Lemma 3 [69] If (20) holds and aF =
∑
i ai, then the area constraints

wihi = ai are satisfied for every i.

From a practical perspective, we point out that each 2 × 2 semidefinite
constraint (20) can be expressed as a second-order cone constraint of size
3 [41]. Using second-order cone constraints normally leads to lower running
times in practice.

Fit-in-the-chip constraints

For module i to lie inside the chip, the following inequalities have to be sat-
isfied:

− 1
2 (wF − wi) ≤ xi ≤ 1

2 (wF − wi), (21)

− 1
2 (hF − hi) ≤ yi ≤ 1

2 (hF − hi). (22)

If desired, they can also be expressed as semidefinite constraints since (21)
follows from:

x2i ≤
[

1

2
(wF − wi)

]2
⇔
(

1
2 (wF − wi) xi

xi
1
2 (wF − wi)

)
� 0, (23)

provided 0 ≤ wi ≤ wF . Similarly (22) follows from:(
1
2 (hF − hi) yi

yi
1
2 (hF − hi)

)
� 0, (24)

provided 0 ≤ hi ≤ hF . Computationally, however, the linear constraints (21-
22) lead to lower running times.
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Aspect ratio constraints

The aspect ratio of department i is defined as max{hi,wi}
min{hi,wi} . In facility layout

problems, it is often desirable to set bounds on the aspect ratios of the depart-
ments to ensure that no department is excessively narrow (in either direction)
in the computed layout. However, as the bounds on the aspect ratios become
smaller, the layout problem becomes more constrained and the total cost of
the optimal solution increases. VLSI floorplanning benchmarks typically in-
clude aspect ratio restrictions on the modules.

Given aspect ratio bounds βi ≥ 1 for each module i, the aspect ratio
requirements are wi

hi
≤ βi and hi

wi
≤ βi and can be enforced using linear

constraints wi ≤ βihi and hi ≤ βiwi for fixed βi. Alternatively, since wi >
0, hi > 0, ai > 0, and wihi = ai, these constraints are equivalent to w2

i ≤
βiai and h2i ≤ βiai, and therefore to(

βi wi
wi ai

)
� 0,

(
βi hi
hi ai

)
� 0. (25)

These constraints can also be expressed as second-order cone constraints with
small support. The formulation (25) has the advantage that it allows the
possibility of letting βi be a decision variable, which can be useful in practice.

Non-overlap constraints

Finally, we consider the non-overlap constraints. These disjunctive constraints
require the modules to be separated in either the x or the y direction. They
can be expressed as follows:

dxij︸︷︷︸
=|xi−xj |

≥ 1

2
(wi + wj) or dyij︸︷︷︸

=|yi−yj |

≥ 1

2
(hi + hj) ∀i < j.

Since only one of the two inequalities must be satisfied for each pair i, j of
modules, these constraints are commonly modeled using binary variables [64]
or complementarity constraints [9]. The formulation in Takouda et al. [69]
uses only two binary variables per pair of modules. The first variable, σij , is
used to decide the direction in which the non-overlap is enforced:

σij =

{
+1 if i and j are separated along x,
−1 if i and j are separated along y,

(26)

Once this direction is selected, the variable αij determines the relative position
of modules i and j in that direction:

αij =

{
+1 if i precedes j in the selected direction,
−1 if j precedes i in the selected direction.

(27)
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The following inequalities enforce the separation of modules i and j in the
x direction:

dxij ≥ 1
2 (wi + wj)− 1

2 (1− σij)Qxij (28)

dxij − 2Sxij = xj − xi (29)

0 ≤ Sxij (30)

Sxij ≤ 1
2

[
(1− σij) + 1

2 (1 + σij)(1− αij)
]
Uxij (31)

0 ≤ Sxij + (xj − xi) (32)

Sxij + (xj − xi) ≤ 1
2

[
(1− σij) + 1

2 (1 + σij)(1 + αij)
]
Uxij (33)

where Qxij = min{wF , wmax
i + wmax

j } and Uxij = wF − 1
2w

min
i − 1

2w
min
j . The

constraints also compute the x component dxij of the pairwise distance dij . A
similar set of constraints can be used for the y direction of separation.

