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ABSTRACT

This article developed and implemented a new methodology for calculating the standardized evapo-

transpiration deficit index (SEDI) globally based on the log-logistic distribution to fit the evaporation deficit

(ED), the difference between actual evapotranspiration (ETa) and atmospheric evaporative demand (AED).

Our findings demonstrate that, regardless of the AED dataset used, a log-logistic distribution most optimally

fitted the ED time series. As such, in many regions across the terrestrial globe, the SEDI is insensitive to the

AEDmethod used for calculation, with the exception of wintermonths and boreal regions. The SEDI showed

significant correlations (p , 0.05) with the standardized precipitation evapotranspiration index (SPEI)

across a wide range of regions, particularly for short (,3month) SPEI time scales. This work provides a robust

approach for calculating spatially and temporally comparable SEDI estimates, regardless of the climate re-

gion and land surface conditions, and it assesses the performance and the applicability of the SEDI to quantify

drought severity across varying crop and natural vegetation areas.

1. Introduction

Drought is usually considered as a period of abnor-

mally low water supply that fails to satisfy the existing

demands of different natural systems and socioeco-

nomic sectors. This situation is usually caused by a

prolonged period of below-average precipitation. It is

well known that drought is difficult to identify and

quantify over space and time, which makes it one of the

most complex natural hazards (Wilhite 1993, 2000;

Vicente-Serrano 2016). This is particularly so because

according to most definitions of drought, with the ex-

ception of those that focus exclusively onmeteorological

aspects, droughts are impact-dependent phenomena

that affect a diverse range of natural and socioeconomic

variables (Lloyd-Hughes 2014; Van Loon 2015). More-

over, the degree of vulnerability and the capacity of

recovery to drought occurrence strongly differ among

regions as a function of their background socioeconomic

and environmental characteristics (Simelton et al. 2009;

Choat et al. 2012; Antwi-Agyei et al. 2012; Yang et al.

2017). Therefore, drought severity depends on meteo-

rological conditions (e.g., magnitude and duration of

precipitation shortage) and is also impacted by several

human and environmental factors, such as land use or

risk management (Van Loon et al. 2016).

However, the quantification of drought severity

based on its impacts is a challenge, given the spatial

differences, the sector of interest, and the availability of
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impact data (Stahl et al. 2015, 2016). For these reasons,

scientists, managers, and policy-makers usually quantify

drought based on climate information only (McKee

et al. 1993; Vicente-Serrano et al. 2010a): the most

widely used drought metrics are generally based on cli-

mate information available across the globe. Overall,

the potential of drought indices is particularly related to

the possibility of quantifying drought severity and com-

paring their climate component both spatially and tem-

porally. A detailed review of current climate drought

indices can be found in Heim (2002), Keyantash and

Dracup (2002), and Mishra and Singh (2010).

Being inexpensively and widely observed, precipita-

tion is usually employed as the key input variable in

traditional drought indices (e.g., Palmer 1965; McKee

et al. 1993). However, precipitation is only one of the

multiple variables that control water stress conditions in

natural ecosystems and affect water availability in usable

water stores (e.g., soil moisture, streamflow, reservoir

storage, and lake water). Water shortage is ultimately

dependent on the input of water through precipitation,

lateral inflows, melting, or irrigation and is also crucially

regulated by the atmospheric evaporative demand (AED),

that is, the potential of the lower atmosphere to receive

water via evapotranspiration from the abovementioned

terrestrial water stores. Under low soil moisture, rising

AED rates further increases vegetation water stress (e.g.,

Ciais et al. 2005; McDowell et al. 2008; Zampieri et al.

2009), causing stomata closure and the collapse of the

photosynthetic machinery potentially resulting in crop

failure (Lobell et al. 2011; Asseng et al. 2015) and forest

decay and mortality (Allen et al. 2015; Anderegg et al.

2013; Breshears et al. 2013).

Numerous studies have demonstrated the importance

of AED in triggering drought or intensifying drought

severity (e.g., Ciais et al. 2005; Otkin et al. 2016). For

these reasons, several drought indices use AED in their

formulations. For example, compared to precipitation-

based drought indices such as the standardized precipi-

tation index (SPI) (McKee et al. 1993), the standardized

precipitation evapotranspiration index (SPEI) (Vicente-

Serrano et al. 2010a), which is obtained by means of the

standardization of the difference between precipitation

and AED at different time scales, has shown better

performance in terms of identifying drought impacts in a

variety of drought-prone systems and regions across the

globe (Vicente-Serrano et al. 2012a; McEvoy et al. 2012;

Wang et al. 2006; Chen et al. 2016; Labudova et al. 2017).

In fact, it has been suggested that the AED may be the

single most useful variable to quantify drought severity

(McEvoy et al. 2016a). Accordingly, drought indices

based only onAEDhave been recently formulated under

the premise that AED anomalies are strongly connected,

via a complementary relationship, with precipitation, soil

moisture, and actual evapotranspiration (ETa) anomalies

(Hobbins et al. 2016; McEvoy et al. 2016b).

Here, a conceptual distinction betweenAEDandETa

must be established. There are different forms to deter-

mine AED, among them pan evaporation (the evap-

oration from a pan full of water) or crop reference

evapotranspiration (ETo; the ETa of a hypothetical un-

stressed alfalfa grassland of uniform height with a closed

canopy so the soil is shaded), which can be compared

spatially since its calculation only depends on meteoro-

logical inputs (Katerji and Rana 2011). Independent of

the choice of these definitions, AED does not directly

depend on the actual water storage in land, and it is thus

different from the ETa, which is the volume of water that

is actually evaporated directly from soil, water and veg-

etation surfaces and/or transpired from vegetation into

the atmosphere. While there are no water constraints for

evaporation under humid conditions, ETa is constrained

mainly by soil water availability (and ultimately by pre-

cipitation) in dry environments (Budyko 1948). As such,

the use of drought indices that account only for AED is

inappropriate in regions with nonconstraining soil mois-

ture conditions, given that a positive AED anomaly

cannot be representative of drought severity. In such

regions, water stress conditions are likely better quan-

tified considering both AED and ETa.

From agronomic and ecophysiological perspectives,

the evaporation deficit (ED), defined as the difference

between ETa and AED, is more relevant than consid-

ering ETa or AED separately. Regardless of the climate

regime, high ED causes stomatal closure, thus a de-

crease in the photosynthetic activity, carbohydrate ac-

cumulation, and net primary production (Leuning 1995;

Brümmer et al. 2012; Vicente-Serrano et al. 2015). If the

ED is very high and wilting point is reached, plants may

die as a result of vascular damage (Will et al. 2013;

Anderegg et al. 2015). Under the aforementioned as-

sumptions, the ED has been proposed for quantifying

drought severity (Narasimhan and Srinivasan 2005; Yao

et al. 2010; Anderson et al. 2011; Kim and Rhee 2016).

Unlike AED, which can be calculated by means of rel-

atively simple physically based models (e.g., Penman

1948; Allen et al. 1998; Rotstayn et al. 2006), the calcu-

lation of ETa is subject to many sources of uncertainty.

ETa depends on a wide range of factors, including, but

not limited to, AED, soil water availability, soil char-

acteristics, vegetation morphology, physiology and

phenology, and the complex relationships existing be-

tween these factors (Morton 1983).

Recently, the availability of remote sensing data and

surface–atmosphere models has allowed for the devel-

opment of global ETa products (Allen et al. 2007; Fisher
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et al. 2008; Mu et al. 2011; Miralles et al. 2011; Zhang

et al. 2016). Similarly, drought indices have been de-

veloped based on the ED, mainly to analyze natural

vegetation and crop stress; for instance, Anderson et al.

(2011), Yao et al. (2010), andMu et al. (2011) developed

different normalized drought indices [e.g., the evapo-

transpiration deficit index (EDI) and the evaporative

stress index (ESI)] by means of observational meteo-

rological data and space-based products to estimate ED.

Following the same rationale, Kim and Rhee (2016)

proposed the standardized evapotranspiration deficit

index (SEDI) using ETa data estimated based on

Bouchet’s (1963) complementary hypothesis and used

an approach widely used to calculate a drought index

comparable spatially and temporally (e.g., the SPI and

the SPEI). Here, we follow the same nomenclature

proposed by Kim and Rhee (2016) to refer to a stan-

dardized drought index based on the ED.

It is expected that future improvements on ETa esti-

mates based on remote sensing data and model output

will increase the use of ETa for analyzing and moni-

toring drought at large scales (Fisher et al. 2017). Our

definition of SEDI allows for a straightforward utiliza-

tion of these estimates. Yet, it is necessary to develop

robust statistical calculation procedures and to com-

prehensively evaluate the usefulness of this indicator in

comparison to other available drought indices.

Our overarching goal is to provide a metric using ED

to quantify drought severity andmake robust spatial and

seasonal comparisons. Our specific objectives are to

(i) find a robust probability distribution to fit the ED

series worldwide to calculate the SEDI; (ii) compare the

impact of different AED estimations on the SEDI;

(iii) compare the SEDI time series at the global scalewith

another widely used drought index that accounts for

precipitation andAED, namely, the SPEI; and (iv) assess

the skill of the SEDI in terms of determining vegetation

activity anomalies globally.

2. Data

a. Actual evapotranspiration

We used ETa estimates from the Global Land Evap-

oration AmsterdamModel (GLEAM) version 3a (v3a).

Full details about the development and characteristics of

this dataset are found in Miralles et al. (2011) and

Martens et al. (2017). GLEAM is a methodology dedi-

cated to deriving evaporation from satellite observations

of its main drivers. Interception loss is independently

calculated usingGash’s (1979) analytical model forced by

observations of precipitation and vegetation cover while

the remaining evaporation components use Priestley and

Taylor’s (1972) potential evaporation formulation con-

strained by a multiplicative stress factor. For transpira-

tion and soil evaporation, this stress factor is calculated

based on the content of water in vegetation (microwave

vegetation optical depth) and root zone (multilayer soil

model driven by observations of precipitation and up-

dated through assimilation of microwave surface soil

moisture).

Actual evaporation estimates from GLEAM have

been validated against eddy covariance towers world-

wide, and errors have been estimated base on triple

collocation analysis. Miralles et al. (2011) reported av-

erage correlations of 0.83 and 0.90 for daily and monthly

estimates, respectively, and an average root-mean-square

difference (RMSD) of approximately 0.3 mmday21 for

in situ validations against 43 eddy covariance towers.

More recently, Martens et al. (2017) reported a mean

correlation of 0.81–0.86 based on 91 eddy covariance

towers. In addition, GLEAM output has shown a better

performance than other available evaporation datasets

to close the water balance over a wide range of hy-

drological catchments, a better agreement with the

expectations from the Budyko framework, and a good

skill to partition evaporation fluxes into transpiration,

interception, and bare soil evaporation (Michel et al.

