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1 Introduction

Six-dimensional N = 1 supergravity is a useful domain for studying fundamental questions

about the space of string vacua. On the one hand, the space of such theories is strongly

constrained by gravitational, gauge, and mixed anomalies [1, 2]. On the other hand, 6D

supergravity includes a rich variety of models with different gauge groups and matter

representations. Given the difficulty of attaining a systematic classification of string vacua

in four dimensions, and our limited knowledge at this point regarding constraints on the
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space of low-energy 4D field theories which can be consistently coupled to quantum gravity,

it is desirable to find a context in which we can develop tools and experience for addressing

global questions of this nature. 6D N = 1 supergravity promises to provide a tractable

framework in which we can address questions such as the global extent of the space of

quantum-consistent low-energy theories, and begin to map how different string vacuum

constructions fill regions in this space of low-energy theories.

In [3–5] we began a systematic analysis of the space of low-energy 6D N = 1 super-

gravity theories. We showed in [4] that for theories with one tensor field (those models

which admit a Lagrangian), there are a finite number of distinct nonabelian gauge groups

and matter representations possible in models which do not suffer from clear quantum

inconsistencies from anomaly violation or wrong-sign kinetic terms. In [5] we gave an

explicit map from the set of such models to topological data for F-theory constructions.

For most apparently-consistent low-energy models this map appears to give good string

vacua through F-theory constructions. In some cases, however, the image of the map was

found to exhibit some pathology; in such cases the models do not correspond to any known

F-theory vacuum.

In this paper, we extend this global analysis to theories with multiple tensor fields. The

Lagrangian describing gauge groups and matter fields for 6D N = 1 supergravity theories

with one tensor field was originally developed in [6, 7]. Field equations for the (non-

Lagrangian) models with multiple tensor fields were analyzed by Romans [8]. In a theory

with T antisymmetric 2-form tensor fields, the associated scalars parameterize a coset space

SO(1, T )/SO(T ). We use the underlying SO(1, T ) structure to give a fairly simple proof

that for models with T < 9, there are a finite number of possible nonabelian gauge groups

and matter representations consistent with anomaly cancellation and physical gauge kinetic

terms. We find that for any T , each apparently-consistent low-energy supergravity theory

can be associated with an integral lattice Λ. We use the structure of the lattice Λ to

connect with F-theory, and identify constraints on low-energy theories associated with the

existence of an F-theory vacuum construction. Thus, the results of this paper generalize

and subsume many of the results of [4, 5]; the general structure developed for models with

arbitrary T clarifies in some ways the more specific arguments previously given at T = 1.

In section 2 we review the structure of anomaly cancellation in general 6D N = 1

supergravity theories, and demonstrate that each anomaly-free theory can be associated

with an integral lattice. In section 3 we prove that the number of gauge groups and matter

representations for consistent theories is finite for T < 9. We give explicit examples of

infinite families where the theorem breaks down at T ≥ 9 in section 4. In section 5 we use

the integral lattice for each theory to construct topological data which would be associated

with any corresponding F-theory construction, and describe constraints on the class of

models which can be realized through F-theory. Section 6 contains some examples of F-

theory embeddings of supergravity models, illustrating how geometrical constraints from

F-theory rule out the possibility of F-theory realizations of some apparently-consistent low-

energy models. Section 7 contains some discussion of global aspects of the 6D supergravity

landscape, and section 8 contains a summary of the conclusions.

Note that the analysis in sections 2, 3, and 4 depends only upon the structure of

low-energy supergravity and is independent of any structure associated with string theory.
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An Bn Cn Dn E6 E7 E8 F4 G2

λ 1 2 1 2 6 12 60 6 2

Table 1. Normalization factors for the simple groups.

2 Anomalies and lattices

We consider 6D supergravity theories with semi-simple gauge group G =
∏

i Gi. The anal-

ysis of abelian factors will appear elsewhere [9]; such abelian factors have little effect on the

structure of the nonabelian part of the theory. We include matter hypermultiplets which

transform in a general representation of G, and T tensor multiplets. For theories with

multiple tensor multiplets, there is a generalized Green-Schwarz mechanism (described by

Sagnotti [10]), which allows for a larger class of gauge anomalies to be cancelled. In this

section we review this mechanism using the notation of [11], and show that the anomaly

cancellation conditions imply the existence of an integral lattice associated with any con-

sistent 6D N = 1 theory.

2.1 Anomaly cancellation

Anomalies can be cancelled by the Green-Schwarz-Sagnotti mechanism if the anomaly

polynomial I8 can be written in the form

I8(R,F ) =
1

2
ΩαβXα

4 Xβ
4 (2.1)

Here Xα
4 is a 4-form constructed from the curvatures of the Yang-Mills and spin connections

Xα
4 =

1

2
aαtrR2 +

∑

i

bα
i

(
2

λi
trF 2

i

)
(2.2)

where aα, bα
i are vectors in the space R

1,T and Ωαβ is a natural metric (symmetric bilinear

form) on this space. The tr here refers to the trace in an appropriate “fundamental”

representation of the group Gi, and λi is a normalization factor. These normalization

factors are fixed by demanding that the smallest topological charge of an embedded SU(2)

instanton is 1, as explained in [12]. These factors are listed in table 1 for all the simple

groups. I8(R,F ) is completely specified by the multiplets in the low-energy theory and can

be computed using the formulae in [13, 14].

When T 6= 1, one cannot write down a Lorentz covariant Lagrangian. One can con-

struct a partition function, however, along the lines of [15, 16] by coupling the extra

(anti-self-dual) tensor fields to an auxillary 3-form gauge potential. The anomaly can be

cancelled by a local counterterm of the form

δLGSS = −ΩαβBα ∧ Xβ
4 (2.3)

The 2-form field Bα has an anomalous gauge transformation, and the above term makes

the tree-level Lagrangian gauge-variant in exactly the right way to cancel the one-loop
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anomaly. The gauge invariant 3-form field strength is defined as

Hα = dBα +
1

2
aαω3L + 2

∑

i

1

λi
bα
i ωi

3Y (2.4)

where ω3L and ωi
3Y are Chern-Simons 3-forms of the spin connection and gauge

field respectively.

The only (1, 0) supersymmetry multiplets that contain scalars are the hypermultiplets

(4 real scalars) and the tensor multiplet (1 real scalar). The hypermultiplet moduli space

is a quaternionic Kähler manifold, analogous to the 4D N = 2 case. The tensor multiplet

scalar moduli space locally takes the form of the coset space SO(1, T )/SO(T ) [8], and can

be parameterized by a vector jα in the space R
1,T of norm Ωαβjαjβ = +1. From the

viewpoint of the low-energy theory, the above space is just one possible solution to the

requirements imposed by SUSY, although no others are known. In section 5.2 we will see

that the space SO(1, T )/SO(T ) arises naturally as a coset space containing the Teichmuller

space of Kähler metrics in F-theory compactifications as an open set.

The anomaly polynomial does not specify the vectors aα, bβ
i , but only constrains the

SO(1, T ) invariant quantities

Ωαβaαaβ, Ωαβaαbβ
i , Ωαβbα

i bβ
j (2.5)

We will use the notation x ·y to denote the SO(1, T ) invariant product Ωαβxαyβ . Vanishing

of the trR4 anomaly implies that

H − V = 273 − 29T (2.6)

where H,V, T denote the number of hyper, vector, and tensor multiplets respectively. The

trF 4 contribution to the total anomaly must also cancel for the anomaly to factorize in the

form (2.1). This gives the condition

Bi
adj =

∑

R

xi
RBi

R (2.7)

where the coefficients AR, BR, CR are defined as

trRF 2 = ARtrF 2 (2.8)

trRF 4 = BRtrF 4 + CR(trF 2)2 (2.9)

and xi
R denotes the number of hypermultiplets transforming in representation R under

gauge group factor Gi. We will similarly denote by xij
RS the number of hypermultiplets

transforming in representations R,S under the factors Gi, Gj .

The remaining anomaly factorization conditions relate inner products between the

vectors a, bi to group theory coefficients and the representations of matter fields

a · a = 9 − T (2.10)

a · bi =
1

6
λi

(
Ai

adj −
∑

R

xi
RAi

R

)
(2.11)
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bi · bi = −1

3
λ2

i

(
Ci

adj −
∑

R

xi
RCi

R

)
(2.12)

bi · bj = λiλj

∑

RS

xij
RSAi

RAj
S . (2.13)

We demonstrate in the following section that these inner products are all integers, so that

a, bi can be used to define an integral lattice.

In the case when T = 1, which was studied in [2, 4, 17], the Green-Schwarz mechanism

requires that the anomaly polynomial factorize as a simple product of polynomials. To

relate this familiar case to the general formalism, we can choose the bilinear form on

SO(1, 1) as

Ωαβ =

(
0 1

1 0

)
(2.14)

For T = 1 we have a2 = 8. The form (2.14) and the anomaly polynomial (2.1) are invariant

under the rescaling

(X1
4 , X2

4 ) → (µ X1
4 , µ−1 X2

4 ) (2.15)

We can use this scale degree of freedom to set aα ≡ (a1, a2) = (−2,−2). We can then

identify bi in this basis with parameters αi, α̃i through

bi =
λi

2
(αi, α̃i) . (2.16)

Once this basis is chosen for Ωαβ , a, and bi, the anomaly polynomial takes the familiar,

friendly form used in [5] and most literature on T = 1 models

I8 = X1X2 =

(
trR2 −

∑

i

αitrF
2
i

)(
trR2 −

∑

i

α̃itrF
2
i

)
(2.17)

The only symmetry unfixed is a Z2 symmetry of the bilinear form that exchanges X1 ↔ X2.

2.2 Proof of integrality

The inner products of the vectors aα, bα
i are related to group invariants (AR, CR) and the

number of charged hypermultiplets in various representations. In this section we show that

these inner products are quantized in Z when the normalization factors λi are chosen as in

table 1. (2.11)–(2.13) imply that the inner products a · bi, bi · bi, bi · bj are all quantized in

integers if

λi

∑
R xi

RAi
R − Ai

adj

6
∈ Z

λ2
i

∑
R xi

RCi
R − Ci

adj

3
∈ Z (2.18)

λiA
i
R ∈ Z

We will prove the above statements for each of the simple groups, case by case. For

the SU(N) (and Sp(N)) series, this is easily proved using properties of Young diagrams,
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which are in one-to-one correspondence with the irreducible representations of SU(N) (and

Sp(N)). For an arbitrary group G not of the form SU(N) or Sp(N), we find a sequence

of maximal subgroups that terminates in SU(N) or Sp(N), e.g. E8 ⊃ SU(9), SO(8) ⊃
SO(7) ⊃ SO(6) ∼= SU(4). Then, by computing the branching of representations of G we

can show integrality for G.

We start with SU(N), N ≥ 4; the coefficients AR, BR, CR can be easily calculated using

two diagonal generators T12, T34 which, in the fundamental representation, take the form

(T12)ab = δa1δb1 − δa2δb2 (2.19)

(T34)ab = δa3δb3 − δa4δb4 (2.20)

as in the appendix of [4]. The group theory factors AR, BR, CR can be computed in terms

of traces of these generators.

