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Abstract
Under convenient geometric assumptions, the saddle-point method for multidimen-
sional Laplace integrals is extended to the case where the contours of integration
have boundaries. The asymptotics are studied in the case of nondegenerate and of de-
generate isolated critical points. The incidence of the Stokes phenomenon is related
to the monodromy of the homology via generalized Picard-Lefschetz formulae and is
quantified in terms of geometric indices of intersection. Exact remainder terms and
the hyperasymptotics are then derived. A direct consequence is a numerical algorithm
to determine the Stokes constants and indices of intersections. Examples are provided.

1. Introduction
The asymptotic behaviour ask → ∞ in the complex planeC of complex oscillatory
integrals

I0(k) =

∫
0

e−k f (z)g(z) dz(1)
∧ · · · ∧ dz(n), (1)

with f, g : Cn
→ C analytic functions of the variablez = (z(1), . . . , z(n)) and0

a chain of real dimensionn, has been the study of much work, both theoretical and
practical. A discussion of the history of the problem can be found in V. Arnold, A.
Varchenko, and S. Gussein-Zadè [3] and D. Kaminski and R. Paris [40]. Applications
of these integrals in optics are detailed in [53] and the references therein. Much work
has focused on obtaining the asymptotic expansions themselves. Here we focus on
deriving “global asymptotics” in all sectors of the complexk-plane for these integrals
when the contours of integration are finitely bounded. Interest in this area has been
renewed recently following the ideas of R. Balian and C. Bloch [6] and F. Pham [63],
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[65], the development of the resurgence (see [23]) and hyperasymptotic theories (see
[7]), and the work of Kaminski and Paris [40], [41], and C. Howls [36].

The main approach used in deriving the (global) asymptotics of such Laplace
integrals is a generalisation of the Riemann-Debye saddle-point method, which can
be reduced to the following algorithm (see [25]):
(1) the identification of all possible critical points;
(2) the topological operation of pushing the integration contour inCn toward the

directions of steepest descent, forming a chain of integration hypersurfaces;
(3) the local study near the critical points of the phase function and near the

boundary of the hypersurfaces of integration0, and the computation of the
relevant asymptotic expansions;

(4) the derivation of the exact remainder terms, their reexpansions in terms of
distant critical points, and the calculation of the associated Stokes constants,
thereby explicitly linking the contributions from all relevant critical points.

The first and third parts have been extensively discussed at leading order (see,
e.g., Arnold, Varchenko, and Gussein-Zadè [3], V. Vassiliev [71], and B. Gaveau
[26]) and for real variables (see R. Wong [76]). The second topic has been studied
practically for real variables in terms of flows by Kaminski [39]. The third topic has
been studied in great detail by Varchenko from the theoretical viewpoint, relating the
characteristic exponents of the asymptotic expansions to mixed Hodge structure in
vanishing cohomologies (see [69], [70]). Substantial practical progress in the deriva-
tion of asymptotic expansions with exact remainder terms for polynomial exponents
using Mellin integral representations has been made by Kaminski and Paris [40], [41]
and by G. Liakhovetski and Paris [43] using a Newton polygon to identify the appro-
priate contributions. The fourth point was studied for unbounded integration contours
by Howls [36].

Our goal here is to combine the four points above so as to produce for the first
time exact remainder terms and a self-consistent numerical algorithm to determine
the Stokes constants when0 is a bounded domain.

The asymptotic expansions are well known whenf is a polynomial function (and
g is “well behaved at infinity”) and the contour of integration0 is an unboundedn-
chain of hypersurfaces of integration, satisfying a convergence criterion at infinity

<(k f ) → +∞. (2)

Under convenient geometric assumptions (effectively, that all critical points are iso-
lated and that no critical points at infinity occur), Pham showed geometrically in [63]
that the chain0 (resp., integralI0(k)) can be decomposed as a finite sum

0 =

∑
α

µα∑
j =1

Nα j (0)0α j

(
resp., I0(k) =

∑
α

µα∑
j =1

Nα j (0)I0α j
(k)
)
. (3)



GLOBAL ASYMPTOTICS FOR BOUNDED MULTIPLE INTEGRALS 201

HereN j
α (0) are integers and the first sum runs over the finite set of critical pointszα of

the phase functionf , while the0
j
α denote a basis ofµα (Milnor number) independent

steepest-descentn-folds associated with the critical pointzα.
Such a steepest-descentn-fold is easy to describe locally when the critical point

is a Morse singularity, yielding the notion of theLefschetz thimbleof geometers. In
general, the local analysis near the (isolated) critical pointszλ of the phase function
f reduces to a description of the topology of the generic fiberf = t , t ∈ C nearzλ,
whose (reduced) homology is the vanishing homology of geometers.

From the above decomposition, the asymptotics follow from a local analysis near
the critical points. Moreover, this geometrical viewpoint also yields any algebraic
Stokes phenomena, that is, discontinuities of the decomposition (3) for special values
of arg(k). These discontinuities are given by the Picard-Lefschetz formulae, and their
use in deriving exact remainder terms, Stokes constants, and Riemann sheet structure
was discussed in the hyperasymptotic study by Howls [36].

The purpose of this paper is to extend the results of [36] to consider integrals of
type (1) when one adds a set{S1, S2, . . . , Sm} of m ≤ n smooth irreducible affine
hypersurfaces as possible boundaries for the contour of integration.

Assuming thatf is a polynomial function, we show (under some convenient ge-
ometrical assumptions) a hyperasymptotic extension of known results in real asymp-
totic analysis (see [76]): the chain0 can be decomposed again as a finite sum

0 =

∑
α

µα∑
j =1

Nα j (0)0α j (4)

with integersNα(0), where the sum runs over the (finite) set of critical valuesfα of
(1) the critical points of the phase functionf and
(2) the critical points of the restricted functionf | on the boundary.

The above description follows from a decomposition of the space of (relative)
homology classes ofn-chains satisfying the descent condition. Some discontinuities
in decomposition (4) usually appear under variations of the phase ofk. For a geome-
ter, this phenomenon can be understood in terms of indices of intersection, described
by generalized Picard-Lefschetz formulae. For the analyst, this is the Stokes phe-
nomenon, and the previous indices of intersection are now seen as Stokes multipliers.
The first viewpoint helps in understanding the quantized nature of these Stokes mul-
tipliers but, as a rule, fails at the stage of concrete computation. Understanding these
indices of intersection as Stokes multipliers gives a numerical method of computation,
using the tools and ideas of hyperasymptotic theory.

The structure of the paper is as follows. In Section 2 we briefly describe the
space of contours of integration that will be considered and the decomposition prop-
erty. This is done in an intuitive manner, saving the proofs and technicalities for Ap-
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pendixA. In Section 3 we apply this decomposition to integrals of type (1), deriving
the asymptotics. In Section 4 we discuss the Stokes phenomenon, describing the so-
called resurgence properties. Here again, the technicalities of the proofs are left to
AppendixB. In Section 5 we demonstrate how to derive the exact remainder term
for a truncated asymptotic expansion, together with the calculation of the associated
Stokes constants and thence the hyperasymptotic reexpansions. In Section 6 we pro-
vide an example. We conclude in Section 7 with a discussion of the hypotheses and
some related topics; among other subjects, the problem of the “confluent” case is
briefly described, and some links between oscillating integrals with boundaries and
differential equations are suggested. We also mention some open problems.

By their very nature, the complex oscillatory integrals are crossroads for different
scientific communities, from pure mathematicians to physicists and chemists (cf. [15]
and the references therein). This paper has been written in such a way as to be readable
by as large an audience as possible; consequently, although some comments in the text
will appear trivial to geometers, they are intended to be helpful to the nonspecialist.
Conversely, the procedure for deriving the new hyperasymptotic formulae associated
with these integrals may be familiar to an (exponential) asymptotician, but this is
explained in Section 5 for the convenience of others.

2. Contours of integration and assumptions
This section contains the assumptions we make about the types of integrals to be
treated, together with the definitions of the technical geometrical terms that we use.
For the benefit of the geometer, the technicalities of the explanations and proofs can
be found in AppendixA.

We treat only the case whenf is a polynomial. As in the (n = 1)-dimensional
case, theC-space of the values off plays a central role and is called theBorel plane
or thet-plane.

In what follows, we assume thatk has a given phase−θ :

k = |k| exp(−i θ) ∈ C\{0}. (5)

2.1. Contours of integration with no boundary
In Howls [36] and Pham [63], integrals of type (1) are considered for unbounded (n-
real)-dimensional contours of integration0, traveling between asymptotic valleys at
infinity where<(k f ) → +∞. This condition ensures the convergence of the integral
and the validity of the Stokes theorem (at least when the growth of the functiong
at infinity remains small in comparison to the decay of the exponential involvingf ).
It is assumed from now on thatg is a polynomial function, although we believe the
results to be more widely applicable.
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As in [63], the set of these unbounded integration contours is denoted by
H9

n (Cn).
The properties ofH9

n (Cn) are essentially governed by the behavior of the func-
tion f near its critical pointszα, where the gradient∇ f vanishes. In principle, an
integral I0 over one such contour can be reduced to the sum of integrals over a se-
quence, called a chain, of “steepest-descent” contours0α, each of which encounters
a single critical pointzα of f and follows the flow of the vector field∇(< k f ). This
is true at least when the phase ofk is “generic” in the sense that each0α encounters
no more than one critical point, so that no Stokes phenomenon occurs.

This contour decomposition follows from the work of Pham [63], under two main
geometrical assumptions.
(1) All critical points are isolated.This excludes thosef that contain a ridge of

critical points (see, for instance, [76]).
(2) There are no critical points at infinity.
Since these two requirements are central to the paper, it is worth pausing to give an
explanation.

To explore the space of integration contours, it is necessary to study the topology
of the level hypersurfacesf (−1)(t) for t ∈ C, and particularly fort near a critical
value fα for which the fiber f (−1)( fα) becomes singular. This amounts to studying
the geometry near the corresponding critical values, which is completely understood
(since J. Milnor [50]) only when isolated critical points are concerned. Hence we have
the first assumption.

The definition of critical points at infinity is subtle but can be illustrated with an
example (from [10]). A straightforward computation shows that the polynomial

f (z(1), z(2)) = z(1)2
z(2)

+ 2z(1) (6)

has no critical point, but, nevertheless, the fiberf −1(0) differs from the other level
hypersurfacesf (−1)(t). This can be seen by deforming this polynomial into

fk(z
(1), z(2)) = z(1)2

z(2)
+ 2z(1)

+ k2z(2). (7)

For k ∈ C\{0}, the polynomialsfk have two nondegenerate critical points (resp.,
values) at(z(1), z(2)) = (ik, i/k) and (−ik, −i/k) (resp., 2ik and−2ik). However,
whenk → 0, the two Morse singularities evaporate to infinity while the two critical
values converge to zero. This gives rise to a critical point at infinity, with zero for
its corresponding bifurcation value. We see later in Section7.1 how this bifurcation
value coming from a critical point at infinity indeed affects the (hyper)asymptotics.
Nevertheless, the general topology in the locality of such critical points at infinity
is complicated and not yet well understood (apart from the dimensionn = 2; see
[32] and [22] for a survey of recent results), and this is the reason for the second
assumption.
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2.2. Contours of integration with boundaries
Returning to the general case of integrals of type (1), suppose that the contour0 now
encounters a sequence of boundaries{S1, S2, . . . , Sm}, these beingm ≤ n smooth
complex(n−1)-dimensional hypersurfaces. For instance, the contour may run from a
boundary into an asymptotic valley at infinity where<(k f ) → +∞ for convergence,
or it may run between two finitely placed boundaries.

We assume that each boundarySi is defined by a polynomial equationPi (z) = 0
with Pi ∈ C[z]. This prevents the boundaries from behaving too wildly at infinity,
thus ensuring (1) the convergence of the integrals and (2) the validity of the Stokes
theorem.

Notation. The set of these contours0, which we also refer to ascycles, is denoted by
H9

n (Cn, S) with S = S1 ∪ · · · ∪ Sm.

The affine hypersurfaces{S1, S2, . . . , Sm} are assumed to satisfy the following hy-
potheses.

HYPOTHESISH1
The m hypersurfaces S1, S2, . . . , Sm are in general position; that is, they may cross,
but they are not tangential at the crossing points.

Notation. For brevity, the intersections of boundary surfacesSi1 ∩· · ·∩ Si p (1 ≤ i1 <

· · · < i p ≤ m) are denoted byS(i1,...,i p). These are smooth submanifolds of complex
codimensionp by Hypothesis H1.

From the polynomial nature of the phase functionf and the Bertini-Sard theorem, it
follows that the set3() of critical values of f is finite. Moreover, from the algebraic
assumptions on theSi , the restrictionf(i1,...,i p) := f | S(i1,...,i p) of f to the intersection
of the boundariesS(i1,...,i p) also has afinite set3(i1,...,i p) of critical values(see [50]).
We denote by3 =

⋃
3(i1,...,i p) the set of all these critical values. Notice here that if

m = n, then the (finite) set of pointsS1 ∩ · · · ∩ Sn are considered critical points. In
one-dimensional integrals, this corresponds exactly to linear endpoints.

To avoid complications at infinity, we assume the following hypothesis.

HYPOTHESISH2
We have that f , as well as each f(i1,...,i p) (1 ≤ i1 < · · · < i p ≤ m), has no singularity
at infinity.

We avoid nonisolated critical points.
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HYPOTHESISH3
All critical points of f , as well as those of the restricted functions f(i1,...,i p) from
S(i1,...,i p) to C, are isolated.