2016; Miralles et al. 2016). GLEAM datasets are

openly available globally at daily temporal resolution

and 0.258 spatial resolution for 1980–2016 (https://www.

gleam.eu/#downloads). Here, we aggregated the data to

monthly 0.58 resolution.

b. Atmospheric evaporative demand and

precipitation

To assess the sensitivity of SEDI to different AED

inputs, two AED datasets were used: 1) GLEAM v3a

(Miralles et al. 2011;Martens et al. 2017) and 2) Climatic

Research Unit (CRU) time series (TS), version 3.24.01

(Harris et al. 2014). GLEAM calculates Priestley and

Taylor’s (1972) potential evapotranspiration (ETp),

which is only forced by incoming radiation and air

temperature, and here are used as a proxy of AED. The

CRU TS AED is estimated by Allen’s et al. (1998)

FAO-56 ETo Penman–Monteith equation, which is

simplified by assuming spatiotemporally constant wind

speed (Harris et al. 2014). For the calculation of SPEI we

used the analogous CRU TS precipitation dataset.

c. Global GIMMS NDVI

To compare the SEDI spatiotemporal variability

with the anomalies of vegetation activity that could be

related to drought severity conditions, a metric of veg-

etation activity based on satellite data was used. For this

purpose, we used the normalized difference vegetation
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index (NDVI) dataset (3g.v1) developed by the Global

Inventory Monitoring and Modeling System (GIMMS)

observed by AVHRR sensors on board NOAA satel-

lites (Pinzon and Tucker 2014), which Beck et al. (2011)

demonstrated was the optimal AVHRR-NDVI dataset

for time series analysis. The NDVI exhibits a strong

relationship with vegetation parameters such as green

biomass (Tucker et al. 1983; Gutman 1991) and frac-

tional vegetation cover (Gillies et al. 1997; Duncan et al.

1993). NDVI has long been used to analyze drought

impacts on vegetation (Liu and Kogan 1996; Kogan

1997; McVicar and Jupp 1998; Ji and Peters 2003;

Vicente-Serrano et al. 2013; Papagiannopoulou et al.

2017). The NDVI dataset is monthly at 0.58 resolution

over 1981–2014. To facilitate a direct comparison be-

tween the NDVI and SEDI in both space and time, the

NDVI series were standardized by fitting the monthly

NDVI series to a log-logistic distribution and the cu-

mulative probabilities were transformed to standardized

units following the same approach used for the SPI

and the SPEI (Vicente-Serrano 2006; Vicente-Serrano

et al. 2010a).

3. Methods

a. Calculation of the evapotranspiration deficit from

the gridded global data

Recall that we define the ED as ETa minus AED.

Two versions of monthly ED were calculated; both used

monthly GLEAM ETa estimates with AED formula-

tions from 1) CRU TS version 3.24.01 ETo and

2) GLEAMETp. These calculations were performed for

the terrestrial globe excluding the warm desert areas and

Antarctica andGreenland, where severalmethodological

limitations exist (Fisher et al. 2011; Beguería et al. 2014).

Figure S1 in the supplemental material illustrates the

spatial averages and standard deviations of the ED in

representativemonths of the four seasons of the year, and

Fig. S2 shows the temporal evolution of the ED in some

world regions.

b. Assessment of different probability distributions to

calculate the SEDI

Eight probability distributions were tested [general

extreme value (GEV), log-logistic, lognormal, Pearson

III, generalized Pareto, Weibull, normal, and exponen-

tial distributions] to transform ED values to a stan-

dardized normal variable (i.e., SEDI). These statistical

distributions have been widely used to standardize nu-

merous hydrological and meteorological variables (e.g.,

Vicente-Serrano et al. 2012b; Stagge et al. 2015),

being a common tool to calculate spatially and temporally

comparable drought indices using either precipitation,

AED, or both (e.g., McKee et al. 1993; Vicente-Serrano

et al. 2010a; Ma et al. 2014; Hobbins et al. 2016). Un-

fortunately, no previous studies have tested the good-

ness of these distributions to fit ED values. Since the

use of different probability distributions may produce

substantial differences in the resulting drought indices

(e.g., Stagge et al. 2015; Vicente-Serrano and Beguería

2016), we calculated 16 different global SEDI datasets,

each one using one of the aforementioned probability

distributions and the two different AED datasets

(CRU TS version 3.24.01 and GLEAM). Following

Hosking (1990), the parameters of the distributions

were calculated using unbiased probability weighted

moments (UB-PWMs). Calculations were performed

independently for each ED monthly series to account

for the strong seasonality of ED in the majority of the

world climates. Once the monthly ED series were fit

to a probability distribution, cumulative probabilities

of the ED values were obtained and transformed to

standardized units (SEDI). For this purpose, the clas-

sical approach of Abramowitz and Stegun (1965) was

used, which is also used for calculating other drought

indices such as the SPI and the SPEI.

Similar to the SPI handling of months with no pre-

cipitation, the calculation of ED also considers the case

of months with ED 5 0.0 mmmonth21. This occurs

when ETa equals AED. In humid and cold regions these

conditions can occur frequently during winter months,

even at monthly time scales, given that ETa tends to

approach AED and there is adequate water availability

to satisfy ETa (because of low AED) of these regions at

these times. To cope with zero values, we implemented

Stagge et al.’s (2015) approach to calculate the SPI,

which is based on the ‘‘center of mass’’ of the zero dis-

tribution rather than the maximum probability.

TheUB-PWMs calculation of eachmonthly ED series

requires a minimum of three values larger than zero in

the entire multiannual record. In large areas of the

NorthernHemisphere, ED is likely to be zero during the

winter months, which makes it impossible to define

the SEDI in these months and regions. Additionally, an

SEDI calculation based on some of the eight tested

probability distributions is not possible in some cases

because the parameters of that specific distribution

cannot be fitted to the ED data. Moreover, in a few

cases, the origin parameter of the distribution can be

higher than the lowest observed ED values, indicating

no solution for the SEDI in these cases.

To assess the performance and robustness of the eight

probability distributions used for the calculation of the

SEDI, we first calculated the percentage of monthly

ED series that cannot be fitted by each of them, and
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distributions with high percentages were discarded

(usually .50%; see Table 1). With the remaining dis-

tributions, the normality of the resulting SEDI series

across the terrestrial globe at each 0.58 resolution pixel

was tested. Stagge et al. (2015) applied the Shapiro–

Wilks (SW) test to determine whether the standardized

variable (i.e., the SEDI) follows a standard normal dis-

tribution. The advantage of this test is that the param-

eter values are known beforehand and not computed

from the input data. The p values of the SW test for each

of the monthly global SEDI series obtained with the

eight probability distributions were calculated. A re-

jection rate of p , 0.05 (corresponding to 95% confi-

dence level) was used to discriminate the SEDI series

that follow a normal standard variable.

Nevertheless, as shown by Vicente-Serrano and

Beguería (2016), it is difficult to define the ‘‘best’’ can-

didate distribution to calculate a standardized drought

index, as the application of the SW goodness-of-fit test

to evaluate the goodness of a distribution is limited at

the tails of the distribution that are the most relevant

values for a drought index. For this reason, we also an-

alyzed the frequencies of high and low SEDI values

obtained by the eight probability distributions and

compared the associated return periods.

c. Comparison between SEDI obtained from two

different AED datasets and between SEDI and

SPEI

SEDI calculated using the CRU TS and GLEAM

AED datasets were compared by means of the per-pixel

Pearson’s correlation coefficient considering the differ-

ent monthly series.

d. Comparison between SEDI and SPEI

The SPEI at time scales ranging between 1 and

24 months was calculated using CRU TS monthly pre-

cipitation and GLEAM AED data for 1981–2014. For

this purpose, a log-logistic distribution and UB-PWMs

were used [see details in Vicente-Serrano et al. (2010a),

Beguería et al. (2014), andVicente-Serrano andBeguería

(2016)]. For each pixel, we calculated the SPEI time scale

that had the highest correlation with the SEDI for the

different monthly series. Regardless of the SPEI time

scale, we also calculated the spatial distribution of the

maximum correlation between SPEI and SEDI.

e. Assessing the skill of the SEDI and SPEI in

identifying spatiotemporal anomalies of vegetation

state

Finally, the relationship between the standardized

NDVI (sNDVI) and the SEDI and SPEI using Pearson’s

correlation coefficients was calculated. As the global
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relationship between vegetation activity and drought is

strongly dependent on the drought time scale (Vicente-

Serrano et al. 2013), the correlation between the sNDVI

and the SPEI was calculated at time scales ranging be-

tween 1 and 24 months. Given the strong seasonality of

vegetation, correlations were calculated independently

for specific months of the year as well as for the monthly

time series as a whole. Regardless of the time scale of the

SPEI, we only retained the lag of maximum correlations

and compared it spatially with the correlations obtained

between sNDVI and SEDI.

4. Results

a. Assessment of probability distributions to calculate

the SEDI at the global scale

Table 1 shows the percentage of monthly series for

which the SEDI could not be calculated based on

GLEAM and CRU TS AED data for each of the eight

probability distributions used for standardization. The

lognormal andWeibull distributions showed amarkedly

high percentage of series (often exceeding 40% of the

terrestrial land surface) with no solution for the SEDI,

suggesting that they are least suited for SEDI calcula-

tion, so they were removed from further analyses. The

remaining six distributions showed smaller percentages

of cases for which no solution could be found, with

normal and exponential distributions being slightly

better. Interestingly, there is a clear seasonal pattern in

the ability of these six distributions to fit the ED series,

with better performance found between March and

September, compared to the October–February period.

In comparison to the GLEAM AED, the SEDI calcu-

lated using the CRU TSAED shows a lower percentage

of cases with no solution for the SEDI fitting. This may

be explained by the higher AED values found in the

CRU TS dataset.

The Shapiro–Wilks normality test applied to the SEDI

series computed using the six remaining distributions

indicated a poor performance of the generalized Pareto,

normal, and exponential distributions, which had large

percentages (typically 50%–90%) of monthly series for

which the null hypothesis of normality was rejected

(Table 2, for the GLEAM and CRU TS AED datasets,

respectively). The remaining three distributions had a

lower percentage of rejections, with the log-logistic dis-

tribution having the lowest overall. The results were

similar with the two AED datasets considered, although

the SEDI calculated with the CRU TS AED yielded

worse results (i.e., a larger proportion of rejections). In

both AED cases, there was a notable seasonality, with

fewer rejections in the boreal summer (less than 10% for

log-logistic) and more in boreal winter (around 25%).

Dry events are located in the lower tail of distribution,

and it is important to discern departures from normality

in this region, even though data located there may rep-

resent less than 2%–3% of all data. Figure 1a shows the

relationship between the return periods and raw SEDI

values obtained from GLEAM AED using log-logistic

and GEV distributions, with Fig. 1b documenting simi-

lar for the log-logistic and Pearson-III distributions. The

SEDI values obtained with GEV and Pearson-III dis-

tributions show more extreme values in both tails than

those obtained with the log-logistic distribution. This

translates to higher return periods and more extreme

SEDI values with GEV and Pearson-III distributions in

comparison to the log-logistic distribution.

The frequencies of high and low SEDI events using

the GEV probability distribution for standardization

are unrealistically high using a sample of 35 yr The plots

TABLE 2. Percentage of monthly SEDI series calculated using the remaining six probability distributions for which the null hypothesis of

normality was rejected (fail-to-reject rate) by the SW test at a confidence level p 5 0.05.

