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Abstract

Under convenient geometric assumptions, the saddle-point method for multidime
sional Laplace integrals is extended to the case where the contours of integrati
have boundaries. The asymptotics are studied in the case of nondegenerate and of
generate isolated critical points. The incidence of the Stokes phenomenon is rela
to the monodromy of the homology via generalized Picard-Lefschetz formulae anc
guantified in terms of geometric indices of intersection. Exact remainder terms at
the hyperasymptotics are then derived. A direct consequence is a numerical algoritl
to determine the Stokes constants and indices of intersections. Examples are provic

1. Introduction
The asymptotic behaviour &s— oo in the complex plan€ of complex oscillatory
integrals

Ir(k) = / e X1 @g@)dzD A .- AdZY, @)
r

with f,g : C" — C analytic functions of the variable = (zV, ..., z™) andI"

a chain of real dimension, has been the study of much work, both theoretical anc
practical. A discussion of the history of the problem can be found in V. Arnold, A
Varchenko, and S. Gussein-Zaf$] and D. Kaminski and R. Parigi{)]. Applications

of these integrals in optics are detailed &¥][and the references therein. Much work
has focused on obtaining the asymptotic expansions themselves. Here we focus
deriving “global asymptotics” in all sectors of the compleplane for these integrals
when the contours of integration are finitely bounded. Interest in this area has be
renewed recently following the ideas of R. Balian and C. Bldggdtahd F. Phamg3],
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[69], the development of the resurgence (s&g)[and hyperasymptotic theories (see

[7]), and the work of Kaminski and Parig()], [41], and C. Howls B6].

The main approach used in deriving the (global) asymptotics of such Laplac
integrals is a generalisation of the Riemann-Debye saddle-point method, which c
be reduced to the following algorithm (se&5]):

(1) theidentification of all possible critical points;

(2) the topological operation of pushing the integration contout'irtoward the
directions of steepest descent, forming a chain of integration hypersurfaces

(3) the local study near the critical points of the phase function and near tt
boundary of the hypersurfaces of integratibnand the computation of the
relevant asymptotic expansions;

(4) the derivation of the exact remainder terms, their reexpansions in terms
distant critical points, and the calculation of the associated Stokes constar
thereby explicitly linking the contributions from all relevant critical points.

The first and third parts have been extensively discussed at leading order (s
e.g., Arnold, Varchenko, and Gussein-2af], V. Vassiliev [71], and B. Gaveau
[26]) and for real variables (see R. Wongd]). The second topic has been studied
practically for real variables in terms of flows by KaminsRB[. The third topic has
been studied in great detail by Varchenko from the theoretical viewpoint, relating tt
characteristic exponents of the asymptotic expansions to mixed Hodge structure
vanishing cohomologies (se&d], [70]). Substantial practical progress in the deriva-
tion of asymptotic expansions with exact remainder terms for polynomial exponen
using Mellin integral representations has been made by Kaminski and #&rig/[1]
and by G. Liakhovetski and Pari¢J] using a Newton polygon to identify the appro-
priate contributions. The fourth point was studied for unbounded integration contou
by Howls [36].

Our goal here is to combine the four points above so as to produce for the fii
time exact remainder terms and a self-consistent numerical algorithm to determi
the Stokes constants whénis a bounded domain.

The asymptotic expansions are well known wtfeis a polynomial function (and
g is “well behaved at infinity”) and the contour of integratibnis an unbounded-
chain of hypersurfaces of integration, satisfying a convergence criterion at infini

R(kf) —> +o0. 2)
Under convenient geometric assumptions (effectively, that all critical points are is

lated and that no critical points at infinity occur), Pham showed geometricalgjn [
that the chairl” (resp., integral(k)) can be decomposed as a finite sum

Mo Ha
F=Y Y Nyl (respiro =Y > Ny, 0). @)

a j=1 a j=1
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HereN/J (I") are integers and the first sum runs over the finite set of critical pajris
the phase functiori, while thel') denote a basis gf,, (Milnor number) independent
steepest-descentfolds associated with the critical poirt.

Such a steepest-descentold is easy to describe locally when the critical point
is a Morse singularity, yielding the notion of thefschetz thimblef geometers. In
general, the local analysis near the (isolated) critical paintsf the phase function
f reduces to a description of the topology of the generic fibet t, t € C nearz,,
whose (reduced) homology is the vanishing homology of geometers.

From the above decomposition, the asymptotics follow from a local analysis ne
the critical points. Moreover, this geometrical viewpoint also yields any algebrai
Stokes phenomena, that is, discontinuities of the decomposiijdar(special values
of arg(k). These discontinuities are given by the Picard-Lefschetz formulae, and the
use in deriving exact remainder terms, Stokes constants, and Riemann sheet struc
was discussed in the hyperasymptotic study by Ho@4 [

The purpose of this paper is to extend the results36f o consider integrals of
type (1) when one adds a s¢&;, S, ..., Sy} of m < n smooth irreducible affine
hypersurfaces as possible boundaries for the contour of integration.

Assuming thatf is a polynomial function, we show (under some convenient ge:
ometrical assumptions) a hyperasymptotic extension of known results in real asyn
totic analysis (se€7[]): the chainl” can be decomposed again as a finite sum

Mo
= ZZ Ng; (I)Ig; (4)

a j=1

with integersN,, ("), where the sum runs over the (finite) set of critical valfigef
(1) the critical points of the phase functidnand
(2) the critical points of the restricted functioi on the boundary.

The above description follows from a decomposition of the space of (relative
homology classes af-chains satisfying the descent condition. Some discontinuitie:
in decomposition4) usually appear under variations of the phask.dfor a geome-
ter, this phenomenon can be understood in terms of indices of intersection, descril
by generalized Picard-Lefschetz formulae. For the analyst, this is the Stokes pl
nomenon, and the previous indices of intersection are now seen as Stokes multipli
The first viewpoint helps in understanding the quantized nature of these Stokes m
tipliers but, as a rule, fails at the stage of concrete computation. Understanding the
indices of intersection as Stokes multipliers gives a numerical method of computatic
using the tools and ideas of hyperasymptotic theory.

The structure of the paper is as follows. In Section 2 we briefly describe th
space of contours of integration that will be considered and the decomposition prc
erty. This is done in an intuitive manner, saving the proofs and technicalities for A
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pendixA. In Section 3 we apply this decomposition to integrals of typederiving

the asymptotics. In Section 4 we discuss the Stokes phenomenon, describing the
called resurgence properties. Here again, the technicalities of the proofs are left
AppendixB. In Section 5 we demonstrate how to derive the exact remainder ter
for a truncated asymptotic expansion, together with the calculation of the associai
Stokes constants and thence the hyperasymptotic reexpansions. In Section 6 we
vide an example. We conclude in Section 7 with a discussion of the hypotheses &
some related topics; among other subjects, the problem of the “confluent” case
briefly described, and some links between oscillating integrals with boundaries a
differential equations are suggested. We also mention some open problems.

By their very nature, the complex oscillatory integrals are crossroads for differe
scientific communities, from pure mathematicians to physicists and chemistsdcf. [
and the references therein). This paper has been written in such a way as to be reac
by as large an audience as possible; consequently, although some comments in the
will appear trivial to geometers, they are intended to be helpful to the nonspeciali
Conversely, the procedure for deriving the new hyperasymptotic formulae associa
with these integrals may be familiar to an (exponential) asymptotician, but this |
explained in Section 5 for the convenience of others.

2. Contours of integration and assumptions
This section contains the assumptions we make about the types of integrals to
treated, together with the definitions of the technical geometrical terms that we u:
For the benefit of the geometer, the technicalities of the explanations and proofs c
be found in AppendiA.

We treat only the case whehis a polynomial. As in ther( = 1)-dimensional
case, theC-space of the values df plays a central role and is called tBerel plane
or thet-plane.

In what follows, we assume thkthas a given phase#:

k = k| exp(—i6) e C\{0}. (5)

2.1. Contours of integration with no boundary

In Howls [36] and Pham §3], integrals of type {) are considered for unboundead (
real)-dimensional contours of integratidy traveling between asymptotic valleys at
infinity wheref(kf) — +oo. This condition ensures the convergence of the integra
and the validity of the Stokes theorem (at least when the growth of the fungtion
at infinity remains small in comparison to the decay of the exponential involf)ng

It is assumed from now on thatis a polynomial function, although we believe the
results to be more widely applicable.
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As in [63], the set of these unbounded integration contours is denoted k
HyY (CM).

The properties oH,} (C") are essentially governed by the behavior of the func-
tion f near its critical points,, where the gradienV f vanishes. In principle, an
integral Ir over one such contour can be reduced to the sum of integrals over a ¢
guence, called a chain, of “steepest-descent” contByyr&ach of which encounters
a single critical point, of f and follows the flow of the vector fiel&f (% kf). This
is true at least when the phasekois “generic” in the sense that eatlh encounters
no more than one critical point, so that no Stokes phenomenon occurs.

This contour decomposition follows from the work of Ph&8][ under two main
geometrical assumptions.

(1)  All critical points are isolatedThis excludes thosé that contain a ridge of
critical points (see, for instance’q)).

(2)  There are no critical points at infinity.

Since these two requirements are central to the paper, it is worth pausing to give

explanation.

To explore the space of integration contours, it is necessary to study the topolo
of the level hypersurface$~V(t) for t € C, and particularly fortt near a critical
value f,, for which the fiberf = (f,) becomes singular. This amounts to studying
the geometry near the corresponding critical values, which is completely understo
(since J. Milnor pQ]) only when isolated critical points are concerned. Hence we hav
the first assumption.

The definition of critical points at infinity is subtle but can be illustrated with an
example (from 10]). A straightforward computation shows that the polynomial

f(z0, 2?) = 70?2?4270 6)

has no critical point, but, nevertheless, the filier'(0) differs from the other level
hypersurfaced -1 (t). This can be seen by deforming this polynomial into

fi (2D, 2@y = 20222 | 27D | 2,2 @)

For k € C\{0}, the polynomialsfy have two nondegenerate critical points (resp.,
values) at(zV, z@) = (ik, i/k) and (—ik, —i/k) (resp., 2k and —2ik). However,
whenk — 0, the two Morse singularities evaporate to infinity while the two critical
values converge to zero. This gives rise to a critical point at infinity, with zero fo
its corresponding bifurcation value. We see later in Sectidrhow this bifurcation
value coming from a critical point at infinity indeed affects the (hyper)asymptotics
Nevertheless, the general topology in the locality of such critical points at infinit
is complicated and not yet well understood (apart from the dimensien 2; see
[32] and [22] for a survey of recent results), and this is the reason for the secor
assumption.
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2.2. Contours of integration with boundaries

Returning to the general case of integrals of type guppose that the contolirnow
encounters a sequence of boundafigs S, ..., Sy}, these beingn < n smooth
complex(n—1)-dimensional hypersurfaces. For instance, the contour may run from
boundary into an asymptotic valley at infinity whéiek f) — +oo for convergence,

or it may run between two finitely placed boundaries.

We assume that each bound&yis defined by a polynomial equatidf(z) = 0
with B, € C[z]. This prevents the boundaries from behaving too wildly at infinity,
thus ensuring (1) the convergence of the integrals and (2) the validity of the Stok
theorem.

Notation. The set of these contours which we also refer to asycles is denoted by
HY(C", S with S=S U---U Sy,

The affine hypersurfaces, S, ..., Sy} are assumed to satisfy the following hy-
potheses.

HYPOTHESISH1
The m hypersurfaces S, ..., Sy are in general position; that is, they may cross,
but they are not tangential at the crossing points.

Notation. For brevity, the intersections of boundary surfaggs)---N§, (1 <i1 <
- < ip < m)are denoted by, . i,. These are smooth submanifolds of complex
codimensionp by Hypothesis H1.

From the polynomial nature of the phase functiband the Bertini-Sard theorem, it
follows that the set\(y of critical values off is finite. Moreover, from the algebraic
assumptions on th®, the restrictionf, .. ip) ‘= flSi,..... ip) of f to the intersection
of the boundarie&;, .., ip) also has dinite setA g, ., ip) Of critical values(see p0)).
We denote byA = |J Ag,, ..., ip) the set of all these critical values. Notice here that if
m = n, then the (finite) set of point§; N --- N §, are considered critical points. In
one-dimensional integrals, this corresponds exactly to linear endpoints.

To avoid complications at infinity, we assume the following hypothesis.

HYPOTHESISH2
We have that f, as well as eachy, f i) (1 <i1 < --- <ip < m), has no singularity

at infinity.

We avoid nonisolated critical points.
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HYPOTHESISH3

.....

Itis useful also to assume a one-to-one correspondence between criticalkzpaimis
dimensions and their critical valuds = f (z,) in one dimension. This is the subject
of the following hypothesis.

HYPOTHESISH4
Each f, € A is the image of a single critical point,of f or one ofthe 1S, ip)-

At this point it is helpful to introduce some definitions.

Definition 2.1
Thedepthof a (restricted) critical poirt,, is the maximal number of boundaripson
which it lies.

Following the one-to-one equivalence between critical value and critical point (se
Hypothesis H4), we can obviously extend the definition of depth to critical value:
This definition allows us to classify the critical points according to their depth in th
following way.*

Definition 2.2
Critical points of thefirst typeare critical points of deptip = 0.

These are critical points of the unrestricteénd do not lie on a boundary.

Definition 2.3
Critical points of thesecond typeare those of deptp > 0 and are critical only forf
restricted to exactly boundaries.

For such a critical point, and &, ..., S, are thep boundaries (up to a reordering),
it follows from Hypothesis H1 and Hadamard'’s lemma (sg& that there exist new
local coordinategs?, ..., s sPtD sy sych that we can writé as

f = fa+5(l)+~~~+s(p)+F(S(erl),...,S(n)) (8)
with s) = 0 as a local equation for the boundagy

* Our nomenclature differs slightly from Wong's ).
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Definition 2.4
Critical points of thethird typeare all other cases (including when an actual critical
point of the unrestricted accidently lies on a boundary).

We discuss only critical points of the first two types due to the extra complication
that can arise in third-type cases.

HYPOTHESISH5
No critical value of the third type occurs.

2.3. The decomposition theorem

In the presence of the boundari€g, S, ..., Sy, it is by no means obvious that
it is still possible to decompose the original integration contour into a sequence
steepest-descent contours, each passing over either a single critical pbiot @b
restrictionf(, . ._i,). While this may be obvious for single-dimensional integrals, anc
while local results in real dimensions are obtainable by using “neutralisers” (in tern
of Laplace integrals; see Wongd]), until now it has not been demonstrated explicitly
in higher complex dimensions.