It is useful also to assume a one-to-one correspondence between critical pointszα in n
dimensions and their critical valuesfα = f (zα) in one dimension. This is the subject
of the following hypothesis.

HYPOTHESISH4
Each fα ∈ 3 is the image of a single critical point zα of f or one of the f| S(i1,...,i p).

At this point it is helpful to introduce some definitions.

Definition 2.1
Thedepthof a (restricted) critical pointzα is the maximal number of boundariesp on
which it lies.

Following the one-to-one equivalence between critical value and critical point (see
Hypothesis H4), we can obviously extend the definition of depth to critical values.
This definition allows us to classify the critical points according to their depth in the
following way.∗

Definition 2.2
Critical points of thefirst typeare critical points of depthp = 0.

These are critical points of the unrestrictedf and do not lie on a boundary.

Definition 2.3
Critical points of thesecond typeare those of depthp > 0 and are critical only forf
restricted to exactlyp boundaries.

For such a critical point, and ifS1, . . . , Sp are thep boundaries (up to a reordering),
it follows from Hypothesis H1 and Hadamard’s lemma (see [2]) that there exist new
local coordinates(s(1), . . . , s(p), s(p+1), . . . , s(n)) such that we can writef as

f = fα + s(1)
+ · · · + s(p)

+ F(s(p+1), . . . , s(n)) (8)

with s(i )
= 0 as a local equation for the boundarySi .

∗ Our nomenclature differs slightly from Wong’s [76].
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Definition 2.4
Critical points of thethird typeare all other cases (including when an actual critical
point of the unrestrictedf accidently lies on a boundary).

We discuss only critical points of the first two types due to the extra complications
that can arise in third-type cases.

HYPOTHESISH5
No critical value of the third type occurs.

2.3. The decomposition theorem
In the presence of the boundariesS1, S2, . . . , Sm, it is by no means obvious that
it is still possible to decompose the original integration contour into a sequence of
steepest-descent contours, each passing over either a single critical point off or its
restriction f(i1,...,i p). While this may be obvious for single-dimensional integrals, and
while local results in real dimensions are obtainable by using “neutralisers” (in terms
of Laplace integrals; see Wong [76]), until now it has not been demonstrated explicitly
in higher complex dimensions.

In SectionA.3, by extending ideas of Pham [63] and taking advantage of Hy-
potheses H1 and H2, it is shown that a given cycle of integration can be decomposed
through a continuous deformation (isotopy) into a chain of cycles0α such that their
projections byf are straight half-linesLα := ( fα, ∞ exp(i θ)), where fα belongs to
the set of critical values3. This is true at least when the finite set of theseLα are
two-by-two disjoint, and this is guaranteed for a “generic” phase ofk.

Note that on each of these0α the exponential factor exp(−k f (z)) has the greatest
exponential decay; that is,0α satisfies the steepest-descent condition.

Under Hypotheses H3 and H4, we show in SectionA.4 that the investigation of
each cycle0α essentially reduces to a local analysis near its relevant critical point
zα. Assuming these results, Sections 2.3.1 and 2.3.2 help us to understand the local
geometry near a critical point, introducing objects such as “Lefschetz thimbles” and
“vanishing cycles.” These objects are most easily defined initially for the unbounded
contour case. We do this in Section 2.3.1 before demonstrating how they are modified
in the presence of boundaries.

2.3.1. The geometry near a first-type critical point
In the Borel plane, we consider restrictions to (sufficiently) small closed discsDα

centred on the critical valuesfα, of radiusr0. This corresponds to local truncations of
the steepest-descent contours0α in neighbourhoods of the critical pointzα.

We first consider the case of a nondegenerate critical pointzα. The function f



GLOBAL ASYMPTOTICS FOR BOUNDED MULTIPLE INTEGRALS 207

has a Morse singularity there, and the Morse lemma ensures the existence of local
coordinates(s(1), . . . , s(n)) such that

f − fα = s(1)2
+ · · · + s(n)2

= x(1)2
+ · · · + x(n)2

− (y(1)2
+ · · · + y(n)2

)

+ 2i (x(1)y(1)
+ · · · + x(n)y(n)), (9)

wherex(i )
= <(s(i )) is the real part ofs(i ), andy(i )

= =(s(i )) is the imaginary part.
Assuming for simplicity thatθ = 0, and under the truncation condition| f (s)− fα| ≤

r0, we see that the best realisation of the steepest-descent conditions is given by the
so-called Lefschtez thimble,∗ defined by

0t0
α =

{
(s(1), . . . , s(n)) ∈ Cn

∣∣ y(1)
= · · · = y(n)

= 0 , x(1)2
+ · · · + x(n)2

≤ r0
}
.

(10)
The Lefschtez thimble0t0

α is unique up to the choice of orientation. The standard one
is that defined by the coordinates(x(1), . . . , x(n)) (see [63]).

The caseθ 6= 0 is easily deduced from the casek > 0 by the linear mapping

(s(1), . . . , s(n)) 7→ (ei θ/2s(1), . . . , ei θ/2s(n)). (11)

Note that, from its very definition, a Lefschetz thimble0
t0
α is mapped byf onto

the closed segmentL t0
α := ( fα, t0), wheret0 = fα + r0 exp(i θ).

Z1

γα

Z2

0t
α

t

Figure 1. Lefschetz thimble0t0
α for n = 2 and its boundary

γ
t0
α = ∂[0

t0
α ]

An associated geometrical object is thevanishing cycle, γ
t0
α (see Figure 1) being

the(n − 1)-real dimensional oriented boundary of the Lefschetz thimble, wheref =

∗In what follows, the term “absolute” is added to these Lefschtez thimbles to differentiate them from the
“relative” Lefschtez thimbles introduced in Section 2.3.2.
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t0; whenθ = 0,

γ t0
α =

{
(s(1), . . . , s(n)) ∈ Cn

∣∣ y(1)
= · · · = y(n)

= 0 , x(1)2
+ · · · + x(n)2

= r0
}
.

(12)
The orientation is determined by that of the Lefschetz thimble. It is convenient to refer
to the vanishing cycle in terms of a boundary operator∂,

γ t0
α = ∂ [0t0

α ]. (13)

A Lefschetz thimble encountering a first-type nondegenerate critical point can thus be
geometrically parametrised in that locality as the union of all vanishing cycles

⋃
t γ t

α

ast runs alongL t0
α .

We note briefly that it is possible to extend the concepts of a Lefschetz thimble
and a vanishing cycle to the case of an isolated degenerate critical point of the first
type, that is, when the Hessian determinant off vanishes. The idea is as follows.
Under a small (generic) deformation, the degenerate critical pointzα splits into a
finite numberµα of nondegenerate critical points,µα being the multiplicity or Milnor
number of the critical point.∗ We thus have a basis ofµα Lefschetz thimbles0t0

α j ,
j = 1, . . . , µα, and their corresponding vanishing cycles. Returning to the original
unperturbedf , the basis of Lefschetz thimbles is deformed into a basis ofµα “folded”
Lefschetz thimbles.

Note that, starting with this local description of Lefschetz thimbles0
t0
α , we can

extend them globally by following the flow of the vector field∇(< k f ) with the
vanishing cycles as initial data. This defines what are called the(absolute) steepest-
descent n-folds0α. This is true at least when no Stokes phenomenon occurs, and this
is guaranteed if the half-lineLα, onto which0α is mapped byf , does not encounter
any other critical valuefβ ∈ 3() of f .

2.3.2. The geometry near a second-type critical point
When boundaries are present, the definition of a Lefschetz thimble and a vanishing
cycle needs clarification.

In the Borel plane, we again consider a restriction to a small enough closed disc
Dα of radiusr0 centered on a critical valuefα of depthp. Localising near the corre-
sponding critical pointzα, we use the local coordinates of (8).

If we assume thatF has a nondegenerate critical point, then it may be written as

F = s(p+1)2
+ · · · + s(n)2

(14)

∗ There are many equivalent definitions for the Milnor number. The nonspecialist may be referred to [58]
or [2]. For instance, the Milnor number for the singularityz(1)a

+ z(2)b
(a, b ∈ N\{0}) is (a − 1)(b − 1).

Of courseµα = 1 for a nondegenerate critical point.
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by changing then − p local coordinates(s(p+1), . . . , s(n)) if necessary. This is a
consequence of the Morse lemma applied on restriction to theS1 ∩ · · · ∩ Sp, which of
course does not affect the local equationss(i )

= 0 for the boundarySi , i = 1, . . . , p.
Assuming for a moment thatθ = 0, we easily obtain

0t0
α =

{
(s(1), . . . , s(n)) ∈ Cn

∣∣ y(1)
= · · · = y(n)

= 0 , x(1)
≥ 0, . . . , x(p)

≥ 0,

x(1)
+ · · · + x(p)

+ x(p+1)2
+ · · · + x(n)2

≤ r0
}
, (15)

with x(i )
= <(s(i )) andy(i )

= =(s(i )) for the best realization of the steepest-descent
conditions, under the truncation condition| f (s) − fα| ≤ r0.

We refer to0t0
α as arelative Lefschetz thimble. Again, the relative Lefschetz thim-

ble is unique, up to the choice of the orientation. The orientation defined by the coor-
dinates(x(1), . . . , x(n)) is called thestandard orientation.

The case of generalθ is deduced from the casek > 0 by the simple linear map-
ping

(s(1), . . . , s(p), s(p+1), s(n)) 7→ (ei θs(1), . . . , ei θs(p), ei θ/2s(p+1)ei θ/2s(n)). (16)

The relative Lefschetz thimble0t0
α is mapped byf onto the closed segmentL t0

α :=

( fα, t0), wheret0 = fα + r0 exp(i θ).
The concept of a (relative) Lefschetz thimble now being clear, its companion

vanishing cycle is defined in terms of a reduction process. This algorithm is important
in the derivation of the asymptotics of Laplace integrals of type (1), and so we now
explain it. This is done on the basis of Figure 2, wheren = 3 andp = 2. We assume
θ = 0 for simplicity. We first introduce∂ [0

t0
α ], where∂ is the boundary operator that

selects the part of the boundary of0
t0
α where f = t0:

∂ [0t0
α ] = {x(1)

≥ 0, x(2)
≥ 0, x(1)

+ x(2)
+ x(3)2

= r0}. (17)

The relative Lefschetz thimble0t0
α can thus be locally parametrised as the union⋃

t ∂ [0t
α] with t running onL t0

α .

Reading the equality in (17) asx(2)
+ x(3)2

= r − x(1)
= r1 with 0 ≤ x(1)

≤ r ,
we see that each∂ [0t

α] can itself be parametrised by the union
⋃

t1 ∂1 ◦ ∂ [0
t1
α ] for t1

running onL t
α (andx1 = r −r1). Here∂1 is the boundary operator that selects the part

of the boundary of∂ [0
t1
α ] lying on S1, where f |S1 = t1 andt1 = fα + r1 exp(i θ); in

other words,
∂1 ◦ ∂ [0t1

α ] = {x(2)
≥ 0, x(2)

+ x(3)2
= r1}. (18)

Similarly introducing the boundary operator∂2, we get a parametrisation of each∂1 ◦

∂ [0
t1
α ] in terms of the sequence overt2 ∈ L t1

α of the boundaries

∂2 ◦ ∂1 ◦ ∂ [0t2
α ] = {x(3)2

= r2} (19)
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Figure 2. Relative Lefschetz thimble0t
α for n = 3 andp = 2.

The vanishing cycle is∂2 ◦ ∂1 ◦ ∂[0t
α] = [b] − [a].

(andx2 = r1 − r2) lying on S2 ∩ S1, where f |S2 ∩ S1 = t2 andt2 = fα + r2 exp(i θ).
The boundary∂2 ◦ ∂1 ◦ ∂ [0

t0
α ] is precisely thevanishing cycleγ t2

α associated
with the relative Lefschetz thimble0t2

α . More generally, the vanishing cycleγ t0
α for

a critical point of the second type of depthp is the boundary on the simultaneous
intersection of (15) with the p + 1 constraining boundaries, including the boundary
condition f = t0. In boundary operator notation, we have

γ t0
α = ∂i p ◦ · · · ◦ ∂i1 ◦ ∂[0t0

α ], (20)

where the∂i p is the operator that selects the part of the boundary lying on the boundary
Si p. Its orientation is deduced from that prescribed to0

t0
α .

Note that the reduction process (20) is not canonical, in the sense that it is defined
up to a permutation of thep+1 boundary operators. However, the resulting vanishing
cycle does not depend on the order.

When F has a degeneracy of multiplicityµα, we obtain a basis ofµα folded
relative Lefschetz thimbles0t0

α j , j = 1, . . . , µα, and the reduction process (20) to
associate a (unique) vanishing cycle to a given (folded) relative fold Lefschetz thimble
is unchanged.

To extend the local description of a relative Lefschetz thimble0
t0
α into a global

notion of arelative steepest-descent n-fold0α is less obvious than in the “absolute
case,” where no boundary interferes (see [48]). This can be performed (cf. App.A),
at least when no Stokes phenomenon occurs.
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2.3.3. The corner case
In the above description of the behaviour of a second-type critical point, it is implic-
itly assumed that the depthp is less thann. The case where the depth isn, which
corresponds to a corner, is actually simpler. As illustrated in Figure 3, the reduction
process stops at the(p = n)th iteration, the boundary

∂p−1 ◦ · · · ◦ ∂1 ◦ ∂[0] (21)

being just the end critical corner point, and no vanishing cycle needs to be defined.

