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Abstract

Portability, efficiency, and ease of coding are all important considerations in choosing the programming model for a scal-
able parallel application. The message-passing programming model is widely used because of its portability, yet some ap-
plications are too complex to code in it while also trying to maintain a balanced computation load and avoid redundant
computations. The shared-memory programming model simplifies coding, but it is not portable and often provides little
control over interprocessor data transfer costs. This paper describes an approach, called Global Arrays (GA), that com-
bines the better features of both other models, leading to both simple coding and efficient execution. The key concept of
GA is that it provides a portable interface through which each process in a MIMD parallel program can asynchronously
access logical blocks of physically distributed matrices, with no need for explicit cooperation by other processes. We have
implemented GA libraries on a variety of computer systems, including the Intel DELTA and Paragon, the IBM SP-1 and
SP-2 (all message-passers), the Kendall Square KSR-1/2, Convex SPP-1200 (nonuniform access shared-memory ma-
chines), the Cray T3D (a globally-addressable distributed-memory computer) and networks of Unix workstations. We dis-
cuss the design and implementation of these libraries, report their performance, illustrate the use of GA in the context of
computational chemistry applications, and describe the use of a GA performance visualization tool.
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1 Introduction

This paper addresses the issue of how to program scalable scientific applications. Our interest in this issue has both
long-term and short-term components. As participants in a U.S. Federal High Performance Computing and Communica-
tions Initiative (HPCCI) Grand Challenge Applications project, our long-term goal is to develop the algorithmic and soft-
ware engineering techniques necessary to permit exploiting future teraflops machines for computational chemistry. At the
same time, we and our colleagues at the Pacific Northwest National Laboratory (PNNL) are developing a suite of parallel
chemistry application codes to be used in production mode for chemistry research at PNNL’s Environmental Molecular
Science Laboratory (EMSL) and elsewhere. The programming model and implementations described here have turned
out to be useful for both purposes.

Two assumptions permeate our work. The first is that most high performance parallel computers currently and will
continue to have physically distributed memories with Non-Uniform Memory Access (NUMA) timing characteristics,
and will thus work best with application programs that have a high degree of locality in their memory reference patterns.
The second assumption is that extra programming effort is and will continue to be required to construct such applications.
Thus, a recurring theme in our work is to develop techniques and tools that allow applications with explicit control of lo-
cality to be developed with only a tolerable amount of extra effort.

‡.  Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by
Battelle Memorial Institute under contract DE-AC06-76RL0 1830.
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There are significant tradeoffs between the important considerations of portability, efficiency, and ease of coding. The
message-passing programming model is widely used because of its portability, yet some applications are too complex to
code in it while also trying to maintain a balanced computation load and avoid redundant computations. The shared-memory
programming model simplifies coding, but it is not portable and often provides little control over interprocessor data transfer
costs. Other more recent parallel programming models, represented by languages and facilities such as HPF [1], SISAL [2],
PCN [3], Fortran-M [4], Linda [5], and shared virtual-memory, address these problems in different ways and to varying de-
grees, but none of them represents an ideal solution.

In this paper, we describe an approach, called Global Arrays (GA), that combines the better features of message-pass-
ing and shared-memory, leading to both simple coding and efficient execution for a class of applications that appears to be
fairly common. The key concept of GA is that it provides a portable interface through which each process in a MIMD paral-
lel program can independently, asynchronously, and efficiently access logical blocks of physically distributed matrices, with
no need for explicit cooperation by other processes. In this respect, it is similar to the shared-memory programming model.
However, the GA model also acknowledges that remote data is slower to access than local, and it allows data locality to be
explicitly specified and used. In these respects, it is similar to message passing.

Development of Global Arrays has been and continues to be motivated by applications, specifically computing the
electronic structure of molecules and other small or crystalline chemical systems. These calculations are used to predict
many chemical properties that are not directly accessible by experiments, and play a dominant role in the number of super-
computer cycles currently used for computational chemistry.

We have implemented libraries and tools to support the GA model on a variety of computer systems, including the In-
tel DELTA and Paragon and the IBM SP-1/2 (all message-passers), the Kendall Square KSR-2 and Convex SPP-1200 (non-
uniform access shared-memory machines), the Cray T3D, and on networks of Unix workstations.

The organization of this paper is as follows. Section 2 discusses the NUMA characteristics of current computers. Sec-
tions 3, 4 and 5 describe the GA NUMA programming model, the GA toolkit, and its implementations. The performance of
several implementations is discussed in Section 6, and Section 7 describes a GA performance visualization tool. Section 8
describes applications that motivated our work. Section 9 outlines future work. Finally, Section 10 summarizes our results
and conclusions.