In SectionA.3, by extending ideas of Phandj] and taking advantage of Hy-
potheses H1 and H2, it is shown that a given cycle of integration can be decompo:s
through a continuous deformation (isotopy) into a chain of cyElgsuch that their
projections byf are straight half-lineg ,, := (f,, coexp(if)), where f, belongs to
the set of critical valueg\. This is true at least when the finite set of théseare
two-by-two disjoint, and this is guaranteed for a “generic” phade of

Note that on each of the$g, the exponential factor exp-k f (z)) has the greatest
exponential decay; that i§,, satisfies the steepest-descent condition.

Under Hypotheses H3 and H4, we show in Sectiof that the investigation of
each cyclel', essentially reduces to a local analysis near its relevant critical poir
Z,. Assuming these results, Sections 2.3.1 and 2.3.2 help us to understand the I
geometry near a critical point, introducing objects such as “Lefschetz thimbles” ar
“vanishing cycles.” These objects are most easily defined initially for the unbounde
contour case. We do this in Section 2.3.1 before demonstrating how they are modif
in the presence of boundaries.

2.3.1. The geometry near a first-type critical point
In the Borel plane, we consider restrictions to (sufficiently) small closed discs
centred on the critical valuef,, of radiusrg. This corresponds to local truncations of
the steepest-descent contoligsin neighbourhoods of the critical poigy,.

We first consider the case of a nondegenerate critical gginthe function f
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has a Morse singularity there, and the Morse lemma ensures the existence of Ic
coordinategs?, ..., sM) such that

fofy=s®p. . 4 sm?
= X% x@ %ppy
+ 2i (X(l) y(l) 4+t x (M y(n))’ (9)
wherex® = 9i(s®) is the real part 06, andy®) = J(sV) is the imaginary part.
Assuming for simplicity thaf = 0, and under the truncation conditiph(s) — f,| <

ro, we see that the best realisation of the steepest-descent conditions is given by
so-called Lefschtez thimbledefined by

ro={sW,....,sMec" |y =... =y® =0, x®? 4 x™? < ro}.
(10)
The Lefschtez thimbl@ﬁﬁJ is unique up to the choice of orientation. The standard one
is that defined by the coordinates?, ..., x™) (see p3)).
The cas® # 0 is easily deduced from the case- 0 by the linear mapping

D, ..., sM) > @0/2sD . /25y (11)

Note that, from its very definition, a Lefschetz thimi1g is mapped byf onto
the closed segmemrff = (fy, to), Wheretg = f, +roexpio).

Figure 1. Lefschetz thimbIEf)? for n = 2 and its boundary
to to
Yo =0[T¢]

An associated geometrical object is tranishing c:ycl;ayof0 (see Figure 1) being
the (n — 1)-real dimensional oriented boundary of the Lefschetz thimble, wiete

*In what follows, the term “absolute” is added to these Lefschtez thimbles to differentiate them from th
“relative” Lefschtez thimbles introduced in Section 2.3.2.
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to; whend = 0,

o = {(s®,...,sM eC|y® =... = y® =0, xD2 4 xm2 _ rol.
12)
The orientation is determined by that of the Lefschetz thimble. It is convenient to refi
to the vanishing cycle in terms of a boundary operator

ylo =g [rh). (13)

A Lefschetz thimble encountering a first-type nondegenerate critical point can thus
geometrically parametrised in that locality as the union of all vanishing cyd|es!
ast runs along.?.

We note briefly that it is possible to extend the concepts of a Lefschetz thimb
and a vanishing cycle to the case of an isolated degenerate critical point of the fi
type, that is, when the Hessian determinantfofanishes. The idea is as follows.
Under a small (generic) deformation, the degenerate critical @irgplits into a
finite numbernu, of nondegenerate critical poinys, being the multiplicity or Milnor
number of the critical point. We thus have a basis @f, Lefschetz thimblesrf)?j,

j =1,..., uy, and their corresponding vanishing cycles. Returning to the origing
unperturbed , the basis of Lefschetz thimbles is deformed into a basig,dfolded”
Lefschetz thimbles.

Note that, starting with this local description of Lefschetz thimltEs we can
extend them globally by following the flow of the vector fiedd% kf) with the
vanishing cycles as initial data. This defines what are calledabsolute) steepest-
descent n-fold§',. This is true at least when no Stokes phenomenon occurs, and tt
is guaranteed if the half-link,, onto whichI",, is mapped byf, does not encounter
any other critical valuefg € A() of f.

2.3.2. The geometry near a second-type critical point
When boundaries are present, the definition of a Lefschetz thimble and a vanishi
cycle needs clarification.

In the Borel plane, we again consider a restriction to a small enough closed di
D, of radiusrg centered on a critical valug, of depthp. Localising near the corre-
sponding critical poink,, we use the local coordinates @ (

If we assume thaE has a nondegenerate critical point, then it may be written as

2 2
F=sPD% ... 1M (14)
* There are many equivalent definitions for the Milnor number. The nonspecialist may be referfs] to [

or [2]. For instance, the Milnor number for the singularizSiL)a —+ 2@ (a,b e N\{0}) is (a—1)(b—1).
Of courseu, = 1 for a nondegenerate critical point.
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by changing then — p local coordinategs®tD, ... s™M) if necessary. This is a
consequence of the Morse lemma applied on restriction t&the - - N Sy, which of
course does not affect the local equatisfs= 0 for the boundang,i = 1,..., p.
Assuming for a moment that= 0, we easily obtain
o = {(s(l’,...,s(”)) e<Cn|y(1) =...=y™W=0,xP>0..xP=>0,
x@D o x® o x(PHD2 M2 o}, (15)

with x = 91(sM) andy® = J(s) for the best realization of the steepest-descent
conditions, under the truncation conditiphi(s) — f,| < ro.

We refer tol'? as arelative Lefschetz thimbl&gain, the relative Lefschetz thim-
ble is unigue, up to the choice of the orientation. The orientation defined by the coc
dinates(x, ..., x(M) is called thestandard orientation

The case of generalis deduced from the case> 0 by the simple linear map-

ping

The relative Lefschetz thimbIEf)? is mapped byf onto the closed segmehﬁ? o=
(fy, to), wheretg = f, + roexpio).

The concept of a (relative) Lefschetz thimble now being clear, its companio
vanishing cycle is defined in terms of a reduction process. This algorithm is importa
in the derivation of the asymptotics of Laplace integrals of tyhednd so we now
explain it. This is done on the basis of Figure 2, where 3 andp = 2. We assume
6 = 0 for simplicity. We first introduce [[], whered is the boundary operator that
selects the part of the boundaryEztf wheref = to:

2
Ao ={x®>0,x@ >0 x®4x@4x =rg}. (17)

The relative Lefschetz thimbIEY can thus be locally parametrised as the union
U @ [T'L] with t running onLY.

Reading the equality inl() asx® + x®% =1 — x® = ry with 0 < x® <,
we see that eacm[l“fx] can itself be parametrised by the un@g1 0100 [FE}] for t1
running onL!, (andx; =r —ry). Hered; is the boundary operator that selects the part
of the boundary of [I}] lying on Sy, wheref|S, = t; andty = f, + r1exp(if); in
other words,

9109 [ = (x? = 0, x@ 4 x®% =y}, (18)

Similarly introducing the boundary operat@y, we get a parametrisation of eagho
3 [T1] in terms of the sequence overe L of the boundaries

Bp0 0109 (T2 = (x®° =1y (19)
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Figure 2. Relative Lefschetz thimbl% forn =3 andp = 2.
The vanishing cycle i, o 31 o 3[I',] = [b] — [a].

(andx2 =r1 —rp) lyingon SN S, wheref | NS =ty andty; = f, +roexpif).

The boundaryds o 91 0 9 [ro]is precisely thevanishing cycleyot,2 associated
with the relative Lefschetz thimbIE22. More generally, the vanishing cyciéo for
a critical point of the second type of depfhis the boundary on the simultaneous
intersection of {5) with the p + 1 constraining boundaries, including the boundary
condition f = tp. In boundary operator notation, we have

Yo =4 0. 08, 08[IY], (20)

where the; ; is the operator that selects the part of the boundary lying on the bounda
S, Its orientation is deduced from that prescribed‘iﬁb

Note that the reduction procesX} is not canonical, in the sense that it is defined
up to a permutation of thp+ 1 boundary operators. However, the resulting vanishing
cycle does not depend on the order.

When F has a degeneracy of multiplicity,, we obtain a basis of, folded
relative Lefschetz thimbIeEfBj, j =1,..., us, and the reduction processQj to
associate a (unique) vanishing cycle to a given (folded) relative fold Lefschetz thimb
is unchanged.

To extend the local description of a relative Lefschetz thimﬁfeinto a global
notion of arelative steepest-descent n-fdlg is less obvious than in the “absolute
case,” where no boundary interferes (sé8). This can be performed (cf. App\),
at least when no Stokes phenomenon occurs.
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2.3.3. The corner case

In the above description of the behaviour of a second-type critical point, it is implic
itly assumed that the depth is less tham. The case where the depthriswhich
corresponds to a corner, is actually simpler. As illustrated in Figure 3, the reductic
process stops at thigp = n)th iteration, the boundary

dp-10---00100[I] (22)

being just the end critical corner point, and no vanishing cycle needs to be defined

S8

Figure 3. Relative Lefschetz thimble for= p = 3. No vanishing
cycle occurs.

2.4. Conclusion

Assuming that is generig so that the set of half-linels, = f, + &R+ (f, € A)

are two-by-two disjoint, we saw in Section 2.3 how each critical point of multiplicity
e May be associated with, independent (absolute or relative) steepest-destent
folds. The set of all these steepest-desecefnids then defines a basis for the contours
of integration in the following sense.

THEOREM2.1

In the presence of the boundarieg S, ..., Sy, every contour of integration of in-
tegrals of type (1) can be decomposed uniquely as a chairjrbf(steepest-descent
n-folds associated to the critical points, restricted or actual, of f.

This result is just a rige formulation of Theorem\.2 proved in AppendixA. Note,
moreover, that by adding the Milnor numbers of each critical point (with the conver
tion u = 1 for a corner), we have a simple way of keeping an account of the numb
of possible independent steepest-descent contours.
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Example
By way of an example, consider the function

4 2 3

in the presence of a boundag; : zV — 2@ = 1. The phase functiori has no
critical point at infinity. By dimensionality, the question of critical points at infinity is
not relevant for the restricted functions on the boundary (there are no critical poin
at infinity in dimension 1).

The phase functiorf has two isolated critical points of the first type. One is nonde-
generate; hence1 = 1 and corresponds to the critical valfieg = —1/19683. The
other critical point is = C2; it is degenerate, with, = 0 for its critical value. Theo-
retically, the computation of its Milnor number follows from a result of V. Palam-
odov and H. Grauert (see, e.gb8]) via an algorithm (see, e.g.19], [2]). Here we
can take advantage of the semi-quasi homogeneity of the polyndngsde P]); in
the neighbourhood of the critical point, the singular lodus= 0 is isomorphic to
X (Y2 + X3) = 0, that is, the union of a cusp and a smooth curve. In the language
catastrophe theory, this singularity is classified as the parabolic umbgi¢cf. [2]),
and one finds that, = 5.

The restricted functiorf(y on §; has three nondegenerate critical points, and the
critical valuesf(y)1, f(1)2, f(1)3 are of the second type.

To conclude, we have a basis set @fl9-5+ 3 x 1) possible independent steepest
surfaces into which a general integration contour can be decomposed.

Variation with . The above analysis has been carried out for fixed generic phas

6o = —argk). Whend ranges frontg to 6 + 27, a given cycld™® ¢ Hr}y(e") "9

is deformed continuously into a cycl¥ e Hy @@, 9), according to the continu-

ous variation of the convergence criteriitk f) — +oo at infinity.” Note, however,

the following.

. In general, the deformed cycl&®o+27 differs from I'%; therefore, as a rule,
the integrals 1) are ramified ak = 0. (Just think, for instance, of the Airy
function, wheref (z) = z — z3/3))

. When nongeneric phasésare crossed, the decomposition of a given cycle
with respect to a basis of steepest-desceftids may encounter discontinui-

*In other Words,Hz‘“ (C", §) is a freeZ-module of rank 9.

TThis translates in terms of sheaves; the family of groups of homoldé’f')((cn, S) makes up a local
system of freeZ-modules of finite rank on the circl8 of directions. We denote this local system by
HY (C", S)s.



GLOBAL ASYMPTOTICS FOR BOUNDED MULTIPLE INTEGRALS 213

ties. This is the Stokes phenomenon. We return to this point later (see Se
tion 4).

3. Integral representations and asymptotics
We are now ready to study the analytical and asymptotic properties of the Laplac
type integrals ). We recall thag = g(z) is a complex polynomial function, and we
denote byw = g(z)dzZP A --- A dZ™ the corresponding holomorphic differential
n-form.

It follows from the above analysis (see Sectigrithat the mapping

I Irk) = / e k@, (23)
r

translates the geometrical properties of the family of spaces of integration contot
(Hrﬁl’((’)(C”, S))gcs into analytic properties of integral functions defined on the uni-
versal covering of©\{0}.”* Moreover, to give a complete description of this represen-
tation, it is enough
(1) to consider the action o2@) on each cycle of a basis of steepest-despent
folds for generi® (see Theorems.1or A.2) and
(2) to analyse the possible discontinuities (Stokes phenomena) when nongene
0 are crossed.
The second pointis discussed in Sectiohlere we concentrate on the first point,
the asymptotics withk| — +o0o. We thus consider a steepest-descefld I' =
I, (0) for a given generi@. One can make two preliminary remarks.
(2) 1t follows from its very definition thatf maps the steepest-desceriold I'
onto the half-linel,. This ensures the exponential decayeof’@ at infinity along
I" for k in all closed subsectors of

g = {|arg(k)+9| < % and |k| > o}. (24)

It thus follows that the Laplace integral
Ia(k)=/e_kf(z)a) (25)
r

defines an analytic function iBy.
(2) Using the notation of Sectioris3.1and?2.3.2, let us “truncate” our chain
I asI'o with to € L, and close tof,." Then the difference integrgl. ., e '@

*In other words, 23) gives a representation of the local system of homolétl§(C", S)s in terms of the
sheaf of holomorphic functions of\{0}.