S1

S3

S2

Figure 3. Relative Lefschetz thimble forn = p = 3. No vanishing
cycle occurs.

2.4. Conclusion
Assuming thatθ is generic, so that the set of half-linesLα = fα + ei θR+ ( fα ∈ 3)
are two-by-two disjoint, we saw in Section 2.3 how each critical point of multiplicity
µα may be associated withµα independent (absolute or relative) steepest-descentn-
folds. The set of all these steepest-descentn-folds then defines a basis for the contours
of integration in the following sense.

THEOREM 2.1
In the presence of the boundaries S1, S2, . . . , Sm, every contour of integration of in-
tegrals of type (1) can be decomposed uniquely as a chain (cf. (4)) of steepest-descent
n-folds associated to the critical points, restricted or actual, of f .

This result is just a naı̈ve formulation of TheoremA.2 proved in AppendixA. Note,
moreover, that by adding the Milnor numbers of each critical point (with the conven-
tion µ = 1 for a corner), we have a simple way of keeping an account of the number
of possible independent steepest-descent contours.
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Example
By way of an example, consider the function

f (z(1), z(2)) = z(1)4
+ z(1)z(2)2

+ z(2)3
(22)

in the presence of a boundaryS1 : z(1)
− z(2)

= 1. The phase functionf has no
critical point at infinity. By dimensionality, the question of critical points at infinity is
not relevant for the restricted functions on the boundary (there are no critical points
at infinity in dimension 1).

The phase functionf has two isolated critical points of the first type. One is nonde-
generate; henceµ1 = 1 and corresponds to the critical valuef1 = −1/19683. The
other critical point is 0∈ C2; it is degenerate, withf2 = 0 for its critical value. Theo-
retically, the computation of its Milnor numberµ2 follows from a result of V. Palam-
odov and H. Grauert (see, e.g., [58]) via an algorithm (see, e.g., [19], [2]). Here we
can take advantage of the semi-quasi homogeneity of the polynomialf (see [2]); in
the neighbourhood of the critical point, the singular locusf = 0 is isomorphic to
X(Y2

+ X3) = 0, that is, the union of a cusp and a smooth curve. In the language of
catastrophe theory, this singularity is classified as the parabolic umbilic,D5 (cf. [2]),
and one finds thatµ2 = 5.

The restricted functionf(1) on S1 has three nondegenerate critical points, and the
critical valuesf(1)1, f(1)2, f(1)3 are of the second type.

To conclude, we have a basis set of 9(1+5+3×1) possible independent steepest
surfaces into which a general integration contour can be decomposed.∗

Variation with θ . The above analysis has been carried out for fixed generic phase
θ0 = −arg(k). Whenθ ranges fromθ0 to θ0 +2π , a given cycle0θ0 ∈ H9(θ0)

n (Cn, S)

is deformed continuously into a cycle0θ
∈ H9(θ)

n (Cn, S), according to the continu-
ous variation of the convergence criterion<(k f ) → +∞ at infinity.† Note, however,
the following.
• In general, the deformed cycle0θ0+2π differs from0θ0; therefore, as a rule,

the integrals (1) are ramified atk = 0. (Just think, for instance, of the Airy
function, wheref (z) = z − z3/3.)

• When nongeneric phasesθ are crossed, the decomposition of a given cycle
with respect to a basis of steepest-descentn-folds may encounter discontinui-

∗In other words,H9
2 (Cn, S1) is a freeZ-module of rank 9.

†This translates in terms of sheaves; the family of groups of homologyH9(θ)
n (Cn, S) makes up a local

system of freeZ-modules of finite rank on the circleS of directions. We denote this local system by
H9

n (Cn, S)S.
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ties. This is the Stokes phenomenon. We return to this point later (see Sec-
tion 4).

3. Integral representations and asymptotics
We are now ready to study the analytical and asymptotic properties of the Laplace-
type integrals (1). We recall thatg = g(z) is a complex polynomial function, and we
denote byω = g(z) dz(1)

∧ · · · ∧ dz(n) the corresponding holomorphic differential
n-form.

It follows from the above analysis (see Section2) that the mapping

0 7→ I0(k) =

∫
0

e−k f (z)ω (23)

translates the geometrical properties of the family of spaces of integration contours
(H9(θ)

n (Cn, S))θ∈S into analytic properties of integral functions defined on the uni-
versal covering ofC\{0}.∗ Moreover, to give a complete description of this represen-
tation, it is enough
(1) to consider the action of (23) on each cycle of a basis of steepest-descentn-

folds for genericθ (see Theorems2.1or A.2) and
(2) to analyse the possible discontinuities (Stokes phenomena) when nongeneric

θ are crossed.
The second point is discussed in Section4. Here we concentrate on the first point,

the asymptotics with|k| → +∞. We thus consider a steepest-descentn-fold 0 =

0α(θ) for a given genericθ . One can make two preliminary remarks.
(1) It follows from its very definition thatf maps the steepest-descentn-fold 0

onto the half-lineLα. This ensures the exponential decay ofe−k f (z) at infinity along
0 for k in all closed subsectors of

6θ =

{∣∣arg(k) + θ
∣∣ <

π

2
and |k| > 0

}
. (24)

It thus follows that the Laplace integral

Iα(k) =

∫
0

e−k f (z)ω (25)

defines an analytic function in6θ .
(2) Using the notation of Sections2.3.1 and 2.3.2, let us “truncate” our chain

0 as0t0 with t0 ∈ Lα and close tofα.† Then the difference integral
∫
0−0t0 e−k f (z)ω

∗In other words, (23) gives a representation of the local system of homologyH9
n (Cn, S)S in terms of the

sheaf of holomorphic functions onC\{0}.
†With the notation of SectionsA.4.1 and A.4.2, 0t0 is a relative cycle inHn(Xα, Xt0

α ) if depth(fα) = 0
and in Hn(Xα, Xt0

α ∪ Y1 ∪ · · · ∪ Yp) if depth(fα) > 0.
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defines an analytic function ink which is exponentially decreasing at infinity inside all
closed subsectors of6θ and is therefore “flat” (i.e., asymptotic to the zero function)
at infinity. This means thatIα(k) and

I t0
α (k) =

∫
0t0

e−k f (z)ω (26)

have the same Poincaré asymptotics at infinity inside all subsectors of6θ .
We can now compute these asymptotics by the saddle-point method. The result

of course depends on the type of critical point we consider, and this is the purpose of
Sections3.1and3.2.

3.1. Absolute steepest-descent contours (no boundaries)
As an introduction to the bounded case, we first study the asymptotics associated
with a critical value fα = f (zα) ∈ 3( ) of the first type. This case is well known:
the asymptotics are governed by the local behaviour of the integrand near the isolated
critical pointzα. We briefly recall the ideas of B. Malgrange [45] (see also [63], [25],
and [3, Section 11]), which relate the asymptotics directly to the geometry of the phase
function. Furthermore, we demonstrate the Borel summability of these asymptotics,
which can therefore be considered as anexactencoding of the functionIα(k) within
a Stokes sector.

Writing

I0(k) = e−k fα

∫
0

e−k( f (z)− fα)ω, (27)

one can assume thatfα = 0 without loss of generality, and we furthermore assume
thatθ = 0 for simplicity.

We now consider the truncated integral (26) and use the boundary operator∂ (cf.
(13) or (A.12)) to reduce the dimensionality. By the Stokes theorem (see [45]) and
Leray residue theory (see [42]),

I t0
α (k) =

∫
0t0

e−k f (z)ω =

∫ t0

0
dte−kt Ĵα(t) with Ĵα(t) =

∫
∂[0t ]

ω

d ft
, (28)

whereω/d ft denotes the Leray residue differential(n − 1)-form of ω,∗ ∂[0t
] being

the vanishing cycle.†

It is known from [9] and [45] that Ĵα(t) defines an analytic function on the univer-

sal coveringD̃α\{0} of the punctured discDα\{0}. More precisely,̂Jα(t) is a solution

∗That is, ω = d f ∧ ω/d f . This (n − 1)-quotient formω/d f is holomorphic along each nonsingular fibre
Xt

α = {z ∈ f −1(t), z nearzα and t near fα}.
†That is, ∂[0t

] ∈ Hn−1(Xt
α).
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of a so-called Picard-Fuchs equation (or Gauss-Manin connection; see [61], for in-
stance)

dl Ĵα

dtl
+ q1(t)

dl−1 Ĵα

dtl−1
+ · · · + ql (t) Ĵα = 0 (29)

with l ≤ µα (the multiplicity of the singularity), which has (at most) a regular singular
point at the origin. It follows from the theory of Fuchs (see [74]) that Ĵα(t) admits in
each sectora < arg(t) < b a convergent series expansion of the form

Ĵα(t) =

∑
r,s

ar,s(t)t
r (ln t)s, (30)

where
• ther ∈ Q, r > −1, belong to the finite set of distinct monodromy exponents

of the classical monodromy operator in homology∗ (cf. [45]);
• to eachr is associated a set ofs ∈ N with s ≤ inf{µα − 1, n − 1} (see [3] for

more details); of course,s = 0 for nondegenerate critical points;
• ar,s(t) =

∑
j ≥0 ar,s, j t j are convergent Taylor series.

It remains to use the standard integral∫
+∞

0
e−kttλ(ln t)l dt =

( d

dλ

)l(0(λ + 1)

k(λ+1)

)
(31)

to conclude from Watson’s lemma thatI t0
α (k); henceIα(k) has

Jα(k) =

∑
r,s

Tr,s(k)
(ln k)s

kr +1
(32)

for its asymptotics when|k| → ∞ in all closed subsectors of6θ , whereTr,s(k) are
formal Gevrey-1 series expansions.†

∗Define a base pointt0 near (but different from) the critical value, and consider (fort0) a basis of van-
ishing cycles generating the vanishing homology. Consider the deformation of these cycles whent goes
around the critical value, starting at and coming back tot0. The resulting cycles still define a basis of the
homology: comparing the two bases, one gets an invertible matrix with integer coefficients describing the
monodromy of the vanishing homology. In the case of a nondegenerate critical point (only one vanishing
cycle), the possible monodromy arises from the possible self-intersection of the vanishing cycle. In the
case of a self-intersection, we get a square root singularity at the origin forĴα(t); otherwise,Ĵα(t) is ana-
lytic near t0. In the case of a degenerate critical point, each of the deformed cycles is described in general
as a linear combination (with integer coefficients) in terms of the preliminary basis. Write the eigenvalues
of this matrix under the form exp(−2iπλ). Then theseλ are rationals (see [45]), and, moreover, they are
(up to an addition of an integer) the exponentsr in the series expansion (30). It may happen that the
monodromy matrix has multiple eigenvalues, resulting in possible logarithmic terms in (30). In Kaminski
and Paris’s scheme (see [40], [41]), this corresponds to multiple poles for the integrand for the associated
Mellin-Barnes integral representation.
†That is, Tr,s(k) =

∑
j ≥0 Tr,s; j /k j , and there existCr,s > 0 and Ar,s > 0 such that|Tr,l ; j | ≤ Cr,s A j

r,s0( j )

(see Malgrange [47], J. P. Ramis [66], or M. Loday-Richaud [44]).
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Now we can use our freedom to changeθ slightly so thatLα still does not meet
other critical values. The resulting integral is just the analytic continuation of the
previous one, the asymptotics at infinity being preserved. This proves that the asymp-
totics (32) are valid inside a wider sector of aperture greater thanπ . Therefore formal
expansion (32) is Borel resummable withIα(k) as its Borel sum (Watson’s theorem;∗

see [47]), and we thus obtain the following equivalent, one-dimensional, integral rep-
resentation:

Iα(k) =

∫
∞ei θ

0
dte−kt Ĵα(t). (33)

In summary, for general valuefα, we have the following theorem.

THEOREM 3.1
Let fα be a first-type critical value. The integral Iα(k) admits e−k fα Jα(k) as its asymp-
totic series expansion for k→ ∞ in 6θ = {|k| > 0, | arg(k) + θ | < π/2}; in other
words, Iα(k) ∼ e−k fα Jα(k) in 6θ , with

Jα(k) =

∑
r,s

Tr,s(k)
(ln k)s

kr +1
, (34)

where

Tr,s(k) =

∑
j ≥0

Tr,s; j /k j (35)

belongs toC[[k−1
]]1, the differential algebra of Gevrey-1 series expansions (see

[66]). The r ∈ Q run over a finitespectralset, and to each r is associated a set
of s ∈ N satisfying s≤ inf{µα − 1, n − 1}.

Conversely, Iα(k) (resp.,Ĵα(t)) can be considered as the Borel sum (resp., the mi-
nor in the resurgence theory of J. Ecalle†) of e−k fα Jα(k) in the direction of argument
θ .

Remark.Note that we are here treating theTr,s and Jα as formal series expansions,
although they can be interpreted also as (Poincaré) asymptotic expansions. The nota-
tional approach used here may be unfamiliar to some readers, but it is used to maintain
consistency with the Borel and resurgence viewpoint (see [47], [23], [12]).

Note also that in Theorem3.1 the direction of summation should be considered
as a direction iñC\{0}, the universal covering ofC\{0}.