2 NUMA Architecture

NUMA is an important concept in the performance of all modern computers. Consider for instance a standard RISC
workstation. Its fast performance is from reliance on algorithms and compilers that optimize usage of the memory hierarchy
formed by registers, on-chip cache, off-chip cache, main memory, and virtual memory, as shown in Figure 1.

If a program ignores this structure and constantly flushes the cache or -- even worse -- flushes the virtual memory, per-
formance is seriously degraded. A classic solution to this problem is to access data in blocks small enough to fit in the cache,
and then ensure that the algorithm makes sufficient use of the data to justify the data movement costs.

Parallel computers add at least one extra layer to the NUMA hierarchy of sequential computers -- remote memory. Ac-
cess to remote memory on distributed memory machines is predominantly accomplished through message-passing. Mes-
sage-passing requires cooperation between sender and receiver which make this programming paradigm difficult to use, and
introduces degradation of latency and bandwidth in access to remote memory as comparing to local memory. Many scalable
shared-memory machines, such as the Kendall Square Research KSR-2 or the Convex SPP-1200, are actually distributed-
memory machines with hardware support for shared-memory primitives. They allow access to remote memory in the same
fashion as local memory. However, this uniform mechanism for accessing both local and remote memory is only a program-
ming convenience -- on both shared and distributed memory computers, the latency and bandwidth are significantly larger
than for local memory, and therefore must be incorporated into performance models.

If we think about the programming of MIMD parallel computers (either shared or distributed memory) in terms of
NUMA, then parallel computation differs from sequential computation only in the essential difference of concurrency‡,
rather than in nearly all aspects. By focussing on NUMA we not only have a framework in which to reason about the perfor-

‡.  Concurrent execution would include important issues such as load balancing.
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mance of our parallel algorithms (i.e., memory latency, bandwidth, data and reference locality), we also conceptually unite
sequential and parallel computation.

3  Global Arrays Programming Model

Our approach, called Global Arrays (GA) [6, 7] is motivated by the NUMA characteristics of current parallel architec-
tures. The key concept of GA is that it provides a portable interface through which each process can independently, asyn-
chronously, and efficiently access logical blocks of physically distributed matrices, with no need for explicit cooperation by
other processes. By removing unnecessary processor interactions that are required in the message-passing paradigm to ac-
cess remote data, the GA model greatly simplifies parallel programming. In this respect, it is similar to the shared-memory
programming model. However, the GA model also acknowledges that remote data is slower to access than local (i.e., remote
memory as yet another layer of NUMA), and it allows data locality to be explicitly specified and used. While GA manages
transfer of data between local and non-local NUMA memory layers, it is up to each MIMD process to manage its local
memory. Explicit distinction between local and remote memory and the availability of two distinct mechanisms for access-
ing local and remote data in GA model are advantages over the shared-memory programming model because they allow the
programmer to exploit the NUMA characteristics of parallel computers.

The current GA programming model can be characterized as follows:

• MIMD parallelism is provided using a multi-process approach, in which all non-GA data, file descriptors, and so on are
replicated or unique to each process.

• Processes can communicate with each other by creating and accessing GA distributed matrices, and also (if desired) by
conventional message-passing.

• Matrices are physically distributed blockwise, either regularly or as the Cartesian product of irregular distributions on
each axis.

• Each process can independently and asynchronously access any patch of a GA distributed matrix, without requiring co-
operation by the application code in any other process.

• Several types of access are provided, includingget, put, accumulate (floating point sum-reduction), andread-and-incre-
ment (integer). This list is expected to be extended as needed.

• Operations that transfer data from local to remote memory, like put or scatter, might return before the data transfer is
complete. Asynchronization operation implies completion of all pending data transfers. In addition, thefence operation
allows the calling process to wait for completion of data transfers it initiated.

• Each process is assumed to have fast access to some portion of each distributed matrix, and slower access to the remain-
der. These speed differences define the data as being ‘local’ or ‘remote’, respectively. However, the numeric difference
between ‘local’ and ‘remote’ access times is unspecified.

• Each process can determine which portion of each distributed matrix is stored ‘locally’. Every element of a distributed
matrix is guaranteed to be ‘local’ to exactly one process.

This model differs from other common models as follows. Unlike HPF, it allows task-parallel access to distributed ma-
trices, including reduction into overlapping patches. Unlike Linda, it efficiently provides for sum-reduction and access to
overlapping patches. Unlike shared virtual-memory facilities, GA requires explicit library calls to access data, but avoids the
operating system overhead associated with maintaining memory coherence and handling virtual page faults, and allows the
implementation to guarantee that all of the required data for a patch can be transferred at the same time. Unlike Active Mes-
sages, GA does not include the concept of getting another processor’s cooperation, which permits GA to be implemented ef-
ficiently even on shared-memory systems. Finally, unlike some other strategies based on polling‡, task duration is relatively
unimportant in programs using GA, which simplifies coding and makes it possible for GA programs to exploit standard li-
brary codes without modifying them.