Twith the notation of Sections\.4.1 and A.4.2, T is a relative cycle inHn(Xq, XL") if depth(f,) =0
and in Hn(Xe, X2 UY1 U--- U Yp) if depth(fy) > 0.
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defines an analytic function lnwhich is exponentially decreasing at infinity inside all
closed subsectors afy and is therefore “flat” (i.e., asymptotic to the zero function)
at infinity. This means thdt, (k) and

10(k) = / e (26)
r

have the same Poin@asymptotics at infinity inside all subsectorsXf.

We can now compute these asymptotics by the saddle-point method. The res
of course depends on the type of critical point we consider, and this is the purpose
Sections3.1and3.2

3.1. Absolute steepest-descent contours (no boundaries)
As an introduction to the bounded case, we first study the asymptotics associa
with a critical valuef, = f(z,) € A() of the first type. This case is well known:
the asymptotics are governed by the local behaviour of the integrand near the isola
critical pointz,. We briefly recall the ideas of B. Malgrangé] (see also§3], [25],
and B, Section 11]), which relate the asymptotics directly to the geometry of the pha:
function. Furthermore, we demonstrate the Borel summability of these asymptotic
which can therefore be considered asaactencoding of the functio, (k) within
a Stokes sector.
Writing
Ir(k) = e Kla / e kKi@-Ta), (27)
r

one can assume thd = 0 without loss of generality, and we furthermore assume
thatd = 0 for simplicity.

We now consider the truncated integrab) and use the boundary operatofcf.
(13) or (A.12)) to reduce the dimensionality. By the Stokes theorem (48p &nd
Leray residue theory (seél]),

10k = i@y, _ [ gre k], ith 3,(t) = 2 28
LK) = e w = te " Jy (1) with J,(t) = , (28)
[‘10 0 3[rt] dft

wherew/d f; denotes the Leray residue differential— 1)-form of w,” 3[I"!] being
the vanishing cyclé.

Itis known from P] and [45] that J, (t) defines an analytic function on the univer-
sal coverlngDa\{O} of the punctured disBy\ {0}. More preciselyJy (t) is a solution

*That is,w = df A w/df. This (n — 1)-quotient formw/df is holomorphic along each nonsingular fibre
X! ={ze t71(t), z nearz, and t nearf,).
TThat is, 3[T"] € Hn_1(XY).
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of a so-called Picard-Fuchs equation (or Gauss-Manin connectionf&gddr in-

stance)

d' j; dl_lj; R

gr TR0 o tad =0 (29)
with| < w4 (the multiplicity of the singularity), which has (at most) a regular singular
point at the origin. It follows from the theory of Fuchs (s&é]) that J» () admits in

each sectoa < arg(t) < b a convergent series expansion of the form

Lt =) asmt'(nt)?®, (30)
r,s
where
. ther € Q,r > —1, belong to the finite set of distinct monodromy exponents
of the classical monodromy operator in homologef. [45]);
. to eaclr is associated a set ofe N with s < inf{u, — 1, n — 1} (see B] for
more details); of courss,= 0 for nondegenerate critical points;
. ars(t) =250 ars jt! are convergent Taylor series.
It remains to use the standard integral
+00 |
/O e Kith(int)! dt = ((%) (F&—L})) (31)

to conclude from Watson'’s lemma thlai?(k); hencel, (k) has

Ink)S
SNCEDS Tr,s<k>(kr:—+i (32)
r,s

for its asymptotics whefk| — oo in all closed subsectors &y, whereT, (k) are
formal Gevrey-1 series expansiohs.

*Define a base pointy near (but different from) the critical value, and consider (fgr a basis of van-
ishing cycles generating the vanishing homology. Consider the deformation of these cycles gbes
around the critical value, starting at and coming backotoThe resulting cycles still define a basis of the
homology: comparing the two bases, one gets an invertible matrix with integer coefficients describing t
monodromy of the vanishing homology. In the case of a nondegenerate critical point (only one vanishil
cycle), the possible monodromy arises from the possible self-intersection of the vanishing cycle. In t
case of a self-intersection, we get a square root singularity at the orig@toy; otherwise, J, (t) is ana-

lytic neartp. In the case of a degenerate critical point, each of the deformed cycles is described in gene
as a linear combination (with integer coefficients) in terms of the preliminary basis. Write the eigenvalu
of this matrix under the form exp-2ixA). Then these\ are rationals (see4p]), and, moreover, they are
(up to an addition of an integer) the exponentsn the series expansior3@). It may happen that the
monodromy matrix has multiple eigenvalues, resulting in possible logarithmic tern0jnl( Kaminski

and Paris’s scheme (seé(], [41]), this corresponds to multiple poles for the integrand for the associated
Mellin-Barnes integral representation.

TThat is, Ty s(k) = Y0 Tr.sj/ki, and there exisCrs > 0 and A, s > 0 such thafTy.j| < CrsAlLT())

(see Malgrange47], J. P. Ramis §€], or M. Loday-Richaud 44)).
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Now we can use our freedom to char@slightly so thatlL, still does not meet
other critical values. The resulting integral is just the analytic continuation of th
previous one, the asymptotics at infinity being preserved. This proves that the asyn
totics (32) are valid inside a wider sector of aperture greater thafherefore formal
expansion§2) is Borel resummable with, (k) as its Borel sum (Watson’s theorem;
see [7]), and we thus obtain the following equivalent, one-dimensional, integral ref
resentation:

cod?
lo(K) = / dte Kt 3, ). (33)
0

In summary, for general valug,, we have the following theorem.

THEOREM3.1

Let f, be afirst-type critical value. The integraj (k) admits ekl 3, (k) asits asymp-
totic series expansion for k> oo in Xy = {|k|] > 0, |argk) + 6| < 7/2}; in other
words, (k) ~ e %% J, (k) in Zg, with

(Ink)s

) =) Tes ) = (34)
r,s
where
Tos() =D Trgj/K! (35)

j>=0

belongs toC[[k~11]1, the differential algebra of Gevrey-1 series expansions (se
[66]). The r € Q run over a finitespectralset, and to each r is associated a set
of s € N satisfying s< inf{u, — 1, n — 1}.

Conversely, d (k) (resp.,j;(t)) can be considered as the Borel sum (resp., the mi-
nor in the resurgence theory of J. Ecdllef e %% J, (k) in the direction of argument
0.

Remark. Note that we are here treating tfigs and J, as formal series expansions,
although they can be interpreted also as (Poigcasymptotic expansions. The nota-
tional approach used here may be unfamiliar to some readers, but it is used to main
consistency with the Borel and resurgence viewpoint (8&g [23], [12]).

Note also that in Theorerd. 1 the direction of summation should be considered
as a direction irC\{0}, the universal covering df\{0}.

*This is not to be confused with his lemma for standard integral expansions.
TSee Ecalle 3], or [12], [18], or [16] for a short introduction to resurgence theory.
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COROLLARY 3.1
If z, is a nondegenerate quadratic critical point of f, thep(k) ~ ekl 3, (k) in
Yy, with

1 _ 90)@n)"? " -1
B = 75 Ta()  and Ta(k)—erZT,-/k e Cl[k11,

j>1

(36)
whereHesg f) is the hessian determinant. The choice of the root depends on tt
orientation of the vanishing cycle.

This corollary is well known (cf.25], [76]). One method for the practical computa-
tion of theTJ-"‘ is described in7].

3.2. Relative steepest-descent contours (bounded case)
This case corresponds to a critical value of the second type and is the main focus
this paper. Leff, € A(1..... p) be acritical value of the restricted functidp, .. p) with
p > 0 the depth. We apply the reduction process developed in Settioh(resp.,
SectionA.4.2) to analyse the asymptotics of our bounded integral. Again without los
of generality, we assume th§f = 0 and6 = 0.

To compute the asymptotics, it is enough to consider the truncated integral. Sin
f = 0 is not a singular level, by following formula. {) and its comments, we can
apply Fubini’'s theorem to write

to
I;O(k):/ dte‘kt/ @ (37)
0 arrty dfe

wherew/d f; is the (holomorphic) restriction of the differential quotigim — 1)-
form w/df to the levelf = t, andd[I"!] is that part of the boundary dft lying on
the fibre f ~1(t).” The same reduction can be repeated step by step. We use the lo

Hooog

coordinategs®, ..., s(P s(P+D  sM)sothatf is given by formula (8), and we
define the set of function§ o : (sP,...,s™) > f(0,...,0,s0*D . s,
At the second step (ip > 2), from Fubini’s theorem we have

~ ) ! a)

J, () = — = [ dt / ————— | f=t. f =ty 38

o (1) /B[I‘t]df /O 1 aloa[[‘tl]df/\dflh t, fi=t1 (38)

wherew/df A dfy|f=t, f,=t, denotes the (holomorphic) restriction of the differential
guotient(n — 2)-form w/df A df; along the nonsingular levdl = t, f; = t1: here
again, B98) is a simple translation of formuld. ) with its comments. At thedth step

*Precisely, the class of homology @] belongs toHn (X, X, UYL U --- U Yp), and we select that part
of its boundary lying onX},.
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we obtain

to t tp_z
150 (k) :f dte*ktf dtl---/ dtp,lf o 0p-1..10, (39)
0 0 0 d(p-1...,0[T P1]

where
d(p-1,...,1,00 = dp—10---0d100, (40)
while

w
W(p-1,..,1,00 = f=t, f1=t1,..., f _1y=tp_
(p ) df A dfl/\ N dfl,..., B | 1=l 1. (p—-)=lp-1

(41)

is the corresponding Leray quotigimt — p)—differential form.

If p = n (corner critical point), themp_1,....1,0) IS just a holomorphic function
of (t,t1, ..., tp—1) and the reduction process stops herg ¥ n— 1, it then remains
to use the same argument as in Secfdnto obtain

to t tp—1
| o (k) =/ dte*ktf dt1~~-/ dtpf o O(p.... 10, (42)
0 0 0 3(p,...1,0[T"P]

wheredp o --- 010 d[I"'r] is the vanishing cycle of the critical point.
In the casep = n, the integral

- t tp2
Jo (1) =/ dtl"‘/ dtpflf o ®(p-1...10) (43)
0 0 dp-1,...1,0[T P~1]

defines an analytic function ob,, with ijo athp—l as its convergent Taylor
expansion. In the cage < n — 1, by using the results from SectiGr2, the function

ha(t7t17 ...,tp) =S / (,()(p ,,,,, 1,0)? (44)
3(p....L0)[T"'P]

considered as a function &f with (t, ty, ..., tp_1) as a parameter, is defined as an

analytic function on the universal coverirﬁg;\\{f,,} and admits in each sectar <
arg(t) < b a convergent series expansion of the form

Y ars(t,tr, ... tpo1, tp)th(Intp)?, (45)
r,s
where
. ther belong to a finite set of distinct monodromy exponents of the classice
monodromy operator in homology, and the N satisfys < inf{u, — 1,n —
p—1}; ,
. ars(t,ty, ..., tp1,tp) = ijo arsjt ty,..., tp_l)t,!. are convergent Tay-

lor series with analytic dependence with respectit;, ..., tp_1).
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It thus follows that the function

R t tp-1
Ju (D) :/ dtlu-/ dtp/ W(p,...,1,0) (46)
0 0 3p,...10T"P]
has the same properties, with
T =) b st Pnt)® (47)
r,s

for its convergent series expansion, wherg(t) = > ;. br,s,jt,j) are convergent
Taylor series.

As in Section3.1, we finally recast, (k) as a one-dimensional integral represen-
tation

od?
I, (K) = f dte Kt3, (), (48)
0

and we obtain the following theorem.

THEOREM3.2

If f, is a second-type critical value of depth p, the integgalk) admits gkla 3, (k)
as its asymptotic series expansion fork oo in Xy (i.e., ly(K) ~ ekl 3, (k) in o),
where

for p=n, J(k = ZTJ/kJ e Clk~ 11, (49)
j=0
Ink)®
for psn—1 J,( = ZTr s(k) k(r-s-p-)&-l’ (50)

where Ts(k) = ijo Tr’s;j/kj belongs toC[[k~1]]1. The rational r’s run over a
finite spectral set associated with the critical point, and to each r is associated a s
of s € N satisfying s< inf{uqg —1,n— p— 1}.

Conversely, 4 (k) (resp.,JAo,(t)) is the Borel sum (resp., the minor) of'de J, (k)
in the direction of argumertt.

The asymptotics are simpler in the case of a nhondegenerate critical point (see,
instance, 17], [7€], [3]), arising from p boundaries.

COROLLARY 3.2
When the singular point is quadratic, (k) ~ e %% J, (k) in =g, with

x T
3 = mipT® and M=) F (51)
j=0

k(n+p)/2 '

for the asymptotic series expansion.
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4. Stokes phenomenon
We described in the previous section the asymptotics of the multiple Laplace integr:
of type (1), as well as their representation as Borel sums for generic summation dire
tions (9). To obtain the global asymptotics, we must analyse the Stokes phenomel
This amounts to analysing the singularities in the Borel plane of the analytic col
tinuations of (the minorsﬁ;(t). How this can be obtained from generalised Picard-
Lefschetz formulae (detailed in Secti@nl) is discussed in Sectioh 1. Against this
Borel viewpoint, we demonstrate in Sectiér? how the Stokes phenomenon can be
understood directly in terms of steepest-descent contours, thus keeping the geome
ideas of the saddle-point method as in the one-dimensional case.

In what follows, it is convenient to assume the following hypothesis.

HYPOTHESISH6
All singular points are nhondegenerate.

4.1. Ramifications
We return to thej;(t) of Theorems3.1and3.2, together with their corollaries. From
(36) and 61), if f, has depthp,, then locally near the origin,

Ju(t) = tHPD/2h (1), (52)

whereH,, is holomorphic near zero. Thus whant p, is even,j;(t) is an analytic
function at the origin, but when + p, is odd, J,(t) has a square-root singularity
there’

Note that theJ, (t) have been defined as (germs of ramified) analytic functions
the origin. If f, # 0, it is necessary to take into account translations by the comple
numbers

fop = g — fa. (53)

The generalised Picard-Lefschetz formulae described in Segtiballow us to
identify the type of singularity in the analytic continuations of edgkt). Denoting
by Var = p — I the “variation” operator, wherkis the identity operator ang is the
analytic continuation arount,z anticlockwise, it follows from formula.3) that for
t nearfyg,

Var 3o (t) = kap Jg(t — fup), (54)

wherex,g is a (positive or negative) integer.
* This is consistent with the geometric argumeft5]. The vanishing homologHn_p,-1(SpN --- NS N

X!) is a trivial covering on the circle of directior whenn + p, is even, but it is a two-fold covering
whenn + p, is odd.
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PROPOSITION4.1
If pg is the depth of the critical valuegfthen

. when n— p; is even (so thafis (t) is not ramified around &= 0),
~ = In(t — fup)
T () = kapdp(t — faﬂ)T“ﬂ + Hol(t — f,p) (55)
with Hol a holomorphic function near zeroand
. when n— pg is odd,
~ Kap =~
Jo.(t) = _T‘Jﬁ(t — faﬁ) + Hol(t — faﬁ). (56)

Arguments developed in Malgrangé show thatJ, (t) remains bounded (when
n > 2, the analysis being obvious whanr= 1) nearf,g. Propositiont.1 now results
from the variation formulae5@) and Riemann’s removable singularity theorem (see
[28)).