∗This is not to be confused with his lemma for standard integral expansions.
†See Ecalle [23], or [12], [18], or [16] for a short introduction to resurgence theory.
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COROLLARY 3.1
If zα is a nondegenerate quadratic critical point of f , then Iα(k) ∼ e−k fα Jα(k) in
6θ , with

Jα(k) =
1

kn/2
Tα(k) and Tα(k) =

g(0)(2π)n/2

√
Hess( f )(0)

+

∑
j ≥1

Tα
j /k j

∈ C[[k−1
]],

(36)
whereHess( f ) is the hessian determinant. The choice of the root depends on the
orientation of the vanishing cycle.

This corollary is well known (cf. [25], [76]). One method for the practical computa-
tion of theTα

j is described in [17].

3.2. Relative steepest-descent contours (bounded case)
This case corresponds to a critical value of the second type and is the main focus of
this paper. Letfα ∈ 3(1,...,p) be a critical value of the restricted functionf(1,...,p) with
p > 0 the depth. We apply the reduction process developed in Section2.3.2(resp.,
SectionA.4.2) to analyse the asymptotics of our bounded integral. Again without loss
of generality, we assume thatfα = 0 andθ = 0.

To compute the asymptotics, it is enough to consider the truncated integral. Since
f = 0 is not a singular level, by following formula (17) and its comments, we can
apply Fubini’s theorem to write

I t0
α (k) =

∫ t0

0
dte−kt

∫
∂[0t ]

ω

d ft
, (37)

whereω/d ft is the (holomorphic) restriction of the differential quotient(n − 1)-
form ω/d f to the level f = t , and∂[0t

] is that part of the boundary of0t lying on
the fibre f −1(t).∗ The same reduction can be repeated step by step. We use the local
coordinates(s(1), . . . , s(p), s(p+1), . . . , s(n)) so that f is given by formula (8), and we
define the set of functionsf1,2,...,i : (s(1), . . . , s(n)) 7→ f (0, . . . , 0, s(i +1), . . . , s(n)).
At the second step (ifp ≥ 2), from Fubini’s theorem we have

Ĵα(t) =

∫
∂[0t ]

ω

d f
=

∫ t

0
dt1

∫
∂1◦∂[0t1]

ω

d f ∧ d f1
| f =t, f1=t1, (38)

whereω/d f ∧ d f1| f =t, f1=t1 denotes the (holomorphic) restriction of the differential
quotient(n − 2)-form ω/d f ∧ d f1 along the nonsingular levelf = t, f1 = t1: here
again, (38) is a simple translation of formula (18) with its comments. At thepth step

∗Precisely, the class of homology of[0t
] belongs toHn(Xα, Xt

α ∪ Y1 ∪ · · · ∪ Yp), and we select that part
of its boundary lying onXt

α .
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we obtain

I t0
α (k) =

∫ t0

0
dte−kt

∫ t

0
dt1 · · ·

∫ tp−2

0
dtp−1

∫
∂(p−1,...,1,0)[0

tp−1]

ω(p−1,...,1,0), (39)

where
∂(p−1,...,1,0) = ∂p−1 ◦ · · · ◦ ∂1 ◦ ∂, (40)

while

ω(p−1,...,1,0) =
ω

d f ∧ d f1 ∧ · · · ∧ d f1,...,(p−1)

| f =t, f1=t1,..., f1,...,(p−1)=tp−1 (41)

is the corresponding Leray quotient(n − p)–differential form.
If p = n (corner critical point), thenω(p−1,...,1,0) is just a holomorphic function

of (t, t1, . . . , tp−1) and the reduction process stops here. Ifp ≤ n− 1, it then remains
to use the same argument as in Section3.1to obtain

I t0
α (k) =

∫ t0

0
dte−kt

∫ t

0
dt1 · · ·

∫ tp−1

0
dtp

∫
∂(p,...,1,0)[0

tp ]

ω(p,...,1,0), (42)

where∂p ◦ · · · ∂1 ◦ ∂[0tp] is the vanishing cycle of the critical point.
In the casep = n, the integral

Ĵα(t) =

∫ t

0
dt1 · · ·

∫ tp−2

0
dtp−1

∫
∂(p−1,...,1,0)[0

tp−1]

ω(p−1,...,1,0) (43)

defines an analytic function onDα, with
∑

j ≥0 a j t j +p−1 as its convergent Taylor
expansion. In the casep ≤ n − 1, by using the results from Section3.2, the function

hα(t, t1, . . . , tp) =

∫
∂(p,...,1,0)[0

tp ]

ω(p,...,1,0), (44)

considered as a function oftp with (t, t1, . . . , tp−1) as a parameter, is defined as an

analytic function on the universal covering̃Dα\{ fα} and admits in each sectora <

arg(t) < b a convergent series expansion of the form∑
r,s

ar,s(t, t1, . . . , tp−1, tp)t
r
p(ln tp)

s, (45)

where
• the r belong to a finite set of distinct monodromy exponents of the classical

monodromy operator in homology, and thes ∈ N satisfys ≤ inf{µα − 1, n −

p − 1};
• ar,s(t, t1, . . . , tp−1, tp) =

∑
j ≥0 ar,s, j (t, t1, . . . , tp−1)t

j
p are convergent Tay-

lor series with analytic dependence with respect to(t, t1, . . . , tp−1).
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It thus follows that the function

Ĵα(t) =

∫ t

0
dt1 · · ·

∫ tp−1

0
dtp

∫
∂(p,...,1,0)[0

tp ]

ω(p,...,1,0) (46)

has the same properties, with

Ĵα(t) =

∑
r,s

br,s(t)t
r +p(ln t)s (47)

for its convergent series expansion, wherebr,s(t) =
∑

j ≥0 br,s, j t
j
p are convergent

Taylor series.
As in Section3.1, we finally recastIα(k) as a one-dimensional integral represen-

tation

Iα(k) =

∫
∞ei θ

0
dte−kt Ĵα(t), (48)

and we obtain the following theorem.

THEOREM 3.2
If fα is a second-type critical value of depth p, the integral Iα(k) admits e−k fα Jα(k)

as its asymptotic series expansion for k→ ∞ in 6θ (i.e., Iα(k) ∼ e−k fα Jα(k) in 6θ ),
where

for p = n, Jα(k) =
1

kp

∑
j ≥0

Tj /k j
∈ C[[k−1

]]1, (49)

for p ≤ n − 1, Jα(k) =

∑
r,s

Tr,s(k)
(ln k)s

kr +p+1
, (50)

where Tr,s(k) =
∑

j ≥0 Tr,s; j /k j belongs toC[[k−1
]]1. The rational r ’s run over a

finite spectral set associated with the critical point, and to each r is associated a set
of s ∈ N satisfying s≤ inf{µα − 1, n − p − 1}.

Conversely, Iα(k) (resp.,Ĵα(t)) is the Borel sum (resp., the minor) of e−k fα Jα(k)

in the direction of argumentθ .

The asymptotics are simpler in the case of a nondegenerate critical point (see, for
instance, [17], [76], [3]), arising fromp boundaries.

COROLLARY 3.2
When the singular point is quadratic, Iα(k) ∼ e−k fα Jα(k) in 6θ , with

Jα(k) =
1

k(n+p)/2
Tα(k) and Tα(k) =

∞∑
j =0

Tα
j

k j
(51)

for the asymptotic series expansion.
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4. Stokes phenomenon
We described in the previous section the asymptotics of the multiple Laplace integrals
of type (1), as well as their representation as Borel sums for generic summation direc-
tions(θ). To obtain the global asymptotics, we must analyse the Stokes phenomena.
This amounts to analysing the singularities in the Borel plane of the analytic con-
tinuations of (the minors)̂Jα(t). How this can be obtained from generalised Picard-
Lefschetz formulae (detailed in SectionB.1) is discussed in Section4.1. Against this
Borel viewpoint, we demonstrate in Section4.2how the Stokes phenomenon can be
understood directly in terms of steepest-descent contours, thus keeping the geometric
ideas of the saddle-point method as in the one-dimensional case.

In what follows, it is convenient to assume the following hypothesis.

HYPOTHESISH6
All singular points are nondegenerate.

4.1. Ramifications
We return to thêJα(t) of Theorems3.1and3.2, together with their corollaries. From
(36) and (51), if fα has depthpα, then locally near the origin,

Ĵα(t) = t (n+pα−2)/2Hα(t), (52)

whereHα is holomorphic near zero. Thus whenn + pα is even,Ĵα(t) is an analytic
function at the origin, but whenn + pα is odd, Ĵα(t) has a square-root singularity
there.∗

Note that thêJα(t) have been defined as (germs of ramified) analytic functions at
the origin. If fα 6= 0, it is necessary to take into account translations by the complex
numbers

fαβ = fβ − fα. (53)

The generalised Picard-Lefschetz formulae described in SectionB.1 allow us to
identify the type of singularity in the analytic continuations of eachĴα(t). Denoting
by Var = ρ − I the “variation” operator, whereI is the identity operator andρ is the
analytic continuation aroundfαβ anticlockwise, it follows from formula (B.3) that for
t near fαβ ,

Var Ĵα(t) = καβ Ĵβ(t − fαβ), (54)

whereκαβ is a (positive or negative) integer.

∗ This is consistent with the geometric argument (B.5). The vanishing homologyHn−pα−1(Sp ∩ · · · ∩ S1 ∩

Xt
α) is a trivial covering on the circle of directionsS when n + pα is even, but it is a two-fold covering

when n + pα is odd.
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PROPOSITION4.1
If pβ is the depth of the critical value fβ , then
• when n− pβ is even (so that̂Jβ(t) is not ramified around t= 0),

Ĵα(t) = καβ Ĵβ(t − fαβ)
ln(t − fαβ)

2i π
+ Hol(t − fαβ) (55)

with Hol a holomorphic function near zero,∗ and
• when n− pβ is odd,

Ĵα(t) = −
καβ

2
Ĵβ(t − fαβ) + Hol(t − fαβ). (56)

Arguments developed in Malgrange [45] show that Ĵα(t) remains bounded (when
n ≥ 2, the analysis being obvious whenn = 1) near fαβ . Proposition4.1now results
from the variation formulae (54) and Riemann’s removable singularity theorem (see
[28]).

We show in Section4.2how the above properties can be derived independently.

4.2. Stokes phenomenon
We consider a singular direction(θ) and assume that the closed half-lineLα = Lα(θ)

meets a singular valuefβ ; this (possibly) gives rise to a Stokes phenomenon, which
can be described as follows. Assume for simplicity thatLα meets no singular point
other thanfβ . We define the half-linesL−

α = Lα(θ−) andL−

β (resp.,L+
α = Lα(θ+)

and L+

β ) by slightly rotatingLα and Lβ clockwise (resp., anticlockwise; see Figure
4). We perform the same rotations for the other half-linesLλ.

For fixed θ− (resp., θ+), define a basis of steepest-descentn-folds (0α− ,
0β−, . . . , 0λ−, . . .) (resp.,(0α+, 0β+, . . . , 0λ+, . . .)). From our hypothesis, we can
assume that(0β+, . . . , 0λ+, . . .) is deduced from(0β−, . . . , 0λ−, . . .) by an isotopy
(continuous deformation) when the argument runs fromθ− to θ+, so that we can
remove the upper scripts± in the notation.

Concerning the0α± ’s, we can assumeonly that the one is deduced from the other
by a local deformation near the critical pointzα. This may not work globally due to
the critical valuefβ . We thus get the decomposition

0α− = 0α+ + 0α±, (57)

where necessarily
0α± = 0α− − 0α+ = καβ0β . (58)

∗In other words,Ĵα(t) and καβ Ĵβ (t − fαβ ) ln(t − fαβ )/2i π are equal when one considers them as micro-
functions.
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fα

fα

fβ

fβ

L+
α

L+

β

L−

β

L−
α

Figure 4. Generic Stokes phenomenon: Below, before the Stokes
phenomenon; above, after the Stokes phenomenon

In this formula,καβ can be understood geometrically as anindex of intersection,∗ and
therefore it is a positive or negative integer, the sign depending on the orientations of
0α and0β .

We now apply (58) to our integral representation. We start with the integral

Iα(k) =

∫
0−

α

e−k f (z)ω = e−k fα

∫
∞ei θ−

0
e−kt Ĵα(t) dt, (59)

which defines an analytic function within the sector6θ− = {|k| > 0, | arg(k)+θ−
| <

π/2}. We know thatIα(k) extends analytically overC\{0} as a multivalued function,
and from (58) we see that

Iα(k) =

∫
0+

α

e−k f (z)ω + καβ

∫
0+

β

e−k f (z)ω (60)

for k ∈ 6θ+ , that is, that

Iα(k) = e−k fα

∫
∞ei θ+

0
e−kt Ĵα(t) dt + καβe−k fβ

∫
∞ei θ+

0
e−kt Ĵβ(t) dt. (61)

Formula (61) provides a complete description of the Stokes phenomenon. We can re-
cast these results in the framework of resurgence theory, using the notation of Section
3. From (59), Iα(k) is the left (lateral) Borel sum in the direction of argumentθ of the

∗Compare with SectionB.2. With the convention of formula (B.8), καβ is given by the equalityκαβ =

〈0?
β , 0α± 〉.
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resurgent symbole−k fα Jα(k),

Iα(k) = e−k fα S(θ−) Jα(k), (62)

and from (61) the action onJα(k) of the Stokes automorphismS(θ) is given by

S(θ) Jα(k) = Jα(k) + καβe−k fαβ Jβ(k), (63)

which finally yields
1 fαβ Jα(k) = καβ Jβ(k), (64)

where1 fαβ is the “alien derivative operator” (see [23], [12], [18], [16]) at fαβ .
It is important to notice that the alien derivatives (as well as the directions of sum-

mations) have to be indexed over the two-fold covering ofC\{0} (i.e., the Riemann
surface of the square root) whenn + pα is odd. The sign ofκαβ depends on which
sheet of this covering is under consideration.