Month

Log-logistic GEV Pearson III

Generalized

Pareto Normal Exponential

GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU GLEAM CRU

Jan 75.9 60.0 68.0 58.6 65.7 58.2 20.4 13.1 35.5 46.6 11.2 8.2

Feb 74.3 57.6 68.7 57.1 66.6 56.7 22.4 14.7 38.8 46.7 10.7 8.8

Mar 86.3 66.3 79.4 64.4 77.0 65.2 24.0 14.3 50.3 53.4 14.4 9.2

Apr 89.0 78.1 81.3 74.2 79.3 74.6 22.6 15.4 51.3 59.3 16.1 10.2

May 91.4 88.7 83.2 85.5 80.8 86.1 23.6 18.0 51.3 71.5 15.2 12.0

Jun 92.8 89.1 81.6 85.5 79.9 86.3 19.5 18.9 48.2 71.9 11.8 12.0

Jul 91.4 88.9 80.8 84.9 78.5 86.2 19.1 18.5 44.2 71.3 10.6 11.1

Aug 87.7 88.8 75.8 85.1 72.1 86.0 17.9 17.7 36.5 68.1 11.2 11.0

Sep 87.3 88.7 73.9 85.4 70.7 86.0 20.4 17.9 36.6 71.5 12.3 11.7

Oct 83.6 72.3 72.8 70.8 70.2 70.6 19.2 17.9 38.1 58.0 12.5 11.1

Nov 81.8 59.0 73.3 56.8 71.1 56.5 20.1 11.9 40.9 46.5 12.8 7.4

Dec 76.9 53.4 68.2 52.4 66.4 51.8 18.3 12.6 37.7 40.2 10.8 7.6
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are truncated to 1 event in 500 cases, corresponding

to62.88s, but even longer return periods were obtained

with the GEV. On the other hand, the log-logistic dis-

tribution provided more coherent return periods and

less extreme SEDI values. The plots also show that

differences found in the high-density region (61.80s)

between the different probability distributions have

only a residual influence on the SEDI values. The re-

sults based on the CRU TS AED yielded similar re-

sults. This is clearly illustrated in Fig. 2, which shows

the frequency of values below 22.58s (which corre-

sponds to a return period of 1 in 200 yr) in each time

series. As expected, the majority of series do not show

values below the threshold, but lower percentages

dominate for the log-logistic distribution. The SEDI

series obtained with GEV and Pearson III distributions

show higher percentage of very extreme values. Given

the relatively short sample used here (1980–2014,

with the start date determined by when the satellite

remote sensing first becomes available), it is unlikely

to find such a high frequency of SEDI cases corre-

sponding to a return period higher than 200 years.

Considering these results altogether (i.e., Tables 1

and 2 and Figs. 1 and 2), we recommend the use of the

FIG. 1. Global terrestrial relationship between SEDI (and return period: 1 event in number of cases) obtained from (a) GEV and

(b) Pearson-III distributions and log-logistic distribution using the (left) GLEAMand (right) CRUTSAED. Colors represent the density

of points (dark red is the highest density).

FIG. 2. Percentage of series showing absolute frequencies of SEDI values below22.58s: (a) GLEAMand (b) CRU

TS AED.
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log-logistic distribution for computing the SEDI series

across the globe.

b. Comparison of SEDI series from two different

AED datasets

The box-and-whisker plots in Fig. 3 summarize the

per-pixel correlations between the SEDI series and the

GLEAM and CRU TS AED datasets. All calculations

were computed independently for each month for the 34

years, and for the entire monthly time series altogether.

In general, correlations were dominantly positive and

statistically significant (p, 0.05), albeit being generally

higher for April and September inclusive. There is large

variability in the box-and-whisker plots, especially

during the Northern Hemisphere cold season where

Pearson correlation coefficient r ranges from maximum

positive to maximum negative values. Nevertheless,

with the exception of the Northern Hemisphere cold

season, the percentage of series showing significant cor-

relations across the globe was generally higher than

70%. Figure 4 depicts the spatial distribution of cor-

relations between both datasets annually and for the

midseason months (i.e., January, April, July, and Octo-

ber). Results reveal markedly seasonal differences.

During the boreal winter (i.e., January), large areas of the

Northern Hemisphere were not considered, given that

the SEDI had no solution for this region in themajority of

the cases, as discussed in section 3. Nevertheless, in low

latitudes, there were noticeable spatial differences in the

correlations. Although the latter were high in the ma-

jority of tropical and subtropical regions, they were close

to zero in the equatorial humid regions. This pattern

persists in all seasons and all months. Overall, during the

boreal spring (i.e., April) and summer (i.e., July), large

regions showed statistically significant correlations be-

tween the SEDI calculated using AED from CRU TS

and GLEAM.

The analysis of selected drought events illustrates a

good agreement between the two datasets. Figure 5

shows two recent exceptional droughts: 1) Russia (2010;

Fig. 5, top) and 2) southern United States and northern

Mexico (2011; Fig. 5, bottom). In both events, although

there are some spatial differences in the beginning and

end of the drought periods, strong spatial agreement was

exhibited between the two SEDI datasets during the

months of maximum extension of drought severity (July

and August for Russia and June–August for southern

North America).

c. Comparison of the SEDI and the SPEI at different

time scales

To avoid redundancy in the presentation of the results,

in the following we only use the SEDI series obtained with

the GLEAM AED dataset and the log-logistic standardi-

zation. The temporal variability of the SEDI showed a

strong agreement with the SPEI. Considering only the

SPEI time scale with the best correlation with the SEDI,

FIG. 3. Box-and-whisker plots showing the r between SEDI series calculated from GLEAM and CRU TS AED

for the entire monthly record and for each month independently. The thin horizontal line shows the threshold for

positive and significant correlations (p , 0.05), with numbers above the top whisker indicating the percentage of

global terrestrial area with such correlations. The thick line in the box represents the median, the upper and lower

parts of the box denote the interquartile range, and the whiskers show the 95% and 5% confidence levels.
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large areas exhibited significant correlation (p , 0.05)

between both indices (Fig. 6). For instance, in the boreal

summer, more than 85% of the world exhibited significant

correlations between the SEDI and SPEI, despite the ex-

ceptionally low correlation in the rain forests ofAmazonia,

Congo, and Southeast Asia (Fig. 7). In general, the globe’s

semiarid regions showed the strongest (typically .0.7)

significant correlations between both drought indices,

likely reflecting the ample seasonal cycle and multiannual

climate variability in these regions.

SEDI series exhibited higher correlations with short

SPEI time scales (Fig. 8). Independent of the month,

correlations were significant (p, 0.05) over the majority

of the globe, considering SPEI time scales between 1 and

9 months. With respect to longer time scales, the

magnitude and statistical significance of the correla-

tions diminished progressively. In the boreal summer,

the differences in the magnitude of the correlations

among the different time scales were lower, but lower

correlations were observed for long SPEI time scales.

About 40% of the world exhibited the strongest cor-

relation at the 1-month SPEI time scale, compared to

15%–20% at the 2-month time scale (Table 3). In

summary, around 80% of world exhibited the highest

and most statistically significant (p , 0.05) correla-

tions between the SEDI and SPEI considering SPEI

time scales shorter than 5 months. Exceptionally, a

few regions (,10% of the terrestrial globe) showed

the highest and most significant correlations at time

scales longer than 9 months. Thus, during the boreal

winter, apart from some areas in South America and

central Africa and in northern latitudinal areas, the

majority of regions showed maximum correlation

between the SEDI and SPEI at short SPEI time scales

(Fig. 9). The areas that did not show significant cor-

relations between the SEDI and SPEI mostly corre-

sponded to those showing higher correlations at

longer time scales (.12 months). This finding dem-

onstrates that where the SEDI is significantly corre-

lated with SPEI, this correlation is recorded at short

SPEI time scales (.5 months).

d. Relationships among the SEDI, SPEI, and the

sNDVI

Figure 10 illustrates the spatial distribution of the cor-

relations between the SEDI and sNDVI and between

SPEI and sNDVI for midseasonmonths and for the entire

record. There were important spatial differences in the

magnitude of the correlations between the sNDVI and

both drought indices at the global scale. Regardless of

the month, higher and statistically significant correlations

FIG. 4. Spatial distribution of the correlations between SEDI series calculated using the GLEAM and the CRU

TS datasets for AED for the midseason monthly series and for the series of all months. Terrestrially white areas

represent deserts and Greenland and areas in which the SEDI fit has no solution.
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were found over semiarid regions, including southwestern

North America, the Sahel, South Africa, Australia, and

northeastern Brazil, among others. Strong seasonality in

the correlations related to the phenological cycles of

vegetation was found. Monthly cross plots of SEDI and

SPEI and their correlations with sNDVI are seen Fig. 11,

which illustrates that the spatial correlations were positive

and statistically significant during all months. The corre-

lations with sNDVI were higher for SPEI than for SEDI,

particularly in the boreal summer (i.e., JJA).

The percentage of the terrestrial globe that showed

significant correlations between either SEDI and

sNDVI or SPEI and sNDVI were relatively small (typ-

ically ;15%–45%; see Table 4). For the full monthly

time series, less than 20% of the area exhibited signifi-

cant correlations, independent of the selected drought

index. This low percentage is partly explained by the

fact that most ecosystems on Earth are not driven by

water availability during one or more periods of the

year (e.g., dormancy). Monthly correlations between

the sNDVI and SPEI were statistically significant over

more than 40% of the area during the boreal summer,

where vegetation is active in large areas of the Northern

Hemisphere. The SEDI showed lower percentages, with

roughly 25% of the area showing significant correlations

with the sNDVI during the same season.

5. Discussion

a. Data used in the computation of the drought index

In this study we delve into the computation and per-

formance of the SEDI. The SEDI is based on the ED,

which is defined as the difference between the ETa and

FIG. 5. Spatial distribution of the SEDI values obtained from GLEAM and CRU TS AED data during the recent drought episodes that

affected (top) Russia and (bottom) southern North America in 2010 and 2011, respectively.
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the AED. The rationale behind this computation is to

explicitly account for the water actually used by the

vegetation (the ETa) compared with the amount of

water that the same ecosystem would have used in an

ideal perfect hydric state (i.e., with no water stress). The

departures between ETa and AED allow quantification

of the degree of water stress the vegetation is suffering

(i.e., the drought state). Nevertheless, it is also necessary

to state that EDdefined heremay depend onmany other

factors (e.g., leaf-out period, harvesting, fire, and pests)

and not just water availability.

A major technical problem with this approach is how

to obtain values of both ETa andAED,most notably the

former. The recent availability of global ETa datasets

based on satellite observations (McCabe et al. 2016;

Miralles et al. 2016; Zhang et al. 2016), however, has

opened the possibility to explore this approach.

Several studies have already proposed the quanti-

fication of drought severity based on either the ED

or the ratio between ETa and AED, or by using

ETa estimations obtained from remote sensing data

(e.g., Yao et al. 2010; Anderson et al. 2011). In their

South Korean study, Kim andRhee (2016) proposed the

use of the ED to develop a drought index. They esti-

mated ETa following the Budyko theoretical approach,

which establishes a nonlinear relationship between the

AED–precipitation ratio and the ETa–precipitation

ratio. The novelty of our study is that it calculates the

SEDI globally, using ETa from a global satellite dataset

(GLEAM). Despite the uncertainties in GLEAM, its

detailed description of the soil water balance and phe-

nological stress mean an improvement over using ETa

estimations using Budyko’s hydroclimatic framework

(Martens et al. 2017).