AR =
1

2
trRT 2

12 (2.21)

BR + 2CR =
1

2
trRT 4

12 (2.22)

CR =
3

4
trRT 2

12T
2
34 (2.23)

In the traces above, we sum over all states in the representation R, which can be represented

in terms of the associated Young diagram DR. In (2.23), let |s〉 denote a state in the

representation normalized to 〈s|s〉 = 1. A basis of such states corresponds to the set of

Young tableaux, given by the Young diagram DR labelled using integers from 1, 2, · · · , N .

Let πij denote the operation that switches the labels i ↔ j in a Young tableau. The states

{|s〉, π12|s〉, π34|s〉, π12 ◦ π34|s〉} all give equal contributions to the trace. (Note that these

states need not be distinct, but when they are not all distinct, the contribution vanishes,

since either the number of appearances of 1 and 2 are equal or the number of appearances

of 3 and 4 are equal.) This makes trRT 2
12T

2
34 a multiple of 4, and therefore CR is an

integer divisible by 3 for every representation of SU(N), N ≥ 4. This shows that for

SU(N), N ≥ 4,

1

3

(
∑

R

xRCR − Cadj

)
∈ Z (2.24)

Anomaly cancellation requires the vanishing of the trF 4 term, which sets
∑

R xRBR −
Badj = 0. If we define ER := 1

2trRT 4
12, then (2.22), (2.24) and the F 4 condition together

imply that
∑

R xRER − Eadj is divisible by 6. From the same kind of argument as above

we know that in a representation R, the states |s〉, π12|s〉 would together contribute n(s)2

to AR and n(s)4 to ER, with n(s) := 〈s|T12|s〉 ∈ Z. Since n(s)2 ≡ n(s)4 (mod 6), we have

ER ≡ AR (mod 6). Therefore,

1

6

(
∑

R

xRAR − Aadj

)
∈ Z . (2.25)

Since the normalization factor for SU(N) in table 1 is 1, this shows that for an SU(N ≥ 4)

factor in the gauge group all the conditions in (2.18) are satisfied.

– 6 –
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For the other subgroups of GL(N), we can again use the Young diagram approach

(see [21] for details on Young diagrams for the other classical groups). The irreducible

representations of Sp(N) are in one-to-one correspondence with Young diagrams with all

possible contractions with the ǫ symbol subtracted. If we choose appropriate generators

from the Cartan subalgebra of Sp(N) as in [4], whose squares are exactly equal to the

squares of the SU(N) generators we chose above, the above proof for SU(N) carries through

unchanged. In the case of SO(N), the set of Young diagrams only gives the representations

with integer weight; these exclude the spinor representations. With the right choice of

generators, the above proof shows that for the integer weight representations, we have

integral inner products. If we include spinor representations, the inner products are actually

quantized in 1
2Z. Including the factor of 2 in the normalization of SO(N) in table 1,

however, we find that the inner products are again integral. An alternate proof of integrality

for the SO(N) representations involves using a sequence of maximal subgroups. We will

discuss this method in general below, and then apply it to the SO(N) case and also to the

exceptional groups.

Consider a general simple group G. We wish to show that whenever
∑

R xRBR−Badj =

0, the conditions (2.18) are satisfied. Let H be a simple, maximal (proper) subgroup of the

simple Lie group G. For a given representation R of G, we can compute the decomposition

of R into irreducible representations Si of the maximal subgroup H ⊂ G: R = ⊕in(R)iSi

where n(R)i denotes the multiplicity of representation Si.

trRF 2
G =

∑

i

n(R)itrSi
F 2

H =

(
∑

i

n(R)iASi
(H)

)
trF 2

H (2.26)

trRF 4
G =

∑

i

n(R)itrSi
F 4

H =

(
∑

i

n(R)iBSi
(H)

)
trF 4

H +

(
∑

i

n(R)iCSi
(H)

)
(trF 2

H)2

(2.27)

Here tr denotes the trace in the fundamental representation of H. This gives us a way of

computing AR(G) for an arbitrary group G using its maximal subgroup [14].

AR(G) =
trRF 2

G

trfF 2
G

=

∑
i n(R)iASi

(H)∑
i n(f)iASi

(H)
. (2.28)

Here, for clarity, trf explicitly denotes the trace in the (suitably normalized) fundamental

representation f of G with f = ⊕in(f)iSi under H ⊂ G.

Anomaly cancellation for G implies that
∑

R xRBR(G) − Badj(G) = 0. Then,

∑

R

xRtrRF 4
G − tradjF

4
G =

(
∑

R

xRCR(G) − Cadj(G)

)
(trfF 2

G)2

⇒
∑

R

xRCR(G) − Cadj(G) =

∑
R xR

∑
i n(R)iCSi

(H) −∑i n(adj)iCSi
(H)

(
∑

i n(f)iASi
(H))2

. (2.29)

If we have integrality for the group H, i.e. for every {yS ∈ Z} satisfying

∑

S

ySBS(H) = 0 ⇒
{

λH

∑
S ySAS(H) ∈ 6Z

λ2
H

∑
S ySCS(H) ∈ 3Z

(2.30)
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then, using ySi
=
∑

R xR n(R)i − n(adj)i we have

λH

(
∑

i

n(f)iASi
(H)

)∑
R xRAR(G) − Aadj(G)

6
∈ Z (2.31)

λ2
H

(
∑

i

n(f)iASi
(H)

)2 ∑
R xRCR(G) − Cadj(G)

3
∈ Z (2.32)

The conditions (2.18) are then all satisfied for a group G, if we prove that

λG = λH

∑

i

n(f)iASi
(H) (2.33)

for a maximal subgroup H.

We first consider the particular case of G = E8 and the maximal subgroup SU(9) ⊂
E8 [14]. The coefficients AR, BR, CR for E8 are defined using the adjoint representation as

the fundamental.

E8 ⊃ SU(9)

248 = 84 ⊕ 84 ⊕ adj (2.34)

Using A84(SU(9)) = 21, Aadj(SU(9)) = 18, we have integrality for E8, because λE8
= 60

and λSU(9) = 1, and therefore relation (2.33) is satisfied

λE8
= λSU(9)(2A84 + Aadj) = 60 . (2.35)

In fact, the branching rule in (2.34) makes clear the origin of the normalization factors.

Since

tradjF
2
E8

= 2 tr84F
2
SU(9) + tradjF

2
SU(9) = 60 tr9F

2
SU(9), (2.36)

including a normalization factor of 1/60 for the E8 group trace, relative to the SU(9) trace,

ensures that the minimum instanton number of any configuration of E8 gauge fields is 1.

For the SO(N) series, we can show that (2.33) is satisfied by induction. For N = 6,

SO(6) ∼= SU(4) we have

tr6F
2
SO(6) = tr6F

2
SU(4) = 2 trF 2

SU(4) (2.37)

Equation (2.33) is again satisfied since λSO(6) = 2, λSU(4) = 1. For the inductive step, since

SO(N − 1) is a maximal subgroup of SO(N),

trNF 2
SO(N) = trN−1F

2
SO(N−1) (2.38)

Thus, integrality for SO(N − 1) implies integrality for SO(N), and the inductive step

is proved.

Similarly, we can prove integrality for the groups E6, E7, F4 using the maximal sub-

groups Sp(4), SU(8), SO(9) respectively. In each case we find that relation (2.33) is

satisfied. We have thus shown that the inner products a · bi, bi · bi, bi · bj are all integral if

all simple factors in the gauge group are drawn from the list

{SU(N ≥ 4), SO(N ≥ 7), Sp(N ≥ 2), E6,7,8, F4} (2.39)

– 8 –
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and suitable scaling factors are applied to the anomaly coefficients. The groups

SU(2), SU(3) and G2 are conspicuously absent from this list. The normalization factors

for these groups are 1, 1 and 2 respectively, but in these cases, the condition that local

anomalies are absent does not constrain the inner products to be integral. There is a more

subtle anomaly, however, first discussed in [22], where the partition function is invariant

under local gauge transformations (gauge current is conserved quantum mechanically), but

not invariant under “large” gauge transformations. The analysis of such “global anoma-

lies” in six dimensions was carried out in [23], and more thoroughly in [24]. Using their

results, we find that the inner products in question are non-integral for SU(2),SU(3) and

G2 precisely when the low-energy theory is plagued by a global anomaly, which renders

these theories inconsistent.

Therefore, imposing that the low-energy theory is free of local and global anomalies,

we have shown that the anomaly coefficients define an integral lattice Λ. This lattice Λ

will play a crucial role in defining possible embeddings into F-theory.

2.3 Integral lattices and dyonic strings

Since the inner products a·a, a·bi, bi ·bj compatible with the anomaly cancellation equations

are all integral, we can use this inner product structure to form an integral lattice

Λ =




a2 −a · b1 −a · b2 · · ·
−a · b1 b2

1 b1 · b2 · · ·
−a · b2 b1 · b2 b2

2 · · ·
...

...
...

. . .




(2.40)

Note that this lattice may be degenerate; in some cases there can be linear relations between

the vectors a, bi. We choose to define the lattice in terms of −a rather than a since

generally −a is a positive vector in the sense that −a ·j > 0 for those models with F-theory

descriptions, as we discuss in section 5.

For models which have a consistent quantum UV completion, there is a natural inter-

pretation of the lattice Λ in terms of the charge lattice of BPS states. The BPS states of

the 6D N = (1, 0) SUSY algebra are extended string-like states, known as dyonic strings,

with arbitrary charges under the (1, T ) multiplet of two-form fields Bα [25]. For theories

with nonabelian gauge fields, there are BPS states known as gauge dyonic strings, where

the gauge field has an instanton profile in the directions transverse to the string [26]. For

every nonabelian factor Gi in the gauge group, there is a corresponding gauge dyonic string

with conserved 2-form charge given by the vector bi. (The dyonic string is obtained from

the gauge dyonic string by taking the instanton size → 0 limit.). In a consistent quan-

tum theory, just as the product of electric and magnetic monopole charges is quantized in

standard 4D electromagnetic theory due to the single-valued nature of the electron wave

function, the inner product b · b′ of dyonic string charges is quantized in the 6D theory [27].

Thus, we expect that in a consistent quantum theory, if there are quantum excitations

associated with the solitonic dyonic strings, these states must live in an integral lattice Λ̃

of signature (1, T ) of which Λ is a sublattice. It is interesting and perhaps suggestive that

– 9 –
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the integrality of the lattice Λ follows directly from the anomaly cancellation conditions,

with no further assumptions about the quantum consistency of the theory or the existence

of quantum string states.

3 Finite bound for fixed T < 9

In this section we prove that for fixed T < 9 there are a finite number of distinct possible

combinations of nonabelian gauge group and matter representations. This analysis is purely

based on aspects of the low-energy supergravity theory, and is independent of string theory

or any other specific UV completion.