4.3. Conclusion
In (64), the index of intersectionκαβ now appears as a so-called Stokes multiplier.
Note that (64) can be understood in terms of singularity in the Borel plane. The an-
alytic continuation of the minor̂Jα(t) of Jα(k) along a straight half-line(0, fαβ∞)

encounters a singularity att = fαβ if καβ 6= 0, and its variation there (as defined in
Section4.1) is καβ Ĵβ(t − fαβ). This is nothing but (54).

To compute the constantsκαβ and thus to obtain the complete resurgence struc-
ture, it is helpful to keep in mind their two interpretations. The geometric description
in terms of indices of intersection has already demonstrated their quantised nature.
This helps again to show that some of them necessarily vanish. This stems from the
fact that the set of critical values3 =

⋃
3(i1,...,i p) has a natural hierarchy that follows

directly from the stratification ofS. This means that a relative steepest-descentn-fold
0α havingS1, . . . , Sp (say) as its boundary can be eventually affectedonlyby critical
values fβ belonging to the subset3α ⊂ 3 of critical values of f or of the restricted
f | to one of theSi , i = 1, . . . , p, or their different intersections. Otherwise,καβ = 0
necessarily.∗

This is almost all that we can learn from the geometry. To get quantitative in-
formation about the remaining indices of intersectionsκαβ , we have to turn to the
hyperasymptotic analysis, interpreting this time theκαβ as Stokes multipliers. This is
the aim of the next section. It is convenient for this purpose to represent the results
of (64) in terms of the series expansionsTα introduced in formulae (36) – (51). Here-
after, formula (65) is simply derived from formula (64) by the Leibniz rule (see [23],
[16]).

∗See also the second remark of SectionB.1.
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THEOREM 4.1
The series expansions Tα(k) ∈ C[[k−1

]]1 are Gevrey-1 resurgent resummable. If fα

is a critical value of depth pα, the adjacent singularities∗ of the minorT̂α(t) of Tα(k)

are (at most) the fαβ = fβ − fα, with fβ ∈ 3α. Moreover, in the (generic) case where
these relevant fαβ have distinct phases,

1 fαβ Tα(k) = καβk(pα−pβ )/2Tβ(k), (65)

where pβ (≤ pα) is the depth of fβ , whereas theκαβ are integers.

Remark. In (65), the alien derivatives can now be indexed overC\{0}. This does
not make (65) ambiguous. One has to keep in mind that the sign of the index of
intersectionκαβ depends on the orientations of the steepest-descentn-folds 0α and
0β , on which the determination of the square rootk(pα−pβ )/2 also depends.

5. Hyperasymptotic analysis: Calculation of Stokes constants
We assume here for simplicity that the valuesfαβ have distinct phases. Theorem4.1
thus applies, allowing us to identify the singularity types.

The results from the previous section can now be used to deduce the exact re-
mainder term for a truncated asymptotic expansion about any of the singularities. As
we have converted integral (1) into a one-dimensional Laplace integral (Borel sum),
the procedure follows closely that of Howls [36] and Olde Daalhuis [55], allowing us
to be brief.

It is important to stress that at no point in the hyperasymptotic procedure de-
tailed in this section are the full infinite asymptotic/formal power series used. All
the expansions are finite and exactly terminated by the appropriate (hyperasymptotic)
remainder term.

We now describe the hyperasymptotic analysis for the (slowly varying) related
analytic function

Tα(k) = k(n+pα)/2ek fα Iα(k) = S(θ) Tα(k) = Tα
0 +

∫
∞ei θ

0
dt e−kt T̂α(t). (66)

Here S(θ) Tα(k) is the Borel sum of the formal series expansionsTα(k) in the non-
singular direction of argumentθ , and thereforeTα(k) ∼ Tα(k) for k → ∞ in 6θ .
We represent the local behaviour of the functionT̂α(t) in terms of a Cauchy integral
representation

T̂α(t) =
1

2i π

∮
u=t

du
T̂α(u)

u − t
. (67)

∗ The adjacent singularitiesof a germ of analytic functions at the origin are the singularities of the analytic
continutions of this germ along half-lines emanating from the origin.
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fαβ1

γα

fαβ2

γαβ1

γαβ2

Figure 5. The pathγα on the left. Its deformation is on the right
with the contributionsγαβ from the adjacent singularities.

After a binomial expansion to the order of truncationN required, we have exactly

Tα(k) =

N−1∑
r =0

Tα
r

kr
+ Rα(k, N), (68)

where

Rα(k, N) =
1

2i πkN

∫
+∞

0
dwe−wwN−1

∫
γα

du
T̂α(u)

(1 − w/ku)uN
. (69)

The contourγα encircles the positive real axis as in Figure 5. We then deformγα (see
Figure 5) to encounter the other singularitiesfαβ that are adjacent (see [36]).

By a suitable restriction of the type of integrand functions we consider, or by
going to sufficiently high truncationN, the arcs at infinity (see Figure 5) make no
contribution (see [36]).∗ We thus have

Rα(k, N) =
1

2i πkN

∑
adjacentfαβ

∫
+∞

0
dwe−wwN−1

∫
γαβ

du
T̂α(u)

(1 − w/ku)uN
. (70)

∗The general case can be treated as in Olde Daalhuis [55]: instead of working with full Borel sums, one
uses truncated Laplace integrals (essentially changing summation to presummation in resurgence-speak; cf.
[12], [18]). Pushing the circular arcs far enough away, their contributions can be bounded away to an
exponential level smaller than the one to which the hyperasymptotics are eventually taken, that is, less
than exp(−M |k|) for any chosenM > 0.
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At each of the singularitiesβ, we make a change of variables and collapse the
contourγαβ onto the associated cut. The results of the Picard-Lefschetz analysis, em-
bodied in (65), then guarantee that the discontinuities generate self-similar integrands,
with contours now over the critical pointβ. The final result is

Tα(k) =

N−1∑
r =0

Tα
r

kr
+ Rα(k, N) (71)

with

Rα(k, N) = −
1

2i π

∑
καβ 6=0

καβ

kN−1

∫
[−θαβ ]

0
dt0 e−t0 fαβ

t
N−1+(pα−pβ )/2
0

k − t0
Tβ(t0), (72)

where we have used the notation
∫

[η]

0 =
∫

∞ei η

0 (see [55]), with θαβ denoting the phase
of fαβ .∗

The indicespα and pβ are the depths of (number of boundaries associated with)
α andβ, respectively. The minus sign comes from the fact that the orientation of
the contoursγαβ is in the opposite sense to the convention used to define the index
of intersectionκαβ (compare theγαβ in Figure 5 with the pathL+

β in Figure 4, for
instance). The (quantised and, as yet, unknown) Stokes constants associated withα

andβ are nonzero integers if the singularity is adjacent, defined up to a sign depending

on the branch oft
(pα−pβ )/2
0 (see the remark following Theorem4.1).

We determine the Stokes constants by resorting to a resurgence formula for the
coefficients in the expansions themselves. Using the fact that

Tα
N = kN(Rα(k, N) − Rα(k, N + 1)

)
= −

1

2i π

∑
καβ 6=0

καβ

f
N+(pα−pβ )/2
αβ

∫
+∞

0
dv e−vvN−1+(pα−pβ )/2Tβ

( v

fαβ

)
, (73)

we substitute the corresponding exactly terminated asymptotic expansions of all the
adjacentTβ of type (71) with v/ fαβ playing the role ofk. If the next-nearest singular-
ity is some distance further away fromα than the nearest, we obtain the usual (Dingle
type; see [21]) leading-order approximation to the late terms:

Tα
N = −

καβmin

2i π

0(N + (pα − pβmin)/2)

f
N+(pα−pβmin)/2)

αβmin

Tβmin
0

(
1 + O

( N

|k fαβmin|

)−N
)

as N → ∞. (74)

∗The analytic functionTβ can be thought of as the Borel sum of the series expansionTβ in the direction
of arg( fαβ ).
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Here fαβmin is the distance in the Borel plane to the nearest potential singularity (which
may or may not be adjacent).

As the Stokes constants are quantised integers, we only need to determineκαβ

to an accuracy of within 1/2 to infer its value. The large parameter in (74) is now N.
An appropriately high value ofN will give that accuracy if we know theNth term,
fαβmin, and the number of boundaries thatα, β sit on (pα, pβ ). We can then move
to determine whether the next-nearest neighbour is adjacent using the same level of
approximation. The calculations may be checked by including further terms in the
series expansion taking larger values ofN and/or higher|k|.

Note that this procedure is a simplification of the method in [36] and [55] and
reduces the work required to determine the full set of Stokes constants. However,
in this form it only works for integrals due to the quantised nature of the Stokes
constants.

Even this new method cannot determine all theκαβ at this stage. Stokes con-
stants from next-nearest neighboursβ1 can be determined, provided that| fβminβ1| <

| fαβmin|. By summing the nearest neighbour contributions to the least term and includ-
ing a single term of the next-nearest contribution, we may again shorten the method
of [36] and [55] and use the following to determineκαβ1:

Tα
N0

+
καβmin

2π i

N1−1∑
r1=0

0(N0 + (pα − pβmin)/2 − r1)

f
N0+(pα−pβmin)/2−r1

αβmin

Tβmin
r1

= −
καβ1

2π i

0(N0 + (pα − pβ1)/2)

f
N0+(pα−pβ1)/2
αβ1

Tβ1
0

(
1 + O

( N0

|k fαβ1|

)−N0
)

,

N0 = |k|
(
| fαβmin| + | fβminβ1|

)
, and N1 = N0 − |k fαβ1|. (75)

This can be demonstrated by an intricate use of Stirling’s approximation. If this is not
sufficient to determine all theκαβ , one must resort to hyperasymptotic approximations
and successively reexpand the remainders for eachβ. The result of this incestuous
iterative reexpansion and substitution of the exact remainder term into itself is the
treelike hyperasymptotic expansion (see Howls [36])

Tα
Nα

0
=

∑
καβ1 6=0

καβ1

2i π

N
αβ1
1 −1∑
r =0

Tβ1
r K (1)(0; α, β1, Nα

0 + 1, r )

−

∑
καβ1 6=0

∑
κβ1β2 6=0

καβ1κβ1β2

(2i π)2

N
αβ1β2
2 −1∑

r =0

Tβ2
r K (2)(0; α, β1, β2, Nα

0 + 1, Nαβ1
1 , r )
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+ · · · + (−1)m−1
∑

καβ1 6=0

· · ·

∑
κβm−1βm 6=0

καβ1 · · · κβm−1βm

(2i π)m

N
αβ1···βm
m −1∑

r =0

Tβm
r

× K (m)(0; α, β1, . . . , βm, Nα
0 + 1, Nαβ1

1 , . . . , Nα···βm−1
m−1 , r )

+

∑
καβ1 6=0

· · ·

∑
κβm−1βm 6=0

καβ1 · · · κβm−1βm

(2i π)m
rαβ1···βm(Nα

0 , Nαβ1
1 , . . . , Nαβ1···βm

m ),

(76)

where

K (1)
(
k; α, β1, Nα

0 , r
)

= F (1)

(
k;

Nα
0 + (pα − pβ1)/2 − r

fαβ1

)
,

K (2)(k; α, β1, β2, Nα
0 , Nαβ1

1 , r )

= F (2)

(
k;

Nα
0 − Nαβ1

1 + 1 + (pα − pβ1)/2, Nαβ1
1 + (pβ1 − pβ2)/2 − r

fαβ1, fβ1β2

)
,

(77)

and, more generally,

K (m)
(
k; α, β1, . . . , βm, Nα

0 , Nαβ1
1 , . . . , Nα...βm−1

m−1 , r
)

= F (m)

(
k;

Nα
0 − Nαβ1

1 + 1 + (pα − pβ1)/2, . . . ,

fαβ1, . . . ,

N
α···βm−2
m−2 − N

α···βm−1
m−1 + (pβm−2 − pβm−1)/2, N

α···βm−1
m−1 + (pβm−1 − pβm)/2 − r

fβm−2βm−1, fβm−1βm

)
.

(78)

The Fαβ1···βm
r are the canonical hyperterminants (see [7], [35], [36], [55])

F (0)(z) = 1,

F (α)

(
z;

M0

σ0

)
=
∫

[−θ0]

0 e−t0σ0
t
M0−1
0
z−t0

dt0,

F (l+1)

(
z;

M0, . . . , Ml

σ0, . . . , σl

)
=
∫

[−θ0]

0 · · ·
∫

[−θl ]

0 e−(t0σ0+···+tl σl )
t
M0−1
0 ···t

Ml −1
l

(z−t0)(t0−t1)···(tl−1−tl )
dt0 · · · dtl ,

(79)

whereθi is the phase ofσi ∈ C\{0}, <Mi > 1. When phσ j = phσ j +1 (mod 2π),
the t j -path of integration is deformed to the left or the right as in [55], yielding
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lateral canonical hyperterminants, intrinsically linked to the lateral summations of
the resurgence theory (see [12], [16], [18]). These multiple integrals converge when
−θ0 < phz < 2π − θ0 and can be evaluated easily by the methods of Olde Daalhuis
[54], [56] with the convention that

µαβ |Olde Daalhuis=
(pα − pβ)

2
. (80)

Thus we can employ his truncations and error estimates directly to minimise the over-
all remainder terms. Afterm stages of hyperasymptotics, the optimal truncations that
globally minimise the remainder term are

Nα
0 = |k| × min

καβ1 6=0
κβl βl+1 6=0

(
| fαβ1| +

∑
l=1···m

| fβl βl+1|

)
,

Nαβ1
1 = max

(
0, Nα

0 − |k fαβ1|
)
,

Nαβ1β2
2 = max

(
0, Nαβ1

1 − |k fβ1β2|
)
,

...