Regarding the AED data, two datasets were compared

to calculate the SEDI globally. The first (GLEAM) cal-

culates AED using the Priestley and Taylor’s (1972) ETp

formulation (Priestley–Taylor scheme). The second (CRU

TS) calculates AED using a simplification of Allen et al.’s

(1998) FAO-56 Penman–Monteith equation. Several

studies have shown that the spatial and temporal vari-

ability of the AED is strongly dependent on the

methodology used to estimate this variable (e.g.,

Espadafor et al. 2011; Vicente-Serrano et al. 2014;

Wang et al. 2015; Fisher et al. 2011) and on the un-

certainty in the atmospheric forcing data (McVicar

et al. 2012a,b). Here, we assessed the sensitivity of the

global-scale SEDI to the choice of AED and found

notable differences in the boreal winter months (i.e.,

DJF) and also in the humid equatorial regions during

their summer months (i.e., JJA); these are regions in

which the aerodynamic component of AED can be

substantial (McVicar et al. 2012b). As the Priestley–

Taylor scheme is a radiative-based estimate of ETp

(Donohue et al. 2010) that does not include aero-

dynamic variables (i.e., relative humidity) explicitly

in its calculations, whereas the FAO-56 Penman–

Monteith formulation does, they are expected to de-

part. Conversely, in subhumid to semiarid climates of

both hemispheres, and especially during their summer,

the correlation between the two SEDI datasets was

strong and not sensitive to the AED dataset used in the

calculations. This is highly relevant for drought analy-

sis and monitoring since in these regions vegetation

FIG. 6. Box-and-whisker plots showing r between the SEDI and SPEI for specific months of the year as well as for

the entire record. The thin horizontal line shows the threshold for positive and significant correlations (p , 0.05),

with numbers above the top whisker indicating the percentage of global terrestrial area with such correlations. The

thick line in the box represents themedian, the upper and lower parts of the box denote the interquartile range, and

the whiskers show the 95% and 5% confidence levels.
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dynamics are more determined by drought variability

(Vicente-Serrano et al. 2013).

In tropical forests, the correlation between both

SEDI datasets was statistically not significant, regard-

less of the season of the year. There are several factors

driving this pattern. It can be related to the low climate

data availability. While GLEAM AED uses reanalysis

output the CRU TS AED depends on observational

data, which are sparse over these regions (Harris et al.

2014). It can also be related to uncertainties in the re-

analysis output meteorological fields, which are the

likely cause for the difference found between the two

SEDI datasets, particularly for those variables that are

most difficult to model, such as wind speed and solar

radiation (McVicar et al. 2008; Perdigao et al. 2016).

Moreover, the lack of relative humidity in the Priestley–

Taylor scheme could affect the estimations, given that

strong changes in this variable have been recorded in

observations and reanalysis output over the past two

decades (Willett et al. 2014; Vicente-Serrano et al.

2017), and it is taken into account in the Penman–

Monteith ETo.

Despite the differences found, the SEDI provides a

quantification of the intensity of drought that is largely

independent of the method used to compute the AED

in most global regions affected by recurrent droughts

events. Low sensitivity of the SEDI to the methodology

used to estimate AED is relevant for the evaluation

of impact in some regions such as the Sahel, South

America, or central Asia. In these regions the impacts of

droughts are usually severe, and quantifying the extent

and intensity of drought conditions is critical to inform

policy and guide mitigating action.

Although we provide an initial assessment of the

impact of using different datasets to compute the

SEDI at globally, further research is needed to test

FIG. 7. Spatial distribution of the correlations between SEDI and SPEI series for midseason months and for the

entire record. Terrestrially white areas represent deserts and Greenland and areas in which the SEDI fit has no

solution.
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FIG. 8. Correlation between the SEDI and SPEI at different time scales (from 1 to 24 months) for specific months

and for the entire record. The thin horizontal line shows the threshold for positive and significant correlations

(p , 0.05), with numbers above the top whisker indicating the percentage of global terrestrial area with such

correlations. The thick line in the box represents the median, the upper and lower parts of the box denote the

interquartile range, and the whiskers show the 95% and 5% confidence levels.
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the sensibility of the SEDI to both ETa and AED

variables under a range of climate and land-cover

conditions and to investigate the impact of using

different ETa and AED datasets in the calculation of

the SEDI. Meanwhile, there are several international

initiatives to improve the quality and assess the un-

certainties in global ET data from satellite and in situ

observations (Zhang et al. 2016; McCabe et al. 2017;

Fisher et al. 2017).

b. Optimum probability distribution to calculate the

SEDI worldwide

This study tested eight standardized probability dis-

tribution approaches to calculate the SEDI and pro-

posed a robust methodology to obtain global SEDI

values that are spatially and temporally comparable.

The log-logistic probability distribution showed clear

advantages for calculating the SEDI. This distribution

has already been recommended when calculating the

SPEI (Vicente-Serrano et al. 2010a; Vicente-Serrano

and Beguería 2016). From the tested distributions, only

the GEV, Pearson-III, and log-logistic distributions

provided solutions for the SEDI over most of the ter-

restrial globe and provided SEDI series that most fre-

quently followed a standard normal distribution. The

Pearson-III distribution has been proposed to calculate

the SPI (Guttman 1999; Vicente-Serrano 2006) as the

most reliable alternative to the original proposed stan-

dardization using the gamma distribution (McKee et al.

1993). However, here we found that the Pearson-III

distribution yielded a higher number of SEDI series that

did not follow a normal distribution compared to the

log-logistic distribution. Moreover, the Pearson-III dis-

tribution tended to overestimate the frequency of ex-

treme SEDI values at both ends of the distribution. The

same was found with the GEV distribution, proposed by

Stagge et al. (2015) for calculating the SPEI. Based on

our global results, we recommend the use of the log-

logistic distribution to fit monthly ED series across the

terrestrial environment to obtain the SEDI. Moreover,

this recommendation holds independently of the AED

form used in this study.

c. Comparison of the SEDI with the SPEI

The SPEI has been thoroughly validated and used to

detect and monitor moisture anomalies for agricultural

(e.g., Zipper et al. 2016; Wang et al. 2006; Páscoa et al.

2017) and environmental applications (e.g., Zhang et al.

2017; Greenwood et al. 2017). The SEDI showed posi-

tive significant correlations with the SPEI over most

terrestrial ecosystems, with some exceptions in the

equatorial region and across some boreal regions.Under

abundant soil moisture the SPEI could also show a

TABLE 3. Percentage of global terrestrial 0.58 resolution grid points at which the maximum correlation between the SEDI and SPEI is

recorded corresponding to different SPEI time scales.

SPEI time scale (month) All months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 42.0 21.5 24.5 31.9 40.7 42.0 42.0 38.0 32.9 33.5 23.4 24.5 20.2

2 20.2 14.9 13.5 14.6 14.3 14.7 13.9 17.6 17.9 14.9 17.1 19.2 17.8

3 9.7 11.9 8.2 10.1 8.5 8.3 9.4 7.6 9.8 9.6 9.3 12.1 13.1

4 7.5 7.8 8.6 6.7 6.6 4.5 6.0 6.4 6.9 7.1 7.8 5.8 7.5

5 4.3 5.2 5.3 5.1 4.5 4.2 3.6 4.5 4.7 4.3 6.3 4.9 5.8

6 3.7 4.8 4.6 5.1 2.7 3.2 3.0 3.5 3.6 3.6 4.1 4.2 4.0

7 2.3 3.1 4.2 3.8 3.0 3.1 2.4 2.6 2.3 2.7 2.9 3.3 3.4

8 1.9 3.5 2.9 2.8 2.4 2.8 2.7 2.3 1.8 1.8 2.5 3.6 2.7

9 1.3 2.1 4.4 2.6 1.8 2.4 2.2 2.1 1.7 1.4 1.5 1.8 3.4

10 1.1 2.0 2.5 1.4 2.2 2.7 2.4 1.8 1.7 1.9 1.9 1.7 2.5

11 0.7 1.6 2.0 1.5 1.6 1.5 1.6 2.3 1.6 1.7 1.2 1.6 1.7

12 0.5 1.5 1.2 1.5 1.3 1.1 1.3 1.8 2.7 1.9 1.3 1.5 1.2

13 0.3 1.1 0.8 0.8 0.8 0.8 0.8 0.8 1.5 1.3 1.4 0.9 1.0

14 0.2 1.1 0.9 0.6 0.6 0.5 0.8 0.9 1.6 1.9 1.6 1.0 1.0

15 0.3 1.3 1.2 0.8 0.5 0.4 0.8 0.7 1.3 1.6 1.7 1.3 1.2

16 0.3 2.0 1.3 0.8 0.6 0.5 0.5 0.7 0.8 1.2 2.1 1.0 1.0

17 0.3 1.5 1.0 0.6 0.6 0.5 0.6 0.5 0.7 1.0 2.1 1.5 1.2

18 0.1 1.9 1.0 0.9 0.6 0.5 0.6 0.5 0.6 0.9 1.1 1.6 1.6

19 0.4 1.4 2.2 0.7 0.7 0.5 0.7 0.5 0.4 0.6 1.0 1.1 1.6

20 0.5 1.5 1.6 1.1 1.2 0.8 0.6 0.7 0.6 0.5 1.0 1.3 1.3

21 0.4 1.9 1.8 1.6 0.9 1.1 0.6 0.6 0.8 1.0 0.7 1.0 1.4

22 0.4 1.6 1.7 1.4 0.6 0.8 0.9 0.7 0.7 1.1 1.4 1.1 1.2

23 0.5 1.5 1.4 1.1 1.0 1.2 1.1 1.0 1.1 1.6 2.9 1.2 1.7

24 1.3 3.7 3.0 2.8 2.3 1.8 1.6 2.1 2.5 2.8 3.7 2.9 2.8
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drought signal if precipitation is below average when

really there is a limited plant available soil water con-

straint. This suggests that in some areas SPEI and SEDI

are complementary. In areas in which the ETa strongly

depends on precipitation (e.g., arid and semiarid re-

gions), SPEI and SEDI are expected to fit well; in other

regions they could provide different but complementary

information to assess drought severity. Nonetheless,

during the summer boreal season, the SEDI showed

significant correlation with the SPEI over the entire

Northern Hemisphere. If all data were perfect, SEDI

would be better in capturing vegetation impacts simply

because the use of precipitation in SPEI is meant to be

as a surrogate for plant water availability. Thus, SPEI

uses precipitation as proxy of ETa to identify drought

impacts on vegetation. This approach, although less

consistent physically than the SEDI, may produce better

results to determine drought severity than a complex

physical simulation model (i.e., Vicente-Serrano et al.

2011).

The SEDI was best correlated with the SPEI at short

time scales, with the highest and most significant

correlations recorded at 1- and 2-month time scales,

independent of the month. There are a few regions

where the strongest correlations between the SPEI

and SEDI were observed at time scales longer than

18 months, but these correlations were not statistically

significant. Therefore, we can regard SEDI as a short-

time-scale drought index, characterized by its sensi-

tivity to high-frequency climate variations. Kim and

Rhee (2016) suggested the calculation of the SEDI at a

time scale of 9 months by standardizing the cumulative

ET and AED differences over the previous nine

months. They justified the selection of this period by

the high correlation found between the Palmer drought

severity index (PDSI) and the SPEI at this time scale

(see Vicente-Serrano et al. 2010b). We showed that in

most regions of the world, the standardized anomalies of

the ED are mostly determined by the high-frequency

variability of the climatic water balance recorded at

short time scales, which recommends the use of the

SEDI at 1-month time scale.