We show in Sectiord.2 how the above properties can be derived independently.

4.2. Stokes phenomenon
We consider a singular directigfl) and assume that the closed half-ling = L, (6)
meets a singular valuég; this (possibly) gives rise to a Stokes phenomenon, whict
can be described as follows. Assume for simplicity thatmeets no singular point
other thanfs. We define the half-linek; = Lo (67) andL, (resp.,Lf = Ly(67)
and Lg) by slightly rotatingL, andL g clockwise (resp., anticlockwise; see Figure
4). We perform the same rotations for the other half-lihgs

For fixed 6~ (resp.,6"), define a basis of steepest-descerlds (T',-,
Lg—y.o, Ty, .. (resp.,(Dy+, g+, ..., Ty+,...)). From our hypothesis, we can
assume thatl'g+, ..., I[';+,...) is deduced from{I's-, ..., I';-,...) by an isotopy
(continuous deformation) when the argument runs feomto 6, so that we can
remove the upper scripis in the notation.

Concerning thd',+’s, we can assumenly that the one is deduced from the other
by a local deformation near the critical poit. This may not work globally due to
the critical valuefg. We thus get the decomposition

Ty =Tyt + Ty, (57)

where necessarily
Lo =Ty — Tyt = keplp. (58)

*In other words,iy(t) and Kaﬁj;j(t — fop) In(t — fop)/2im are equal when one considers them as micro-
functions.
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Figure 4. Generic Stokes phenomenon: Below, before the Stokes
phenomenon; above, after the Stokes phenomenon

In this formula k. can be understood geometrically asiaiex of intersectioyi and
therefore it is a positive or negative integer, the sign depending on the orientations
I'y andIg.

We now apply £8) to our integral representation. We start with the integral

oodf” R
Iy (K) = / e K@y — gk f e X3, (t)dt, (59)
Iy 0

which defines an analytic function within the seciyr = {|k| > 0, |argk)+6~| <
7 /2}. We know thatl, (k) extends analytically ovef’\ {0} as a multivalued function,
and from £8) we see that

1K) :/ e—kf(z)w+Kaﬂ/ k@, (60)
Iy rr
o /]
fork € 3y+, that is, that
igt jot+

ooé oo€
ly (k) = e Kl / e T, (1) dt 4 repe / e X Jtydt.  (61)
0 0

Formula ©1) provides a complete description of the Stokes phenomenon. We can 1
cast these results in the framework of resurgence theory, using the notation of Sect
3. From (9), I, (k) is the left (lateral) Borel sum in the direction of argumermf the

*Compare with SectiorB.2. With the convention of formulag(8), «.p is given by the equality,s =
(T3, Tot)-
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resurgent symba %% J, (k),
le (k) = €55 L (K), (62)
and from ©1) the action onJ, (k) of the Stokes automorphis@i is given by
S0y Ju () = Jo (K) + kape™ " Jg (K, (63)

which finally yields
A fup Ju(K) = Kap ‘]/3 k), (64)

whereA s, is the “alien derivative operator” (se2d], [12], [18], [16]) at fup.

It is important to notice that the alien derivatives (as well as the directions of sun
mations) have to be indexed over the two-fold covering9f0} (i.e., the Riemann
surface of the square root) whert- p, is odd. The sign ok,g depends on which
sheet of this covering is under consideration.

4.3. Conclusion

In (64), the index of intersectior,s now appears as a so-called Stokes multiplier.
Note that 64) can be understood in terms of singularity in the Borel plane. The an
alytic continuation of the minoﬂAo,(t) of J, (k) along a straight half-ling0, f,s00)
encounters a singularity at= fug if kg # 0, and its variation there (as defined in
Sectiond. 1) is ke Jp(t — fup). This is nothing but4).

To compute the constantgg and thus to obtain the complete resurgence struc:
ture, it is helpful to keep in mind their two interpretations. The geometric descriptio
in terms of indices of intersection has already demonstrated their quantised natt
This helps again to show that some of them necessarily vanish. This stems from
fact that the set of critical values = | J A,,....i o) has a natural hierarchy that follows
directly from the stratification o§. This means that a relative steepest-desodntd
I'y havingS,, ..., S (say) as its boundary can be eventually affectely by critical
valuesfg belonging to the subset, C A of critical values off or of the restricted
fltoone oftheS,i = 1,..., p, or their different intersections. Otherwisgg = 0
necessarily.

This is almost all that we can learn from the geometry. To get quantitative in
formation about the remaining indices of intersectiapg, we have to turn to the
hyperasymptotic analysis, interpreting this time thg as Stokes multipliers. This is
the aim of the next section. It is convenient for this purpose to represent the rest
of (64) in terms of the series expansiofgintroduced in formulae36) - (51). Here-
after, formula 65) is simply derived from formulag4) by the Leibniz rule (see?f3),
[16)).

*See also the second remark of Section.



224 DELABAERE and HOWLS

THEOREM4.1

The series expansiong (K) € C[[k~1]]1 are Gevrey-1 resurgent resummable. Jf f
is a critical value of depth g, the adjacent singularitiesof the minorT, (t) of T, (k)
are (at most) the Jg = fg— fy, with fg € A,. Moreover, in the (generic) case where
these relevant g have distinct phases,

Aty Ta(K) = kopk PP/ 2T5 (K), (65)

where g (< po) is the depth of 4, whereas the,g are integers.

Remark. In (65), the alien derivatives can now be indexed o@{0}. This does
not make ¢5) ambiguous. One has to keep in mind that the sign of the index o
intersectiork,s depends on the orientations of the steepest-descéaits I', and

I's, on which the determination of the square rkt—P#)/2 also depends.

5. Hyperasymptotic analysis: Calculation of Stokes constants
We assume here for simplicity that the valugg have distinct phases. Theoreim.
thus applies, allowing us to identify the singularity types.

The results from the previous section can now be used to deduce the exact
mainder term for a truncated asymptotic expansion about any of the singularities. .
we have converted integral)(into a one-dimensional Laplace integral (Borel sum),
the procedure follows closely that of HowlI3d] and Olde Daalhuisg5], allowing us
to be brief.

It is important to stress that at no point in the hyperasymptotic procedure d
tailed in this section are the full infinite asymptotic/formal power series used. Al
the expansions are finite and exactly terminated by the appropriate (hyperasympto
remainder term.

We now describe the hyperasymptotic analysis for the (slowly varying) relate
analytic function

ocoel?

T (k) = KMHP/ 26T | (k) = 509y T (k) = T + / dte KT, (t).  (66)
0

Here s T, (K) is the Borel sum of the formal series expansidpgk) in the non-
singular direction of argumem, and thereforeZ, (k) ~ T, (k) for k — oo in Zy.
We represent the local behaviour of the functint) in terms of a Cauchy integral
representation R
() = 1§ qule®
2ir Ju—t u-—t

(67)

* The adjacent singularitieof a germ of analytic functions at the origin are the singularities of the analytic
continutions of this germ along half-lines emanating from the origin.
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.
N N Yapy N
Vi \

Figure 5. The pathy, on the left. Its deformation is on the right
with the contributions/, g from the adjacent singularities.

After a binomial expansion to the order of truncatidirequired, we have exactly

N-1 g

T = Y 15 4 Rutk N, (69)
r=0
where
_ 1 e w N-1 To (U)
Ra(k, N) = W/O\ dwe "w La dUm (69)

The contoury,, encircles the positive real axis as in Figure 5. We then defariisee
Figure 5) to encounter the other singularitigg that are adjacent (se&d]).

By a suitable restriction of the type of integrand functions we consider, or b
going to sufficiently high truncatioMN, the arcs at infinity (see Figure 5) make no
contribution (seed6]).” We thus have

A e —w, N—1 Ta ()
Ra(k, N) = m Z /0 dwe w /};aﬁ dUm (70)

adjacentfyg

*The general case can be treated as in Olde Daallis ihstead of working with full Borel sums, one
uses truncated Laplace integrals (essentially changing summation to presummation in resurgence-speal
[12], [18]). Pushing the circular arcs far enough away, their contributions can be bounded away to :
exponential level smaller than the one to which the hyperasymptotics are eventually taken, that is, I
than exg—M|Kk|) for any chosenM > 0.
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At each of the singularitieg, we make a change of variables and collapse the
contouryys onto the associated cut. The results of the Picard-Lefschetz analysis, e
bodied in £5), then guarantee that the discontinuities generate self-similar integranc
with contours now over the critical poit The final result is

N— l
T (K) = Z ra "Rk, N) (71)
with
Kap . (;\l—1+(pa—Pﬁ>/2
& —to aff
RN =~ 3 e [T e o Tt (72

Kap 70

where we have used the notatiﬂ‘(] = OOOW (see p9)), with 6,4 denoting the phase
of fa’g.*

The indicesp, and pg are the depths of (number of boundaries associated with
a and B, respectively. The minus sign comes from the fact that the orientation c
the contours/,g is in the opposite sense to the convention used to define the inde
of intersectionk,g (compare the/g in Figure 5 with the path_; in Figure 4, for
instance). The (quantised and, as yet, unknown) Stokes constants associated wi
andp are nonzero integers if the singularity is adjacent, defined up to a sign dependi
on the branch oif(()':"’_pﬁ)/2 (see the remark following Theore#nl).

We determine the Stokes constants by resorting to a resurgence formula for
coefficients in the expansions themselves. Using the fact that

TS = kN(Ro,(k N) — Ry(k, N + 1))

oo N—14(pa—Pp)/2 v
—_ —v - o — Pp _
- Z N-‘r(poz pﬂ)/Z/ S yf‘(f

D) aﬁ), (73)

we substitute the corresponding exactly terminated asymptotic expansions of all 1
adjacentZ; of type (71) with v/ f,g playing the role ok. If the next-nearest singular-
ity is some distance further away framthan the nearest, we obtain the usual (Dingle
type; see 21]) leading-order approximation to the late terms:

a __ _Kaﬁmin F(N + (p“ B pﬁmm)/z) Bmin N -N
TN - 2|7T f N+(pa— pﬂmm)/z) TO 1+ O(|kfaﬂmm|>
aPmin

as N — oo. (74)

*The analytic functiong can be thought of as the Borel sum of the series expariBiom the direction
of arg(fqp).
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Here fo4,,, is the distance in the Borel plane to the nearest potential singularity (whic
may or may not be adjacent).

As the Stokes constants are quantised integers, we only need to detegpine
to an accuracy of within 1/2 to infer its value. The large parameter4hié now N.

An appropriately high value oN will give that accuracy if we know thé&lth term,
fupmin» @nd the number of boundaries thatg sit on (p., pg). We can then move
to determine whether the next-nearest neighbour is adjacent using the same leve
approximation. The calculations may be checked by including further terms in tt
series expansion taking larger valued\o&nd/or highetrk]|.

Note that this procedure is a simplification of the method36 and [55] and
reduces the work required to determine the full set of Stokes constants. Howev
in this form it only works for integrals due to the quantised nature of the Stoke
constants.

Even this new method cannot determine all iiag at this stage. Stokes con-
stants from next-nearest neighbogfiscan be determined, provided thdp, 5,1 <
| fapmin|- BY SUMmMIng the nearest neighbour contributions to the least term and inclu
ing a single term of the next-nearest contribution, we may again shorten the meth
of [36] and [55] and use the following to determingg, :

KorBmin Ni_:l I'(No + (p“ _ plsmin)/2 —r1) Tﬂmin

o
o 27i No+(Pa—Ppin) /211 r
r1=0 aBmin
_Kaps I'(No + (Pe — Pg1)/2) No \—No
27 fNO+(poc_pﬂl)/2 T 1+O<|kfaﬁ1|>
afy
NO = |k|(| fOl,Bmin| + | fﬂminﬂl')’ and Nl = NO = |kfaﬂ1| (75)

This can be demonstrated by an intricate use of Stirling’s approximation. If this is n
sufficient to determine all the, s, one must resort to hyperasymptotic approximations
and successively reexpand the remainders for gacthe result of this incestuous
iterative reexpansion and substitution of the exact remainder term into itself is tt
treelike hyperasymptotic expansion (see Howglg)

NgPL_g
o« _ Kapy B D . o
N = D oo 2 KO Oa pL NG +1r)
Kkapy 70 r=0

wﬂlﬂz 1

Z Z KOtﬂlKﬂl,BZ Z T'BZK(Z)(O a, /31’ ﬂz, NO 4 1 NOl,Bl )
@in)?
Kkapy 70 kg p, 70
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N%ﬁl"'ﬂm_l
m-1 KaBy """ Kpm—1m i
SRS DD D LD DA
Kapy 70 Kpy 1pm#0 r=0
X K(m)(O; o, B1, ..., Bm, Ng a5 4l N:‘L"lgl’ o Nx:fm_l, )
K e K -
+ 2 X Wraﬁlmﬂm(Nga NGPL L N@P Py
Kapy 70 K1 pm 70
(76)
where
K® (k; @, B2, N§. T)
_FO (k; Ng + (P — Pg)/2— 1 )
fap,
K@ (k; o, B, B2, N§, N3P2, 1)
_E@ (o NN L (e = pp)/20 NP (P - P21 )
faps fpi8
(77)
and, more generally,
K(m)(k; o, B1, ..., Bm, Ng, N]‘i‘/sl’ L N%‘;fm*l, )
=Fm (k; NG = N§PY b 14 (po — pg)/20 oo
faﬁla ceey
Nd---5m72 _ Nau-ﬁmfl _ 2 Nﬂl"'ﬂm—l _ o
Tpm-2m-1: fm—16m
(78)
The F*#*"P™ are the canonical hyperterminants (s&e [35], [36], [55])
FO@ =1,
Mp-1
P (Z; o ) = Ji% etona_ dig,
0
(79)
F(+1) (z; Mo, ..., M )
oo, ...y, O
[—6o] [—61 —(tooo+--+t o) t(’)VIO_lmthl—l
=15 ...fo e—(tooo 101 T (e dtp- - - dt,

whereg; is the phase ofj € C\{0}, %#M; > 1. When phr; = phoj 1 (mod 2r),
the tj-path of integration is deformed to the left or the right as 58] yielding
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lateral canonical hyperterminants, intrinsically linked to the lateral summations
the resurgence theory (se&’], [1€], [18]). These multiple integrals converge when
—0p < phz < 27 — 6p and can be evaluated easily by the methods of Olde Daalhui
[54], [56] with the convention that

(pot - pﬂ)
—2 .