‡.  John Salmon, personal communication, describes a split-request programming strategy in which processes post many requests, then
poll for requests to them, poll for replies to their own requests, handle them, and repeat the process.



4

4 Global Arrays Toolkit

The GA programming model has been implemented in the Global Array toolkit that currently supports two-dimen-
sional arrays. The interface has been designed in the light of emerging standards. In particular, HPF [1,8] may provide the
basis for future standards definition of distributed arrays in Fortran. The basic functionality described below (create, fetch,
store, accumulate, gather, scatter, data-parallel operations) all may be expressed as single statements using Fortran-90 array
notation and the data-distribution directives of HPF. What HPF does not currently provide is random access to regions of
distributed arrays from within a MIMD parallel subroutine call-tree, and reduction into overlapping regions of shared ar-
rays.

4.1  Supported operations

 Each operation may be categorized as being either an implementation dependent primitive operation or constructed in
an implementation independent fashion from primitive operations. Operations also differ in their implied synchronization. A
final category is provided by interfaces to third party libraries.The following are primitive operations that are invoked col-
lectively by all processes:

• create an array, controlling alignment and distribution;

• create an array following a provided template (existing array);

• destroy an array; and

• synchronize all processes.

The following are primitive operations that may be invoked in true MIMD style by any process with no implied syn-
chronization with other processes and, unless otherwise stated, with no guaranteed atomicity:

• fetch, store and atomic accumulate into a rectangular patch of a two-dimensional array;

• gather and scatter array elements;

• atomic read and increment of an array element;

• inquiry about the location and distribution of the data; and

• direct access to local elements of array to support and/or improve performance of application specific data-parallel oper-
ations.

The following are a set of BLAS-like data-parallel operations that have been developed on top of the primitive opera-
tions (synchronization is included as a user convenience):

• vector operations (e.g., dot-product or scale) optimized to avoid communication by direct access to local data;

• matrix operations (e.g., symmetrize) optimized to reduce communication and data copying by direct access to local data;
and

• matrix multiplication.

The vector, matrix multiplication, copy, and print operations exist in two versions that operate on either entire arrays or
specified sections of arrays. The array sections in operations that involve multiple arrays do not have to be conforming -- the
only requirements are that they must be of the same type and contain the same number of elements.

The following is functionality that is provided by third party libraries made available by using the GA primitives to
perform necessary data rearrangement. TheO(N2) cost of such rearrangement is observed to be negligible in comparison to
that ofO(N3) linear-algebra operations. These libraries may internally use any form of parallelism appropriate to the com-
puter system, such as cooperative message passing or shared memory:

• standard and generalized real symmetric eigensolver; and

• linear equation solver (interface to SCALAPACK [9]).

An example structure of GA-based programs is shown in Figure 2.
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4.2  Sample code fragment

The following code fragment uses the Fortran interface to create ann × m double precision array, blocked in at least
10×5 chunks, which is zeroed and then has a patch filled from a local array. Undefined values are assumed to be computed
elsewhere. The routinega_create()  returns in the variableg_a  a handle to the global array with which subsequent refer-
ences to the array may be made.

integer g_a, n, m, ilo, ihi, jlo, jhi, ldim

double precision local(1:ldim,*)

c

call ga_create(MT_DBL, n, m, ‘A’, 10, 5, g_a)

call ga_zero(g_a)

call ga_put(g_a, ilo, ihi, jlo, jhi, local, ldim)

 The above code is very similar in functionality to the following HPF-like statements

integer n, m, ilo, ihi, jlo, jhi, ldim

double precision a(n,m), local(1:ldim,*)

!hpf$ distribute a(block(10), block(5))

c

a = 0.0

a(ilo:ihi,jlo:jhi)=local(1:ihi-ilo+1,1:jhi-jlo+1)

The difference is that this single HPF assignment would be executed in a data-parallel fashion, whereas the global ar-
ray put operation would be executed in MIMD parallel mode such that each process might reference different array patches.

5 Implementation

 We currently support four distinct environments:

1. Distributed-memory, message-passing parallel computers with interrupt-driven communications or Active Messages
(Intel iPSC/860, Delta and Paragon, IBM SP-1/2).

2. Networked clusters of multiple- or single-processors with simple message passing (using the MPI [10] or the TCGMSG
portable message-passing library [11] on top of TCP/IP).