The finite range of possible gauge groups and matter representations for T = 1 was

proven in [4]. We give a similar proof here for any fixed T between 0 and 8, using the

SO(1, T ) invariant inner product structure on the vectors a, bi, j. As in [4], we ignore

abelian factors; such factors do not affect the anomaly cancellation conditions (2.7)–(2.13)

on the nonabelian gauge group factors. The constraint on infinite families breaks down

at T = 9 due to the change of sign of a2 = 9 − T . When a has positive norm, it places

stronger constraints on the range of allowed models. We give explicit examples of infinite

families of anomaly-free models with acceptable gauge kinetic terms at T = 9 and greater

in section 4.

The proof for T < 9 proceeds by contradiction. We assume that there is an infinite

family of models {M(γ)} = {M(1),M(2), . . .} with nonabelian gauge groups {G(γ)}. There

are a finite number of (semi-simple) groups G with dimension below any fixed bound. For

each fixed G, there are a finite number of representations whose dimension is below the

bound (2.6) on the number of hypermultiplets. Thus, as argued in [4], any infinite family

{G(γ)} must include gauge groups of arbitrarily large dimension. For any given model in the

family we decompose the semi-simple gauge group into a product of simple group factors

G(γ) = G
(γ)
1 × G

(γ)
2 × · · · × G

(γ)
k(γ). We divide the possibilities into two cases as in [4].

1. The dimension of the simple factors in the groups G(γ) is bounded across all γ, that is

dim(G
(γ)
i ) ≤ D for all 1 ≤ i ≤ k(γ) for every theory M(γ). In this case, the number

of simple factors is unbounded over the family.

2. The dimension of at least one simple factor in G(γ) is unbounded. For example, the

gauge group is of the form G(γ) = SU(N(γ)) × G̃(γ), where N(γ) → ∞.

Case 1. In this case we can rule out infinite families for arbitrary but fixed T . In case

1 there are an unbounded number of simple factors, but the dimension of each factor G
(γ)
i

is bounded by dim G
(γ)
i ≤ D. Assume that we have an infinite sequence of models whose

gauge groups have N(γ) factors, with N(γ) unbounded. To simplify notation, we drop the

subscript γ which indexes theories in the family {M(γ)}. We consider one model M in

this infinite sequence, with N factors. We divide the factors Gi into 3 classes:

1. Type Z: b2
i = 0

2. Type N: b2
i < 0

– 10 –



J
H
E
P
1
1
(
2
0
1
0
)
1
1
8

3. Type P: b2
i > 0

We begin by recapitulating some simple arguments from [4]. Since the dimension of

each factor is bounded, the contribution to H − V from −V is bounded below by −ND.

For fixed T the total number of hypermultiplets is then bounded by

H ≤ 273 − 29T + ND ≡ B ∼ O(N) . (3.1)

This means that the dimension of any given representation is bounded by the same value

B. The number of gauge group factors λ under which any matter field can transform

nontrivially is then bounded by 2λ ≤ B, so λ ≤ O(lnN).

Now, consider the different types of factors. Denote the number of type N, Z, P factors

by NN,Z,P , where

N = NN + NZ + NP . (3.2)

We can write the bi’s in a (not necessarily integral) basis where Ω = diag(+1,−1,−1, . . .) as

bi = (xi, ~yi) . (3.3)

For any type P factor, |xi| > |~yi|, so bi · bj > 0 for any pair of type P factors. Thus, there

are hypermultiplets charged under both gauge groups for every pair of type P factors. A

hypermultiplet charged under λ ≥ 2 gauge group factors appears in λ(λ − 1) (ordered)

pairs, and contributes at least 2λ to the total number of hypermultiplets H. Each ordered

pair under which this hypermultiplet is charged then contributes at least

2λ

λ(λ − 1)
≥ 1 (3.4)

to the total number of hypermultiplets H. It follows that the NP (NP − 1) type P pairs,

under which at least one hypermultiplet is charged, contribute at least NP (NP − 1) to

H, so

NP (NP − 1) ≤ B (3.5)

Thus,

NP ≤
√

B + 1 ∼ O(
√

N) (3.6)

which is much smaller than N for large N . So most of the b′is associated with gauge group

factors in any infinite family must be type Z or type N .

Now consider type N factors. Any set of r mutually orthogonal type N vectors defines

an r-dimensional negative-definite subspace of R
1,T . This means, in particular, that we

cannot have T + 1 mutually orthogonal type N vectors. If we have NN type N vectors,

we can define a graph whose nodes are the type N vectors, where an edge connects every

two nodes associated with perpendicular vectors. Turán’s theorem [28] states that the

maximum number of edges on any graph with n vertices which does not contain a subset

of T + 1 completely connected vertices is

(1 − 1/T )n2/2 (3.7)
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where the total number of possible edges is n(n−1)/2. Thus, applying this theorem to the

graph described above on nodes associated with type N vectors, the number of ordered

pairs with charged hypermultiplets must be at least

N2
N

T
− NN . (3.8)

It then follows that

NN ≤
√

TB + T ∼ O(
√

N) . (3.9)

Finally, consider type Z factors. Vectors bi, bj of the form (3.3) associated with two

type Z factors each have |xi| = |~yi| and have a positive inner product unless they are

parallel, in which case bi · bj = 0. Denote by µ the size of the largest collection of parallel

type Z vectors. Each type Z vector is perpendicular to fewer than µ other type Z vectors,

so there are at least NZ(NZ − µ) pairs of type Z factors under which there are charged

hypers. We must then have

NZ(NZ − µ) = (NZ − µ)(N − NP − NN ) ≤ B . (3.10)

But from (3.6), (3.9) this means that NZ − µ is of order at most O(1) (and is bounded

by D as N → ∞), while NZ is of order O(N). Thus, all but a fraction of order 1/N of

the type Z factors have vectors in a common parallel direction. In [4], we showed that all

group + matter configurations which give type Z factors have a positive value for H − V .

The total contribution to H − V is then bounded by

H − V > µ − [(NZ − µ) + NP + NN ] (D) ∼ O(N) (3.11)

which exceeds the bound H −V ≤ 273− 29T for sufficiently large N . Thus, we have ruled

out case 1 by contradiction for all T > 0.

Case 2. In [4] we proved that there are no infinite families with factors of unbounded

size for T = 1. A very similar proof works up to T = 8; we outline this proof using the

inner product structure and vectors a, bi, j, making use of results from [4]. As discussed

in [4], for SU(N) the F 4 anomaly cancellation condition

BAdj = 2N =
∑

R

xRBR (3.12)

can only be satisfied at large N when the number of multiplets xR vanishes in all represen-

tations other than the fundamental, adjoint, and two-index antisymmetric and symmetric

representations. For these representations, indexed in that order, (3.12) becomes

2N = x1 + 2Nx2 + (N − 8)x3 + (N + 8)x4 . (3.13)

Note that we do not distinguish here between representations and their conjugates, which

give equal anomaly contributions. The solutions to (3.13) at large N , along with the

corresponding solutions for the other classical groups SO(N),Sp(N) are listed in table 2.

We discard solutions (x1, x2, x3, x4) = (0, 1, 0, 0) and (0, 0, 1, 1), where a · bi = b2
i = 0 since
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Group Matter content H − V a · b b2

SU(N)

2N N2 + 1 0 -2

(N + 8) + 1 1
2N2 + 15

2 N + 1 1 -1

(N − 8) + 1 1
2N2 − 15

2 N + 1 -1 -1

16 + 2 15N + 1 2 0

SO(N) (N − 8) 1
2N2 − 7

2N -1 -1

Sp(N/2)
(N + 8) 1

2N2 + 7
2N 1 -1

16 + 1 15N − 1 2 0

Table 2. Allowed charged matter for an infinite family of models with gauge group H(N). The

last two columns give the values of a · b, b2 in the factorized anomaly polynomial.

for T < 9 these relations combined with a2 > 0 imply that bi = 0 and therefore that the

kinetic term for the gauge field is identically zero. The contribution to H − V from each

of the group and matter combinations in table 2 diverges as N → ∞. This cannot be

cancelled by contributions to −V from an infinite number of factors, for the same reasons

which rule out case 1. Thus, any infinite family must have an infinite sub-family, with

gauge group of the form Ĥ(M) × H(N) × G̃M,N , with both M, N → ∞. For any factors

Gi, Gj with a · bi, a · bj 6= 0, in a (non-integral) basis where Ω = diag(+1,−1,−1, . . .), and

a = (
√

a2, 0, 0, . . .) writing

bi = (xi, ~yi) (3.14)

with xi = a · bi/
√

a2 we have

xixj = (a · bi)(a · bj)/a2 ≥ bi · bj =
∑

R,S

xRSARAS . (3.15)

Since xixj can be taken to be constant for the infinite family of pairs Ĥ(M), H(N), while

AR grows for all representations besides the fundamental, the only possible fields charged

under more than one of the infinite factors in table 2 are bifundamentals.

We now consider all possible infinite families built from products of groups and rep-

resentations in table 2 with bounded H − V . There are 5 such combinations with two

factors. These combinations were enumerated in [4], and are listed in table 4 in that paper.

These combinations include two infinite families shown to satisfy anomaly factorization by

Schwarz [29], as well as three other similar families. In [4] it was shown that for T = 1 the

models in all five of these infinite families are unacceptable because the gauge kinetic term

for the two factors are opposite in sign and therefore one is always unphysical. The same

consequence follows as long as T < 9, where a2 > 0. This can be shown as follows: For

each two-factor infinite family we have two vectors b1, b2 which satisfy a · (b1 + b2) = 0 and

(b1+b2)
2 = 0. But these conditions imply b1+b2 = 0, so that j ·b1 and j ·b2 cannot both be

positive. For example, for the theory found by Schwarz with gauge group SU(N)× SU(N)

with two bifundamental fields, we have a · b1 = a · b2 = 0, b2
1 = b2

2 = −2, b1 · b2 = 2,

from which it follows that b1 = −b2. This proof breaks down when a2 ≤ 0, since then

a · b = b2 = 0 is not sufficient to prove b = 0. In the following section we give an infinite

family of examples which has no clear inconsistency at T = 9.
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Note that while for T = 1 there are no infinite families with more than two large gauge

factors, at larger T there are families with three large gauge factors. For example, there is

an infinite family of models with

G = SU(N − 8) × SU(N) × SU(N + 8) (3.16)

with bifundamental matter in the (N − 8, N, 1) and (1, N, N + 8) representations. (This

model cannot occur at T = 1 since then it is not possible to have b1 · b3 = 0 when

a · bi = 0, b2
i = −2). For this model, and for the similar models with the first and/or last

factor replaced with Sp(N/2 − 4) and/or SO(N + 8), a similar argument to that used to

rule out the two-factor infinite families shows that b1 + b2 + b3 = 0 when T < 9 so that we

cannot have j · bi > 0 for all three gauge group factors.