Nαβ1···βm
m = max

(
0, Nαβ1···βm−1

m−1 − |k fβm−1βm|
)
. (81)

At each level of hyperasymptotics, if aκαβ is not yet known, then it is initially in-
cluded, regardless of whether it subsequently turns out to be zero (at which point all
branches containing this constant may be immediately pruned). Knowing only the
relevant fαβ , pα, pβ along each of the branches and using the truncations (81) allows
eachκαβ to be determined from an algebraic system of equations as outlined in [36]
and [55].

It might appear that hyperasymptotic expansions are an unnecessary technical
numerical detail. However, we know of no other general and systematic analytical or
numerical method that is a practical tool for calculating the Stokes constants of these
types of integrals.

Following Theorem4.1, there is one qualitative difference between the un-
bounded and bounded integral case. In the unbounded integrals, every distant
quadratic critical pointβ that could be seen by the initial oneα could, in turn, see
α itself. In the bounded case, some of theα (and evenβ) arise only because of the
presence of the boundaries. Ifα lies on a boundaryS1 ∩ S2, thenα can seeβ only if
β lies on one of the strataS1 ∩ S2, S1, or S2, or if it arises from the phase functionf
itself. If β is a quadratic critical point arising from the phase functionf , since this is
a fundamental property of the integrand,β is a likely candidate for adjacency to all
the boundaryα.

There is thus a hierarchy that can be inferred and can be used to simplify the
hyperasymptotic analysis and deduction of Stokes constants. Ifpβ > pα, we may
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deduce thatκαβ = 0 immediately sinceβ exists only because of the presence of an
extra boundary thatα knows nothing about. Note that the opposite inference cannot
be made; unlike the unbounded case,κβα may differ fromκαβ , and so care must be
taken in calculations.

Once the Stokes constants have been determined, it is possible to obtain a (hy-
per)exponential accurate approximation to (1) via the full expansion

Tα(k) =

Nα
0 −1∑

r =0

Tα
r

kr
−

∑
καβ1 6=0

καβ1

2i πkNα
0 −1

N
αβ1
1 −1∑
r =0

Tβ1
r K (1)(k; α, β1, Nα

0 , r )

+

∑
καβ1 6=0

∑
κβ1β2 6=0

καβ1κβ1β2

(2i π)2kNα
0 −1

N
αβ1β2
2 −1∑

r =0

Tβ2
r K (2)(k; α, β1, β2, Nα

0 , Nαβ1
1 , r )

+ · · · + (−1)m
∑

καβ1 6=0

· · ·

∑
κβm−1βm 6=0

καβ1 · · · κβm−1βm

(2i π)mkNα
0 −1

N
αβ1···βm
m −1∑

r =0

Tβm
r

× K (m)(k; α, β1, . . . , βm, Nα
0 , Nαβ1

1 , . . . , Nα···βm−1
m−1 , r )

+

∑
καβ1 6=0

· · ·

∑
κβm−1βm 6=0

καβ1 · · · κβm−1βm

(2i π)mkNα
0 −1

Rαβ1···βm

× (k, Nα
0 , Nαβ1

1 , . . . , Nαβ1···βm
m ). (82)

Using truncations (81), this yields an accuracy ofO(e−M |k|) at the M th iter-
ation (see [55]), leaving an unevaluated remainderRαβ1···βm(k, Nα

0 , . . . , Nαβ1···βm
m ).

This expression also widens the domain of validity of the original asymptotics and
automatically and exactly incorporates any Stokes phenomenon through the hyper-
terminants, as explained in [36] and [55].

6. Example
We illustrate the theory with the following example, for which explicit Borel trans-
forms can be deduced as benchmarks against which to test the hyperasymptotic anal-
ysis.

We take

f (z) = z(1)
+ 2z(2)

+ 3z(3)
+ z(1)z(2)

+ z(2)z(4)
+ z(3)z(4)

+ z(2)2
+ z(4)2

(83)

andg(z) = 1. The boundary isS = S1 ∪ S2 ∪ S3, whereS1, S2, S3 are hypersurfaces
defined by the equationsS1 : z(1)

= 2i, S2 : z(2)
= 1 + 2i, andS3 : z(3)

= 2 − 3i.
The set of isolated critical values on the different strata is thus
• 3() = { f0 = 11} and z0 = (3, −1, 7, −3),
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• 3(1) = { f(1) = 39/4 + 3i} and z(1) = (2i, 1/2 − i, 11/2 + i, −3),
• 3(3) = { f(3) = 7− 15i/2} andz(3) = (1/2− 3i/2, −1, 2− 3i, −1/2+ 3i/2),
• 3(1,2) = { f(1,2) = 1 + 6i} and z(12) = (2i, 1 + 2i, 5 − 2i, −3),
• 3(1,3) = { f(1,3) = 11− 19i/3} andz(13) = (2i, −2/3− 7i/3, 2− 3i, −2/3+

8i/3),
• 3(1,2,3) = { f(1,2,3) = −1+9i/2} andz(123) = (2i, 1+2i, 2−3i, −3/2+ i/2).

We chooseθ = 0 for the (generic) direction of summation. To the family of
closed half-lines drawn on Figure 6 corresponds a basis of six steepest-descent con-
tours([00], . . . , [0(1,2,3)]) generating the spaceH9

4 (C4, S) of allowed cycles of in-
tegration (cf. Theorem2.1).

[1, 2, 3]

[1, 2]

[1]

[]

[1, 3]

[3]

6

4

2

0

−2

−4

−6

−8

−2 2 4 6 8 10 12

Figure 6. The set of singularities and the family of half-linesLα

in the complex Borelt-plane

6.1. Asymptotics
We now describe the representation of the integration contours spaceH9

4 (C4, S) via
Laplace integrals. From Theorem2.1, it is enough to consider the Laplace integrals
over each of the steepest-descent contours[00], . . . , [0(1,2,3)].

We recall that the Lefschetz thimble, in principle, determines completely the ho-
mology of the steepest-descent contour, and thus we do not provide a detailed global
description of[00], . . . , [0(1,2,3)]. We have just to prescribe the orientations, which
we take to be those of the standard Lefschetz thimble (cf. Sections2.3.1and2.3.2).
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In what follows, the square root
√

k refers to the usual determination (real positive
for positive realk).

• Straightforward computations give

I00(k) =

∫
00

e−k f (z) dz(1)
∧ · · · ∧ dz(4)

=
4π2

k2
e−11k. (84)

• Convenient reductions show that the integral

I0(1)
(k) =

∫
0(1)

e−k f (z) dz(1)
∧ · · · ∧ dz(4) (85)

can be written as

I0(1)
(k) =

4iπ3/2

k3/2
e−(39/4+3i)k

∫
+∞

0
e−kt dt

√
5 − 12i − 4t

. (86)

It follows that I0(1)
(k) is the Borel sum ofT(1)(k)k−(4+1)/2e−(39/4+3i)k, where

T(1)(k) = 4iπ3/2 3 + 2i

13

∞∑
j =0

(20+ 48i

169

) j 0( j + 1/2)

0(1/2)
k− j

∈ C[[k−1
]]1. (87)

I0(1)
(k) can be analytically continued by rotating the direction of summation, but a

Stokes phenomenon occurs due to the adjacent singularity att = 5/4 − 3i = f0 −

f(1) = f(1),0.
• Similarly, I0(3)

(k) =
∫
0(3)

e−k f (z) dz(1)
∧ · · · ∧ dz(4) yields

I0(3)
(k) =

4iπ3/2

k3/2
e−(7−15i/2)k

∫
+∞

0
e−kt dt

√
16+ 30i − 4t

. (88)

This is the Borel sum ofT(3)(k)k−5/2e−(7−15i/2)k, where

T(3)(k) = 2iπ3/2 5 − 3i

17

∞∑
j =0

(16− 30i

289

) j 0( j + 1/2)

0(1/2)
k− j

∈ C[[k−1
]]1. (89)

A Stokes phenomenon occurs due to the adjacent singularity att = 4 + 15i/2 =

f0 − f(3) = f(3),0.
• In the same way as above, the integralI0(12)(k) =

∫
0(12)

e−k f (z) dz(1)
∧ · · · ∧

dz(4) is conveniently reduced to

I0(12)(k) =
π

k2
e−(1+6i)k

∫
+∞

0
e−kt dt

√
35/4 − 3i − t(3/2 − i + i

√
35/4 − 3i − t)

.

(90)
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This is the Borel sum ofT(12)(k)k−(4+2)/2e−(1+6i)k, where

T(12)(k) = −2iπ
∞∑
j =0

(5 + 7i

148

) j +1
( j∑

l=0

(14− 10i

37

)l 0( j + l + 1)

0(l + 1)

)
k− j

∈ C[[k−1
]]1. (91)

Stokes phenomena occur due to adjacent singularities att = 35/4 − 3i = f(1) −

f(12) = f(12),(1), and att = 10− 6i = f0 − f(12) = f(12),0 for the Borel transform
T̂(12)(t).

• Continuing, we haveI0(13)(k) =
∫
0(13)

e−k f (z) dz(1)
∧ · · · ∧ dz(4), which can be

written as

I0(13)(k) =
3
√

3π

2k
e−(11−19i/3)k

∫
+∞

0
dte−kt

∫ t

0
dt1

×
1

√
15/4 − 28i + 3t1

√
3(t − t1) + (3/2 + 9i/4 +

√
15/4 − 28i + 3t1/2)2

.

(92)

This givesI0(13)(k) as the Borel sum ofT(13)(k)k−3e−(11−19i/3)k, with

T(13)(k) =
2π
√

3

∞∑
j =0

(−1) j

3 j

(567+ 369i

5650

) j +1

×

( j∑
l1=0

j −l1∑
l2=0

(49+ 57i

113

)l1−l2 0( j − l1 + l2 + 1)0( j + l1 − l2 + 1)

0(l1 + 1)0(l2 + 1)0( j − l1 − l2 + 1)

)
k− j

∈ C[[k−1
]]1. (93)

From (92), a Stokes phenomenon occurs due to an adjacent singularity att = −5/4+

28i/3 = f(1) − f(13) = f(13),(1) (to see this, sett1 = t in the integrand) and also
at t = −4 − 7i/6 = f(3) − f(13) = f(13),(3) (t1 = 0). Referring to Section4.1, a
singularity att = 19i/3 = f0 − f(13) = f(13),0 is also expected when one continues
onto another sheet.

• The last integralI0(123)(k) =
∫
0(123)

e−k f (z) dz(1)
∧ · · · ∧ dz(4) may be written

in the form

I0(123)(k) =
12i

√
π

k3/2

∫
+∞

0
dte−kt

∫ t

0
dt1

×
1

√
8 + 6i − 4t1(

√
16t1 − 12t + 132− 54i − (4 + 24i)

√
8 + 6i − 4t1)

×
1

(4 − 6i −
√

8 + 6i − 4t1 + i
√

16t1 − 12t + 132− 54i − (4 + 24i)
√

8 + 6i − 4t1)
; (94)
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I0(123)(k) is then the Borel sum ofT(123)(k)k−(4+3)/2 with T(123)(k) ∈ C[[k−1
]]1,

T(123)(k)

=

√
π

8

∞∑
j =0

(−1) j

22 j

( j∑
l1=0

j −l1∑
l2=0

j −l1−l2∑
l3=0

(2i)l2+13l3(1 − i )l1+1
(5 − 13i

97

)l1+l2+2l3+1

×

(1 + 3i

5

)2 j −2l1−l2−2l3+10(l1 + l2 + 2l3 + 1)0(2 j − 2l1 − l2 − 2l3 + 1)

0(l2 + 1)0(l3 + 1)0( j − l1 − l2 − l3 + 1)

)
k− j .

(95)

Moreover, one can deduce from the integral representation above that a Stokes phe-
nomenon occurs due to an adjacent singularity att = 2 + 3i/2 = f(12) − f(123) =

f(123),(12) (t1 = t) and also att = 12 − 65i/6 = f(13) − f(123) = f(123),(13)

(t1 = 0). For reasons explained in Section4.1, singularities can be expected at
f(123),(1), f(123),(3), and f(123),() for some analytic continuations.

6.2. Resurgence formulae
The sheet structure in this example can be derived from knowledge of explicit formu-
lae for the Borel transforms of the multiple integrals. In general, the situation is not so
simple. Such a study can nevertheless be done numerically with only the asymptotic
expansionsT(··· ) as inputs by appealing to hyperasymptotics. Since the valuesfαβ

have distinct phases, formulae (74), (75), (76), (81), (82) can thus be applied.
Note that from the “one way” adjacency property and the fact that there is only

one critical point on each stratum, the hyperasymptotic expansion (82) (or (76)) ter-
minates at most (whenT(123) is concerned) at them = 3 level.