3. Shared-memory parallel computers (KSR-1/2, Convex SPP, SGI PowerChallenge, also most brands of UNIX worksta-
tions‡).

4. Globally-addressable distributed-memory computers (Cray T3D).

The GA can be configured (at compile time) to run with the MPI or TCGMSG message-passing libraries. Regardless
of this configuration choice, internally the implementation uses native message-passing libraries on message-passing dis-
tributed memory systems (for example, MPL on the IBM SP or NX on the Intel Paragon) which is required to access inter-
rupt-driven communication functionality.

Implementations on the different platforms share nearly all of their code. The distinction arises in the manner in which
data are distributed and accessed.

‡.  On a single-processor workstation, parallel execution can be emulated with time-sharing multiple processes.
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5.1  Internal structure of GA primitive operations

The implementation of primitive operations that provide access to GA data (get, put, accumulate, scatter, gather, read-
and-increment) attempts to exploit data locality and encapsulate different mechanisms used to access local and remote data
at the lowest level.

A reference to a patch of a global array is internally decomposed into references to patches on specific processors. De-
pending on the mechanism required to access data in the patch (direct copy or message-passing with data server or interrupt
receive) either a local or remote version of the operation is executed.

ga_operation(handle, GA_range, local_data_range)

{

Verify if <handle> is valid.

Verify if <GA_range> is valid.

Determine <list> of processors that own data in <GA_range>.

FOREACH processor <p> on <list>

Determine <GA_subrange> held by <p>.

Determine <local_data_subrange> corresponding to <GA_subrange>.

IF direct access to <p> data possible

ga_operation_local(<handle>, <GA_subrange>, <local_data_subrange>, <p>)

ELSE

Decompose <GA_subrange> held by <p> into <chunks> to fit in communication buffer.

FOREACH <chunk>

Determine <GA_subrange_chunk>.

Determine <local_data_subrange_chunk>.

ga_operation_remote(<handle>,<GA_subrange_chunk>, <local_data_subrange_chunk>, <p>)

END

ENDIF

END

}

ga_operation_local(handle,GA_range,local_data_range)

{

Verify if <handle> is valid.

Verify if <GA_range> is valid.

operation(DATA(<GA_range>),DATA(<local_data_range>))

}

ga_operation_remote(handle,GA_range,local_data_range)

Verify if <handle> is valid.

Verify if <GA_range> is valid.

send_request(<GA_range>,DATA(<local_data_range>), <p>)

Receive response/data if required.

}

5.2  Distributed-memory and networked cluster environments

The availability of interrupt-driven communications on distributed memory machines permits us to establish handlers
that support remote access to data which is stored within the contexts of the application processes. The application processes
can access ‘local’ data very fast. Some care is needed to mask interrupts to ensure coherency and guarantee deadlock free
execution.
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The networked cluster environment assumes the model of shared-memory multiprocessors connected through the net-
work. In this environment, we do not attempt to implement interrupt-driven communications. Instead, we use a data-server
model in which server processes manage the data and respond to requests from the client application processes. The current
implementation uses only one data server process per cluster as the network bandwidth is considerably lower than intra-
cluster memory bandwidth. However, for very fast networks multiple data servers per cluster might be employed if needed.

The data resident in shared-memory within a cluster is directly accessible to all processes executing on this cluster.
The remaining data is accessed through message passing between client and data-server on the cluster where the data re-
sides. Mutual exclusion and atomicity of some GA operations are enforced through the shared memory synchronization
mechanisms.

With this approach, access to local data is as fast as if the data resided directly in the application processes. However,
an additional layer is required on top of the message-passing tools to hide the additional server processes from the applica-
tion. This requires some effort when the GA toolkit is configured to be used with TCGMSG but can be easily handled with
MPI or other message-passing systems that support groups and contexts. There are several other ways that the GA model
could be implemented in the network environment, for example using a single process with separate application and server
threads with preemptive scheduling.

To complete execution of a GA primitive operation for remote data, as described in Section 5.1,
ga_operation_local() is invoked either in the interrupt-receive or Active Message handler on the message-passing
machines or by the data sever process in the networked cluster environment.

The protocol used to communicate between client and server is almost the same for both environments. Operations
such as store or accumulate that require no synchronization cause the requesting process to send a single message. The mes-
sage contains information that describes the requested operation and data size, followed by the data itself. A read operation
requires that the client wait for the response. The current protocol on distributed memory machines has been influenced by
features of the most restrictive message-passing system with interrupt-receive capability -- the EUI-H message passing li-
brary on the IBM SP-1 -- relatively small (8KB) system message buffers and the in-order message receive rule. The request-
ing processor posts an asynchronous receive before sending a request for the data. In the network environment, the
requesting processor sends a request and then posts a blocking receive for the message that contains the data.

The gather and scatter operations are designed to minimize the number of messages sent. The input list of index pairs
are sorted by the process in which the data element resides so that requests for data on that process are bundled into a single
message.