This proves case 2 of the analysis. So we have proven that for T < 9 there are a finite

number of distinct gauge groups and matter content which satisfy anomaly cancellation

with physical kinetic terms for all gauge field factors. We have ruled out infinite families

with unbounded numbers of gauge group factors at any finite T , though we show that such

infinite families exist when T is unbounded in section 4. We have not ruled out infinite

families with a finite number of gauge group factors which become unbounded at finite

T > 8. Indeed, we give an explicit construction of such a family in section 4.

A systematic enumeration of the finite set of possible gauge groups and matter content

compatible with a fixed T < 9 is in principle possible. One approach to the enumeration

is to break the gauge group into blocks associated with simple factors and their associated

matter content, and then to combine blocks in such a way that the gravitational anomaly

H−V is not exceeded. This approach was discussed and applied for some classes of models

in [5]. With more tensor fields, the limit H − V = 273 − 29T more strictly constrains

the range of possible matter representations, although the increased dimensionality of the

space R
1,T allows blocks to be combined more freely. One could proceed with a systematic

enumeration by sequentially classifying all models with matter transforming under at most

λ distinct gauge group factors for increasing values of λ. It is easy to see that for any given

gauge group there are a finite number of matter representations such that H/λ − V <

273 − 29T . This bound is a useful guide in constructing all allowed models, though care

must be taken since for any fixed T there can be a finite number of type N blocks which

contribute negatively to H − V . We leave a complete and systematic enumeration of the

finite set of possible T < 9 models for future work.

4 Infinite families for T ≥ 9

In this section we give some examples of infinite families of models which satisfy anomaly

cancellation and admit correct-sign kinetic terms, when T ≥ 9.

4.1 Example: infinite families at fixed T ≥ 9

From the way in which the finiteness proof breaks down at T = 9, it is fairly straightforward

to construct an infinite class of apparently-consistent supergravity models at T = 9. We

consider again the infinite class of models found by Schwarz with gauge group G = SU(N)×
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SU(N) and two bifundamental matter fields, but now with T > 8. For this gauge group

and matter representation, at T = 9 we need vectors −a, b1, b2 with inner product matrix

Λ =




0 0 0

0 −2 2

0 2 −2


 . (4.1)

In a basis with Ω = diag(+1,−1,−1, . . .), this can be realized through the vectors

−a = (3, −1, −1, −1, −1, −1, −1, −1, −1, −1)

b1 = (1, −1, −1, −1, 0, 0, 0, 0, 0, 0)

b2 = (2, 0, 0, 0, −1, −1, −1, −1, −1, −1)

(4.2)

This choice of vectors satisfies the correct gauge kinetic term sign conditions j · bi > 0 for

j = (1, 0, 0, . . .). It is straightforward to construct similar examples for T > 9 by simply

adding additional 1’s in additional columns for a.

We will show in section 6 that at T = 9 these models are incompatible with F-theory

for large enough values of N and thus do not have any known string realization.

4.2 Example: infinite families with unbounded numbers of factors

Although we proved that for any fixed T there are no infinite families with unbounded

numbers of factors (case 1), this restriction does not hold when T itself is unbounded. From

the gravitational anomaly condition (2.6) it would seem that a family with increasing T

is difficult to construct, as the upper bound on H − V becomes increasingly negative. By

choosing gauge factors with minimal matter, however, we can find anomaly-free models

with arbitrarily many gauge group factors. This is not possible for most types of gauge

group factors. For example, for factors of the form SU(N), as noted in [5], for any number

of antisymmetric tensor representations the F 4 condition fixes the number of fundamental

representations so that H/2− V is positive. Thus, for factors of this form we cannot build

combinations with arbitrarily negative total H − V with matter transforming under at

most two gauge group factors.

To minimize the total H−V we can consider gauge group factors such as SO(8) and E8,

for which no charged matter is needed to satisfy the anomaly equations. For a pure SO(8)

factor, we have V = 28. Since each such factor is associated with a type N vector with

b2
i = −4, we need an additional tensor in T to accommodate a type N vector perpendicular

to the b vectors from all other factors for each SO(8) factor. Adding one SO(8) factor and

one tensor to a model contributes a total of

∆(H − V + 29T ) = 1 (4.3)

to the total gravitational anomaly, so the number of such factors which can be added is

large but bounded.

The same is not true for E8 factors. Each such factor has V = 248. Considering

only the constraints from anomaly cancellation and gauge kinetic term sign conditions, we

can construct a family of models with gauge group G = Ek
8 and no charged matter. The
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associated vectors {−a, bi} satisfy −a ·bi = −10, b2
i = −12, bi ·bj = 0, i 6= j. For sufficiently

large T such vectors can be found. For example, when T = 9 + 8k, a representation with

the inner product Ω = diag(+1,−1,−1, . . .) is given by

−a = ( 3, −1, (−1)4 , (−1)4 , −1, −1, −1, −1, · · · )
b1 = ( −1, −1, (−1)3, −3, (0)4 , 0, 0, 0, 0, · · · )
b2 = ( −1, −1, 04 , (−1)3, −3, 0, 0, 0, 0, · · · )
...

bk = ( −1, −1, 04 , · · · , 04, (−1)3, −3, 0, · · · )

(4.4)

The notation xn indicates that the entry x repeats n times. Note that the last 4k + 8

entries of all the vectors b1, b2, · · · , bk are all zero. This represents an infinite family of

models satisfying anomaly cancellation. There exists a choice of j such that gauge kinetic

terms for all factors have the correct sign,

j = (−|j0|, 0, 0, · · · , 0, 1, 1, · · · , 1), |j0| >
√

4k + 8 , (4.5)

where the last 4k + 8 entries in j are 1. By choosing (4k + 8)/3 > |j0|, we can also arrange

for −a · j > 0. As we show in section 6, this class of models is nevertheless not compatible

with F-theory and has no known string realization for large enough k.

5 Supergravity models in F-theory

Based only on the structure of the low-energy supergravity theory, we have now shown

that there are a finite number of possible gauge groups and matter representations for

models with T < 9. Every consistent supergravity model, furthermore, is characterized by

an integral lattice Λ. The next question we would like to address is which of these mod-

els can be realized in string theory. By determining the subset of apparently-consistent

low-energy theories which can be realized through each of the known approaches to string

compactification, we can hope to chart the full space of 6D supergravity theories. Identify-

ing characteristic features of models which cannot be realized through any existing string

construction may lead to the identification of new string vacua, or new constraints on the

low-energy theories.

We focus here on identifying F-theory constructions of low-energy supergravity models.

In subsection 5.1 we show that the structure of anomaly-free N = 1 6D supergravity

theories is closely related to that of F-theory compactifications, allowing us to map the

discrete data of the 6D supergravity theory to topological data for an F-theory construction.

This generalizes the analysis of [5], in which the map from low-energy supergravity to F-

theory topological data was described for models with T = 1.

In subsection 5.2 we examine some of the constraints on low-energy theories which

must be satisfied for an F-theory realization to exist. While, as discussed in [5], a large

fraction of the apparently-consistent supergravity models at T = 1 seem consistent with F-

theory, the constraints imposed by F-theory limit the range of possible models substantially

as T increases. For T > 8, F-theory reduces the infinite number of apparently-consistent
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models to a finite number. We do not attempt to give a complete and definitive analysis

of the constraints from F-theory on low-energy theories here, but we identify a number of

general constraints on the structure of the low-energy theory imposed by F-theory. We

give some specific examples of these F-theory constraints on apparently-consistent models

with various values of T in section 6.

5.1 Mapping to F-theory

F-theory1 [31–33] is a limit of string theory which generalizes type IIB string theory by

allowing the axiodilaton τ to vary over a d-dimensional compactification space B. This can

be thought of as describing an auxiliary 2-torus whose complex structure depends upon

the axiodilaton, giving an elliptic fibration over B. The elliptic fiber degenerates at com-

plex codimension one loci in the base B, which correspond to 7-branes. Specific types of

singularities of the elliptic fibration structure on divisors ξi in the base give rise to cor-

responding nonabelian gauge group factors Gi in the resulting low-energy gravity theory.

When B is a (complex) 2-dimensional space, the F-theory construction is characterized by

an elliptically fibered Calabi-Yau 3-fold with section. As shown in [31–33], F-theory can be

used to describe nonperturbative string vacua which are inaccessible by direct supergravity

compactification, including 6D models with multiple tensor fields. F-theory is the most

general approach developed so far to construct compactifications of string theory to six

dimensions. There are heterotic compactifications on K3 with certain kinds of bifunda-

mental matter fields, however, which are not described in the standard F-theory approach.

We discuss this further in section 7; we are not aware of any other string constructions of

N = 1 6D supergravity models which do not also have F-theory descriptions.

In low-energy theories that arise from F-theory compactifications, various aspects of

the low-energy physics including the gauge group and matter content are controlled by the

geometry of the elliptic 3-fold. Much of the work on F-theory has focused on understanding

the consequences for the low-energy theory of specific geometric structures in the Calabi-

Yau compactification space. We would like to turn this around and ask — Given the

low-energy theory, what are the necessary conditions for the existence of a UV-completion

in the form of an F-theory compactification?

The structure of the integral lattice Λ determined by the vectors a, bi is closely related

to the cohomology lattice of a two-dimensional F-theory base B. For example, the anomaly

conditions (2.13) relate the inner product bi · bj to the number of hypermultiplets simulta-

neously charged under Gi ×Gj . In F-theory, the number of such hypermultiplets is related

to the intersection product of divisors ξi in the base B associated with the nonabelian

gauge group factors Gi. Analysis of anomaly cancellation in F-theory constructions shows

that these inner products can be identified [11, 34, 35]

bi · bj = ξi · ξj . (5.1)

In fact, as discussed in [5], we can associate the SO(1, T ) vector bi for each factor Gi

with a corresponding divisor ξi in the base B. This furthermore leads us to interpret

1See [30] for a good general review and introduction to F-theory.
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the bilinear form Ωαβ as the intersection product in H2(B, Z). The vector a with norm

a · a = 9 − T is naturally identified with the canonical divisor of the base KB, which

also satisfies KB · KB = 9 − T . The inner products between a and bi also agree with the

corresponding inner products in F-theory, −a · bi = −KB · ξi [11, 34, 35]. The requirement

of physical gauge kinetic terms requires that there exist an SO(1, T ) vector j satisfying

j · j = 1 with j · bi > 0 for all i. This vector corresponds in F-theory to the Kähler form J

on the base B, and the condition J · ξi > 0 is the requirement that the curves wrapped by

7-branes have positive volume. This successfully identifies all the parameters of the low-

energy theory, up to the two-derivative level,2 with geometric quantities in the F-theory

compactification. To summarize, for any supergravity model with an F-theory realization,

we must have a lattice embedding

Λ →֒ H2(B, Z) (5.2)

which can be associated with an explicit map from the vectors a, bi, j into divisor classes

in B so that

a → KB (5.3)

bi → ξi (5.4)

j → J (5.5)

where KB is the canonical divisor, the ξi are effective, irreducible curves, and J is a Kähler

class on the base.