Thus we can employ his truncations and error estimates directly to minimise the ov
all remainder terms. Aftem stages of hyperasymptotics, the optimal truncations tha
globally minimise the remainder term are

N§ = |K| x KmiQO (| fap, | + Z |fﬂ|ﬁ|+1|>’
apy =1...
KB g0 I=1-m
Nt = max (0, N§ — [Kfap,).

Ng’Bl'BZ = max(O, Nfﬂl = |kfﬂlﬂ2|),

Maglolde Daalhuis= (80)

Ngfrfm = max (0, N ™ — [k, ) (81)

At each level of hyperasymptotics, ifiag is not yet known, then it is initially in-
cluded, regardless of whether it subsequently turns out to be zero (at which point
branches containing this constant may be immediately pruned). Knowing only tt
relevantfyg, po, Pg along each of the branches and using the truncati®fsaflows
eachk,p to be determined from an algebraic system of equations as outlin€d]in [
and B5].

It might appear that hyperasymptotic expansions are an unnecessary techn
numerical detail. However, we know of no other general and systematic analytical
numerical method that is a practical tool for calculating the Stokes constants of the
types of integrals.

Following Theorem4.1, there is one qualitative difference between the un-
bounded and bounded integral case. In the unbounded integrals, every dist
guadratic critical poins that could be seen by the initial omecould, in turn, see
« itself. In the bounded case, some of th€and eveng) arise only because of the
presence of the boundariesalflies on a boundar$; N S, thena can seed only if
B lies on one of the stratd N S, §, or S, or if it arises from the phase functioh
itself. If B is a quadratic critical point arising from the phase functigrsince this is
a fundamental property of the integrarglis a likely candidate for adjacency to all
the boundaryy.

There is thus a hierarchy that can be inferred and can be used to simplify t
hyperasymptotic analysis and deduction of Stokes constangs. ¥ p,, we may
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deduce that.s = 0 immediately since8 exists only because of the presence of an
extra boundary that knows nothing about. Note that the opposite inference cannc
be made; unlike the unbounded casg, may differ fromx,g, and so care must be
taken in calculations.

Once the Stokes constants have been determined, it is possible to obtain a (
per)exponential accurate approximationipy\ia the full expansion

Ng—1 N
0 Ta Kaﬂ 1 n
Tl =3 7= 2 ot 2 WKYka pNg. )
r=0 Kapy #0 2im 0 r=0
NgP1P2_q

KB K
I Z Z _KapiXpifo Z TﬁzK(Z)(k a, B, Pa. NO7 01/317 r

o2 NE—1
gy 70 5,y 70 (2i w)*k™o

N%ﬁl‘“ﬁm _1

m Kapy =+ Kpm—18m Bm
D D D . PP

Kapy 70 KBm_18m 70 r=0
x KMk a, B, ..., B, NG, NEPL NGBty

m—1

+ 3 Yy Sh g

mp N$—1
o T @K

x (k, N§, N&PL L N@Pa Py (82)

Using truncations 1), this yields an accuracy ab(e MKy at the Mth iter—
ation (see $9]), leaving an unevaluated remaindBgg, ..., (K, N§, .. N"‘ﬂ1 ™).
This expression also widens the domain of validity of the original asymptotlcs an
automatically and exactly incorporates any Stokes phenomenon through the hyf
terminants, as explained iB¢] and [55].

6. Example
We illustrate the theory with the following example, for which explicit Borel trans-
forms can be deduced as benchmarks against which to test the hyperasymptotic a
ysis.

We take

2 2

andg(z) = 1. The boundary iS = S U S U S, whereS;, S, S3 are hypersurfaces
defined by the equatior§ : zV =2i, S : 2@ =14 2i,andS : z2® =2 - 3i.
The set of isolated critical values on the different strata is thus

O A() = {fo: 11} andZ(): 3,-1,7,-3),
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J Aq = {f(]_) = 39/4 + 3i} and Z( = (2i,1/2—-1i,11/2+1i, —3),

o A ={f3 =7-15i/2} andz3, = (1/2—-3i/2, -1,2 - 3i, —1/2+ 3i/2),

. A2 = {f(1,2) =1+ 6i} and Z(12) = (2i,1+2i,5-2i, -3),

. Az ={faz =11- 19i/3} andZ(13) =(2i,-2/3-7i/3,2—3i, —2/3+
8i/3),

. A@23 ={fa23 = —1+9i/2} andz23 = (2i, 14+ 2i, 2—3i, —3/2+1i/2).

We choose® = 0 for the (generic) direction of summation. To the family of
closed half-lines drawn on Figure 6 corresponds a basis of six steepest-descent
tours([Iol, ..., [T'(1,2,3]) generating the spadd}’ (C*, S) of allowed cycles of in-
tegration (cf. Theorerd.1).

112

(1]

*1 (1,3]
(3]

Figure 6. The set of singularities and the family of half-ligs
in the complex Boret-plane

6.1. Asymptotics

We now describe the representation of the integration contours gg%é(x@“, S) via
Laplace integrals. From Theoreml, it is enough to consider the Laplace integrals
over each of the steepest-descent contfligs . . ., [['(1.2,3)]-

We recall that the Lefschetz thimble, in principle, determines completely the hc
mology of the steepest-descent contour, and thus we do not provide a detailed glo
description ofiT'o], ..., [['1,2,3]. We have just to prescribe the orientations, which
we take to be those of the standard Lefschetz thimble (cf. Sed@iGnkand2.3.2).
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In what follows, the square roatk refers to the usual determination (real positive
for positive reak).
« Straightforward computations give

k(@ g AD 4 4m2 gy
Iry(K) = e dzYV A---Ad =ve . (84)
o

« Convenient reductions show that the integral

Ity (K) = / e @ dzD A AdZ? (85)
NG
can be written as
4i7[3/2 . 400 dt
e (K) = _e—(39/4+3l)k/ okt At 86
ro (0= "5 0 5 12— &t (66)

It follows thatr,, (k) is the Borel sum 011'<1)(k)k‘(4+1)/2e‘(39/4+3i>", where

+2i X 204+ 48i\IT(j +1/2),
> (S ‘

3
— Ai-3/2 ] -1
Tay (k) = 4dir 13 169 NER) e C[[k™ 1. (87)

Ir,, (k) can be analytically continued by rotating the direction of summation, but
Stokes phenomenon occurs due to the adjacent singulatity=ab/4 — 3i = fp —

fw = fa.o
« Similarly, I, (K) = [, €@ dZY A - A dZ? yields

4i7T3/2 E +o00 dt
e (k) = _e—(7—15l/2)k/ = 88
To® = a7 0 16+ 301 — 4t (88)

This is the Borel sum oT(3)(k)k—5/2e—(7—15i/2)k, where

oo

5-3i 16— 30IN\IT(j +1/2), _
3/2 Z( ) K

i -1
17 289 r1/2) € Cllk . (89)

T(3) (k) = 2im

A Stokes phenomenon occurs due to the adjacent singulartty=a4 + 15i/2 =

« In the same way as above, the integral,, (k) = fr(m e K@dzD A ... A

dZ¥ is conveniently reduced to

T . +o0o B dt
Itz (K) = e (l+6l)k/ okt

0 «/—'_35/4—3|—t(3/2—i+i«/—'_35/4—3|—t()' )
90
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This is the Borel sum oT<12)(k)k—(4+2)/2e—(1+6i)k, where

54 7iy i+1 14— 10\ T(j +1 + 1)
Tap (0 = _2'”Z< 148) (Z( 37 ) rd+1 >k

e C[[k™ 1]]1. (91)

Stokes phenomena occur due to adjacent singularities=at35/4 — 3i = f(1) —
fay = fao.), and att = 10— 6i = fg — f1 = f(12),0 for the Borel transform
Taa ).

« Continuing, we havér,,, (k) = frm) e K@ dzZD A... A dZ?¥, which can be
written as

337 o (11
Ir e (K) = o (11-19i/3)k / okt / dty

* /I5A= 28T 3uy/30 —t0) + (3/2+ 9i/A+ V15 A= 281 £ 30 22
(92)

This giveslr,,, (k) as the Borel sum 0T(13)(k)k_3e_(11_19i/3)k, with

(— 1)J 567+ 369\ j+1
Taz (k) = Z ( 5650 )
(i‘z'l(49+ 57i)|1—|21"(j i+l + DI +|1—|2+1))k_J
—~ =\ 113 Tli+ DL+ DI —li -+ 1)
e CIk Y11. (93)

From ©2), a Stokes phenomenon occurs due to an adjacent singularity at5/4+
28i/3 = f) — fag = f3),1) (to see this, sety = t in the integrand) and also
att = -4 -7i/6 = f3) — f1z = faz, 3 (2 = 0). Referring to Sectiort.1, a
singularity att = 19i/3 = fo — f13 = f(13),0 is also expected when one continues
onto another sheet.

* The last integralr ;,4 (k) = fruza e k@ dzZD A ... A dZ¥ may be written
in the form

127 [T _ t
T2 (K) = k3‘/2f dte kt/o dyy

1

X
V8T 61 — Aty (v/16t; — 12t + 132— 54i — (4 + 24i)/8 + 61 — 4ty)
1

X ;
(4—6i — /8T 61 — 4ty +iy/16l; — 12t + 132— 54i — (4+ 24i)/8 + 6 — 4i7)

(94)
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I1 125 (K) is then the Borel sum of 123 (K)k~#+3/2 with T(123 (k) € C[[k~11]1,

Ta23 (k)
s i @(Z JX:MJ '21:'2(2|)|2+13|3(1 |)l1+1(5 13|)|1+I2+2|3+1
8 22
j=0 11=01,=0 13=0

<1+3i)21—2|1—|2—2|3+1[‘(|1+|2+2|3+1)F(2j —21—-1—-23+1) -
X
5 Fh+Hrdz+0Dr( —li—la—I3+1

(95)

Moreover, one can deduce from the integral representation above that a Stokes f
nomenon occurs due to an adjacent singularity &t 2 4 3i/2 = f(12 — f123 =
f(123,(12) (t1 = t) and also at = 12 — 65i/6 = f(13) — f(123) = f(lzg‘(lg,)

(t1 = 0). For reasons explained in Sectidrl, singularities can be expected at
fa23,1), fa23,@3), andf23,¢ for some analytic continuations.

6.2. Resurgence formulae

The sheet structure in this example can be derived from knowledge of explicit form
lae for the Borel transforms of the multiple integrals. In general, the situation is not ¢
simple. Such a study can nevertheless be done numerically with only the asymptc
expansionsl...y as inputs by appealing to hyperasymptotics. Since the valyes
have distinct phases, formula@dj, (75), (76), (81), (82) can thus be applied.

Note that from the “one way” adjacency property and the fact that there is onl
one critical point on each stratum, the hyperasymptotic expansigyr(dr (76)) ter-
minates at most (whefy123 is concerned) at then = 3 level.

By comparison with Figure 6, part of the first sheet structure can be recovert
from the leading order formula’{), which yields information about the indices of
intersections corresponding to the nearest adjacent singularities for each critical pc
in turn. One obtains

K@1,2,3),1,2 = +1, K@1,3),3 = —1, k1,2, = —1,
K@3),0 = +1, K@, = +1. (96)

Now one turns to hyperasymptotics to gain more information. We knowothat
(1, 2) hasBmin(1) for its nearest adjacent singularity, while its next-nearest singularity
is 81 = (). Figure 6 shows that expansiort] may be applied. Witk = 1, (75) yields
No = 13, Ny = 4, andk(1,2), ) = —0.9244 0.04i. From the arguments of Sectién
this is quite enough to conclude thai ) ) = —1.

Formula (76) at the first levelih = 1) yields

K1,2,3,@10) =0, k,3),0 =0, K@,3),1) = —1, (97)
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Table 1. The Stokes multipliers

kep | B=0 | (1) | 3) | (1,2)| (1,3) | (1,2,3)
a=() 0 0| 0| O 0 0
1) =) 0| O
©) T 0| O
12 | -1 | -1| o
(1,3) 0 |-1|-1
(1,23)| 0 0| -1|+1 | +1

O O O O

0
0
0
0

O O O o o

but it may also be used to recover our previous results &€, [55]). For instance,

replacingk = 5 in (81) gives Nél’s) = 63, N{1‘3)’(1) = 16, N{l’s)’(s) = 42, and

N30 = 31 as optimal truncations. On replacing by NS"2, N*® — 1, and

Nél’g) — 2 in formula (76), ignoring the error term, and explicitly substitutim’gl(fg),
0

T’%‘%_l, andT,%f’Q)_z, we get a system of three linear equations. Solving these equi

tions yieldsk(1,3),(1), k(1.3),(3), andk1,3),(). Using some higher hyperasymptotic lev-
els in the same spirit, one can completely determine the sheet structure. The level-
expansion yields

K123, =-1  ka123.0=0, (98)

while the level-three expansion gives the last unknown index of intersectiol
K(1,2,3,1,3 = +1 (see Table 1). The results of the adjacency calculations are di:
played in Table 2.

The sheet structure is now in its complete form.

6.3. Hyperasymptotic computations
The Stokes multipliers being knowrg%) gives a (hyper)exponential accurate approx-
imation for the integrals, yielding the results in Table 2.