5.3  Shared-memory and globally-addressable distributed-memory environments

 In order to maintain complete consistency with the other implementations, we provide a distributed-memory environ-
ment in which the only shared data is that provided by the Global Arrays library. Our implementation in the shared-memory
environment is a special case of the networked cluster implementation with a single cluster and without data server.

The current implementation uses System V shared memory and heavy-weight UNIX processes, rather than threads.
On machines such as the Kendall Square Research KSR-2 or SGI PowerChallenge native locks are used to support mutual
exclusion, while on other shared-memory platforms, semaphores are used.

On the KSR-2, a substantial performance improvement may be obtained by prefetching subpages (128 bytes) of
shared data with the correct access mode (read-only for a get operation, exclusive for put and accumulate operations). The
KSR memory architecture permits memory subpages to be put into atomic mode with similar cost to an ordinary non-atomic
access to that page. This facility might be used to provide fine grain locking in the accumulate operation which increases
scalability. Also on the KSR, we use the dynamic F-way barrier, the fastest barrier algorithm for this machine [12]. On other
shared-memory machines, the central barrier algorithm is used.

The code for globally-addressable distributed-memory and shared-memory implementations is almost identical since
it uses generalized locking, copy and memory allocation abstractions. Our generalized copy mechanisms instantiate to opti-
mized local-memory copy routines on shared-memory machines and/or to the Cray T3D SHMEM library calls like
shmem_put or shmem_get. Similarly, for synchronization and mutual exclusion, the SHMEM library operations are used.
The globally addressable memory on the Cray T3D imposes additional restrictions that have to be taken into account when
memory for global arrays is allocated: all addresses on the remote processor have to be valid on the local processor and all
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processes have to know the starting address of a block of GA memory on every processor for each global array. The lack of
cache coherency withshmem_putor shmem_get operations requires special care in the implementation on this platform.

6 Performance of Communication Primitives

The efficiency of the primitive communication operations,get, put andaccumulate, might be crucial to the overall per-
formance of the applications that use the toolkit. We demonstrate the performance of these primitives on

• message-passing distributed-memory architectures: the Intel Touchstone Delta, Paragon, the IBM SP-1 and the SP-1.5
(the same machine with faster interconnection network and software of the SP-2, available at the Argonne National Lab-
oratory),

• a NUMA shared-memory architecture, the Kendall Square KSR-2 which is essentially a two-fold faster version of the
KSR-1 [13],

• a globally-addressable distributed-memory machine the Cray T3D[14], and

• a multiprocessor shared-memory bus architecture, the SGI PowerChallenge (with 75MHz clock).

In general, each primitive operation can reference data that is physically local, physically remote or both. Also, either
contiguous or noncontiguous blocks of memory are accessed depending on whether a one- or a multi-dimensional patch of
an array is being referenced. The tests described in this section involved either exclusively local or exclusively remote ac-
cesses to square patches of a two-dimensional array resident on a single processor. Latency and bandwidth in access to local
and remote data usingput, get, andaccumulate operations are given in Tables 1, 2, and 3. Latency is defined as time re-
quired to access a single element of a global array, and it was measured by timing the execution of a series of hundreds of
operations, which in each case referenced different elements of a matrix, and then dividing the time by the number of oper-
ations. The consecutively accessed elements were not in the same cache line. Bandwidth was measured for access to a
353×353 square section (approximately 1MB of data) of a 710×710 double precision matrix which was evenly distributed
between four processors, each assigned to a 355×355 array block. Since the referenced global array data is noncontiguous in
memory, the library optimizations applicable to contiguous data accesses (like avoiding one memory copy on message-pass-
ing systems‡) were not in effect. The references to noncontiguous blocks of memory, in this case, correspond to the data ac-
cess patterns in our targeted applications and in many parallel algorithms in dense numerical linear algebra using block
decomposition.

The performance of a remoteget on the message-passing systems is lower than for the other communication primi-
tives. It has the following components:

(1)

wheretget-startup is the overhead for subroutine calls, array index translation, message sending and receiving, and generating
an interrupt on the remote processor,n is the number of bytes,Tcopy is the per-byte time for a local memory copy, andTcomm
is the per-byte communication transfer time. Performances of the remoteput andaccumulateoperations are basically identi-
cal to each other:

(2)

but differ from that of remoteget since one memory copy, the message receipt and the remote interrupt are not on the critical
path. The processor issuing a remoteput/accumulate request sends the data and does not wait for the completion of the op-
eration (there is also an option available to wait for acknowledgment sent after request has been processed).