Example: T = 1. In [5] we gave an explicit formulation of the map (5.2) for the case

T = 1. In that case, the F-theory base manifold is restricted to be a Hirzebruch surface

Fm, whose second cohomology admits a basis (integral for even m)

e1 = Dv +
m

2
Ds (5.6)

e2 = Ds (5.7)

in which the intersection form takes the form (2.14). In terms of the coordinates αi, α̃i for

bi, the divisor associated with each vector bi then becomes

bi →
λi

2
(αie1 + α̃ie2) . (5.8)

The correspondence described through this map gives us an explicit construction of

the topological F-theory data for any supergravity model which can be realized in F-theory.

Not all gauge groups and matter representations associated with anomaly-free supergravity

models, however, have valid F-theory realizations. A complete description of the necessary

and sufficient conditions on the low-energy supergravity data which guarantee the existence

of an F-theory construction is somewhat complicated and is left for future work. We now

describe, however, some of the simple constraints necessary for a model to have an F-theory

realization. As we discuss in section 6, these constraints are sufficient to rule out a number

of apparently-consistent models at T < 9 and all infinite families of apparently-consistent

models at T ≥ 9.

2Except for the metric on the hypermultiplet moduli space.
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5.2 F-theory constraints on low-energy supergravity

Lattice embedding. The first condition which is clearly necessary to realize a model in

F-theory is the embedding condition (5.2), which states that the lattice Λ must admit an

embedding into H2(B, Z) for some F-theory base B. The space H2(B, Z), as we discuss

in detail below, has the structure of a unimodular lattice. The embedding condition (5.2)

thus implies the existence of a lattice embedding of Λ into a unimodular lattice.

More specific constraints on which models can be mapped to F-theory can be deter-

mined by giving a complete categorization of the cohomology groups of complex surfaces

B which are acceptable base manifolds for an F-theory compactification. To this end we

now discuss in slightly more detail the geometry of the base B, which is a general complex,

Kähler, 2-dimensional surface with an effective anti-pluricanonical divisor. (The existence

of such a divisor is a weak form of “positive curvature”.) The space H2(B, Z) has the

structure of a free Z-module (without torsion) of rank b2(B), and the intersection product

defines a symmetric inner product, making this into a “lattice”. Poincaré duality further

implies that the lattice with the inner product is self-dual, or equivalently unimodular.

The signature of the lattice is (2h2,0 + 1, h1,1 − 1) by the Hodge index theorem, where hi,j

denote the Hodge numbers. If the base B had any holomorphic 1-forms or holomorphic

2-forms, then the total space of the elliptic fibration would also have holomorphic 1-forms

of holomorphic 2-forms, and so it would have enhanced supersymmetry (and necessarily be

of the form (K3 × T 2)/G or T 6/G). Thus, to ensure that the F-theory model has exactly

N = 1 supersymmetry, we must assume that h1,0(B) = h2,0(B) = 0; it follows that the

lattice has signature (1, h1,1 − 1).

There are two key properties of the base B which lead to a complete classification: first,

the line bundles O(−4KB) and O(−6KB) have sections f and g (which serve as coefficients

in the Weierstrass equation of the F-theory model), and second, h1,0(B) = h2,0(B) = 0. It

then follows from the classification of algebraic surfaces (see for example [36]) that either

B is an Enriques surface, B = P
2, or B is the blowup of a Hirzebruch surface Fm in

k ≥ 0 points. A third property — that there is no curve in B along which f vanishes

at least 4 times and g vanishes at least 6 times (the “minimal” property of a Weierstrass

equation)—guarantees that |m| ≤ 12 [32, 33].

The number of tensor multiplets in the low-energy theory is T = h1,1 − 1 [32, 33], and

so H2(B, Z) is a T + 1 dimensional unimodular lattice of signature (1, T ). If the lattice

is even, then by Milnor’s theorem [37] we must have T ≡ 1 (mod 8) and the lattice is

isomorphic (as a Z-module) to U ⊕ E8(−1)⊕k, where

U =

(
0 1

1 0

)
. (5.9)

When the lattice is odd, then the lattice is isomorphic to Z
T+1 with the inner product

diag{+1,−1,−1, · · · ,−1}. The only bases with even lattices are the Hirzebruch surfaces

Fm for even m, with lattice U , and the Enriques surface with lattice U ⊕E8(−1). All other

possible bases are blowups of Hirzebruch surfaces Fm, |m| ≤ 12, and P
2, all of which lead

to odd lattices.
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To summarize, given a low-energy theory with T tensor multiplets characterized by the

lattice Λ, an F-theory realization can only exist if Λ embeds, as a lattice, into a signature

(1, T ) unimodular lattice.

In F-theory, the lattice H2(B, Z) ∼= H2(B, Z) corresponds to the charge lattice of BPS

states obtained by wrapping D3 branes on curves in B. This is precisely the charge lattice

of BPS dyonic string states Λ̃, discussed in section 2.3, into which there must be a lattice

embedding Λ →֒ Λ̃. A similar unimodularity condition arises in the compactification of the

heterotic string on the torus, from modular invariance of the world-sheet string theory. It

is interesting to speculate whether this kind of unimodularity condition may be a general

consistency condition for any quantum 6D supergravity theory. It may be, for example,

that such a condition is necessary for unitarity of the theory. We leave further investigation

of this question to future work.

Constraint on canonical class and singular divisors. F-theory imposes strong con-

straints on the possible values of a. From (5.3), a maps to the canonical class KB of B. For

those surfaces with H2(B, Z) ∼= U , we can always choose a basis so that a → KB = (−2,−2)

as discussed in section 2. For the Enriques surface, KB = a = 0. For all the remain-

ing surfaces, we can choose a basis with respect to which H2(B, Z) has inner product

diag{+1,−1,−1, · · · ,−1}, and such that KB takes the form

− KB = (3,−1,−1, . . . ,−1) . (5.10)

This imposes substantial constraints on the choice of a. In particular, a is primitive3 in all

cases with odd lattices.

The geometry of elliptic fibrations implies that vectors bi must map to effective irre-

ducible divisors ξi in any F-theory realization under the map in (5.4). This constraint has

various consequences, an example of which is the following:

Claim. If b2 < 0, then the vector b must be primitive in any F-theory realization.

We prove this by contradiction; assume that b maps to an irreducible, effective divisor ξ,

and that b2 < 0 with b a non-primitive vector. Then, there exists an integer n > 1 such

that the class ξ′ := ξ/n is integral and, therefore, an effective divisor. Now, ξ′ · ξ < 0, and

since ξ is an irreducible, effective divisor this implies that ξ′ must contain ξ as a component.

This is impossible because it would require the class (1/n− k)ξ to be effective, for integers

k ≥ 1, n ≥ 2.

These conditions on a, bi impose further constraints on which supergravity models can

be compatible with F-theory.

Positivity conditions and the Kähler and Mori cones. As noted above, the super-

gravity constraint that all gauge fields have kinetic terms of the correct sign, j · bi > 0, has

a corresponding interpretation in F-theory. In F-theory, the divisors ξi supporting the sin-

gularity giving rise to nonabelian gauge group factors must all be effective and irreducible,

from which it follows that J ·ξi > 0 where J is the Kähler form of B. This is an example of

3A lattice vector v is primitive if 1

d
v is not a lattice vector ∀ d ∈ Z, |d| 6= 1.
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an F-theory constraint with a clear analogue in the low-energy theory. In F-theory there is

a similar constraint on the (negative of the) canonical class −KB, so that for all F-theory

compactifications −KB ·J > 0. This constraint has no obvious counterpart in supergravity.

Note, however, that just as supersymmetry constrains the action so that the gauge kinetic

term is proportional to −j ·bi trF 2
i [10], a similar argument suggests that the action should

have a higher-derivative term proportional to j · a trR2. Such higher-derivative terms can

have sign constraints from causality [38]; we leave a further exploration of this possible

constraint on low-energy models for further work.

To understand the F-theory constraints on ξi and J more clearly, it is helpful to

describe in more detail the structure of the Kähler cone and dual Mori cone.

As discussed in section 2, the low-energy theories have an SO(1, T )/SO(T ) moduli

space of tensor multiplet scalars and a hypermultiplet moduli space. In the F-theory

compactifications we are considering, the h1,1(B) = T + 1 Kähler moduli of the base

correspond to the tensor moduli space (except the overall volume of B, which is in a

hypermultiplet), while the complex structure moduli of the elliptic fibration correspond to

the hypermultiplet moduli space of the low-energy theory. The Kähler metric is completely

specified by a choice of Kähler form J ∈ H1,1(B, R) ∼= H2(B, Z) ⊗ R. Therefore, J is a

vector in the space R
1,T which can be normalized to satisfy Vol(B) = 1 = 1

2J · J. To

study the structure of the moduli space, we can imagine starting with a fixed vector J and

looking at the transformations of R
1,T that generate inequivalent Kähler forms. The total

space of such transformations is SO(1, T ); SO(T ) transformations in the transverse space

orthogonal to J do not change the metric, and so the moduli space of inequivalent metrics

is (locally) parameterized by SO(1, T )/SO(T ).

In general, B has an automorphism group Γ̃ and some quotient Γ of Γ̃ acts faithfully

on H2(B, Z). For example, if B = F0 or B is the blowup of F0 at a single point, then

Γ ∼= Z2, while if B is the blowup of F0 at two distinct points then Γ is the dihedral group of

order 12. Note that Γ must be a subgroup of Aut(H2(B, Z)), the automorphism group of

the lattice (which leaves the inner product invariant). The subgroup Γ ⊂ Aut(H2(B, Z))

induced by automorphisms of B introduces a further identification on the moduli space,

since these just correspond to large diffeomorphisms. The moduli space of fixed volume,

Kähler metrics is then

MK ⊂ Γ\SO(1, T )/SO(T ) (5.11)

This locally agrees with the structure of the moduli space we see from the low-energy

theory. The discrete group Γ ⊂ Aut(H2(B, Z)) corresponds to the S-duality group; in the

T = 1 cases this was discussed in [39].

The constraint on J from the F-theory side is that J must lie within the Kähler cone

of the base surface. Since h2,0(B) = 0, the Kleiman criterion [40] characterizes the Kähler

cone as the set of those J such that (1) J · J > 0 and, (2) for all effective divisors D,

J · D > 0. If we normalize the volume to 1, the first condition simply states that J lies in

SO(1, T )/SO(T ) as above. To analyze the second condition, it is useful to work with the

dual of the Kähler cone, called the Mori cone [41], which is the set of linear combinations∑
riDi of effective divisors Di using nonnegative real coefficients ri. A Kähler class J is
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outside the Kähler cone if J ·D < 0 for D an effective divisor. For such Kähler classes, there

is no known F-theory vacuum construction. Note that the Kähler cone is thus essentially

defined in terms of the Mori cone.

The F-theory constraint that ξi is effective and irreducible implies that ξi lies within the

Mori cone for B. Thus, it follows from combining this constraint with the definition of the

Kähler cone that J ·ξi > 0 for all i, though the Mori cone and Kähler cone conditions taken

together are a stronger set of constraints than this inequality which we can understand from

the low-energy theory.