Complete formulation

To complete the formulation, we model the rectilinear distances between a
module i and an I/O pad p:

drip = |xi − xp|︸ ︷︷ ︸
dxip

+ |yi − yp|︸ ︷︷ ︸
dyip

,

where xp and yp are given. Since either |xp| ≥ wF /2 or |yp| ≥ hF /2, we have
two cases. If |xp| ≥ wF /2:

dxip = xp − xi or dxip = xi − xp (whichever is positive) (34)

dyip ≥ yp − yi (35)

dyip ≥ yi − yp. (36)

The case |yp| ≥ hF /2 is handled similarly.
The result is a mixed-integer SOCP-SDP formulation for the VLSI macro-

cell floorplanning problem:

min
N∑
i<j

cij(d
x
ij + dyij) +

N∑
i=1

Np∑
p=1

γip(d
x
ip + dyip)

s.t. Areas: (20) ∀i
Fit-in-the-chip: (21), (22) ∀i
Aspect ratios: (25) ∀i
Non-overlap & distances (module to module): (28)− (33)

and similar constraints for the y direction ∀i < j
Distances (module to pad): (34)− (36) ∀i, p
0 ≤ wi ≤ wF and 0 ≤ hi ≤ hF ∀i
dxij , d

y
ij , d

x
ip, d

y
ip, S

x
ij , S

y
ij , xi, yi ∈ R ∀i < j

σij , αij ∈ {−1, 1} ∀i < j.
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It is of course straightforward to alternatively measure the distances using
the Euclidean distance by using a second-order cone constraint. We focus on
the rectilinear distance because it is the measure of interest in the context of
floorplanning.

Additional inequalities can be used to slightly improve this formulation.
We refer the reader to [69] for details.

3.2 Deriving an SDP Relaxation

First we expand the non-overlap constraints:

Sxij ≤ 1
4 (3− σij − αij − σijαij)Uxij , (37)

Sxij + (xj − xi) ≤ 1
4 (3− σij + αij + σijαij)U

x
ij , (38)

Syij ≤ 1
4 (3 + σij − αij + σijαij)U

y
ij , (39)

Syij + (yj − yi) ≤ 1
4 (3 + σij + αij − σijαij)Uyij . (40)

Thus we need an SDP relaxation that allows us to linearize the products of
sigmas and alphas in these expressions.

We also ensure that our formulation satisfies the two-dimensional version
of the transitivity property (12) for the SRFLP. We state it as:

If modules i, j, k are separated in the same direction,
and if in that direction i precedes j and j precedes k,

then i precedes k in that direction.

Since

• the modules i, j, k are separated in the same direction if and only if σij =
σjk = σik, and

• the transitivity property in the selected direction is then : αij = αjk ⇒
αij = αik,

the two-dimensional transitivity property is stated asσij = σjk = σik
and

αij = αjk

⇒ αij = αik. (41)

Proposition 2 [69] A sufficient condition to enforce (41) is

(σij + σjk)(σij + σik)(αij + αjk)(αij − αik) = 0 (42)

for all i < j < k.

Expanding (42), we obtain:
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1 = αijαik − αijαjk + αikαjk
−σijσik − σijσjk − σikσjk
+σijσikαijαik − σijσikαijαjk + σijσikαikαjk
+σijσjkαijαik − σijσjkαijαjk + σijσjkαikαjk
+σikσjkαijαik − σikσjkαijαjk + σikσjkαikαjk,

(43)

for all i < j < k. The SDP relaxation must allow us to linearize the products
in these expressions as well.