The selection of a specific time scale for drought

analysis is justified by the different characteristic

FIG. 9. SPEI time scale at which the highest correlationwith the SEDI series was found formidseasonmonths and

for the entire record. Terrestrially white areas represent deserts and Greenland and areas in which the SEDI fit has

no solution.
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response times of agricultural, hydrological, and en-

vironmental systems to water shortage. Water short-

ages are mostly determined by precipitation shortfalls

(McKee et al. 1993) and/or increased AED (Vicente-

Serrano et al. 2010a). The use of different drought time

scales is essential to adjust the duration of anomalous

climate conditions to the anomalous response of the

ecohydrologic system, such as abnormally low stream

flows [e.g., López-Moreno et al. 2013; Lorenzo-Lacruz

et al. 2013; Barker et al. 2016; see further clarifications

and discussion on the drought time scales in Vicente-

Serrano et al. (2011)]. However, the use of long cumu-

lative time scales is not justified for the SEDI because

ED is mostly determined by high-frequency variability

in climatic conditions. In essence, this is similar to those

streamflow-based drought indices, such as the stan-

dardized streamflow index (SSI) (Vicente-Serrano et al.

2012a). For instance, like the SSI, the SEDI could also

FIG. 10. Spatial distribution of the maximum r (left) between SEDI and sNDVI and (right) between SPEI and

sNDVI for midseason months and for the entire record 1981–2014.
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FIG. 11. Density scatterplots with the spatial relationship between the sNDVI and SEDI correlations and

between the sNDVI and SPEI correlations. The scatterplots show the results for specificmonths and for the

entire record. The blue line is a linear regression, and the black line is the 1:1 line. Given the large sample

and to avoid an overrepresentation of significant correlations, the p values were obtained by means of

a bootstrap sampling approach that considers 2000 independent samples of 30 cases, and p values for

correlations of the samples of 30 cases were averaged. The colors of the scatterplots represent the density of

points (dark red is the highest density).
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be considered a direct indicator of the impact of

droughts on vegetation because the AED is an impor-

tant driver of vegetation gross primary production

through its control on plant stomatal closure and plant

respiration (Stephenson 1990, 1998) and because ETa

strongly controls photosynthesis and carbon uptake

(Donohue et al. 2014; Yang et al. 2015).

d. Performance of the SEDI to identify vegetation

anomalies associated with drought

The response of vegetation activity, measured as

greenness indices (e.g., NDVI) from satellite imagery, to

water availability is complex. Numerous studies have

demonstrated different spatial and seasonal relation-

ships between NDVI and different climate drought in-

dices (e.g., Ji and Peters 2003; Quiring and Paraprikaou

2003). Here, we demonstrated that the correlation be-

tween the sNDVI and the SPEI and SEDI was strongly

variable over both space and time. As expected, a clear

relationship was recorded in semiarid regions, which in

general show a higher response to soil water availability,

compared to subhumid and humid regions in which

vegetation is driven by other climatic and environmental

factors (Vicente-Serrano et al. 2013; Papagiannopoul

et al. 2017). Overall, a lower correlation of the sNDVI to

the SEDI than to the SPEI was found. In general, the

correlations were higher and more frequently statisti-

cally significant between the sNDVI and SPEI, possibly

due to the higher flexibility of the SPEI, which is com-

puted at different time scales, since the relationship

between vegetation activity and drought indices strongly

differs as a function of the time scale at which drought

indices were calculated (Pasho et al. 2011; Vicente-

Serrano et al. 2013, 2015). SPEI would show higher

flexibility to compute water deficits recorded at differ-

ent time scales since vegetation types have several

physiological strategies to cope with water stress

(Chaves et al. 2003). Thus, stomatal closure under high

vapor pressure deficit conditions is a mechanism to

reduce water losses and hydrologic stress in plants.

Although during periods of low transpiration photo-

synthesis may be reduced, nonstructural carbohydrates in

the plant can maintain plant metabolism and maintain

greenness (Rosas et al. 2013).

Overall, we indicated that although the SEDI

showed lower correlations, it exhibited similar spatial

patterns of correlation with the sNDVI. Compared

to the SPEI, SEDI’s sensitivity to high-frequency

changes in ED makes it more suitable for identifying

regions where leaf activity is highly sensitive to water

stress conditions. We defend that using and combining

different drought indices is the best approach for

drought quantification, analysis, and monitoring. The

recently proposed SEDI based on the satellite-based

ET data can complement traditional drought indices

and provide information about regions that are sensi-

tive to short-term changes in atmospheric demand.

Figure 12 provides a representative example of two

exceptional drought events recorded in the Iberian

Peninsula in 1995 and the Sahel in 1984. In both cases, the

SEDI and 3-month SPEI showed strong drought severity

over large areas and months, but they did not exactly

agree either over space or in magnitude, which indicates

that SEDI is bringing new information not captured by

the SPEI. NDVI anomalies were different in time and

space from each of the drought indices (SEDI and SPEI),

indicating that none of them alone captures the full im-

pact on vegetation greenness, with additional insight

possible when both indices are combined.

6. Conclusions

We provided recommendations on the best ap-

proaches for calculating a temporally and spatially

comparable SEDI, regardless of the climate region and

land surface conditions. Although the SEDI is based on

directly comparing the use of water (ETa) with its the-

oretical demand (AED), we have shown that other in-

dices such as the SPEI that do not require estimation

of the ETa showed a similar performance to identify

drought severity globally. In any case, SEDI calculations

will benefit from further improvements in remotely

sensed ETa. Additionally, while the SEDI can be of

interest for drought assessment related to crops and

natural vegetation, its potential application in relation to

other drought impacts such as river discharge, reservoir

storage, or groundwater levels is yet to be explored. The

SEDI global dataset developed in this study is available

from Vicente-Serrano 2018.

TABLE 4. Percentage of the global terrestrial areas showing

significant correlations between sNDVI and SEDI and between

sNDVI and SPEI.

Month sNDVI vs SEDI sNDVI vs SPEI

All 13.09 19.24

Jan 23.52 36.94

Feb 22.74 35.68

Mar 23.59 37.12

Apr 26.67 38.08

May 27.81 37.63

Jun 24.49 41.22

Jul 26.84 43.88

Aug 26.21 46.72

Sep 23.95 43.67

Oct 25.35 42.92

Nov 25.41 37.64

Dec 28.93 39.10

5388 JOURNAL OF CL IMATE VOLUME 31

Unauthenticated | Downloaded 08/27/22 02:56 AM UTC



Acknowledgments. This work was supported by the re-

searchprojects PCIN-2015-220 andCGL2014-52135-C03-01

financed by the Spanish Commission of Science and

Technology and FEDER. IMDROFLOOD financed by

the Water Works 2014 co-funded all of the European

Commission and INDECIS, which is part of ERA4CS,

an ERA-NET initiated by JPI Climate, and funded by

FORMAS(Sweden),DLR(Germany),BMWFW(Austria),

IFD (Denmark), MINECO (Spain), andANR (France),

with co-funding by the European Union (Grant 690462).

Diego G. Miralles acknowledges support from the Euro-

pean Research Council (ERC) under Grant Agreement

715254 (DRY–2–DRY). Marina Peña-Gallardo was

supported by the Spanish Ministry of Economy and

Competitiveness and Miquel Tomás-Burguera was sup-

ported by a doctoral grant by theMinisterio de Educación,

Cultura y Deporte.

REFERENCES

Abramowitz, M., and I. A. Stegun, 1965: Handbook of Mathe-

matical Functions. Dover Publications, 1046 pp.

Allen, C. D., D. D. Breshears, and N. G. McDowell, 2015: On

underestimation of global vulnerability to tree mortality and

forest die-off from hotter drought in the Anthropocene.

Ecosphere, 6, 129, https://doi.org/10.1890/ES15-00203.1.

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop

evapotranspiration: Guidelines for computing crop water re-

quirements. Food and Agricultural Organization Irrigation

and Drainage Paper 56, 300 pp., http://www.fao.org/docrep/

X0490E/X0490E00.htm.

——, M. Tasumi, and R. Trezza, 2007: Satellite-based energy bal-

ance for mapping evapotranspiration with internalized cali-

bration (METRIC)–Model. J. Irrig. Drain. Eng., 133, 380–394,

https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380).

Anderegg, L. D. L., W. R. L. Anderegg, J. Abatzoglou, A. M.

Hausladen, and J. A. Berry, 2013: Drought characteristics’

role in widespread aspen forest mortality across Colorado,

FIG. 12. Spatial distribution of the SEDI, 3-month SPEI, and sNDVI during two extraordinary drought events recorded (top) in 1995 over

the Iberian Peninsula and (bottom) in 1984 over the Sahel.

15 JULY 2018 V I CENTE - S ERRANO ET AL . 5389

Unauthenticated | Downloaded 08/27/22 02:56 AM UTC

https://doi.org/10.1890/ES15-00203.1
http://www.fao.org/docrep/X0490E/X0490E00.htm
http://www.fao.org/docrep/X0490E/X0490E00.htm
https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)


USA. Global Change Biol., 19, 1526–1537, https://doi.org/

10.1111/gcb.12146.

Anderegg, W. R. L., A. Flint, C.-Y. Huang, L. Flint, J. A. Berry,

F. W. Davis, J. S. Sperry, and C. B. Field, 2015: Tree mortality

predicted from drought-induced vascular damage. Nat. Geo-

sci., 8, 367–371, https://doi.org/10.1038/ngeo2400.

Anderson, M. C., C. Hain, B. Wardlow, A. Pimstein, J. R.

Mecikalski, and W. P. Kustas, 2011: Evaluation of drought

indices based on thermal remote sensing of evapotranspira-

tion over the continental United States. J. Climate, 24, 2025–

2044, https://doi.org/10.1175/2010JCLI3812.1.

Antwi-Agyei, P., E. D. G. Fraser, A. J. Dougill, L. C. Stringer, and

E. Simelton, 2012: Mapping the vulnerability of crop pro-

duction to drought in Ghana using rainfall, yield and socio-

economic data. Appl. Geogr., 32, 324–334, https://doi.org/

10.1016/j.apgeog.2011.06.010.

Asseng, S., and Coauthors, 2015: Rising temperatures reduce

global wheat production. Nat. Climate Change, 5, 143–147,

https://doi.org/10.1038/nclimate2470.

Barker, L. J., J. Hannaford, A. Chiverton, and C. Svensson, 2016:

From meteorological to hydrological drought using stand-

ardised indicators. Hydrol. Earth Syst. Sci., 20, 2483–2505,

https://doi.org/10.5194/hess-20-2483-2016.

Beck, H. E., T. R. McVicar, A. I. J. M. van Dijk, J. Schellekens,

R. A. M. de Jeu, and L. A. Bruijnzeel, 2011: Global evaluation

of four AVHRR-NDVI data-sets: Intercomparison and as-

sessment against Landsat imagery. Remote Sens. Environ.,

115, 2547–2563, https://doi.org/10.1016/j.rse.2011.05.012.

Beguería, S., S. M. Vicente-Serrano, F. Reig, and B. Latorre, 2014:

Standardized precipitation evapotranspiration index (SPEI)

revisited: Parameter fitting, evapotranspiration models, tools,

datasets and drought monitoring. Int. J. Climatol., 34, 3001–

3023, https://doi.org/10.1002/joc.3887.

Bouchet, R. J., 1963: Evapotranspiration réelle evapotranspiration

potentielle, signification climatique. IAHS Publ., 62, 134–142.

Breshears, D. D., H. D. Adams, D. Eamus, M. G. McDowell, D. J.

Law, R. E. Will, A. P. Williams, and C. B. Zou, 2013: The

critical amplifying role of increasing atmospheric moisture

demand on tree mortality and associated regional die-off.

Front. Plant Sci., 4, 266, https://doi.org/10.3389/fpls.2013.00266.