As an example of the Mori cone and dual Kähler cone, consider the bases Fm, which

lead to T = 1. For these bases B, the set of effective divisors is generated by Dv and Ds,

with intersection pairings

Dv · Dv = −m, Dv · Ds = 1, Ds · Ds = 0 . (5.12)

Effective divisors corresponding to irreducible curves are given by

Dv, aDv + bDs, a ≥ 0, b ≥ ma . (5.13)

In this case, the Mori cone occupies the first quadrant {aDv + bDs | a ≥ 0, b ≥ 0}, and

the dual Kähler cone can be described as {aDv + bDs | a ≥ 0, b ≥ ma}. The volume one

classes in the Kähler cone are those aDv + bDs with a > 0 for which

b =
ma2 + 1

2a
. (5.14)

As another example of a Kähler cone, we consider the blowup of F1 in a single point

away from Dv (which coincides with the blowup of P
2 at two distinct points). We can take

as a basis for H1,1(B) the exceptional divisor E as well as curves Dv and Ds − E, where

Dv and Ds are pulled back from F1. (Note that Ds − E is the proper transform of that

fiber on F1 which passed through the point which was blown up.) In this basis, if we write

a putative Kähler class as J = aE + bDv + c(Ds − E) then

J2 = −a2 − b2 + 2ac + 2bc − c2 (5.15)

so if we set the volume to one we can solve for c:

c = a + b ±
√

2ab − 1. (5.16)

We learn that ab ≥ 1
2 ; also, since J ·Ds = b and Ds is effective, a and b must be positive. The

set of such volume one classes can be represented as a double cover of the semi-hyperbola

ab ≥ 1
2 branched on the boundary.

We now investigate the conditions on the Kähler cone imposed by the various effective

divisors. We have

J · E = −a + c = b ±
√

2ab − 1 (5.17)

J · Dv = −b + c = a ±
√

2ab − 1 (5.18)

J · (Ds − E) = a + b − c = ∓
√

2ab − 1. (5.19)
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Figure 1. Kähler cone for the one point blowup of F1 away from Dv.

Since all of these must be nonnegative, we must have c = a + b −
√

2ab − 1 (which selects

one of the two branches of the double cover), as well as b ≥
√

2ab − 1 and a ≥
√

2ab − 1.

These latter two conditions are additional semi-hyperbolas in the a − b plane, and the

region they define is illustrated in figure 1 above.

Note that the Z2 automorphism in this example exchanges the curves Dv and E, and

so acts to exchange a and b in the equations and figure above.

Kodaira condition. The Kodaira condition corresponds to the mathematical require-

ment that the elliptic fibration over B with singularities on the divisors ξi associated with

nonabelian group factors gives a Calabi-Yau manifold. This condition states that

− 12KB =
∑

i

νiξi + Y (5.20)

where KB is the canonical divisor, νi are multiplicities associated with different singularity

types (e.g. N for SU(N), 6 for SO(8), 10 for E8, etc.), and Y is a residual divisor, which

must be a sum of effective divisors and satisfies J ·Y > 0 unless Y = 0. Pulling this relation

back to the low-energy theory, this condition becomes

j ·
(
−12a −

∑

i

νibi

)
≥ 0. (5.21)

This condition is also helpful as a simple guide in determining which low-energy theories

admit an F-theory realization.

Weierstrass model. As far as we know, the existence of a map (5.2) to a prospective

F-theory base does not guarantee that there is an F-theory construction for a given model,

even when all the topological and Kähler cone conditions just listed are satisfied. An explicit

elliptic fibration must be constructed with correct singularity types for the desired matter

content; this is generally accomplished using Weierstrass models, the Kodaira singularity

classification, and the Tate algorithm [32, 33, 42]. We do not know any general way to

prove from the topological data that there exists a Weierstrass model with the desired
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properties. In [5] we gave explicit constructions of Weierstrass models for some simple low-

energy gauge group and matter combinations with T = 1. We found that in these cases

there is a precise correspondence between the number of degrees of freedom needed in the

Weierstrass model to construct given gauge and matter content and the associated value of

H −V in the low-energy model. Based on this correspondence we conjectured (by a simple

degree of freedom counting) that it will always be possible to construct Weierstrass models

precisely when the gravitational anomaly bound on H−V is not exceeded. It would be nice

to have either a proof of this conjecture, or an explicit counterexample. Note, however, that

there are various matter combinations found in [5] which do not currently have known F-

theory realizations through explicit local Weierstrass constructions. A proof of the general

conjecture that Weierstrass models exist for any model admitting a map (5.2) satisfying

the various topological F-theory conditions would presumably require a more complete

understanding of the range of possible matter content which can be produced by local

singularities, even in the case T = 1.

6 Examples

In the previous section we have described some features of the geometrical data underlying

any F-theory construction. We do not have a completely determined set of rules which

can be used to identify the subset of low-energy supergravity theories which do have F-

theory realizations. What does seem to be the case, however, is that when no map of

the form (5.2) exists from Λ, a, bi, j into the geometry associated with any possible F-

theory base B for a given low-energy model, or one of the previously listed constraints

such as the Kodaira condition is violated, there is no known string construction of that

low-energy model. Models which do not admit such a map must at the present time be

regarded as lying in the “swampland” [43–45] consisting of theories which cannot be ruled

out from low-energy considerations and yet which cannot be realized in string theory. In

this section we describe some explicit examples of such low-energy models with no known

string theory realization.

We focus in this section on explicit examples of low-energy theories which illustrate

various features of the associated lattice and F-theory map. We begin with several examples

encountered in the previous paper [5] on T = 1 models. We first describe a large class of

simple models which do apparently admit F-theory realizations, and then describe models

where the F-theory map does not lead to acceptable divisors. The lattice embedding

language clarifies the issues involved in these cases. We then return to the infinite families

described in section 4, and show how these families violate some of the conditions for

F-theory constructions.

6.1 Examples with F-theory realizations: SU(N) product models at T = 1

In [5] we systematically analyzed a simple general class of supergravity models, considering

all models with gauge group factors SU(N), N ≥ 4 and matter in fundamental, bifunda-

mental, and antisymmetric tensor representations. We identified all 16,418 models of this

type which satisfy anomaly cancellation at T = 1. We performed some basic checks which
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indicated that the topological conditions such as the Kodaira condition are satisfied auto-

matically for all these models as a consequence of the anomaly cancellation conditions. We

developed Weierstrass models for a few of these theories and found that generally the num-

ber of degrees of freedom fixed in the Weierstrass polynomial description matched precisely

with the contribution to H −V from each part of the model. This is expected, as the num-

ber of unfixed degrees of freedom corresponding to moduli in the model should correspond

to the number of uncharged hypermultiplets. This agreement makes it seem plausible that

all the models in this class, which satisfy all the F-theory topological conditions, have true

F-theory realizations through Weierstrass models. As we discuss below, the close agree-

ment between supergravity anomaly constraints and topological F-theory constraints seems

particularly strong at T = 1; for larger values of T , we find more apparently satisfactory

low-energy supergravity models which cannot be realized in F-theory; examples of this type

even arise among the class of models with SU(N) gauge group factors restricted to matter

in fundamental, bifundamental, and antisymmetric tensor representations.

6.2 Example: embedding failure

In [5] we found a number of models at T = 1 which do not seem to have acceptable F-

theory counterparts. It is illuminating to consider these models from the point of view of

the lattice embedding Λ → H2(B, Z). One problematic model encountered in [5] has the

following structure:

G = SU(4) matter = 1 × adjoint + 10 × + 40 × (6.1)

Λ =

(
8 10

10 10

)
(6.2)

H − V = 220 (6.3)

It is not hard to check that this lattice Λ cannot be integrally embedded in any uni-

modular SO(1, 1) lattice. In particular, there is no embedding in the lattice U , where we

can choose −a = (2, 2); then in terms of (2.16) we have α, α̃ = 5 ±
√

5. There is also no

integral embedding in the lattice diag (+1,−1). Choosing −a = (3,−1), we have b = (x, y)

with 3x + y = 10, x2 − y2 = 10, with no integer solutions.

Thus, this model seems not to have a realization in F-theory. A similar situation arises

for the same group with one adjoint, 11 antisymmetric and 44 fundamental representations,

with H − V = 242. These models are the only ones we have encountered explicitly at

T = 1 which do not have a unimodular lattice embedding. It would be very interesting to

understand whether there is a novel string construction which could lead to models such

as these, or if the absence of a unimodular embedding can be related to a breakdown of

consistency for a general quantum gravity theory.

6.3 Example: outside the Mori cone

Another class of models we found in [5] which does not appear to admit an F-theory

realization has less extreme problems. For example, consider a model with

G = SU(N) matter = 1 × + (N − 8) × (6.4)

Λ =

(
8 −1

−1 −1

)
(6.5)
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This model has an embedding into the lattice diag (+1,−1) realized through the vec-

tors −a = (3,−1), b = (0,−1). If we identify the lattice diag (+1,−1) with the second

cohomology of F1 by using the standard basis (Du, Dv) with Du = Dv +Ds (which satisfies

D2
u = 1, D2

v = −1, Dv · Du = 0), then the class −a maps to 3Du − Dv = 2Dv + 3Ds which

coincides with −KF1
. However, b maps to −Dv, which is not an effective class, so this

embedding does not send the vector b into the Mori cone. In fact, further checking shows

that no embedding in this case maps a to KF1
while sending b into the Mori cone. Thus,

there is no F-theory realization of these models.

There are a number of other low-energy models which do not admit an F-theory

realization in the analysis of [5], and which suffer from similar “cone” problems when

a lattice embedding is found. For example, we encountered in [46] a model with structure

G = SU(24) × SO(8) matter = 3 × ( , 1) (6.6)

Λ =




8 3 −1

3 1 0

−1 0 −1


 (6.7)

H − V = 225 (6.8)

This lattice is degenerate and admits an embedding into diag (+1,−1) through

− a = (3,−1) (6.9)

b1 = (1, 0) (6.10)

b2 = (0,−1) (6.11)

Just as above, this is compatible with the intersection form on F1, but where b2 → −Dv,

giving a class outside the Mori cone.

It would be interesting to investigate whether there is some residue of the Mori cone

constraint in low-energy supergravity. One can imagine that a class of apparently-consistent

low-energy theories with no F-theory realization may be given by a novel stringy construc-

tion analogous to F-theory outside the Mori cone (or its dual, the Kähler cone). It is

familiar from type II compactification that passing outside the Kähler cone may give valid

orbifold or non-geometric Landau-Ginzburg phases of string compactifications [47]. This

seems harder to understand in the F-theory context, where the moduli are real,4 than in

the type II context, where the moduli are complex and it is easier to continuously deform a

model to a region outside the Kähler cone. In any case, it would be interesting to explore

this phenomenon in F-theory, or through dual constructions.