To define the SDP matrix variable, we introduce the vector ξ of 1+2

(
N
2

)
+

2

(N2
)

2

 binary variables:

ξ = (1, σ12, . . . , σN−1,N , α12, . . . , αN−1,N , σ12σ13,
. . . , σN−2,NσN−1,N , α12α13, . . . , αN−2,NαN−1,N )T

containing all the binary variables and their required monomials. The SDP
rank-one formulation and subsequent relaxation are constructed as in Section
2.5 with the vector ξ replacing the vector v.

3.3 Computational Performance of the SDP Relaxation

The MCNC benchmarks are a well-known collection of benchmark problems
used by VLSI researchers. Takouda et al. [69] applied the SDP relaxation to
three problems from the MCNC benchmark: apte, xerox and hp. Although
these are the smallest instances in this benchmark, and this benchmark is
now several years old, these problems are quite large from the facility layout
perspective, and hence already challenging.

The bounds for varying aspect ratios are reported in Table 2. To give a
sense of the computational effort required to solve the relaxations, we report
in Table 2 the CPU time taken using CSDP [14] on a 2.0 GHz Dual Opteron
with 16Gb of RAM. Finally, to convey a sense of the quality of the bounds,
we compare them in Table 3 to the best reported solutions in the literature,
namely those of Murata and Kuh [56]. We point out that the xerox instance
is particularly challenging. This is true not only for the SDP relaxation but
also for macrocell placement algorithms, and is due to the very small number
of pads.

Overall, although this is the first time that such lower bounds were com-
puted, we see that the relative gaps to the best known solutions are still large.
Takouda et al. improved the bounds slightly by computing full levels of a
branch-and-bound tree, but such an approach is of limited use because of
the resulting high computational times. It is thus necessary to improve the
strength of the SDP relaxations, and to be able to solve them for larger sizes.
Current research is making good progress in these directions [1].
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Table 2. Results on MCNC benchmark problems

Circuit Number of Number Aspect Lower CPU time
modules of pads ratio bound (sec)

2 3135.9 891
3 3021.6 789

apte 9 73 5 2918.5 848
8 2848.8 815

10 2847.7 793

2 2434.0 1665
3 2051.0 2290

xerox 10 2 5 1539.8 2930
8 1217.1 2835

10 1153.1 2721

2 976.98 8156
3 893.25 8230

hp 11 45 5 822.11 8294
8 783.80 7840

10 773.23 7855

Table 3. Global bounds versus Murata-Kuh solutions (βi = 10)

Circuit Bound Solution Gap (%)

apte 2847.7 4353.5 34.6
xerox 1153.1 4976.5 76.8
hp 773.2 1779.8 56.6

4 Ongoing and Future Research

There is still much potential for the SDP-based approach in the areas of facility
layout and floorplanning. First, the recent results of Hungerländer and Rendl
[38] suggest that the potential of the SDP approach for the SRFLP is not yet
fully developed. While it is generally accepted that memory requirements for
SDP are higher than for LP, and that LP can exploit the sparsity in the SRFLP
objective better than SDP, the SDP bounds stronger than the LP bounds. It
would therefore be interesting to conduct a careful study of the computational
limitations and future potential of LP and SDP approaches. Such a study
should include an assessment of how the SDP rounding heuristic in Section
2.6 compares to other heuristics applied to the SRFLP in the literature.

Second, extensions of the cone programming approach to other layout
problems are still in their infancy. For two-dimensional layout, Adams [1]
proposed a novel SDP relaxation that replaces the variables σij and αij de-
scribed above with quaternary variables. Preliminary results indicate that this
approach outperforms the model of Takouda et al. described above. Other im-
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portant research directions that remain unexplored include the extension of
the SDP models for SRFLP to multi-row problems with applications in the
service industry and VLSI design. A second one is the application of SDP
to three-dimensional layout problems for which current global optimization
methods are of limited use, see e.g. [13] and the references therein. Thus, lay-
out problems remain a very promising opportunity for the application of cone
programming techniques to obtain global optimal solutions.
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