Based on the adjacency calculations, we have calculated hyperasymptotic
proximations to the integral$i1y, Z(3), Z12), H13 for various values of large pa-
rameterk. “Exact” values of the integrals were obtained from numerical integratior
schemes. The accuracy obtainable $¢123 by this approach was sufficient only for
comparison with the first hyper-level, and so we have not included this. Neverthele
the agreement was as expected and consistent with the adjacency of (3), (12), and
to (123).
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Table 2. Hyperasymptotic levels, truncations, approximations,
and achieved accuracies fgf) andk = 4

Level | Truncations Approximation |1 — approx./exadt

Lowest | N() =1 —3.4266633826656% | 3.9 x 1072
5.13999507399850i

Level 0 | N(1) =13 | —3.66008976352172 | 2.7 x 10°°

(Super) 5.06575794497829i

Levell | N(1) = 26, | —3.6600743534031% | O

N1, 0 =1 5.06575062056987i

Exact | k=4 —3.6600743534031% | O

5.06575062056987i

Table 3. Hyperasymptotic levels, truncations, approximations,
and achieved accuracies f6f3) andk = 1

Level | Truncations Approximation |1 — approx./exagt

Lowest | N(3) =1 1.96529223417590 | 6.1 x 1072
3.27548705695983i

Level0| N(3) =9 2.19659657698560 | 2.5 x 1074

(Super) 3.22186580822527i

Level1 | N(3) =17, | 2.19566048409404 | O

N(@3,0) =1 | 3.22216423713061i

Exact | k=1 2.19566048409404 | O

3.22216423713061i

Table 4. Hyperasymptotic levels, truncations, approximations,
and achieved accuracies f6{;, andk = 1

Level Truncations Approximation |1 — approx./exadt
Lowest | N(12 =1 0.29717768344768 12x101
—0.21226977389120
Level0 | N(12 =9 0.34290482693409 6.2 x 1074
(Super) —0.20268045850289
Levell | N(12) =13, N(12, 1) = 3, 0.34300280953350 24x10°°
N(120) =1 —0.20290401468035
Level 2 | N(12) = 15, N(12 1) =5, 0.34299544259126| < 5.1 x 1014
N(12,0) =1,N(12,1,0) =1 | —0.20290986661454
Exact k=1 0.34299544259128 0
—0.20290986661454
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Figure 7. The size of the terms in the hyperasymptotic expansion

of A4, from the critical points (1) (ordinary asymptotics) and (0)
(hyperasymptotics along path (1,0)), wkh= 4. From the

truncations (see Table 2 ang@l]) and adjacency of the
singularities, only the (0) critical point contributes at the first
hyperlevel. As this contributes an exact exponential, only one term
is generated, and the hyperasymptotics terminates, generating the
exact result.

7. Discussion
We first discuss our hypotheses, suggesting how the above results may be generali

7.1. Critical points at infinity (Hypothesis H2)
Throughout this article, we have assumed that no critical point at infinity occurred (s
Hypothesis H2). This assumption was a consequence partly of our own ignorance
partly of a lack of general results about critical points at infinity, although this subjec
is a matter of an intensive current research (&g [31], [33], [67], [13]). However,
the following simple example may suggest that Hypothesis H2 can be removed
some instances.

We go back to the family of polynomial§’), and we study the behaviour near
k = 0 of the integral

I (k) = / e 1@V.22:0 gAY\ 472 (99)
r

For nonzerd, this integral ©9) fits into our frame, and we may take fbran un-
bounded chain of integration. By a simple argument of quasi-homogeneity, we fir
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Figure 8. As for Figure 7, but fag73), with k = 1. Again only
critical point (0) is adjacent, so the hyperasymptotics terminates at
the first reexpansion, generating the exact result.

notice that
I (k) = / e K1@P.22:D gD | A2 (100)
r

(We keep the same notation for the ch&if) Instead of analysing the behaviour near
k = 0, we first compute the asymptotics wher> oo. We consider the critical value
+2i (resp.,—2i), choose the nonsingular directigd = 0), define the associated
Lefschetz thimble,; (resp.,I"_,j), and consider the asymptotics inside the sector
largk)| < /2. With a convenient orientation &f,; andI'_,;, computations (thanks

to the algorithm of {7]) suggest that,; (k) = (/K + o(k—Ny)e2ik andl (k) =
(r/k + o(k—N))eZK for all integersN > O; hencel ,; (k) = ek K andl_,j(k) =
ne+2i"/k exactly by a Borel-summability argument (Watson theorem; g&p.]
This would mean that

(k) = (T35 D)5 (k) + (T* . D) _5(K) (101)

*More generally, we suspect (by direct computations) that for every polynomial fungtoR, z?), we
have the equality

%)e—zik n (i %)ezik’

6
ah 2).
/ e KIEP. 2250 5, ;D) gD A 72 = (
r =1 j=1

i
where theaj, bj are complex coefficients depending gn
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Figure 9. As for Figure 7, but fag17), with k = 1 showing the
various sequence of critical points that contribute to the
hyperasymptotics. Here critical points (1) and (0) are adjacent to
(12) and so generate first-level hyperasymptotic corrections. A
second level is generated by (0) as this is adjacent to the
(first-level) contribution (1).
satisfies the differential equation
Lk, )l =0 With.,?f(ka)—d2+2d+4 (102)
W KTk T kdk

with a regular singular point at the origin. This property is satisfied if the differential 2
form wo = (4k22@% — 622 + a)e~ 1@.72:0 4D A d2? is exact (Stokes theorem),
and actually,

wp = d(42@%e= 1@ 2200 70 | (2 4 2/07@)e= 1@ .22k 472

Thus | (k) defined by {00) has a simple pole d& = 0, except wher(l";i, r)y =
—(Fizi, ') wherel (k) can be extended analytically at the origin. This suggests th
existence of convenient valleys at infinity such that the integi@)l §till converges
fork =0."

*We formulate a conjecture. The integral
o (k) =/e_kf(z(l)’z(Z):O)g(Z<l),Z(z))dzm/\ dz®
r

might be defined along a (steepest-descent) chain around the connected conzfidrert of the special
fiber f(-;0) = 0, whose image inf would be a path. starting at infinity along the half-lind.o, running

around the origin, and returning to infinity. This integral could be recasbdg = fA e‘ktrz(t)dt, where
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Figure 10. As for Figure 9, but with the terms ordered according
to absolute size

Taking for granted that our oscillating integrals can be defined without Hypothe
sis H2, can we expect an analogy of Theorér at least when the critical points at
infinity are isolated (se&p], [67])? Consider the integral with boundaries

| (k) = / e Kf@P.22:0 4D | ¢ (103)
r

where, for instance] = {(zV, z2?) e [0, +o00[x[1, +00[}. ForR(k) > 0, integral
(103 defines an analytic function kand can be recast as

o 2
_ a2k —kt(q
I(ky=e /0 dte (1 . 2). (104)

Integral (LO4) has obvious resurgence properties= —2 is the sole singularity in
the Borel plane, and, taking into account the translation in the Borel plane induced
the exponential factog=2¢ = e kT(1.0:0) e see that the location of the singularity
arises from the sole bifurcation value corresponding to the critical point at infinit
of f(zV, z?; 0). Nevertheless, comparing this result with Theorér) we note a
major novelty: the singularity is nonintegrable. Removing Hypothesis H2 thus gel
erates a challenging problem for a geometer—to relate these resurgence propel

%(t) is an endlessly continuable major (se&g]), whose singularity(Z (corresponding microfunction) at
the origin could be represented by

g(z®, z2)dzZb A dZ?
0 df
wherey (t) is a semicycle vanishing at infinity (se2d).

v
ot =
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Table 5. Hyperasymptotic levels, truncations, approximations,
and achieved accuracies f6{;3) andk = 1

Level Truncations Approximation |1 — approx./exagt
Lowest | N(13) =1 0.36404397859148 15x 101
0.23691750987697i
Level0 | N(13) =4 0.3210508351378¥F 15x 1072
(Super) 0.19423741497334i
Level 1 | N(13) =12, N(13 1) = 2, 0.32676405233855 59x 1076
N(133) =7 0.19354284669953i
Level 2 | N(13) = 15 N(13 1) = 5, 0.32676199784979 | < 1014
N(13,3) = 10, N(13,1,0) = 1, | 0.19354375274768i
N(13,3,00=1
Exact k=1 0.32676199784980 0
0.19354375274769i

to the geometry of the phase functidriz?, z?; 0) through, for instance, extended
Picard-Lefschetz formulae (se&l]).

7.2. Nonisolated critical points (Hypothesis H3)

Although the asymptotics of oscillating integrals have been calculated for a class
nonisolated critical points in7f], Hypothesis H3 plays an essential role in all parts of
our study, from the proof of Theoref 2 and the description of the asymptotics (see
Theorems3.1and3.2) to the Picard-Lefschetz formulae and the resurgence propertie
(see Theorem.1) and hence the hyperasymptotics. However, we believe it is stil
possible to generate exact remainder terms by other means.

7.3. “Multiple” critical values (Hypothesis H4)
We discuss condition H4 using the following exampleorq € C{0},

1(q,k,s) = / e kI@V.22:0) gD 72y gD A 472 (105)
r
with
fZ®, 2®; q) = qZV2@ — 470°%/3 - 2@% /24— ¢3/3

andI” an unbounded chain of integration of real dimension 2. The phase funtction
has four (isolated) nondegenerate critical points, and a little thought shows that t

* When g = z0° with s € C, (105 is the solution of the differential equatiod? — k?q* + 2ksg)l = 0.
Fors =0, (105 can be reduced to a Hardy integral (s€d]]. Note that, for noninteges, the ramification

of the amplitude function around the complex cum/® = 0 enlarges the space of independent contours
(see p4] for a similar one-dimensional feature).
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Figure 11. As for Figure 9, but fof7(13), withk =1

space of allowed contours of integration is generated by four independent ¢tycle
Nevertheless, Hypothesis H4 is here violated. While one of the critical points (tf
origin) corresponds to the critical valueq®/3, the three others have the same crit-
ical value+q?3/3 for their image byf. However, we can still define four Lefschetz
thimbles properly, say;_ andl'}, 2, '3, and compute the asymptotics of the cor-
responding_ andl, 12, 13.

This suggests that Hypothesis H4 is essentially a technicality. It remains to exte
the generalised Picard-Lefschetz formulae to understand the Stokes phenomenon.
contour'_ may intersect (the duals ofj!, I'2, andI'3 simultaneouslywhen a
Stokes phenomenon occurs. To compute the indices of intersection, one can in
duce a suitable deformation df so that the “multiple critical value” splits into dis-
tinct critical values’. For € near but different from zero, the familfy = f + ez®
can be usedf'_, I'}, I'2, andI'3 are deformed intd"._, 'Y, I'2,, andI'3, , and
the indices(I'L, ", Tc_) (I = 1,2, 3) are now computable; hen¢g!,”, I'_) is also
computable by continuity. Note in this case that the indices of intersegtioh T'} ),
i # j, are necessarily zero for topological reasons. (The dependerrds iegular
in the sense oflg].)

*The phase function is governed by the monomiz®> and z®3 near infinity; therefore each variable
has three possible asymptotic valleys. This gives a basig3of () x (3 — 1))-cycles.

TNote here that Hypothesis H2 remains true under the deformation. In general, under our hypotheses,
is not guaranteed. For instance, although the set of tame polynomials is a dense (constructible) set in
set of polynomials of a given degree (sed]), it is not open in dimension 3 (sed J).
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Figure 12. As for Figure 11, but with the terms ordered according
to absolute size. Note that here the final exact result is
0.32676...+10.19354. . ., although there are several terms larger

than this. Cancellations occur between these larger numbers.

7.4. Confluent cases (Hypothesis H5)
We give here a flavour of the difficulty arising from third-type singularities.

The main difference between third-type and first- or second-type critical value
is primarily topological in nature. When a first- or a second-type critical value i
considered, we have seen (see Section 2) that the corresponding Milnor fiber has
homotopy of a bouquet of spheres, defining singlegroup of vanishing homology.
The situation is quite different for a third-type critical point, where different groups o
vanishing homologies can be defined, depending on which strata are considered, v
each of these groups playing a role. Figure 13 exemplifies this situation fo13.
Herez, is a nondegenerate critical point fér(f, € A(), but the same, is also
a nondegenerate critical point fdr|S; and f|S. To such a geometry correspond
four vanishing homologies: the vanishing cyglgthe sphere) is a generator of the
vanishing homology groupiz(X!,), the vanishing cycle, (resp.,y2) generates the
vanishing homologyH: (X!, N S) (resp.,H1(X!, N $)), andy12 is a basis for the
remaining vanishing (reduced) homology gradg(X!, N S N S).

These four groups can be understood in terms of our “allowed” cycles of inte
gration. In Figure 13, consider the bd}, bounded by the vanishing sphere, as a
representation of the Lefschetz thimble. Consider similarly one of the two half-bal
B%/z (resp.,Bf/z), bounded by the vanishing sphere @idresp.,S), and finally one
of the four quarter-ball8,,4, bounded by the spher§;, andS,. Then, obviously, all
possible allowed (localized) chains of integration can be described as combinatic
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(with integer coefficients) oB;, B%/z, Bf/z, andBy /4. Hence we have the following
lemma.

LEMMA 7.1
The local homology is a freé-module of finite rank, isomorphic to the direct sum of
Ha(X), Hi(X, N 1), Hi(X, N ), and H(X;, N S1N ).

With this kind of decomposition in hand, one can then concentrate on the integr
representation. With the notation of Secti® and in convenient local coordinates,
the phase functiorf reads

f=s® 4. . 4sMna=D 4 pigmin) gy (106)

whereF has an (isolated) critical point at the origin, while the (considered) bound

ary is given by the set of local equatiog® = 0, ...,s® = 0, with min, < p.

Section3.2 suggests a way to derive the asymptotics by reducing step by step t

multiple integral into a one-dimensional Laplace integral. But a new difficulty arise

in the confluent case: the reduction process means considering integrals of differen
quotient forms where the quotients are differential fouig, . o) thatvanishat the
critical point as soon ag > min,. This makes the analysis of the analytic behaviour

of the Borel transforml, (t) (analogous to46)) more complicated. It seems that a

result similar to Theorerfi.2works also in this case.

(1) The asymptotics are essentially described by Gevrey-1 resurgent2(3ee |
[18]) asymptotic expansions. Generically, its leading term is Goei& +1/d,
whered is the distance to the Newton diagramfo{cf. Figure 14; seeql]).

(2) The asymptotics are essentially governed by the geometry of the singular
(monodromy of the vanishing homologies).

The first assertion boils down to proving that the integral may be written as
Laplace transform of a solution of a Picard-Fuchs differential equation with (at mos
a regular singular point at the origin; similar results have been provetjnTo us,
to provide a precise statement of the second assertion seems to be much harder.