By comparison with Figure 6, part of the first sheet structure can be recovered
from the leading order formula (74), which yields information about the indices of
intersections corresponding to the nearest adjacent singularities for each critical point
in turn. One obtains

κ(1,2,3),(1,2) = +1, κ(1,3),(3) = −1, κ(1,2),(1) = −1,

κ(3),() = +1, κ(1),() = +1. (96)

Now one turns to hyperasymptotics to gain more information. We know thatα =

(1, 2) hasβmin(1) for its nearest adjacent singularity, while its next-nearest singularity
isβ1 = (). Figure 6 shows that expansion (75) may be applied. Withk = 1, (75) yields
N0 = 13, N1 = 4, andκ(1,2),() ' −0.924+ 0.04i. From the arguments of Section5,
this is quite enough to conclude thatκ(1,2),() = −1.

Formula (76) at the first level (m = 1) yields

κ(1,2,3),(1) = 0, κ(1,3),() = 0, κ(1,3),(1) = −1, (97)
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Table 1. The Stokes multipliers

καβ β=() (1) (3) (1,2) (1,3) (1,2,3)
α= () 0 0 0 0 0 0
(1) +1 0 0 0 0 0
(3) +1 0 0 0 0 0
(1,2) −1 −1 0 0 0 0
(1,3) 0 −1 −1 0 0 0
(1,2,3) 0 0 −1 +1 +1 0

but it may also be used to recover our previous results (cf. [36], [55]). For instance,
replacingk = 5 in (81) gives N(1,3)

0 = 63, N(1,3),(1)
1 = 16, N(1,3),(3)

1 = 42, and

N(1,3),()
1 = 31 as optimal truncations. On replacingNα

0 by N(1,3)
0 , N(1,3)

0 − 1, and

N(1,3)
0 − 2 in formula (76), ignoring the error term, and explicitly substitutingT (1,3)

N(1,3)
0

,

T (1,3)

N(1,3)
0 −1

, andT (1,3)

N(1,3)
0 −2

, we get a system of three linear equations. Solving these equa-

tions yieldsκ(1,3),(1), κ(1,3),(3), andκ(1,3),(). Using some higher hyperasymptotic lev-
els in the same spirit, one can completely determine the sheet structure. The level-two
expansion yields

κ(1,2,3),(3) = −1, κ(1,2,3),() = 0, (98)

while the level-three expansion gives the last unknown index of intersection,
κ(1,2,3),(1,3) = +1 (see Table 1). The results of the adjacency calculations are dis-
played in Table 2.

The sheet structure is now in its complete form.

6.3. Hyperasymptotic computations
The Stokes multipliers being known, (82) gives a (hyper)exponential accurate approx-
imation for the integrals, yielding the results in Table 2.

Based on the adjacency calculations, we have calculated hyperasymptotic ap-
proximations to the integralsT(1), T(3), T(12), T(13) for various values of large pa-
rameterk. “Exact” values of the integrals were obtained from numerical integration
schemes. The accuracy obtainable forT(123) by this approach was sufficient only for
comparison with the first hyper-level, and so we have not included this. Nevertheless,
the agreement was as expected and consistent with the adjacency of (3), (12), and (13)
to (123).
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Table 2. Hyperasymptotic levels, truncations, approximations,
and achieved accuracies forT(1) andk = 4

Level Truncations Approximation |1 − approx./exact|
Lowest N(1) = 1 −3.42666338266567+ 3.9 × 10−2

5.13999507399850i
Level 0 N(1) = 13 −3.66008976352172+ 2.7 × 10−6

(Super) 5.06575794497829i
Level 1 N(1) = 26, −3.66007435340317+ 0

N(1, 0) = 1 5.06575062056987i
Exact k = 4 −3.66007435340317+ 0

5.06575062056987i

Table 3. Hyperasymptotic levels, truncations, approximations,
and achieved accuracies forT(3) andk = 1

Level Truncations Approximation |1 − approx./exact|
Lowest N(3) = 1 1.96529223417590+ 6.1 × 10−2

3.27548705695983i
Level 0 N(3) = 9 2.19659657698560+ 2.5 × 10−4

(Super) 3.22186580822527i
Level 1 N(3) = 17, 2.19566048409404+ 0

N(3, 0) = 1 3.22216423713061i
Exact k = 1 2.19566048409404+ 0

3.22216423713061i

Table 4. Hyperasymptotic levels, truncations, approximations,
and achieved accuracies forT(12) andk = 1

Level Truncations Approximation |1 − approx./exact|
Lowest N(12) = 1 0.29717768344768 1.2 × 10−1

−0.21226977389120i
Level 0 N(12) = 9 0.34290482693409 6.2 × 10−4

(Super) −0.20268045850289i
Level 1 N(12) = 13, N(12, 1) = 3, 0.34300280953350 2.4 × 10−6

N(12, 0) = 1 −0.20290401468035i
Level 2 N(12) = 15, N(12, 1) = 5, 0.34299544259126 < 5.1 × 10−14

N(12, 0) = 1, N(12, 1, 0) = 1 −0.20290986661454i
Exact k = 1 0.34299544259128 0

−0.20290986661454i
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Figure 7. The size of the terms in the hyperasymptotic expansion
of T(1), from the critical points (1) (ordinary asymptotics) and (0)

(hyperasymptotics along path (1,0)), withk = 4. From the
truncations (see Table 2 and (81)) and adjacency of the

singularities, only the (0) critical point contributes at the first
hyperlevel. As this contributes an exact exponential, only one term
is generated, and the hyperasymptotics terminates, generating the

exact result.

7. Discussion
We first discuss our hypotheses, suggesting how the above results may be generalised.

7.1. Critical points at infinity (Hypothesis H2)
Throughout this article, we have assumed that no critical point at infinity occurred (see
Hypothesis H2). This assumption was a consequence partly of our own ignorance and
partly of a lack of general results about critical points at infinity, although this subject
is a matter of an intensive current research (see [59], [31], [33], [67], [13]). However,
the following simple example may suggest that Hypothesis H2 can be removed in
some instances.

We go back to the family of polynomials (7), and we study the behaviour near
k = 0 of the integral

I (k) =

∫
0

e− f (z(1),z(2)
;k) dz(1)

∧ dz(2). (99)

For nonzerok, this integral (99) fits into our frame, and we may take for0 an un-
bounded chain of integration. By a simple argument of quasi-homogeneity, we first
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Figure 8. As for Figure 7, but forT(3), with k = 1. Again only
critical point (0) is adjacent, so the hyperasymptotics terminates at

the first reexpansion, generating the exact result.

notice that

I (k) =

∫
0

e−k f (z(1),z(2)
;1) dz(1)

∧ dz(2). (100)

(We keep the same notation for the chain0.) Instead of analysing the behaviour near
k = 0, we first compute the asymptotics whenk → ∞. We consider the critical value
+2i (resp.,−2i), choose the nonsingular direction(θ = 0), define the associated
Lefschetz thimble02i (resp.,0

−2i ), and consider the asymptotics inside the sector
| arg(k)| < π/2. With a convenient orientation of02i and0

−2i , computations (thanks

to the algorithm of [17]) suggest thatI2i(k) = (π/k + o(k−N))e−2ik and I
−2i(k) =

(π/k + o(k−N))e2ik for all integersN > 0; henceI2i(k) = πe−2ik/k and I
−2i(k) =

πe+2ik/k exactly by a Borel-summability argument (Watson theorem; see [47]).∗

This would mean that

I (k) = 〈0?

2i , 0〉I2i(k) + 〈0?

−2i , 0〉I
−2i(k) (101)

∗More generally, we suspect (by direct computations) that for every polynomial functiong(z(1), z(2)), we
have the equality∫

0

e−k f (z(1),z(2)
;1)g(z(1), z(2)) dz(1)

∧ dz(2)
=

( 6∑
j =1

a j

k j

)
e−2ik

+

( 6∑
j =1

b j

k j

)
e2ik,

where thea j , b j are complex coefficients depending ong.
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Figure 9. As for Figure 7, but forT(12), with k = 1 showing the
various sequence of critical points that contribute to the

hyperasymptotics. Here critical points (1) and (0) are adjacent to
(12) and so generate first-level hyperasymptotic corrections. A

second level is generated by (0) as this is adjacent to the
(first-level) contribution (1).

satisfies the differential equation

L (k, ∂k)I = 0 with L (k, ∂k) =
d2

dk2
+

2

k

d

dk
+ 4 (102)

with a regular singular point at the origin. This property is satisfied if the differential 2-

form ω0 = (4k2z(2)2
−6z(2)

+4)e− f (z(1),z(2)
;k) dz(1)

∧dz(2) is exact (Stokes theorem),
and actually,

ω0 = d
(
4z(2)2

e− f (z(1),z(2)
;k) dz(1)

+ (−2 + 2z(1)z(2))e− f (z(1),z(2)
;k) dz(2)

)
.

Thus I (k) defined by (100) has a simple pole atk = 0, except when〈0?

2i , 0〉 =

−〈0?

−2i , 0〉 whereI (k) can be extended analytically at the origin. This suggests the
existence of convenient valleys at infinity such that the integral (99) still converges
for k = 0.∗

∗We formulate a conjecture. The integral

8(k) =

∫
0

e−k f (z(1),z(2)
;0)g(z(1), z(2)) dz(1)

∧ dz(2)

might be defined along a (steepest-descent) chain around the connected componentz(1)
= 0 of the special

fiber f (·; 0) = 0, whose image inf would be a pathλ starting at infinity along the half-lineL0, running

around the origin, and returning to infinity. This integral could be recast as8(k) =
∫
λ

e−kt ∨ϕ(t) dt, where
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Figure 10. As for Figure 9, but with the terms ordered according
to absolute size

Taking for granted that our oscillating integrals can be defined without Hypothe-
sis H2, can we expect an analogy of Theorem4.1, at least when the critical points at
infinity are isolated (see [59], [67])? Consider the integral with boundaries

I (k) =

∫
0

e−k f (z(1),z(2)
;0) dz(1)

∧ dz(2), (103)

where, for instance,0 = {(z(1), z(2)) ∈ [0, +∞[×[1, +∞[}. For<(k) > 0, integral
(103) defines an analytic function ink and can be recast as

I (k) = e−2k
∫

∞

0
dt e−kt

(
1 −

2

t + 2

)
. (104)

Integral (104) has obvious resurgence properties:t = −2 is the sole singularity in
the Borel plane, and, taking into account the translation in the Borel plane induced by
the exponential factore−2k

= e−k f (1,0;0), we see that the location of the singularity
arises from the sole bifurcation value corresponding to the critical point at infinity
of f (z(1), z(2)

; 0). Nevertheless, comparing this result with Theorem4.1, we note a
major novelty: the singularity is nonintegrable. Removing Hypothesis H2 thus gen-
erates a challenging problem for a geometer—to relate these resurgence properties

∨
ϕ(t) is an endlessly continuable major (see [18]), whose singularity

O
ϕ (corresponding microfunction) at

the origin could be represented by

O
ϕ (t) ≡

∫
γ (t)

g(z(1), z(2)) dz(1)
∧ dz(2)

d f
,

whereγ (t) is a semicycle vanishing at infinity (see [29]).
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Table 5. Hyperasymptotic levels, truncations, approximations,
and achieved accuracies forT(13) andk = 1

Level Truncations Approximation |1 − approx./exact|
Lowest N(13) = 1 0.36404397859143+ 1.5 × 10−1

0.23691750987697i
Level 0 N(13) = 4 0.32105083513787+ 1.5 × 10−2

(Super) 0.19423741497334i
Level 1 N(13) = 12, N(13, 1) = 2, 0.32676405233855+ 5.9 × 10−6

N(13, 3) = 7 0.19354284669953i
Level 2 N(13) = 15, N(13, 1) = 5, 0.32676199784979+ < 10−14

N(13, 3) = 10, N(13, 1, 0) = 1, 0.19354375274768i
N(13, 3, 0) = 1

Exact k = 1 0.32676199784980+ 0
0.19354375274769i

to the geometry of the phase functionf (z(1), z(2)
; 0) through, for instance, extended

Picard-Lefschetz formulae (see [31]).

7.2. Nonisolated critical points (Hypothesis H3)
Although the asymptotics of oscillating integrals have been calculated for a class of
nonisolated critical points in [76], Hypothesis H3 plays an essential role in all parts of
our study, from the proof of TheoremA.2 and the description of the asymptotics (see
Theorems3.1and3.2) to the Picard-Lefschetz formulae and the resurgence properties
(see Theorem4.1) and hence the hyperasymptotics. However, we believe it is still
possible to generate exact remainder terms by other means.

7.3. “Multiple” critical values (Hypothesis H4)
We discuss condition H4 using the following example.∗ Forq ∈ C{0},

I (q, k, s) =

∫
0

e−k f (z(1),z(2)
;q) g(z(1), z(2)) dz(1)

∧ dz(2) (105)

with

f (z(1), z(2)
; q) = qz(1)z(2)

− 4z(1)3
/3 − z(2)3

/24− q3/3

and0 an unbounded chain of integration of real dimension 2. The phase functionf
has four (isolated) nondegenerate critical points, and a little thought shows that the

∗ When g = z(1)s
with s ∈ C, (105) is the solution of the differential equation(∂2

q − k2q4
+ 2ksq)I = 0.