Latency for theget operation in access to remote data on message-passing machines greatly depends on the efficiency
of the implementation of interrupt-receive. Unfortunately on both the Intel and the IBM machines performance of this useful
operation has deteriorated with newer generations of software and/or hardware. This effect is the most profound on the SP-1
(under EUI-H message-passing library) and SP-1.5 which in addition to faster [sic] communication hardware runs under the

‡.  Similarly, on the Cray T3D 353 calls toshmem_put or shmem_get library were required instead of one call that would suffice to trans-
fer one contiguous block of data.

tget tget-startup n 2Tcopy Tcomm+[ ] ,+=

Tput tput-startup n Tcopy Tcomm+[ ] ,+=
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new MPL message-passing library, see Table 2. New implementation of interrupt-receive on the Paragon makes operation
that can be used to enable and disable interrupts,masktrap, much more costly on the Paragon than on the Delta and explains
the higher latency ofaccumulate (an atomic operation) in access to local data, see Table 3.

Unlike the distributed-memory implementations, on the shared-memory platforms, including the SGI PowerChallenge
and the KSR-2, computations in theaccumulate operation are performed by the requesting processor. However, this opera-
tion on the KSR-2 is almost no more expensive than theget andput since prefetching of subpages allows overlapping com-
putations with communication. Prefetching is also crucial in reducing the performance gap between local and remote
operations.

While the performance ofget, put, accumulate operations on message-passing machines like the Delta, Paragon, or
SP-1/1.5 are almost independent of the physical distance between the processor requesting the data and the data owner, on
the KSR there can be a significantly variable cost for access to remote data. The bandwidth in the get and put operations is
roughly identical and varies with the source/destination of the data from 66MB/s for the processor cache, 32-33 MB/s for
the local memory, and 28-29 MB/s for the remote memory of another processor on the same ring to 13.5 MB/s in the case
where the data has to be transferred between memories of two processors not on the same ring.

The very high bandwidth in access to the local array elements on the SGI PowerChallenge is due to the fact that before
the measurements were taken, each section of the global array had been initialized by the processor that was logically as-
signed to that section, which placed the data in the second-level cache.

On the Cray T3D, computations in theaccumulate operation are also performed by the requesting processor. In this
case, however, the data is copied to a local buffer, updated, and then copied back. The bandwidths of GAput andgetopera-
tions on remote data in this test are in excess of 95% of the Crayshmem_put andshmem_get bandwidths. The latencies of
GA put andget operations are around 15-20µs higher than those of the Crayshmem_put andshmem_get operations. The
additional overhead arises from the two-dimensional array index translation, subroutine call overhead, error checking and
cache flushing. Unlike the primitive Crayshmem_put andshmem_get operations, the GA library enforces cache coherency
for all operations. The latencies of GAput andget operations are better than the latency of the native message-passing li-
brary, PVM.

Theget, put, andaccumulate operations are defined in terms of copying to and from process-local buffers. For algo-
rithms designed to operate on local patches, copying the data imposes an unnecessary cost. To address this problem, we
have a separateaccess operation whose semantics are defined in terms of obtaining and releasing access to patches. Forac-
cess operation, GA simply returns a reference to the patch so that the application can access the data in-place. The perfor-
mance improvement of usingaccess rather thanget andput primitives can be significant for BLAS-1 type operations that
touch each matrix element only once or twice. For example, Figure 3 shows the execution time for a scaled matrix addition,

, (3)

that was implemented on the Delta using the two techniques. Theaccess version runs about 25% faster.

7 Visualization Tool for Global Arrays

In order to aid in tuning the performance of applications using global arrays, a visualization and animation tool has
been developed. This tool helps the programmer design efficient task scheduling strategies for MIMD algorithms that oper-
ate on the distributed two-dimensional data. Minimization of data access contention profits such applications by improving
processor utilization.

This particular tool uses trace data that is gathered in a file during the program execution. The global array library is
instrumented to generate necessary tracing information whenever the distributed data is accessed. Patterns of accesses are
visualized by the tool that processes sequentialized trace events. The user may adjust a time scale for the animation. A color
coding is used to differentiate levels of access contention for the particular data blocks. After the animation of events record-
ed in a tracefile is completed, a composite access contention index is displayed using a different color coding for the entire
distributed array. The tool has been implemented using the X Windows and Xt libraries.

The tool was applied to our new distributed SCF program [15]. Our first scheduling of the tasks realized poor parallel
efficiency, but the reason was not apparent from simple timing data. The performance tool showed that significant conten-
tion for data was the problem, as shown in Figure 4. This problem was readily addressed by reordering the tasks so as to

C αA βB+=
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spread out more uniformly references to the GA matrices, and by the introduction of caching (in the application code) to
eliminate redundant data references. This eliminated most of the time lost due to contention, but the parallel speedup was
still not as good as expected. The dynamic visualization (animation) then showed that some large tasks were getting sched-
uled too near the end of the computation, causing a load-balance problem. This was resolved by incorporating a stratified
randomizing scheme that approximately preserved the large-to-small order of tasks, necessary for load-balancing, while still
reordering tasks of similar size enough to spread out the GA references and avoid contention. The final scheduling, depicted
in Figure 5, is both load-balanced and almost contention-free.