It is worthwhile noting here that the class of integrals considered by Kaminsl
and Paris40], [41] (see also49]) enters into the framework of our third-type critical
values (when the phase function is a polynomial function). This class of integrals c:
thus be used to experiment. Consider, for instance, the function of the example
Section2.4,

f(zV, 2@y = 704 L ;0,22 4 ;@3 (107)

We have seen that the origin @& is an isolated critical point with, = 5 for its

Milnor number. We concentrate on

| (k) = f e kt@D.2®) g0 4742 (108)
r
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Figure 13. Confluent case

with I' = [0, +00] x [0, +00], so that the origin is a critical point of type three. As
shown in 0], the asymptotics of (k) whenk — +oo depend heavily on the Newton
diagram of the singularityf . In the terminology of Kaminski and Paris, we are here
in the one-internal-point case, and the paiit2) lies behind the back face of the
Newton diagram. Following the key idea of Kaminski and Paris, we transform ot
integral representation into a new Mellin-Barnes-type integral representation

[ror(E (52 ao

K—7/12
24

| (k) =

where the path of integration avoids the origin to the right. The asymptotics are nc
simply obtained by taking into account the right-hand poles of the integrdindy
occur at the points = 4j + 1 andt = (3] + 1)/2, with a sequence of double poles
att = 12j + 5, ] € N. ThisyieldsJ = |1 + |2 + I3 for the asymptotic expansion,

*The Mellin-Barnes representation can also be used to compute the behavidk)ofear the origin:
I (k) is analytic on the twelve-fold covering @f\{0}, that is, the Riemann surface k}/12,
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where
—-2/3 Y i )
=& D apr(- )i
jeN, j—1¢3N J+D
-5/8 N i _3iy .
|2:=k > r(_1)11“(1+23J)F<1 831)k,,/8’
jeN, j—3¢8N (0+D
! k-1 I'(5+12j)
3= — - -
24 £XT(2+3))r(4+8))
x (In(k) — 120 (5 + 12j) + 8W (4 + 8j) + 3w (2 + 3)))k (110)

(¥ denotes the digamma function (sé&])). It is easy to check that each of the
series expansions id is Gevrey-1, as expected (see assertion (1) above), but mo
can be said. While the asymptotics are governed by the local propertieseér
the critical point, the reduction to a Mellin-Barnes integral representation procee
from global information, and, as shown iA(], the asymptotics remain valid in a
whole open sectorial neighbourhood at infinity with openjagg k| < 23r7/2. We
thus deduce (Watson theorem; séé]] that J is actually Borel resummable for an
argument of summation running over 11x, 11z [. One may guess here that when
|arg k| = 11w, then the deformed (steepest-descent) chain of integratiemcoun-
ters the other critical point, so that the minor &fhas the corresponding negative
critical value—1/19683 as singularity for its analytic continuations, thus inducing &
Stokes phenomenon.

To illustrate assertion (2) above, it is interesting to compare asymptatic} (
to what we would get in the absence of a boundary. The so-called spectralrset o
(see B]) of Theorem3.1 can be computed in various waydfut the best references
here are certainly the works of A. Varchenl&®], [ 70]. Taking into account that only
the quasi-homogeneous paft* + z9z?? (with type (1/4, 3/8) and weight 1) of
f plays a role, one can directly apply known results fran$ection 13, Theorem
5], which gives{—3/8, —1/8, 0, 1/8, 3/8} for the spectral set. Moreover, all tieof
Theorem3.1 are less than or equal to— 1 = 1. We thus get (k) ~ J(k) when
|k| = +o0 with

1
Ink)S
=3 3 Ts®) - (111)

s=0re{—3/8,—1/8,0,1/8,3/8)

*It is known, for instance (cf.46]), that the eigenvalues of the monodromy are @@ 1), where thex
are the zeros of the polynomial functi@ir) related to the Bernstein polynomihit) by b(t) = t+1)b(t).
This polynomial can be computed directly from the Newton diagram @], piving the exponents up to
translations.
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Figure 14. Newton diagram of the singularity. The dots
correspond to the cosets of the monomials
1,22, 20, 2% 202 after multiplication byz»22, which
may be chosen as@basis for the Milnor algebr&’/(af). The
distance to the Newton diagramds= 8/5.

and T, s(k) € ClIk=11). Comparing now 110 with (111), one can remark that
the presence of a boundary has enriched the spectral set; while only the qué
homogeneous part of the phase function plays a role in the unbounded case, in
bounded case the two faces of the Newton diagram must be taken into account.

7.5. Integrals and differential equations
When unbounded integration contours are considered, intedjalsth polynomials
f andg belong to a class of functions known as “Bernstein functions”; that is, the
satisfy a system of holonomic differential equation€ik](dx) (cf. [63]). Itis beyond
our scope to study in detail how this property extends to our integrals with boundarie
We discuss our example here (see Secfipanly from the viewpoint of differential
equations. This suggests new links between our results and those develdp@ain |
[44] and gives a new insight into the hierarchy property.

The basic integrald4) obviously satisfies

. d 2
Zok. 30 Il = 0, with Zo(k. d) = - + (11+ E>’ (112)

while (86) is not only a solution of the second-order differential equation

. d 5
LK, 3)Zo, ) Ir, () =0, with Zy(k, d) = d_k+(39/4+3'+ﬂ> (113)
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but also, more precisely, a solution of the inhomogeneous equation

i 3/2 /B :
i7%/2y/5 — 12'e7(39/4+3l)k.

Zo(k, 80 Irgy () = =75

(114)

It is important to note that inl(L4) the homogeneous part ispeoperty of the phase
function while the inhomogeneous part isansequence of the boundaiihis inho-
mogeneity provides a new insight into the hierarchy property as stated in Thédkem
The characteristic equation associated with the irregular singular point at infinity
(113 shows that B4 — 3i is the sole (possible) singularity for the Borel transform of
Ir 4, - Appealing now to resurgence and using the fact that the dotted alien derivati
A, commutes with the usual differentiation (c23, [12], [16]), (114) yields®

: - in%2,/5=12i ;
L |~ (39/4+3i)k
2ok, 8k)(A(5/473i) IF(l)) = A(5/4,3i) (Te (39/4+3) ) =0. (115)

The inhomogeneous part thus disappears, and one obtains
A s/a-3iy Ty = *@.0 o, (116)

wherek (), € C is the Stokes multiplier.
More interestingly, 90) satisfies

i i i 3 TES 1

2k, 9 | k) = — —(ehk ([ — — / _ktdt— s

0k %) Irap (0 = € kT (2 ) o © Y mmE—aiot
(117)

i/ l—25i2 i
_ (1+6i)k
LK, 3)-LoK, 3 Ir gy (K) = e (——+50)- (118)
Zo(k, 00 Za(K, 80 Lo(K, 8) I g5 (K) = O, (119)
d 3 1

ith 250k o) = — + (1+6i + > : 12

with - Za(k, ) = g + ( M e 2i)k)k> (120)

Starting with (L19), a third-order linear differential equation with a singularity of rank
one at infinity, we see thaB5/4 — 3i) and (10 — 6i) are the two possible adjacent
singularities. The one-way adjacency (hierarchy property), which is hidder. ), (
clearly appears in the lower-order differential equatiohs7( and (L18). One can
analyse each Stokes phenomenon as before. We see, for instance, that the right-|
part of (L17) encounters a Stokes phenomenon due to the singulatity &5/4 — 3i;
replacing the functions by their asymptotic series expansion and applying the ali
derivativesA(35/4_3i) to (117), we obtain an equation similar ta14).

*With an abuse of notation, inL{5 and (L16), Ir,, and I, stand for their asymptotics.
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Appendices

A. The space of homology classes
We detail here the proofs for Secti@nWe freely appeal to homology and geometric
integration theories. We refer readers unfamiliar with these topics to, for instanc
[79], [68], [60], and [L4] (see also37] for a physicist’s approach).

We recall thats;, S, ..., S, arem < n smooth irreducible affine hypersurfaces.

A.1. Chains of integration and their homology classes

First we describe the space of allowed endless contours of integration running |
tween valleys at infinity wher@é (kf) — +o0 in the absence of boundaries. Follow-
ing Pham 2], [63], we introduce the half-planes: for al> 0,

S =50 ={teC,nte'?) >c}, § =50 ={teC e <c}.
(A1)

Let W = W(0) be the family of closed subsets € C" such that, for alc > 0,
An f~1(S) is compact. As shown ir6[3], ¥ is actually a “family of supports” in
C" in the sense of homology theory, which allows us to define a complex of chair
CY(C") such that, for all nonzerk, the integrals/ e *f@g(z)dzV A ... A dZ™
along the elements o€} (C") are convergent and satisfy the Stokes theorem. W
recall that the functiorg is assumed to be polynomial, so that the growthyait
infinity remains small compared with the exponential’'s decay.

In order to deal with chains bounded I8/= S U --- U Sy, it is natural to
introduce the relative chain complex

cl (", s :=Cl(CN/AC) (S, (A2)

where.# : S — (C" is the natural mapping. The space of contours of integra
tion HY(C", S) defined in Sectior?.2 is precisely the homology of this complex
of chains.

The fact that integrals of typel) are still convergent along the elements of the
complex of chains/4.2) and satisfy the Stokes theorem follows from arguments use
in the appendix of§3]. From the fact that th&’s are the zero level of (irreducible)
polynomialsP;, the “semialgebraic” nature of the subchain comp]:é%] introduced
by Pham is preserved under the mappifig

Throughout this article, integrals) are defined om-cycles belonging to the
homology groupH¥ (C", S).
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A.2. Global fibration and homology
We recall thatS, S, ..., Sy are assumed to be in general position (see Hypothesi
H1), so that the spadg” has a natural (Whitney) stratificatién.

It is also assumed thdt and its restriction on each stratum have no singularity
at infinity (see Hypothesis H2). Wheh is concerned, this could mean in practice
that it is tame, for instance; that is, there exists 0 such that the sz € C", ||
gradf (2) ||< 8} is compact, or even# -tame (seeq1]). Of course, the sole tameness
condition onf does not prevent critical points at infinity for the restricted function
f | on the strata (just considdénz, z?, z®) = 2022 _ 2073 4 2223 _q)
with the boundarg® = 1), and this has to be checked otherwise.

Under Hypothesis H2f realises a topological trivial stratified fibration outside
an open balB c C" of large enough radius (topological triviality at infinity). The fol-
lowing theorem is then a direct consequence of the Thom-Mather first isotopy lemr

(see, e.g.,47], [60], [20]).

THEOREMA.1 .
We consider S with its natural stratification; then the mapgifigy f ~1(A) Ml C\A
is a topological locally trivial stratified fibration.

Thus, for alltg € C\A, there exists an open neighbourhdddc C\A of tp, a
stratified setV, and a homeomorphism : f~1(U) — V x U which maps any
stratum of f ~1(U) onto the product of a stratum & by U. This result is central to
our analysis of the homology through its main consequence, the lifting property.

As a first consequence, @f > ¢’ > 0 are large enough thaft—l(SCf) does not
contain any element of, then the natural mapping

(", 71shH) = (" f7Xsh) (A3)

as well as
(S, snf74shH) = (S, sn f7Xsh) (A4)

can be considered as equivalences of homotopy. Thus the complex of CifaiG8)
(resp.,CY (9) can be identified with the projective limit

cl(C™ = lim proj C.(C", f7Xsh),
C—+00
respectively,

cl = lim Eroj C.(S sn f~1sh). (A.5)

*The strata areC™\S, §\Uj4 S N'Sj, S NS\ Uk j S NS N S, and so on (see2fl).
T We have no general practical way of doing this, the gradient tool not being available, as a rule.
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We therefore get the following projective limit of isomorphisms:
HY(C", 9 = Hn(C"; S, f71(§)) = Ha(C", SU F7H(SD)) (A.6)

for all ¢ large enough. Nov€" being contractible (and working with a reduced ho-
mology), we finally get the isomorphism

HY(C", 9 3 Hy_1(SU (1)) (A7)

fort e §.

In the absence of boundaries and ihas only isolated critical points, it is well
known that the (reduced) homolodyn_1(f ~1(t)) (henceH,¥ (C™) of the generic
fiber f~1(t) is a freeZ-module of finite rank, its rank¢* being the sum of the
Milnor numbers at the critical points df in C". In the language of the saddle-point
method, this translates to being able to decompose the unbounded chain of integra
into a chain of steepest-descentolds.

Following (A.7) and from an algebraic viewpoint, analysikig’ (C", S) reduces
to computing the total Milnor number of the (generic) fiber= 0, whereP is the
polynomial(f —t) [T, P (eachS being defined by the polynomi#). We, how-
ever, follow another way for two reasons: (1) our hypotheses (especially Hypoth
sis H2) do not translate easily in terms of fibration propertie®p{2) having the
saddle-point method in mind, it is useful to understahfi(C", S) directly in terms
of steepest-descent cycles. We do this in Sectich

A.3. Localization at the target
Following ideas developed ir6f], in the complex plane we draw the fami{y.,)
of closed half-lined, = f, + €?R* for all f, belonging toA. Assume also that
6 has been chosen generically so that no Stokes phenomenon is currently occurr
that is, all these half-lines are two-by-two disjoint. For &lle A, let T, be a closed
neighbourhood oL, retractable by deformation ontg,. It is assumed that all these
T, are disjoint from one another, as shown in Figure A.1.

The reduction process hereafter draws heavily on the work of P&&gnd so
the discussion is brief. We start with\ €), construct a deformation-retraction ©f
onto§ Us, Ty, and liftit by f (by virtue of Theoren?.1). This gives

Hn(C", SU f4(§) = Hn(U 3T ush. | Jf19 T u f—l(s*g)).
T f.
(A.8)

*This is the total Milnor number, usually defined as = dimcC[z]/(3f).
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Figure A.1. The family of half-line&, and their closed
neighbourhood3,, for6 = 0

By excision and deformation-retraction (using Theorem), we have
HA(C", SU 172§0) = Ha(J 71T, J (19T U 12T N §D))
f, f,

= P Ha(f 1T, (F19 T U F X T, N §H).
foeA
(A.9)

For eachf, € A, let D, be an open disc centeredftwith a very small radius and
D} (0) = Dy N {N((t — foe 1?) > r/2} (cf. Figure A.2). Then, again by excision
and deformation-retraction,

Ha(C", SU X&) = @D Ha(f1(Dw). (F197H(Dy)U f (D (6))). (A.10)

fo€A

This result shows that the homology group of our integration chains can be d
composed into a direct sum of subgroups by localisation near each of the target criti
values. In order to categorise all these subgroups, we must perform a detailed ai
ysis at the source iff", under suitable hypotheses about the critical points. This i
the purpose of Sectiofr.4, which draws heavily on existing work from many authors
(e.g., B0], [72); see also4], [5]), but the latter half contains the new results necessar
to extend the saddle-point method.
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Figure A.2. Localisation neafy for6 = 0

A.4. Localisation at the source

We have reduced the problem to a local analysis above small open discs cente
on the critical values. Up until now, nothing was assumed about the correspondi
critical points. It is now time to add Hypotheses H2 and H3.