Brümmer, C., and Coauthors, 2012: How climate and vegetation type

influence evapotranspiration and water use efficiency in Cana-

dian forest, peatland and grassland ecosystems. Agric. For. Me-

teor., 153, 14–30, https://doi.org/10.1016/j.agrformet.2011.04.008.

Budyko, M. I., 1948: Evaporation under Natural Conditions. Gi-

drometeoizdat, 136 pp.

Chaves,M.M., J. P.Maroco, and J. S. Pereira, 2003: Understanding

plant responses to drought—From genes to the whole plant.

Funct. Plant Biol., 30, 239–264, https://doi.org/10.1071/FP02076.

Chen, T., G. Xia, T. Liu, W. Chen, and D. Chi, 2016: Assess-

ment of drought impact on main cereal crops using a stan-

dardized precipitation evapotranspiration index in Liaoning

Province, China. Sustainability, 8, 1069, https://doi.org/10.3390/

su8101069.

Choat, B., and Coauthors, 2012: Global convergence in the vul-

nerability of forests to drought. Nature, 491, 752–755, https://

doi.org/10.1038/nature11688.

Ciais, P., and Coauthors, 2005: Europe-wide reduction in primary

productivity caused by the heat and drought in 2003. Nature,

437, 529–533, https://doi.org/10.1038/nature03972.

Donohue, R. J., T. R. McVicar, and M. L. Roderick, 2010: As-

sessing the ability of potential evaporation formulations to

capture the dynamics in evaporative demand within a changing

climate. J. Hydrol., 386, 186–197, https://doi.org/10.1016/

j.jhydrol.2010.03.020.

——, and Coauthors, 2014: Evaluation of the remote-sensing-

based DIFFUSE model for estimating photosynthesis of

vegetation. Remote Sens. Environ., 155, 349–365, https://doi.

org/10.1016/j.rse.2014.09.007.

Duncan, J., D. Stow, J. Franklin, and A. Hope, 1993: Assessing the

relationship between spectral vegetation indices and shrub

cover in the Jordana Basin, NewMexico. Int. J. Remote Sens.,

14, 3395–3416, https://doi.org/10.1080/01431169308904454.

Espadafor, M., I. J. Lorite, P. Gavilán, and J. Berengena, 2011: An

analysis of the tendency of reference evapotranspiration es-

timates and other climate variables during the last 45 years in

southern Spain. Agric. Water Manage., 98, 1045–1061, https://

doi.org/10.1016/j.agwat.2011.01.015.

Fisher, J. B., K. P. Tu, and D. D. Baldocchi, 2008: Global estimates

of the land–atmosphere water flux based on monthly

AVHRR and ISLSCP-II data, validated at 16 FLUXNET

sites. Remote Sens. Environ., 112, 901–919, https://doi.org/

10.1016/j.rse.2007.06.025.

——, R. J. Whittaker, and Y. Malhi, 2011: ET come home:

Potential evapotranspiration in geographical ecology.

Global Ecol. Biogeogr., 20, 1–18, https://doi.org/10.1111/

j.1466-8238.2010.00578.x.

——, and Coauthors, 2017: The future of evapotranspiration:

Global requirements for ecosystem functioning, carbon and

climate feedbacks, agricultural management, and water re-

sources. Water Resour. Res., 53, 2618–2626, https://doi.org/

10.1002/2016WR020175.

Gash, J. H. C., 1979: An analytical model of rainfall interception by

forests.Quart. J. Roy. Meteor. Soc., 105, 43–55, https://doi.org/

10.1002/qj.49710544304.

Gillies, R. R., W. P. Kustas, and K. S. Humes, 1997: A verification

of the ‘triangle’ method for obtaining surface soil water con-

tent and energy fluxes from remote measurements of the

normalized difference vegetation index (NDVI) and surface

radiant temperature. Int. J. Remote Sens., 18, 3145–3166,

https://doi.org/10.1080/014311697217026.

Greenwood, S., and Coauthors, 2017: Tree mortality across biomes

is promoted by drought intensity, lower wood density and

higher specific leaf area. Ecol. Lett., 20, 539–553, https://

doi.org/10.1111/ele.12748.

Gutman, G. G., 1991: Vegetation indices from AVHRR: An up-

date and future prospects.Remote Sens. Environ., 35, 121–136,

https://doi.org/10.1016/0034-4257(91)90005-Q.

Guttman, N. B., 1999: Accepting the standardized precipitation

index: A calculation algorithm. J. Amer. Water Resour. Assoc.,

35, 311–322, https://doi.org/10.1111/j.1752-1688.1999.tb03592.x.

Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister,

2014: Updated high-resolution grids of monthly climatic

observations—The CRU TS3.10 dataset. Int. J. Climatol., 34,

623–642, https://doi.org/10.1002/joc.3711.

Heim, R. R., Jr., 2002: A review of twentieth-century drought in-

dices used in the United States. Bull. Amer. Meteor. Soc., 83,

1149–1166, https://doi.org/10.1175/1520-0477-83.8.1149.

Hobbins, M. T., A. Wood, D. J. McEvoy, J. L. Huntington,

C. Morton, M. Anderson, and C. Hain, 2016: The evaporative

demand drought index. Part I: Linking drought evolution to

variations in evaporative demand. J. Hydrometeor., 17, 1745–

1761, https://doi.org/10.1175/JHM-D-15-0121.1.

Hosking, J. R. M., 1990: L-moments: Analysis and estimation of

distributions using linear combinations of order statistics.

J. Roy. Stat. Soc. 52B, 105–124.

5390 JOURNAL OF CL IMATE VOLUME 31

Unauthenticated | Downloaded 08/27/22 02:56 AM UTC

https://doi.org/10.1111/gcb.12146
https://doi.org/10.1111/gcb.12146
https://doi.org/10.1038/ngeo2400
https://doi.org/10.1175/2010JCLI3812.1
https://doi.org/10.1016/j.apgeog.2011.06.010
https://doi.org/10.1016/j.apgeog.2011.06.010
https://doi.org/10.1038/nclimate2470
https://doi.org/10.5194/hess-20-2483-2016
https://doi.org/10.1016/j.rse.2011.05.012
https://doi.org/10.1002/joc.3887
https://doi.org/10.3389/fpls.2013.00266
https://doi.org/10.1016/j.agrformet.2011.04.008
https://doi.org/10.1071/FP02076
https://doi.org/10.3390/su8101069
https://doi.org/10.3390/su8101069
https://doi.org/10.1038/nature11688
https://doi.org/10.1038/nature11688
https://doi.org/10.1038/nature03972
https://doi.org/10.1016/j.jhydrol.2010.03.020
https://doi.org/10.1016/j.jhydrol.2010.03.020
https://doi.org/10.1016/j.rse.2014.09.007
https://doi.org/10.1016/j.rse.2014.09.007
https://doi.org/10.1080/01431169308904454
https://doi.org/10.1016/j.agwat.2011.01.015
https://doi.org/10.1016/j.agwat.2011.01.015
https://doi.org/10.1016/j.rse.2007.06.025
https://doi.org/10.1016/j.rse.2007.06.025
https://doi.org/10.1111/j.1466-8238.2010.00578.x
https://doi.org/10.1111/j.1466-8238.2010.00578.x
https://doi.org/10.1002/2016WR020175
https://doi.org/10.1002/2016WR020175
https://doi.org/10.1002/qj.49710544304
https://doi.org/10.1002/qj.49710544304
https://doi.org/10.1080/014311697217026
https://doi.org/10.1111/ele.12748
https://doi.org/10.1111/ele.12748
https://doi.org/10.1016/0034-4257(91)90005-Q
https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
https://doi.org/10.1002/joc.3711
https://doi.org/10.1175/1520-0477-83.8.1149
https://doi.org/10.1175/JHM-D-15-0121.1


Ji, L., and A. J. Peters, 2003: Assessing vegetation response to

drought in the northern Great Plains using vegetation and

drought indices. Remote Sens. Environ., 87, 85–98, https://

doi.org/10.1016/S0034-4257(03)00174-3.

Katerji, N., and G. Rana, 2011: Crop reference evapotranspiration:

A discussion of the concept, analysis of the process and vali-

dation.Water Resour. Manage., 25, 1581–1600, https://doi.org/

10.1007/s11269-010-9762-1.

Keyantash, J., and J. A. Dracup, 2002: The quantification of

drought: An evaluation of drought indices. Bull. Amer. Meteor.

Soc., 83, 1167–1180, https://doi.org/10.1175/1520-0477-83.8.1167.

Kim, D., and J. Rhee, 2016: A drought index based on actual evapo-

transpiration from the Bouchet hypothesis. Geophys. Res. Lett.,

43, 10 277–10 285, https://doi.org/10.1002/2016GL070302.

Kogan, F. N., 1997: Global drought watch from space. Bull. Amer.

Meteor. Soc., 78, 621–636, https://doi.org/10.1175/1520-0477

(1997)078,0621:GDWFS.2.0.CO;2.

Labudová, L., M. Labuda, and A. Taká�c , 2017: Comparison of SPI

and SPEI applicability for drought impact assessment on crop

production in the Danubian lowland and the east Slovakian

lowland. Theor. Appl. Climatol., 128, 491–506, https://doi.org/

10.1007/s00704-016-1870-2.

Leuning, R., 1995: A critical appraisal of a combined stomatal-

photosynthesis model for C3 plants. Plant Cell Environ., 18,

339–335, https://doi.org/10.1111/j.1365-3040.1995.tb00370.x.

Liu, W. T., and F. N. Kogan, 1996: Monitoring regional drought

using the vegetation condition index. Int. J. Remote Sens., 17,

2761–2782, https://doi.org/10.1080/01431169608949106.

Lloyd-Hughes, B., 2014: The impracticality of a universal

drought definition. Theor. Appl. Climatol., 117, 607–611,

https://doi.org/10.1007/s00704-013-1025-7.

Lobell, D. B., M. Bänziger, C. Magorokosho, and B. Vivek, 2011:

Nonlinear heat effects on African maize as evidenced by

historical yield trials. Nat. Climate Change, 1, 42–45, https://

doi.org/10.1038/nclimate1043.

López-Moreno, J. I., S.M.Vicente-Serrano, J. Zabalza, S.Beguería,

J. Lorenzo-Lacruz, C. Azorin-Molina, and E. Morán-Tejeda,

2013: Hydrological response to climate variability at different

time scales: A study in the Ebro basin. J. Hydrol., 477, 175–

188, https://doi.org/10.1016/j.jhydrol.2012.11.028.

Lorenzo-Lacruz, J., S. M. Vicente-Serrano, J. C. González-Hidalgo,

J. I. López-Moreno, and N. Cortesi, 2013: Hydrological drought

response to meteorological drought at various time scales

in the Iberian Peninsula. Climate Res., 58, 117–131, https://

doi.org/10.3354/cr01177.

Ma, M., L. Ren, F. Yuan, S. Jiang, Y. Liu, H. Kong, and L. Gong,

2014: A new standardized Palmer drought index for hydro-

meteorological use. Hydrol. Processes, 28, 5645–5661, https://

doi.org/10.1002/hyp.10063.

Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based

land evaporation and root-zone soil moisture. Geosci.

Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-

1903-2017.

McCabe, M. F., A. Ershadi, C. Jimenez, D. G. Miralles, D. Michel,

and E. F. Wood, 2016: The GEWEX LandFlux project:

Evaluation of model evaporation using tower-based and

globally gridded forcing data.Geosci. Model Dev., 9, 283–305,

https://doi.org/10.5194/gmd-9-283-2016.