The performance of the main computational kernel of the SCF program was improved approximately four-fold by the
above tuning, and currently realizes an estimated speedup (relative to a single processor) of 496 on 512 processors of the In-
tel Delta. The single processor performance is estimated from the performance of smaller calculations and the performance
of the same problem size on 64 processors, the smallest number of processors on which it was possible to hold the data.

8  Target Applications

The development of GA was motivated by our development of a large suite of scalable parallel computational chemis-
try codes. In the three years since GAs were first prototyped many applications have adopted GAs, totalling nearly one-mil-
lion lines of code, including some 200,000 lines of new code. Although the GA programming model extends the message-
passing programming model, no point-to-point message passing is used in any of this application‡ code which illustrates the
good match between the GA model and computational chemistry. Examples of applications that attain high parallel scalabil-
ity and demonstrate the ease of use of GAs in computational chemistry are included in the following references [15, 16, 17,
18, 19].

Generically, the applications that motivated our work [20] can be characterized as

• requiring task parallelism (MIMD), possibly in addition to data parallelism,

• accessing relatively small blocks of matrices that are too large to hold in the memory of any single processor (thus re-
quiring blockwise physical distribution),

• having wide variation in task execution time (thus requiring dynamic load balancing, with attendant unpredictable data
reference patterns), and

• having a fairly large ratio of computation to data movement (thus making it possible to retain high efficiency while ac-
cessing remote data on demand).

More specifically, we are concerned with computing the electronic structure of molecules and other small or crystal-
line chemical systems. These calculations are used to predict many chemical properties that are not directly accessible by
experiments, and play a dominant role in the number of supercomputer cycles currently used for computational chemistry. A
review of electronic structure algorithms for parallel computers can be found in reference [21].

All of the methods considered compute approximate solutions to the non-relativistic electronic SchrÖdinger equation.
In addition to the general characteristics noted above, these applications also

• have large volumes of I/O that can be eliminated by caching or recomputation,

• benefit from specific irregular distributions of data, with alignment of related quantities,

• require linear algebra operations on distributed dense matrices (multiplication, eigensolving, and linear equation solv-
ing).

The iterative Self Consistent Field (SCF) method [22] is the simplest method. The major computational kernel con-
tracts integrals with a density matrix to form the Fock matrix. Both matrices are of dimension of an underlying basis set
(Nbasis ≈ 103). The number of integrals scales betweenO(N2

basis) andO(N4
basis) depending on the nature of the system and

level of accuracy required. To avoid an I/O bottleneck, integrals are recomputed as required [23]. Blocks of one global array,
the density matrix, are read and results accumulated into blocks of another global array, the Fock matrix [15]. Parallel effi-
ciency in excess of 97% is reported [15].

‡.  Only parallel linear algebra libraries use point-to-point message passing in these applications.
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 The second-order Møller-Plesset Perturbation method [21] is the simplest theory to improve upon SCF. The dominant
computation is the transformation of the integrals used in the SCF algorithm into an orthonormal basis, which is an
O(N5

basis) process. The resulting very large matrix must be distributed in a specific fashion for subsequent data parallel op-
erations [19]. The related Coupled-Cluster method [24] has a similar structure. Gather and scatter operations are required to
access elements of arrays of variable length records packed into linear global arrays.

 The Multi-Reference Configuration Interaction (MRCI) method is a highly accurate post-SCF electronic structure
method. The parallel COLUMBUS MRCI program [25] was, until the development of these tools, limited in its parallel
scalability by either the large amounts of I/O performed upon intermediate quantities or the requirement that these entities
be replicated within the memory of each processor to eliminate I/O. The dominant use of the global array tools in this appli-
cation [17] are to provide a shared, secondary I/O cache. The COLUMBUS I/O library searches local memory, and then glo-
bal memory for data items before accessing disk. Speedups of 200 on 256 processors of the CRAY-T3D are reported [17]
which are unprecedented for this application.

9 Future Work

Although our GA model and toolkit have already demonstrated their value in producing high performance scalable ap-
plications, GA development is still evolving. Substantial performance improvement can be gained simply through tuning
and incorporating better internal algorithms, such as split-phase remote access for logical blocks that span physical proces-
sors. More importantly, even larger improvements can be made by extending the API, such as to allow applications to ex-
pose split-phaseget to the application for even more effective latency hiding. Such improvements will involve tradeoffs in
ease-of-use versus performance and will thus require serious evaluation. Finally, we are considering providing support for
more general data structures (e.g. sparse matrices) and extending the GA NUMA model and toolkit with operations that pro-
vide access to yet another layer of NUMA memory -- with large capacity but slow access -- disk.