Note. In what follows, it is assumed that one works with a reduced homology.

A.4.1. First-type case
We localise near an (isolated) first-type singular pantof depth p = 0; hence
fo € A() andz, does not belong t&.

It is well known since Milnor (seeq0)]; see also$9], [20]) that one can choose
an open balB,, centered orz, and with radius: small enough such that the level set
X! = {z € By, f(2) = t} intersects transversely the boundaryBffor all t € D,
(for the radiug of D, such thak > r > 0). This means that the restricted function
f | f~1(Dy) N B, from f~1(D,) N B, to D, is a trivial fibration, thus allowing us
to analyse the homology group by localisation at the source.

We use the notatioX, = B, N f~%(D,), X} = B, N f 1D} 6)).

It follows from our hypotheses that

Hn(f (Do), (1971 (Do) U 71D 6))) = Hn(f (D0, (D7 6)))
(A.11)
by an easy argument of deformation-retraction. Moreover, frégh ¢r [3, Section
11], one has the following isomorphisms:

Hn(f~2(Dg), F72(DF (6))) = Hn(Xa, XI) 2> Hn_1(XY) (A.12)

forallt € D} (0).

From Milnor [50] again, we obtain that the fibn§!, has the homotopy type of a
bouquet (wedge) oft spheres, whera = u, is the Milnor number of the critical
point z,; henceHn_1(X!,) = Z*, the so-called vanishing homology of the critical
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point. Whenu = 1, the relative homologiin(X,, X) is generated by the Lefschetz
thimbleT!,, as shown in Figure 1.

A.4.2. Critical values from the boundary: Second-type case
We concentrate now on the case whéges of the second type, with depin > O.
Up to a reordering, we can assume tiatelongs toA 1, p).
We introduce as above the séts = B, N f ~1(Dy), X} = B, N f~X(D}9)),
and X!, = B, N f~1(t) for t € D,(6). We write alsoY; = B, N (f|S)"1(D,) =
Xo N'S. Note thaty; = @ foralli ¢ {1, ..., p} as a consequence of our hypothesis.
The restricted functiorf | f ~1(D,) N B, now realises a trivial fibration of the
stratified set. Analysing the homology thus reduces to a local analysis near the criti
point z,, and copying arguments 63, Section 1.3], we obtain

Hn(f71(Da), (F197H(De)U £ 7H(DS (6))) = Hn(Xa, X UY1U---UYp) (A.13)

as a preliminary result.

Following ideas developed ir6, Section 5.2], we now reduce the homology
step by step so as to reach the vanishing homology. We first use the faki,thaid
Y1U - - - UYp are contractible;hence the exact sequence of a triple and a deformation
contraction argument yield the isomorphism

Hn(Xe, XF UY1U - UYp) 2 Hnoa(XL, XL N (Y2 U+ U Yp)),
[[']+— 3[I] (A.14)
fort € D (), whered is the boundary operator that selects the part of the bounc

ary lying on X.,. Second, we observe that batj, and X!, N (Y2 U --- U Yp) are
contractible, so using the exact sequence of a triple again gives the isomorphism

Hn—1(X5, X,N(Y1U - UYp)) kY Hn—2(Y1n XS, YiNX N (Y2U - - UYp)), (A.15)

whered; is the boundary operator that takes the part of the boundary lying.on
The same argument can be usgdimes, yielding the following sequence of
isomorphisms:
Hn(Xg, X UY1U---UYp) (A.16)
3
= Hn1 (XL, XL N (YU --- U Yp)
B Hoa(Yan XL, Yo XL A (Y2U -+ UYp))
S Hooica(Yin---nYan XL, Yin---Yen X, n(Yigr U---UYp))
041

dp_
S H pYpo1 NN YN XY, Ypan--Yin XL NYy), (A7)

* Just use the local representatidi). (
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whered; is the boundary operator that takes the part of the boundary lying.on

Now assuming thap < n — 1 and taking into account thap_1N1---N Yy N X},
is still contractible by virtue of Hypothesis H3, it follows from the exact sequence o
a pair that

d
Hnop(Yp—1N---NY1N XY, Yp_10--- YN XENYp) = Hyop_1(YpN---NY1NXY)

(A.18)
is again an isomorphism. We finally get the isomorphism

0-++00100

1l
Ho(Xe, XF UYLU---UYp) " —  Hp_p_1(YpN---NYiNXY).  (A.19)

Of course, this isomorphism depends on the chosen orderiig, of ., Yy (cf. [5,
Chapter 4, Section 1.14]).

The homology groupn_p-1(YpN---NY1NX!) = Hn_p_1(SpN---NS N XY)
is the vanishing homology of the critical point; it is isomorphic to the ffesodule
Z*«, whereu, is the Milnor number of the critical poirg, of f1 . p). Whenu, =
1, the relative homologyn (X, XJ" U Y1 U --- U Yp) is generated by the relative
Lefschetz thimbld™,, as described in Figure 2.

The case of a corner, whepe= n, corresponds to the so-called linear pinching
case (seed0]) wheredpo- - 0dj0---9100[']is just reduced to a point: no vanishing
cycle exists, and the local homolodih(Xy, X; U Y1 U --- U Yp) is generated by a
single relative Lefschetz thimble (see Figure 3).

A.4.3. Concluding theorem

Putting the pieces together, we have shown how the homology dil@e", S) of

the allowed contours of integration in the presence of boundaries can be decompo
into a direct sum (see Sectioh3) of free Z-modules of finite rank (see Section
A.4), at least under Hypothesis H5 (no critical value of the third type). We have als
demonstrated a natural way to define the rank by reduction to the vanishing homolc
(if defined) through localisation on each stratum. Moreover, when the closed ha
linesL, = f, +€R* (f, € A) are two-by-two disjointd{ is “generic in the Stokes
sense”), then a basis is given by the set of (relative) steepest-desitdts (I'y)yeca
where each of thE,, projects byf ontoL, € C. We have thus obtained the following
theorem.

THEOREMA.2

The space K (C", S) of relative homology classes is a fréemodule of finite rank.
Moreover, if all the half-lines |, are two-by-two disjoint, then every cycle can be de-
composed into a chain of (relative) steepest-descent n-fblgg,c o of Hr? (C",S).
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B. Duality and Stokes phenomenon

The aim of this appendix is to provide the geometrical tools to understand the Stok
phenomenon, as discussed in SectioMe discuss the now more or less classical
Picard-Lefschetz formulae, which help in understanding the Stokes phenomena
singularities in the Borel plane. Then we see how a suitable duality provides a dire
insight into the Stokes phenomenon, in the spirit of the usual saddle-point method.

We here make use of Hypothesis H6, namely, that all singular points are nonc
generate, with the following comment.

It is possible to extend the results hereafter by allowing degenerate critical poin
The generalised Picard-Lefschetz formulae, as well as the nondegeneracy propel
of the Kronecker index (se.6), follow from a local analysis near the critical points,
and this can be studied in the degenerate case by local generic deformidtiows.
ever, the information we would obtain does not translate easily into the language
resurgence of asymptotic expansions.

B.1. Generalised Picard-Lefschetz

We assume that has been chosen generically so that no Stokes phenomenon is ¢
curring. We denote byT',,) ¢, a basis of relative steepest-desaemycles (or relative
Lefschetz thimbles) oﬂﬁy(e)(cn, S) considered in Section 2 (with a given orienta-
tion). We introduce

Ya(t) = 3 Ta(t) € Hao1(XL, X{ N (SLU--- U Sp)) (B.1)
as well as its corresponding vanishing cyclefdfbelongs toA i, i), then
&) =digo - 0d; yalt) € Hnq-1(§;N---NS, NXY,  (B.2)

which vanishes wheh— f, alongL (0).

Let t* be a fixed regular point in the half-complex plag&(9) for c > 0 large
enough. We denote hy,) a system of paths, whekg starts fromt* and travels tof,,
along a straight line. This systefly,) is a so-called distinguished system of paths (see
[3]), where the cycle, (t) vanishes wheh — f, alongl,. For each, we associate a
closed patltt,, starting fromt*, following I, running aroundf, in the positive sense,
and returning ta* alongl, (see Figure B.1). This defines a badig) ¢, of the free
fundamental groupr1(C\ A, t*). Hence the variation of the homology whemuns
along a loop inC\ A with t* as base point reduces to a description of what happen
for each of thel,.

We now apply the generalised Picard-Lefschetz formula describe@ljr(gee
also [72], [5]). Starting with the cycley, (t), we follow its deformation whem runs

*Such local Morsification does not bring into play any global deformatiorf pfvhich may destroy Hy-
pothesis H2 (cf. 13)).
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Figure B.1. The basi€y) ¥,

along the pathig. We consider the tracg) of y,(t) in the Milnor ball Bg as be-
longing to HnF_l(X/tg\X}g N (S U---U Sy)), the closed homology group dual from
Hn-1(X}, X}; N(SLU---USy)) by the Poinca duality (covanishing homology). We
can now define the variation operator Var whegoes aroundg alongfg. Assuming
that fg belongs toA(s,.... p), [60] now yields

,,,,,

Vary; = kag vg,

(B.3)
Kap = (_1)(n_ P)(n- p+1)/2(eﬂ, €a)s

where(, ) is the (Kronecker) index of intersection. The cyele € Hy_p_1(S N
e NSN Xtﬂ) is deduced frony; by

Ya =0810--08p€q, (B.4)

whereé; denotes the Leray coboundary operator (¢£2]J with respect toS. More-
over, the index of self-intersection is given by

2(—=1)"=PO=p-D/2if n — p is odd
(€. €5) — . _ (B.5)
0 if n— p iseven

Remarks.Whenm = n (corner critical point) andfg belongs toA 1, n), then the
vanishing cycleeg does not exist. We can give a meaning to the previous equatior
with the conventioreg = 0; hence(eg, €,)— = 0.

One can remark also that f, belongs toAi,..__i,), equalities §.3) and B.4)
show that wherl, ..., p} is not a subset of the sfi, . .., ig}, theny; has a trivial
variation aroundfg (i.e.,kqs = 0).



258 DELABAERE and HOWLS

B.2. Duality from the viewpoint of Laplace integrals

The generalised Picard-Lefschetz formulae recalled in Seétibriollow from the
duality between vanishing homology and covanishing homology. Here we realise tt
duality directly from the viewpoint of Laplace integrals by describing the dual spac
of the homology groupd,¥ (C", S) with which we started.

We consider a relative-cycle ' € Hy @ (CM, S) with support in¥ () and
ann-cyclel” e Hy @™ (™ S) with support in¥ (6 + 7). Up to a deformation by
isotopy, these two cycles can be assumed to be in a general position. It follows now
definition that the intersectioW (9) N W (6 + r) of the families of support® (¢) and
W (0 + ) is the family of compact subsets Gf'. This implies that the intersection in
C" of I" with T defines a 0-cycle with compact support and hence an integer becau
Ho(C™) = Z. This allows us to define the index of intersectidt, I') by the bilinear
map

(,): HYOm @9 ® HYO@C", 9) — Z. (B.6)

This is a direct generalisation of the Kronecker index introduce®3h Moreover,
arguments based 03] show the following lemma.

LEMMA B.1
The bilinear map.6) is nondegenerate.

This induces a duality betweety (CM, S) and H,}I’(””)(C”\S).

We recall here that has been chosen generically so that the ling®) U L, (6+
) are disjoint. We first remark that our bilinear map is diagonal for the decompositic
of the homology shown in Appendix. This allows us to localise the study. Assuming
that f, belongs toA (1, ... q), we focus onHp(Xy, S U -+ U § U XI). Following
SectionA.4.2, this group is isomorphic tblh_q(§N- - -NSIN Xy, N---NSN Xh)
via the isomorphisndg o - - - o 3. Returning to the notation of Sectidn4.2, we now
define

D, = D} (6 + ) = Dy N {R((t — f)e ' ¢+™) > r/2} (B.7)

and, respectivelyX; . From [63, Section 1.5] (see also the remark hereafter), we know
that the spaces of homologyh (N --- NS N Xy, N---NS N X3) and
Hhq(§N---NSNXe, GN--- NS N X,) are dual.

As a consequence, easttycleT € Hﬁy(e)((C”, S) can be decomposed as

N = Z(l";, Ty, (B.8)
fa
with respect to the basidly)r, of (oriented) relative Lefschetz thimbles, where

(I'y) 1, is the dual basis (hendg}, I'y) = +1). Figure B.2 describes this duality
for the Airy pattern.
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Remark. A “concrete dual basis” can be built as follows. We start with a basis o
relative Lefschetz thimblegT'y) 1, of Hy ®(C", S) with the standard orientation.
Assuming thatf, belongs toA1,.... p), we introduce

.....

Xa =0po-- 001y € Hi_p(SoN---NSINXe, SpN---NSNXF). (B.9)

We definex; € Hhp(S5N--- NS N Xy, 5NN S N X)) as this cycle
deduced fromy, by rotating the direction frome? to €®+™ on 'S in the pos-
itive sense; thery, (resp.,x;) can be identified with the ascent (resp., descent]
gradient surfaces of a Morse functidh = x(P+D? L ... 4 xM?Z _ y(p+D2 _

.. — y™? of indexn — p in RZ"-P) — CO-P_ We compare the orienta-
tion (3/9xP+D . a/0x™ 9/9yPTD . 5/9y™) with the canonical orienta-
tion (3/0xPtD 5/ayPtD 5/5x™ 3/9y™) of C"—P). This yields

(Xa» Xa) = (=D)-PO=P=D/2, (B.10)
Using now the Leray coboundary isomorphisms, we can define
Iy =6810---08pxs, (B.11)

which extends as an eIementld,ﬁI'(””)((C“\S). Using B.10), we thus obtain a basis
('*)+, of n-cycles ofH,” ®*™(C"\S) dual to(T'y) 5,

Hill Valley

. /
Hill Valley

Figure B.2. The 1-cyclefl’;,'_1, ') as a basis oHl‘I’((C, a)
and its dual basi€l';, T'* 1, T'3) for the Airy pattern
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