——, and Coauthors, 2017: The future of Earth observation in

hydrology. Hydrol. Earth Syst. Sci., 21, 3879–3914, https://

doi.org/10.5194/hess-21-3879-2017.

McDowell, N., and Coauthors, 2008: Mechanisms of plant survival

and mortality during drought: Why do some plants survive

while others succumb to drought? New Phytol., 178, 719–739,

https://doi.org/10.1111/j.1469-8137.2008.02436.x.

McEvoy, D. J., J. L. Huntington, J. T. Abatzoglou, and L. M.

Edwards, 2012: An evaluation of multiscalar drought indices

in Nevada and eastern California. Earth Interact., 16, https://

doi.org/10.1175/2012EI000447.1.

——,——,M. T.Hobbins, A.Wood, C.Morton,M.Anderson, and

C. Hain, 2016a: The evaporative demand drought index. Part

II: CONUS-wide assessment against common drought in-

dicators. J. Hydrometeor., 17, 1763–1779, https://doi.org/

10.1175/JHM-D-15-0122.1.

——, ——, J. F. Mejia, and M. T. Hobbins, 2016b: Improved sea-

sonal drought forecasts using reference evapotranspiration

anomalies. Geophys. Res. Lett., 43, 377–385, https://doi.org/

10.1002/2015GL067009.

McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship

of drought frequency and duration to time scales. Proc. Eighth

Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor.

Soc, 179–184.

McVicar, T. R., and D. L. B. Jupp, 1998: The current and

potential operational uses of remote sensing to aid de-

cisions on drought exceptional circumstances in Australia:

A review. Agric. Syst., 57, 399–468, https://doi.org/10.1016/

S0308-521X(98)00026-2.

——, T. G. Van Niel, L. T. Li, M. L. Roderick, D. P. Rayner,

L. Ricciardulli, and R. J. Donohue, 2008: Wind speed clima-

tology and trends for Australia, 1975–2006: Capturing the

stilling phenomenon and comparison with near-surface re-

analysis output. Geophys. Res. Lett., 35, L20403, https://doi.

org/10.1029/2008GL035627.

——, M. L. Roderick, R. J. Donohue, and T. G. Van Niel, 2012a:

Less bluster ahead? Ecohydrological implications of global

trends of terrestrial near-surface wind speeds. Ecohydrology,

5, 381–388, https://doi.org/10.1002/eco.1298.

——, and Coauthors, 2012b: Global review and synthesis of trends

in observed terrestrial near-surface wind speeds: Implications

for evaporation. J. Hydrol., 416–417, 182–205, https://doi.org/

10.1016/j.jhydrol.2011.10.024.

Michel, D., and Coauthors, 2016: The WACMOS-ET project—

Part 1: Tower-scale evaluation of four remote-sensing-based

evapotranspiration algorithms. Hydrol. Earth Syst. Sci., 20,

803–822, https://doi.org/10.5194/hess-20-803-2016.

Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash,

A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-

surface evaporation estimated from satellite-based observa-

tions. Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/

10.5194/hess-15-453-2011.

——, and Coauthors, 2016: The WACMOS-ET project—Part 2: Eval-

uation of global terrestrial evaporation data sets. Hydrol. Earth

Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016.

Mishra, A.K., and V. P Singh, 2010: A review of drought

concepts. J. Hydrol., 391, 202–216, https://doi.org/

10.1016/j.jhydrol.2010.07.012.

Morton, F. I., 1983: Operational estimates of areal evapotranspi-

ration and their significance to the science and practice of

hydrology. J. Hydrol., 66, 1–76, https://doi.org/10.1016/

0022-1694(83)90177-4.

Mu, Q., M. Zhao, and S. W. Running, 2011: Improvements to a

MODIS global terrestrial evapotranspiration algorithm. Re-

mote Sens. Environ., 115, 1781–1800, https://doi.org/10.1016/

j.rse.2011.02.019.

Narasimhan, B., and R. Srinivasan, 2005: Development and

evaluation of soil moisture deficit index (SMDI) and

15 JULY 2018 V I CENTE - S ERRANO ET AL . 5391

Unauthenticated | Downloaded 08/27/22 02:56 AM UTC

https://doi.org/10.1016/S0034-4257(03)00174-3
https://doi.org/10.1016/S0034-4257(03)00174-3
https://doi.org/10.1007/s11269-010-9762-1
https://doi.org/10.1007/s11269-010-9762-1
https://doi.org/10.1175/1520-0477-83.8.1167
https://doi.org/10.1002/2016GL070302
https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2
https://doi.org/10.1007/s00704-016-1870-2
https://doi.org/10.1007/s00704-016-1870-2
https://doi.org/10.1111/j.1365-3040.1995.tb00370.x
https://doi.org/10.1080/01431169608949106
https://doi.org/10.1007/s00704-013-1025-7
https://doi.org/10.1038/nclimate1043
https://doi.org/10.1038/nclimate1043
https://doi.org/10.1016/j.jhydrol.2012.11.028
https://doi.org/10.3354/cr01177
https://doi.org/10.3354/cr01177
https://doi.org/10.1002/hyp.10063
https://doi.org/10.1002/hyp.10063
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.5194/gmd-10-1903-2017
https://doi.org/10.5194/gmd-9-283-2016
https://doi.org/10.5194/hess-21-3879-2017
https://doi.org/10.5194/hess-21-3879-2017
https://doi.org/10.1111/j.1469-8137.2008.02436.x
https://doi.org/10.1175/2012EI000447.1
https://doi.org/10.1175/2012EI000447.1
https://doi.org/10.1175/JHM-D-15-0122.1
https://doi.org/10.1175/JHM-D-15-0122.1
https://doi.org/10.1002/2015GL067009
https://doi.org/10.1002/2015GL067009
https://doi.org/10.1016/S0308-521X(98)00026-2
https://doi.org/10.1016/S0308-521X(98)00026-2
https://doi.org/10.1029/2008GL035627
https://doi.org/10.1029/2008GL035627
https://doi.org/10.1002/eco.1298
https://doi.org/10.1016/j.jhydrol.2011.10.024
https://doi.org/10.1016/j.jhydrol.2011.10.024
https://doi.org/10.5194/hess-20-803-2016
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.5194/hess-15-453-2011
https://doi.org/10.5194/hess-20-823-2016
https://doi.org/10.1016/j.jhydrol.2010.07.012
https://doi.org/10.1016/j.jhydrol.2010.07.012
https://doi.org/10.1016/0022-1694(83)90177-4
https://doi.org/10.1016/0022-1694(83)90177-4
https://doi.org/10.1016/j.rse.2011.02.019
https://doi.org/10.1016/j.rse.2011.02.019


evapotranspiration deficit index (ETDI) for agricultural

drought monitoring. Agric. For. Meteor., 133, 69–88, https://

doi.org/10.1016/j.agrformet.2005.07.012.

Otkin, J. A., and Coauthors, 2016: Assessing the evolution of soil

moisture and vegetation conditions during the 2012 United

States flash drought. Agric. For. Meteor., 218–219, 230–242,

https://doi.org/10.1016/j.agrformet.2015.12.065.

Palmer, W. C., 1965: Meteorological droughts. U.S. Department of

Commerce Weather Bureau Research Paper 45, 58 pp.

Papagiannopoulou, C., D. G. Miralles, W. A. Dorigo, N. E. C.

Verhoest, M. Depoorter, and W. Waegeman, 2017: Vegeta-

tion anomalies caused by antecedent precipitation in most of

the world. Environ. Res. Lett., 12, 074016, https://doi.org/

10.1088/1748-9326/aa7145.

Páscoa, P., C. M. Gouveia, A. Russo, and R. M. Trigo, 2017: The

role of drought on wheat yield interannual variability in the

Iberian Peninsula from 1929 to 2012. Int. J. Biometeorol., 61,

439–451, https://doi.org/10.1007/s00484-016-1224-x.

Pasho, E., J. J. Camarero, M. de Luis, and S. M. Vicente-Serrano,

2011: Impacts of drought at different time scales on forest

growth across a wide climatic gradient in north-eastern Spain.

Agric. For. Meteor., 151, 1800–1811, https://doi.org/10.1016/

j.agrformet.2011.07.018.

Penman, H. L., 1948: Natural evaporation from open water, bare

soil and grass. Proc. Roy. Soc. London, 193A, 120–146, https://

doi.org/10.1098/rspa.1948.0037.

Perdigão, J. C., R. Salgado, M. J. Costa, H. P. Dasari, and

A. Sanchez-Lorenzo, 2016: Variability and trends of down-

ward surface global solar radiation over the Iberian Peninsula

based on ERA-40 reanalysis. Int. J. Climatol., 36, 3917–3933,

https://doi.org/10.1002/joc.4603.

Pinzon, J. E., and C. J. Tucker, 2014: A non-stationary 1981–2012

AVHRR NDVI3g time series. Remote Sens., 6, 6929–6960,

https://doi.org/10.3390/rs6086929.

Priestley, C. H. B., and R. J. Taylor, 1972: On the assessment of

surface heat flux and evaporation using large-scale parame-

ters. Mon. Wea. Rev., 100, 81–92, https://doi.org/10.1175/

1520-0493(1972)100,0081:OTAOSH.2.3.CO;2.

Quiring, S. M., and T. N. Papakryiakou, 2003: An evaluation of

agricultural drought indices for the Canadian prairies.

Agric. For. Meteor., 118, 49–62, https://doi.org/10.1016/

S0168-1923(03)00072-8.

Rosas, T., L. Galiano, R. Ogaya, J. Peñuelas, and J. Martínez-

Vilalta, 2013: Dynamics of non-structural carbohydrates in

three Mediterranean woody species following long-term ex-

perimental drought. Front. Plant Sci., 4, 400, https://doi.org/

10.3389/fpls.2013.00400.

Rotstayn, L. D., M. L. Roderick, and G. D. Farquhar, 2006: A

simple pan-evaporation model for analysis of climate simula-

tions: Evaluation over Australia. Geophys. Res. Lett., 33,

L17715, https://doi.org/10.1029/2006GL027114.

Simelton, E., E. D. G. Fraser, M. Termansen, P. M. Forster, and

A. J. Dougill, 2009: Typologies of crop-drought vulnerability:

An empirical analysis of the socio-economic factors that in-

fluence the sensitivity and resilience to drought of three major

food crops in China (1961–2001).Environ. Sci. Policy, 12, 438–

452, https://doi.org/10.1016/j.envsci.2008.11.005.

Stagge, J. H., L. M. Tallaksen, L. Gudmundsson, A. F. Van Loon,

and K. Stahle, 2015: Candidate distributions for climatological

drought indices (SPI and SPEI). Int. J. Climatol., 35, 4027–

4040, https://doi.org/10.1002/joc.4267.

Stahl, K., I. Kohn, L. De Stefano, L. M. Tallaksen, F. C. Rego, S. I.

Seneviratne, J. Andreu, and H. A. J. van Lanen, 2015: An

impact perspective on pan-European drought sensitivity.

Drought: Research and Science-Policy Interfacing, J. Andreu

et al., Eds., CRC Press, 329–334.

——, and Coauthors, 2016: Impacts of European drought events:

Insights from an international database of text-based reports.

Nat. Hazards Earth Syst. Sci., 16, 801–819, https://doi.org/

10.5194/nhess-16-801-2016.

Stephenson, N. L., 1990: Climatic control of vegetation distribu-

tion: The role of the water balance. Amer. Nat., 135, 649–670,

https://doi.org/10.1086/285067.