6.4 Example: new possibilities and constraints for T > 1

When the number of tensor multiplets T increases, the constraint from the gravitational

anomaly becomes stronger as H − V ≤ 273 − 29T . This would seem to more strongly

constrain the number of possible models. In general, models which are possible at T = 1

4Note that in another context with real Kähler moduli — compactifications of M theory to five dimensions

— some of the walls of the Kähler cone serve as obstructions to further deformation [48, 49].
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continue to be acceptable until T is so large that the number of charged hypermultiplets

exceeds the constraint from the gravitational anomaly; in most cases this can be realized by

simply adding an additional unit to −a in the extra negative-definite dimension provided

by each additional tensor multiplet. Because the dimensionality of the space in which

a, bi are embedded increases as T increases, however, new possibilities for combinations

of gauge group factors arise. Although this increases the number of apparently-consistent

supergravity models, F-theory realizations of these new possibilities at larger values of T

are more strongly constrained by the condition of embeddability in a unimodular lattice.

SU(N) factors at T = 2. A simple example of how the situation changes at increased

T is given by the class of models having gauge group factors SU(N) with matter only in

the fundamental representation. Anomaly cancellation conditions require that the number

of fundamentals for each such factor is f = 2N . At T = 1, models with a single SU(N)

gauge group factor are possible up to N = 15 by the gravitational anomaly condition. It

seems that these models all admit F-theory realizations. The associated divisor in F2 for

these models is Dv, and −K = 2Dv + 4Ds, so all topological constraints are satisfied for

each of these models. We constructed explicit Weierstrass models for this family of models

up to SU(14) in [5], and believe that such a model exists for SU(15), though the algebra

needed to explicitly construct such a solution becomes complicated.

Now consider models with multiple SU(N) factors under each of which all matter

transforms under either the trivial or fundamental representation. The vector b associated

with an SU(N) factor with f = 2N fundamental matter fields must satisfy a·b = 0, b2 = −2.

At T = 1, we cannot have a model with more than one such SU(N) factor and only

fundamental matter, since a · b = 0 gives a unique vector b up a scale factor. When we

consider analogous models at T = 2, however, the situation is rather different. Consider a

group G = SU(N)× SU(N) where each of the matter fields transforms in the fundamental

representation of at most one SU(N) factor (we assume for simplicity that there are no

bifundamental matter fields). For T = 1, as just mentioned, there is no consistent model

with physical gauge kinetic terms. On the other hand, when T > 1, we have the same inner

products a · bi, bi · bj , but the vectors b1, b2 need not be linearly dependent. The associated

lattice is

Λ =




9 − T 0 0

0 −2 0

0 0 −2


 (6.12)

From the low-energy point of view this seems like a perfectly acceptable model. There

is, however, no embedding of this lattice into a unimodular lattice for T = 2. In the

canonical form of the SO(1, 2) metric diag (+1,−1,−1), where −a = (3,−1,−1), if we

write b = (x, y, z) for integral x, y, z then we must have

3x + y + z = 0 (6.13)

x2 − y2 − z2 = −2 . (6.14)

The only solutions to these Diophantine equations are

b = (0, 1,−1), b = (0,−1, 1) , (6.15)
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so we cannot have two vectors b1, b2 in a (1, 2) unimodular lattice which are perpendicular

both to one another and to a, where both have norm −2. Thus, though at T = 2 this

model seems perfectly acceptable from the low-energy point of view, it cannot be realized

through F-theory by any known mechanism.

We see from this example that as T increases, the constraints on which gauge factors

and matter content can be combined in the low-energy theory are reduced, and the uni-

modular embedding constraint becomes a stronger constraint. This seems to be a general

feature of models at T > 1. Thus, the fraction of models in the swampland seems to increase

at larger T , even though the gravitational anomaly constraint becomes more stringent.

6.5 Example: infinite families at T ≥ 9

In section (4.1) we described an infinite family of models at T ≥ 9 analogous to the

SU(N) × SU(N) models shown by Schwarz to satisfy anomaly factorization at T = 1

in [29]. It is clear from the above discussion that these models violate the consistency

conditions needed for an F-theory construction. Note that the a and bi’s from (4.2) satisfy

−a = b1 + b2 at T = 9. This means that Y = −12a − N(b1 + b2) must have j · Y < 0

at N > 12, violating the Kodaira condition (5.21). The vectors listed in (4.2) are not

uniquely determined, so one may suspect that there might exist another choice of vectors

that satisfy the necessary conditions for an F-theory embedding. This is not possible,

however. The preceding argument can be strengthened and generalized along the following

lines to show that no infinite family of models can be realized in F-theory at T = 9. For

any such model we have, as discussed in case 2 in the proof in section 3, a · (b1 + b2) = 0

and (b1 + b2)
2 = 0. For T = 9, a2 = 0 so a is a null (type Z) vector. It follows that

b1 + b2 = −xa. Moreover, since −a, b1, b2 are effective, we have x > 0. The vector a must

be primitive in F-theory, and can be put in the form −a = (3,−1,−1, · · · ), so x is an

integer. So, j · Y = j · (−12a)(1 − aNx), where aN is N
12 for SU(N), N+6

12 for SO(2N), N
12

for Sp(N
2 ) [32, 33]. Since aN grows with N in all three cases, at large enough N we must

have j · Y < 0. It follows that the Kodaira condition is violated at large enough N . This

bounds the range of N at T = 9 for any of the infinite classes of models considered in case

2 in the proof of finiteness. Note that in [50, 51], the SU(N)× SU(N) model with 9 tensor

multiplets was identified for N = 8.

We also described in section 4.2 an infinite family of models with gauge group Ek
8 and

T = 9 + 8k for arbitrary k. For the vectors −a, bi listed in (4.4), there is no F-theory

realization. This is because the residual locus in such an embedding is not effective. It is

easily checked that

j · Y = 12j · (−a) − 10

k∑

i=1

j · bi

= 12(4k + 8) − |j0|(10k + 36)

< 12(4k + 8) − (10k + 36)
√

4k + 8 < 0, for k ≥ 1 (6.16)

This conclusion depends upon the choice of vectors in 4.4. Note that the k = 2 member of

this family can be realized in heterotic-M-theory compactified on K3× S1/Z2, as outlined
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in [39]. The fact that this infinite family of models cannot be realized in F-theory also

follows, however, from a more general argument which we now give.

In fact, there is a uniform bound on the rank of the total gauge group which holds

for all F-theory models (although we do not know precisely what the bound is), and this

excludes the infinite family with gauge group Ek
8 as well as all other infinite families. To see

that there is such a bound, note that, as discussed previously, the base B of any F-theory

model must admit a map to a minimal surface Bmin which is either an Enriques surface,

P
2, or one of the Hirzebruch surfaces Fm with |m| ≤ 12. The coefficients f and g in the

Weierstrass equation of the F-theory model push forward to sections f̄ ∈ H0(−4KBmin
)

and ḡ ∈ H0(−6KBmin
), with an induced discriminant ∆̄ = {4f̄3 +27ḡ2 = 0} ∈ |−12KBmin

|.
Now each component of the gauge group is either associated to a component of ∆̄ (with

its rank determined by the multiplicity) or to a singular point of ∆̄ which is blown up by

the map B → Bmin. The multiplicities of the components of ∆̄ are uniformly bounded

(since −12KBmin
can be written as a sum of effective divisors in only finitely many ways),

so we only need to show that the total ranks of gauge groups coming from singular points

are bounded. Note that when Bmin is an Enriques surface, ∆̄ is empty so there is nothing

to check.

For each fixed Bmin which is not an Enriques surface, we consider the set of all possible

pairs (f̄ , ḡ) ⊂ H0(−4KBmin
)⊕H0(−6KBmin

). We can stratify this set according to the types

of singularities of ∆̄ which appear, and each stratum is a locally closed algebraic subset.

Moreover, each stratum has a unique associated gauge group, and so there is a specific

rank which is associated to it.

But the Hilbert basis theorem implies that any stratification of an affine algebraic

variety into locally closed algebraic subsets has only finitely many strata. Thus, there are

only finitely many possible different gauge groups which can occur, so in particular, their

ranks must be bounded. And since there are only finitely many possibilities for Bmin (other

than Enriques surfaces), there is a uniform bound for all F-theory models. As in the proof

of finiteness from section 3, this also shows that there is a finite number of distinct gauge

groups and matter representations which can be realized through F-theory.

7 Global picture of the 6D N = 1 landscape

The strong constraints which anomalies place on nonabelian gauge group structure and

matter content in N = 1 6D theories have given us a global outline of which of these

supergravity theories have the potential to describe consistent quantum theories. Explicit

knowledge of this set of theories gives us a powerful tool for exploring the connection

between string theory and low-energy physics. We can in principle make a list of the finite

number of possible theories with T < 9. For each of the various approaches to string

compactification (heterotic, F-theory, . . . ) we can then determine which subset of these

possible theories can be realized through each class of construction. For T > 8, there are

infinite families of models satisfying the known low-energy consistency conditions, and our

analytic control of the total space is weaker. In this section we summarize some of our

knowledge regarding the extent and connectivity of the 6D N = 1 supergravity landscape.
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Note that the term “landscape” is often used to denote a space of effective theories

containing discrete points with no massless moduli (flat directions). Generally such a land-

scape includes supersymmetric AdS vacua in addition to metastable dS vacua with broken

supersymmetry. In the case of six-dimensional vacua, it is actually impossible to stabi-

lize all the moduli while preserving supersymmetry. In Minkowski space, the gravitational

anomaly condition H − V + 29T = 273 makes it impossible to avoid moduli. Since the

tensor multiplet contains massless scalars, to avoid tensor moduli we must have T = 0.

This implies that H ≥ 273 and therefore we have hypermultiplet moduli. In six dimen-

sions, there are also no N = 1 supersymmetric AdS vacua. This can be seen from the fact

that there are no AdS6 superalgebras with 8 supercharges in the Nahm classification [52].

The “landscape” in this paper refers to the complete moduli space of 6D gravity theo-

ries with one supersymmetry, although all these vacua are Minkowski and have massless

scalar moduli.

7.1 Extent of the space of 6D supergravities

For T = 1, our understanding of the space of theories, while still incomplete in many

respects, seems to suggest a simple global picture. There are a finite number of low-

energy nonabelian gauge groups and matter content which are compatible with anomaly

cancellation and physical constraints on gauge kinetic terms. We have an explicit approach

to embedding these models into F-theory, which seems successful for almost all acceptable

gauge groups and matter content. There are a few exotic combinations of gauge groups and

matter representations which give lattices which cannot be embedded into any unimodular

lattice associated with an acceptable F-theory base. For the moment, these models live in

the swampland. In the T = 1 supergravity landscape there are also some models which we

have found whose realization in F-theory would require divisors outside the Mori cone. This

may correspond to a new class of orbifold or non-geometric F-theory construction whose

precise implementation remains to be elucidated. For the vast majority of T = 1 models,

we have an explicit map from each model to a set of divisor classes in a given F-theory

base. Degree of freedom counting suggests that this topological data can be completed to

a full F-theory construction through a Weierstrass model, though a proof of this assertion

in a general context remains to be found. We have not addressed here the question of U(1)

factors in the gauge group and their associated charges. The anomaly constraints on U(1)

factors are more complicated [14] and lead to systems of Diophantine equations, whose

analysis will be discussed elsewhere [9].