10 Summary and Conclusions

We have designed, implemented, used, and characterized a programming facility, called Global Arrays (GA). The key
concept of GA is that it provides a portable interface through which each process in a MIMD parallel program can efficient-
ly access logical blocks of physically distributed matrices, with no need for explicit cooperation by other processes (or pro-
cessors) where the data resides. In this respect, it is similar to the shared-memory programming model. However, the GA
model also acknowledges that remote data is slower to access than local, and it allows data locality to be explicitly specified
and used. In these respects, it is similar to message passing.

For certain kinds of applications, the GA model provides a better combination of simple coding, high efficiency, and
portability than are provided by other models. The applications that motivated our work are characterized by 1) accessing
relatively small blocks of very large matrices (thus requiring blockwise physical distribution), 2) having wide variation in
task execution time (thus requiring dynamic load balancing, with attendant unpredictable data reference patterns), and 3)
having a fairly large ratio of computation to data movement (thus making it possible to retain high efficiency while access-
ing remote data on demand). Although these characteristics may seem restrictive, our experience to date suggests that many
applications would qualify. For example, the GA model provides good support for a large part of computational chemistry,
especially electronic structure codes, and it is also promising for application domains like global climate modeling, where
application codes often exhibit both spatial locality and load imbalance [26].

Our application interface for GA is designed to permit efficient implementation on a wide variety of platforms. We
currently have GA implementations based on 1) interrupt-driven communication using a single process per processor, 2)
data server implementation, 3) hardware shared-memory support using multiple processes and mutual exclusion primitives,
and 4) get/put hardware primitives in globally-addressable distributed-memory environments.

In addition to the basic programming facilities of GA, we have also developed a performance visualizer tailored to the
GA model. The visualizer can provide animations showing instantaneous temporal and spatial access patterns to distributed
arrays, and can also provide time-averaged static displays showing aggregate processor time lost due to contention for GA
data. In its first use, the visualizer was instrumental in virtually eliminating the time lost due to contention in a large chemis-
try application.
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The Global Arrays toolkit is public domain software available on an anonymous ftp serverftp.pnl.gov in directory
pub/global.

The GA model and tools were developed under our HPCCI Grand Challenge project in Computational Chemistry, the
of which focus is on developing algorithms, techniques, and tools to allow computational chemistry applications to exploit
future teraflops machines. However, they have turned out to have immediate benefit, and now there is nearly one-million
lines of code in high-performance computational chemistry applications that take advantage of GA. Such rapid adoption of
a new programming strategy illustrates the power of the HPCCI program in bringing together an effective collaboration of
researchers from computer science and the application domains. We hope to see many similar results in the future.
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Figure 1: NUMA memory hierarchy.
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Figure 3: Performance of the scaled add operation implemented using

the access or get and put operations for a 3000 × 3000 problem on the

Intel Touchstone Delta.
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Figure 4: A snapshot of the GA performance analysis tool prior to the opti-

mizations discussed in the text. The pixels correspond to the elements of a

2-dimensional array. Depicted is the performance of a 300 basis function

calculation on a chain of water molecules. Elements are shaded according

to the time processes wasted waiting for those elements.

Figure 5: A snapshot of the Global Array performance analysis tool

after optimizations have been included. The scale for contention is

three orders of magnitude smaller than in the preceding display.
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Table 1: Performance of put

machine

local data remote data

latency
µs

bandwidth
MB/s

latency
µs

bandwidth
MB/s

Delta 34 19.5 190 6.3

Paragon 29 93 62 32

SP-1 17 84 72 7.7

SP-1.5 13 86 75 18

Cray T3D 17 153 18.7 120

KSR-2 35 32 36 29

SGI 9.2 430 12 76

Table 2: Performance of get

machine

local data remote data

latency
µs

bandwidth
MB/s

latency
µs

bandwidth
MB/s

Delta 35 19.5 360 5.3

Paragon 31 92 497 17

SP-1 19 84 185 7.3

SP-1.5 13 86 517 14

Cray T3D 22 151 24.4 34

KSR-2 36 32 37 28

SGI 12 300 14 70

Table 3: Performance of accumulate

machine

local data remote data

latency
µs

bandwidth
MB/s

latency
µs

bandwidth
MB/s

Delta 35 7.7 197 5.9

Paragon 166 46 64 36

SP-1 19 73 76 7.4

SP-1.5 18 74 77 17

Cray T3D 27 94 34.7 20

KSR-2 38 29 45 26

SGI 11.5 360 12.6 55