——, 1998: Actual evapotranspiration and deficit: Biologically

meaningful correlates of vegetation distribution across spa-

tial scales. J. Biogeogr., 25, 855–870, https://doi.org/10.1046/

j.1365-2699.1998.00233.x.

Tucker, C. J., C. Vanpraet, E. Boerwinkel, and A. Gaston, 1983:

Satellite remote sensing of total dry matter production in the

Senegalese Sahel. Remote Sens. Environ., 13, 461–474, https://

doi.org/10.1016/0034-4257(83)90053-6.

Van Loon, A. F., 2015: Hydrological drought explained. Wiley Inter-

discip. Rev.: Water, 2, 359–392, https://doi.org/10.1002/wat2.1085.

——, and Coauthors, 2016: Drought in a human-modified world:

Reframing drought definitions, understanding, and analysis

approaches. Hydrol. Earth Syst. Sci., 20, 3631–3650, https://

doi.org/10.5194/hess-20-3631-2016.

Vicente-Serrano, S. M., 2006: Differences in spatial patterns of

drought on different time scales: An analysis of the Iberian

Peninsula. Water Resour. Manage., 20, 37–60, https://doi.org/

10.1007/s11269-006-2974-8.

——, 2016: Foreword: Drought complexity and assessment under

climate change conditions. Cuad. Invest. Geogr., 42, 7–11,

https://doi.org/10.18172/cig.2961.

——, 2018:A global dataset of the standardized evapotranspiration

deficit index (SEDI) (1964–2014). DIGITAL.CSIC, accessed

4 May 2018, https://doi.org/10.20350/digitalCSIC/8529.

——, and S. Beguería, 2016: Comment on ‘Candidate distributions

for climatological drought indices (SPI and SPEI)’ by James

H. Stagge et al. Int. J. Climatol., 36, 2120–2131, https://doi.org/

10.1002/joc.4474.

——, ——, and J. I. López-Moreno, 2010a: A multiscalar drought

index sensitive to global warming: The standardized pre-

cipitation evapotranspiration index. J. Climate, 23, 1696–1718,

https://doi.org/10.1175/2009JCLI2909.1.

——, ——, ——, M. Angulo, and A. El Kenawy, 2010b: A new

global 0.58 gridded dataset (1901–2006) of amultiscalar drought

index: Comparison with current drought index datasets based

on the Palmer drought severity index. J. Hydrometeor., 11,

1033–1043, https://doi.org/10.1175/2010JHM1224.1.

——, ——, and ——, 2011: Comment on ‘‘Characteristics and

trends in various forms of the Palmer drought severity index

(PDSI) during 1900–2008’’ by Aiguo Dai. J. Geophys. Res.,

116, D19112, https://doi.org/10.1029/2011JD016410.

——, and Coauthors, 2012a: Performance of drought indices for

ecological, agricultural, and hydrological applications. Earth

Interact., 16, https://doi.org/10.1175/2012EI000434.1.

——, J. I. López-Moreno, S. Beguería, J. Lorenzo-Lacruz,

C. Azorin-Molina, and E. Morán-Tejeda, 2012b: Accurate

computation of a streamflow drought index. J. Hydrol. Eng.,

17, 318–332, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433.

——, and Coauthors, 2013: The response of vegetation to drought

time-scales across global land biomes. Proc. Natl. Acad. Sci.

USA, 110, 52–57, https://doi.org/10.1073/pnas.1207068110.

——, C. Azorin-Molina, A. Sanchez-Lorenzo, J. Revuelto, J. I.

López-Moreno, J. C. González-Hidalgo, E. Moran-Tejeda,

5392 JOURNAL OF CL IMATE VOLUME 31

Unauthenticated | Downloaded 08/27/22 02:56 AM UTC

https://doi.org/10.1016/j.agrformet.2005.07.012
https://doi.org/10.1016/j.agrformet.2005.07.012
https://doi.org/10.1016/j.agrformet.2015.12.065
https://doi.org/10.1088/1748-9326/aa7145
https://doi.org/10.1088/1748-9326/aa7145
https://doi.org/10.1007/s00484-016-1224-x
https://doi.org/10.1016/j.agrformet.2011.07.018
https://doi.org/10.1016/j.agrformet.2011.07.018
https://doi.org/10.1098/rspa.1948.0037
https://doi.org/10.1098/rspa.1948.0037
https://doi.org/10.1002/joc.4603
https://doi.org/10.3390/rs6086929
https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
https://doi.org/10.1016/S0168-1923(03)00072-8
https://doi.org/10.1016/S0168-1923(03)00072-8
https://doi.org/10.3389/fpls.2013.00400
https://doi.org/10.3389/fpls.2013.00400
https://doi.org/10.1029/2006GL027114
https://doi.org/10.1016/j.envsci.2008.11.005
https://doi.org/10.1002/joc.4267
https://doi.org/10.5194/nhess-16-801-2016
https://doi.org/10.5194/nhess-16-801-2016
https://doi.org/10.1086/285067
https://doi.org/10.1046/j.1365-2699.1998.00233.x
https://doi.org/10.1046/j.1365-2699.1998.00233.x
https://doi.org/10.1016/0034-4257(83)90053-6
https://doi.org/10.1016/0034-4257(83)90053-6
https://doi.org/10.1002/wat2.1085
https://doi.org/10.5194/hess-20-3631-2016
https://doi.org/10.5194/hess-20-3631-2016
https://doi.org/10.1007/s11269-006-2974-8
https://doi.org/10.1007/s11269-006-2974-8
https://doi.org/10.18172/cig.2961
https://doi.org/10.20350/digitalCSIC/8529
https://doi.org/10.1002/joc.4474
https://doi.org/10.1002/joc.4474
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1175/2010JHM1224.1
https://doi.org/10.1029/2011JD016410
https://doi.org/10.1175/2012EI000434.1
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433
https://doi.org/10.1073/pnas.1207068110


and F. Espejo, 2014: Reference evapotranspiration variability

and trends in Spain, 1961–2011. Global Planet. Change, 121,

26–40, https://doi.org/10.1016/j.gloplacha.2014.06.005.

——, J. J. Camarero, J. Zabalza, G. Sangüesa-Barreda, J. I. López-

Moreno, and C. L. Tague, 2015: The evapotranspiration deficit

controls growth and net primary production: Implications for

Circum-Mediterranean forests under forecasted warmer

and drier conditions.Agric. For. Meteor., 206, 45–54, https://

doi.org/10.1016/j.agrformet.2015.02.017.

——, and Coauthors, 2017: Recent changes of relative humidity:

Regional connection with land and ocean processes. Earth

Syst. Dyn. Discuss., https://doi.org/10.5194/esd-2017-43.

Wang, K., Z. Li, and M. Cribb, 2006: Estimation of evaporative

fraction from a combination of day and night land surface

temperatures and NDVI: A new method to determine the

Priestley–Taylor parameter. Remote Sens. Environ., 102, 293–

305, https://doi.org/10.1016/j.rse.2006.02.007.

Wang,W.,W.Xing, andQ. Shao, 2015: How large are uncertainties

in future projection of reference evapotranspiration through

different approaches? J. Hydrol., 524, 696–700, https://doi.org/

10.1016/j.jhydrol.2015.03.033.

Wilhite, D. A., Ed., 1993: Drought Assessment, Management, and

Planning: Theory and Case Studies. Springer, 293 pp.

——, 2000: Drought as a natural hazard: Concepts and definitions.

Drought: A Global Assessment, D. A. Wilhite, Ed., Vol. 1,

Routledge, 3–18.

Will, R. E., S. M. Wilson, C. B. Zou, and T. C. Hennessey, 2013:

Increased vapor pressure deficit due tohigher temperature leads

to greater transpiration and faster mortality during drought for

tree seedlings common to the forest-grassland ecotone. New

Phytol., 200, 366–374, https://doi.org/10.1111/nph.12321.

Willett, K. M., R. J. H. Dunn, P. W. Thorne, S. Bell, M. de Podesta,

D. E. Parker, P. D. Jones, and C. N. Williams Jr., 2014:

HadISDH land surface multi-variable humidity and temper-

ature record for climate monitoring. Climate Past, 10, 1983–

2006, https://doi.org/10.5194/cp-10-1983-2014.

Yang, Y. T., R. J. Donohue, T. R. McVicar, and M. L. Roderick,

2015: An analyticalmodel for relating global terrestrial carbon

assimilation with climate and surface conditions using a rate

limitation framework. Geophys. Res. Lett., 42, 9825–9835,

https://doi.org/10.1002/2015GL066835.

——, T. R. McVicar, R. J. Donohue, Y. Zhang, M. L. Roderick,

F. H. S. Chiew, L. Zhang, and J. Zhang, 2017: Lags in hydro-

logic recovery following an extreme drought: Assessing the

roles of climate and catchment characteristics. Water Resour.

Res., 53, 4821–4837, https://doi.org/10.1002/2017WR020683.

Yao, Y., S. Liang, Q. Qin, and K. Wang, 2010: Monitoring drought

over the conterminous United States using MODIS and

NCEPReanalysis-2 data. J. Appl. Meteor. Climatol., 49, 1665–

1680, https://doi.org/10.1175/2010JAMC2328.1.

Zampieri, M., F. D’Andrea, R. Vautard, P. Ciais, N. de Noblet-

Ducoudré, and P. Yiou, 2009: Hot European summers and the

role of soil moisture in the propagation of Mediterranean

drought. J. Climate, 22, 4747–4758, https://doi.org/10.1175/

2009JCLI2568.1.

Zhang, Q., D. Kong, V. P. Singh, and P. Shi, 2017: Response of veg-

etation to different time-scales drought across China: Spatio-

temporal patterns, causes and implications. Global Planet.

Change, 152, 1–11, https://doi.org/10.1016/j.gloplacha.2017.02.008.

Zhang, Y., and Coauthors, 2016: Multi-decadal trends in global

terrestrial evapotranspiration and its components. Sci. Rep., 6,

19124, https://doi.org/10.1038/srep19124.

Zipper, S. C., J. Qiu, and C. J. Kucharik, 2016: Drought effects on

US maize and soybean production: Spatiotemporal patterns

and historical changes. Environ. Res. Lett., 11, 094021, https://

doi.org/10.1088/1748-9326/11/9/094021.

15 JULY 2018 V I CENTE - S ERRANO ET AL . 5393

Unauthenticated | Downloaded 08/27/22 02:56 AM UTC

https://doi.org/10.1016/j.gloplacha.2014.06.005
https://doi.org/10.1016/j.agrformet.2015.02.017
https://doi.org/10.1016/j.agrformet.2015.02.017
https://doi.org/10.5194/esd-2017-43
https://doi.org/10.1016/j.rse.2006.02.007
https://doi.org/10.1016/j.jhydrol.2015.03.033
https://doi.org/10.1016/j.jhydrol.2015.03.033
https://doi.org/10.1111/nph.12321
https://doi.org/10.5194/cp-10-1983-2014
https://doi.org/10.1002/2015GL066835
https://doi.org/10.1002/2017WR020683
https://doi.org/10.1175/2010JAMC2328.1
https://doi.org/10.1175/2009JCLI2568.1
https://doi.org/10.1175/2009JCLI2568.1
https://doi.org/10.1016/j.gloplacha.2017.02.008
https://doi.org/10.1038/srep19124
https://doi.org/10.1088/1748-9326/11/9/094021
https://doi.org/10.1088/1748-9326/11/9/094021