We have shown in this paper that the situation for T < 9 is similar to that for T = 1

as a2 is positive. Again, there are a finite number of distinct nonabelian groups and matter

representations possible for this class of models. As T increases, it seems to be easier to

construct models which violate the conditions outlined in section 5.2 and which, therefore,

have no F-theory realization. Thus, the apparent swampland increases as T increases.

For T ≥ 9, however, the situation changes dramatically. As a2 becomes negative,

infinite families of apparently-consistent low-energy theories appear. Some infinite families

arise at fixed T , such as an infinite family we have explicitly constructed with gauge group

SU(N) × SU(N) at T ≥ 9. The infinite families at finite T must contain a bounded
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number of gauge group factors, as shown in section 3. Other infinite families of models

extend to arbitrarily large values of T , and the number of simple factors in the gauge group

can become unbounded as T → ∞. The infinite families described in section 4 satisfy the

unimodular embedding constraint, indicating that this constraint is not a strong constraint

for the existence of an F-theory construction. As shown in section 6.5, however, the infinite

families we have explicitly constructed are not compatible with other constraints from F-

theory, such as the Kodaira constraint.

The bounded rank argument in section 6.5 shows that the number of 6D N = 1

supergravity models compatible with F-theory must be finite. A heuristic version of this

argument is as follows: each of the nonabelian gauge group factors Gi and associated

matter fields are realized in F-theory by tuning the coefficients of polynomials f, g in the

Weierstrass model

y2 = x3 + fx + g . (7.1)

For any F-theory model on a blowup of a space Fm, f, g can be thought of as sections of

−4K,−6K respectively over (a generally singular) Fm, and have a fixed number of total

coefficients available for tuning (roughly 244 = 273−29). Since each gauge group factor and

associated matter require tuning additional coefficients to achieve the desired singularity

type for the fibration (which may be at a singular point in the base which needs to be blown

up), only a finite number of distinct combinations of gauge groups and matter content can

be realized in this fashion.

This argument can be translated into the language of the low-energy supergravity the-

ory. As described in [5], in any 6D N = 1 supergravity theory the set of fields can be

decomposed into “blocks” associated with the simple factors in the gauge group and asso-

ciated matter representations. The finiteness argument above for F-theory models suggests

that, for models consistent with F-theory, each block added to a model must contribute

positively to H−V +29T . This is certainly the case for most supergravity blocks associated

with F-theory singularities which we understand. We leave a more general and rigorous

proof of these assertions for future work, but this argument suggests that by classifying in-

dividual blocks which contribute positive values H−V +29T we should in principle be able

to enumerate all of the finite set of supergravity models with possible F-theory realizations

at any fixed T , even when exotic matter fields such as those encountered in [5] are included

for which the F-theory singularity type is not yet classified. Including the transitions we

discuss in the following subsection which change the value of T , corresponding to blowing

up singular points on the F-theory base, would in principle make it possible to connect the

entire finite set of F-theory vacua in terms of the low-energy structure.

It was recently shown that all 10D supergravity theories not realized in string theory

are inconsistent as quantum theories [53]. It was conjectured in [3] that this “string uni-

versality” property holds for 6D N = 1 supergravities. Whether or not this is true, it is

interesting to speculate that the constraints associated with F-theory constructions may

have some shadow in the low-energy theory which can lead to new quantum consistency

conditions for 6D supergravities. For example, the constraint that Λ be embeddable in

a unimodular lattice, or the sign constraint −a · j > 0 may be realizable in some sim-
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ple way as consistency conditions on any low-energy supergravity theory, as discussed in

section 5. For other constraints, such as the detailed constraints on the form of a or the

Kähler/Mori cone, it is harder to see how such conditions can arise directly from the su-

pergravity description. It may be that these conditions can best be understood in terms of

the BPS string states underlying the anomaly lattice Λ; we hope to return to this question

in future work.

7.2 Charting the space of supergravities with string constructions

One important question is whether the constraints imposed by F-theory are satisfied by

all 6D models arising from string constructions, or whether they are just signatures of an

F-theory “corner” of the 6D supergravity landscape. We have looked at some examples

of 6D theories realized through other string constructions, including CFTs and Gepner

models [54, 55], orientifold models [50, 51, 56, 57] intersecting brane models [58, 59],

heterotic constructions [2, 46], and non-geometric string vacua [60]. In general, at least

from a limited sampling, it seems that most of the low-energy theories associated with these

constructions can be mapped to acceptable data for an F-theory construction, so F-theory

seems to cover a large fraction of the space of 6D low-energy theories which can be realized

through any string construction. It would, however, clearly be desirable to explore the other

branches of string theory more completely, to develop a more systematic understanding of

how the sets of low-energy theories arising from other string constructions intersect with

those coming from F-theory, and to ascertain whether the constraints described in 5.2 are

truly universal stringy constraints for 6D N = 1 theories.

One exception we have encountered to the general existence of F-theory constructions

is given by a class of heterotic line bundle constructions described in [46]. In that paper

we analyzed a class of low-energy models arising from heterotic string compactifications

which are also characterized by lattices, but in a slightly different fashion than those models

considered here. For a fixed gauge group containing factors U(N)×U(M), the models ex-

amined in [46] can have some number of bifundamental matter fields in the (N, M̄)+(N̄ , M)

representation and some number of bifundamental matter fields in the (N, M) + (N̄ , M̄)

representation. Each type of field contributes in the same way to the anomaly polynomials,

so models with the same total number of bifundamental fields map through (5.2) to identi-

cal F-theory constructions. We do not know of any mechanism in F-theory as it currently

exists to construct models with different distributions of bifundamental matter fields of

these two types. Thus, in this class of models the heterotic theory generates models which

cannot be realized in F-theory, although these models do not violate any of the constraints

described in section 5.2. It would be nice to no whether there is a generalization of F-theory

which would capture these heterotic models with mixed classes of bifundamental fields.

One class of models which we have not yet considered is the class of gauged supergravity

models [24, 61]. It may be possible to perform a similar analysis of general 6D gauged

supergravity models, although the significance of such supergravity theories is unclear as

they do not give rise to stable Minkowski vacua. We leave this for future work.
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7.3 Connectivity of the space of 6D supergravities

In most of this paper, and in the preceding discussion, we have referred to supergravity

models with distinct gauge groups and matter content as distinct “theories” or “models”.

This is not quite correct. In fact, each consistent model with a fixed gauge group and

matter content has a moduli space of vacua. At certain limits in the moduli space, the

theory can develop a singularity and the field content can change in a discrete fashion. The

simplest example of this is the phenomenon of Higgsing, familiar from the standard model

and basic quantum field theory, in which a vacuum expectation value of scalar fields breaks

a gauge symmetry, giving mass to a formerly massless gauge field while removing one or

more scalar fields from the spectrum. Such transitions in the full space of six-dimensional

supergravity theories connect different branches while preserving the total H − V . More

exotic transitions, studied in [32, 39, 63], arise at singular points where strings become

massless, associated with points in the low-energy theory where j · bi vanishes. Passing

through such transition points can change the number of tensor multiplets in the theory,

still preserving H − V + 29T . In this way, the set of six-dimensional supergravity models

is really a highly-connected space with many branches of different dimensionality. The

tools we have developed in this and preceding papers may be useful in exploring the global

structure of this space. For example, the anomaly constraints can be used to characterize

allowed transitions in terms of the field content of the low-energy theory. With a better

understanding of what kinds of transitions between branches are allowed, it may be possible

to prove that the space of acceptable models is connected into a single moduli space. Thus,

we may be able to probe the validity of at least the elliptically-fibered version of the Reid

fantasy [64] by analysis of the connectivity structure of the countable set of apparently-

consistent low-energy N = 1 6D supergravity theories.

If in fact it could be shown that the set of consistent low-energy 6D theories is con-

nected, it would provide a picture in which there is a single consistent N = 1 supergravity

theory, with many connected branches having different gauge groups and matter content.

If it could be shown that either the entire space of theories, or a connected subset

thereof, corresponds to the set of theories which can be realized by F-theory or other string

constructions, it would give a very simple picture of string theory as a single unified theory

underlying quantum gravity in 6D. Indeed, it seems likely that this can be realized for the

set of models which can be realized through F-theory, since the various singularity types

realized by tuning the coefficients of f, g in (7.1) are all connected continuously in the

space of coefficients. Thus, at least the space of F-theory compactifications should form

a connected moduli space, with various branches associated with 6D supergravity theories

with various gauge groups and matter content.

8 Conclusions

In this paper we have addressed some global questions regarding the space of consistent

supergravity theories in six dimensions. We have focused on theories with N = 1 super-

symmetry and nonabelian gauge groups. We have extended our previous analysis of such

theories to incorporate multiple tensor multiplets. We have shown that when the number
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of tensor multiplets T is less than 9, there are a finite number of possible gauge groups

and matter representations possible for such theories. We have identified infinite families

of models at T = 9 and greater which satisfy anomaly cancellation and which have proper

signs for all gauge kinetic terms.

We have shown that every consistent 6D supergravity theory can be associated with an

integral lattice, associated with the coefficients in the anomaly polynomial. This lattice can

be used to construct topological data for an F-theory compactification whenever one exists.

We have found a variety of low-energy supergravity models which do not violate any known

consistency conditions from the low-energy point of view but which have no embedding in

F-theory. The geometrical constraints of F-theory provide criteria for identifying such low-

energy models from the associated lattice structure, and suggest possible new low-energy

consistency conditions for quantum supergravity theories.

The overall picture is that, while for Lagrangian models with only one tensor field most

apparently-consistent supergravity theories have realizations in F-theory, for models with

more tensor fields the vast majority of apparently-consistent models have no known string

realization through F-theory or any other string vacuum construction. Thus, most of these

models lie in the “swampland”. If these models cannot be realized through some novel

string construction, it will indicate that string theory imposes strong constraints on 6D

N = 1 supergravity theories beyond the known stringent anomaly cancellation and gauge

kinetic term sign constraints. If these additional constraints can be understood in terms

of new quantum consistency conditions on the set of low-energy effective theories, it will

provide a new window on general theories of quantum gravity; if not, it will indicate the

existence of stringy constraints which may distinguish string theory from other possible

UV-complete quantum gravity theories.

The perspective and tools developed in this work provide a framework in which it

may be possible to carry out a systematic mapping of the landscape of 6D supergravity

theories. Identifying which subsets of this landscape are associated with the different classes

of string vacuum construction, and understanding how the many branches of this landscape

are connected through Higgs and tensionless string transitions, promises to lead to a richer

understanding of how the different string constructions are related, and of the nature of the

landscape and the swampland. Such understanding in the simpler case of six dimensions

will hopefully teach us some new lessons which may be relevant in the more complicated

and physically relevant case of four dimensions.
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