For s = 0, (105) can be reduced to a Hardy integral (see [34]). Note that, for nonintegers, the ramification
of the amplitude function around the complex curvez(1)

= 0 enlarges the space of independent contours
(see [64] for a similar one-dimensional feature).
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Figure 11. As for Figure 9, but forT(13), with k = 1

space of allowed contours of integration is generated by four independent cycles.∗

Nevertheless, Hypothesis H4 is here violated. While one of the critical points (the
origin) corresponds to the critical value−q3/3, the three others have the same crit-
ical value+q3/3 for their image byf . However, we can still define four Lefschetz
thimbles properly, say,0− and01

+, 02
+, 03

+, and compute the asymptotics of the cor-
respondingI− and I 1

+, I 2
+, I 3

+.
This suggests that Hypothesis H4 is essentially a technicality. It remains to extend

the generalised Picard-Lefschetz formulae to understand the Stokes phenomenon. The
contour0− may intersect (the duals of)01

+, 02
+, and 03

+ simultaneouslywhen a
Stokes phenomenon occurs. To compute the indices of intersection, one can intro-
duce a suitable deformation off so that the “multiple critical value” splits into dis-
tinct critical values.† For ε near but different from zero, the familyfε = f + εz(1)

can be used:0−, 01
+, 02

+, and03
+ are deformed into0ε−, 01

ε+, 02
ε+, and03

ε+, and
the indices〈0l

ε+

?
, 0ε−〉 (l = 1, 2, 3) are now computable; hence〈0l

+

?
, 0−〉 is also

computable by continuity. Note in this case that the indices of intersection〈0i
+

?
, 0

j
+〉,

i 6= j , are necessarily zero for topological reasons. (The dependence inε is regular
in the sense of [18].)

∗The phase function is governed by the monomialsz(1)3
and z(3)3

near infinity; therefore each variable
has three possible asymptotic valleys. This gives a basis of ((3 − 1) × (3 − 1))-cycles.
†Note here that Hypothesis H2 remains true under the deformation. In general, under our hypotheses, this
is not guaranteed. For instance, although the set of tame polynomials is a dense (constructible) set in the
set of polynomials of a given degree (see [11]), it is not open in dimension 3 (see [13]).
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Figure 12. As for Figure 11, but with the terms ordered according
to absolute size. Note that here the final exact result is

0.32676. . . + i0.19354. . . , although there are several terms larger
than this. Cancellations occur between these larger numbers.

7.4. Confluent cases (Hypothesis H5)
We give here a flavour of the difficulty arising from third-type singularities.

The main difference between third-type and first- or second-type critical values
is primarily topological in nature. When a first- or a second-type critical value is
considered, we have seen (see Section 2) that the corresponding Milnor fiber has the
homotopy of a bouquet ofµ spheres, defining asinglegroup of vanishing homology.
The situation is quite different for a third-type critical point, where different groups of
vanishing homologies can be defined, depending on which strata are considered, with
each of these groups playing a role. Figure 13 exemplifies this situation forn = 3.
Herezα is a nondegenerate critical point forf ( fα ∈ 3()), but the samezα is also
a nondegenerate critical point forf |S1 and f |S2. To such a geometry correspond
four vanishing homologies: the vanishing cycleγ (the sphere) is a generator of the
vanishing homology groupH2(Xt

α), the vanishing cycleγ1 (resp.,γ2) generates the
vanishing homologyH1(Xt

α ∩ S1) (resp.,H1(Xt
α ∩ S2)), andγ12 is a basis for the

remaining vanishing (reduced) homology groupH0(Xt
α ∩ S1 ∩ S2).

These four groups can be understood in terms of our “allowed” cycles of inte-
gration. In Figure 13, consider the ballB1, bounded by the vanishing sphere, as a
representation of the Lefschetz thimble. Consider similarly one of the two half-balls
B1

1/2 (resp.,B2
1/2), bounded by the vanishing sphere andS1 (resp.,S2), and finally one

of the four quarter-ballsB1/4, bounded by the sphere,S1, andS2. Then, obviously, all
possible allowed (localized) chains of integration can be described as combinations
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(with integer coefficients) ofB1, B1
1/2, B2

1/2, andB1/4. Hence we have the following
lemma.

LEMMA 7.1
The local homology is a freeZ-module of finite rank, isomorphic to the direct sum of
H2(Xt

α), H1(Xt
α ∩ S1), H1(Xt

α ∩ S2), and H0(Xt
α ∩ S1 ∩ S2).

With this kind of decomposition in hand, one can then concentrate on the integral
representation. With the notation of Section3.2 and in convenient local coordinates,
the phase functionf reads

f = s(1)
+ · · · + s(minα −1)

+ F(s(minα), . . . , s(n)), (106)

whereF has an (isolated) critical point at the origin, while the (considered) bound-
ary is given by the set of local equationss(1)

= 0, . . . ,s(p)
= 0, with minα ≤ p.

Section3.2 suggests a way to derive the asymptotics by reducing step by step the
multiple integral into a one-dimensional Laplace integral. But a new difficulty arises
in the confluent case: the reduction process means considering integrals of differential
quotient forms where the quotients are differential formsd f(1,...,q) thatvanishat the
critical point as soon asq ≥ minα. This makes the analysis of the analytic behaviour
of the Borel transform̂Jα(t) (analogous to (46)) more complicated. It seems that a
result similar to Theorem3.2works also in this case.
(1) The asymptotics are essentially described by Gevrey-1 resurgent (see [23],

[18]) asymptotic expansions. Generically, its leading term is Const/kminα +1/d,
whered is the distance to the Newton diagram ofF (cf. Figure 14; see [71]).

(2) The asymptotics are essentially governed by the geometry of the singularity
(monodromy of the vanishing homologies).

The first assertion boils down to proving that the integral may be written as a
Laplace transform of a solution of a Picard-Fuchs differential equation with (at most)
a regular singular point at the origin; similar results have been proved in [52]. To us,
to provide a precise statement of the second assertion seems to be much harder.

It is worthwhile noting here that the class of integrals considered by Kaminski
and Paris [40], [41] (see also [49]) enters into the framework of our third-type critical
values (when the phase function is a polynomial function). This class of integrals can
thus be used to experiment. Consider, for instance, the function of the example in
Section2.4,

f (z(1), z(2)) = z(1)4
+ z(1)z(2)2

+ z(2)3
. (107)

We have seen that the origin inC2 is an isolated critical point withµ = 5 for its
Milnor number. We concentrate on

I (k) =

∫
0

e−k f (z(1),z(2)) dz(1) dz(2), (108)
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Figure 13. Confluent case

with 0 = [0, +∞] × [0, +∞], so that the origin is a critical point of type three. As
shown in [40], the asymptotics ofI (k) whenk → +∞ depend heavily on the Newton
diagram of the singularityf . In the terminology of Kaminski and Paris, we are here
in the one-internal-point case, and the point(1, 2) lies behind the back face of the
Newton diagram. Following the key idea of Kaminski and Paris, we transform our
integral representation into a new Mellin-Barnes-type integral representation

I (k) =
k−7/12

24i π

∫ i ∞

−i ∞
0(t)0

(1 − t

4

)
0
(1 − 2t

3

)
k−t/12 dt, (109)

where the path of integration avoids the origin to the right. The asymptotics are now
simply obtained by taking into account the right-hand poles of the integrand.∗ They
occur at the pointst = 4 j + 1 andt = (3 j + 1)/2, with a sequence of double poles
at t = 12j + 5, j ∈ N. This yieldsJ = I1 + I2 + I3 for the asymptotic expansion,

∗The Mellin-Barnes representation can also be used to compute the behaviour ofI (k) near the origin:
I (k) is analytic on the twelve-fold covering ofC\{0}, that is, the Riemann surface ofk1/12.
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where

I1 :=
k−2/3

3

∑
j ∈N, j −1/∈3N

(−1) j

0( j + 1)
0(1 + 4 j )0

(
−

1 + 8 j

3

)
k− j/3,

I2 :=
k−5/8

8

∑
j ∈N, j −3/∈8N

(−1) j

0( j + 1)
0(

1 + 3 j

2
)0
(1 − 3 j

8

)
k− j/8,

I3 :=
k−1

24

∑
j ∈N

0(5 + 12j )

0(2 + 3 j )0(4 + 8 j )

×
(

ln(k) − 129(5 + 12j ) + 89(4 + 8 j ) + 39(2 + 3 j )
)
k− j (110)

(9 denotes the digamma function (see [57])). It is easy to check that each of the
series expansions inJ is Gevrey-1, as expected (see assertion (1) above), but more
can be said. While the asymptotics are governed by the local properties off near
the critical point, the reduction to a Mellin-Barnes integral representation proceeds
from global information, and, as shown in [40], the asymptotics remain valid in a
whole open sectorial neighbourhood at infinity with opening| arg k| < 23π/2. We
thus deduce (Watson theorem; see [47]) that J is actually Borel resummable for an
argument of summation running over] − 11π, 11π [. One may guess here that when
| arg k| = 11π , then the deformed (steepest-descent) chain of integration0 encoun-
ters the other critical point, so that the minor ofJ has the corresponding negative
critical value−1/19683 as singularity for its analytic continuations, thus inducing a
Stokes phenomenon.

To illustrate assertion (2) above, it is interesting to compare asymptotics (110)
to what we would get in the absence of a boundary. The so-called spectral set ofr
(see [3]) of Theorem3.1 can be computed in various ways,∗ but the best references
here are certainly the works of A. Varchenko [69], [70]. Taking into account that only

the quasi-homogeneous partz(1)4
+ z(1)z(2)2

(with type (1/4, 3/8) and weight 1) of
f plays a role, one can directly apply known results from [3, Section 13, Theorem
5], which gives{−3/8, −1/8, 0, 1/8, 3/8} for the spectral set. Moreover, all thes of
Theorem3.1 are less than or equal ton − 1 = 1. We thus getI (k) ∼ J(k) when
|k| → +∞ with

J(k) =

1∑
s=0

∑
r ∈{−3/8,−1/8,0,1/8,3/8}

Tr,s(k)
(ln k)s

kr +1
(111)

∗It is known, for instance (cf. [46]), that the eigenvalues of the monodromy are exp(−2i πλ), where theλ
are the zeros of the polynomial functioñb(λ) related to the Bernstein polynomialb(t) by b(t) = (t+1)̃b(t).
This polynomial can be computed directly from the Newton diagram (cf. [8]), giving the exponents up to
translations.



GLOBAL ASYMPTOTICS FOR BOUNDED MULTIPLE INTEGRALS 247

d

Figure 14. Newton diagram of the singularity. The dots
correspond to the cosets of the monomials

1, z(2), z(1), z(1)2
, z(1)3

after multiplication byz(1)z(2), which
may be chosen as aC-basis for the Milnor algebraO/(∂ f ). The

distance to the Newton diagram isd = 8/5.

and Tr,s(k) ∈ C[[k−1
]]. Comparing now (110) with (111), one can remark that

the presence of a boundary has enriched the spectral set; while only the quasi-
homogeneous part of the phase function plays a role in the unbounded case, in the
bounded case the two faces of the Newton diagram must be taken into account.

7.5. Integrals and differential equations
When unbounded integration contours are considered, integrals (1) with polynomials
f andg belong to a class of functions known as “Bernstein functions”; that is, they
satisfy a system of holonomic differential equations inC[k]〈∂k〉 (cf. [63]). It is beyond
our scope to study in detail how this property extends to our integrals with boundaries.
We discuss our example here (see Section6) only from the viewpoint of differential
equations. This suggests new links between our results and those developed in [55] or
[44] and gives a new insight into the hierarchy property.

The basic integral (84) obviously satisfies

L0(k, ∂k) I00(k) = 0, with L0(k, ∂k) =
d

dk
+

(
11+

2

k

)
, (112)

while (86) is not only a solution of the second-order differential equation

L1(k, ∂k)L0(k, ∂k) I0(1)
(k) = 0, with L1(k, ∂k) =

d

dk
+

(
39/4+3i+

5

2k

)
(113)
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but also, more precisely, a solution of the inhomogeneous equation

L0(k, ∂k) I0(1)
(k) =

iπ3/2
√

5 − 12i

k5/2
e−(39/4+3i)k. (114)

It is important to note that in (114) the homogeneous part is aproperty of the phase
function, while the inhomogeneous part is aconsequence of the boundary. This inho-
mogeneity provides a new insight into the hierarchy property as stated in Theorem4.1.
The characteristic equation associated with the irregular singular point at infinity of
(113) shows that 5/4 − 3i is the sole (possible) singularity for the Borel transform of
I0(1)

. Appealing now to resurgence and using the fact that the dotted alien derivative
1̇ω commutes with the usual differentiation (cf. [23], [12], [16]), (114) yields∗

L0(k, ∂k)(1̇(5/4−3i) I0(1)
) = 1̇(5/4−3i)

( iπ3/2
√

5 − 12i

k5/2
e−(39/4+3i)k

)
= 0. (115)

The inhomogeneous part thus disappears, and one obtains

1̇(5/4−3i) I0(1)
= κ(1),() I00, (116)

whereκ(1),() ∈ C is the Stokes multiplier.
More interestingly, (90) satisfies

L0(k, ∂k) I0(12)(k) =
π

k2
e−(1+6i)k

(
−

i

k
+

(3

2
− i
) ∫ +∞

0
e−ktdt

1
√

35/4 − 3i − t

)
,

(117)

L1(k, ∂k)L0(k, ∂k) I0(12)(k) = πe−(1+6i)k
(1 − 25i/2

k3
+

i

2k2

)
, (118)

L2(k, ∂k)L1(k, ∂k)L0(k, ∂k) I0(12)(k) = 0, (119)

with L2(k, ∂k) =
d

dk
+

(
1 + 6i +

3

k
+

1

(1 − (25+ 2i)k)k

)
. (120)

Starting with (119), a third-order linear differential equation with a singularity of rank
one at infinity, we see that(35/4 − 3i) and(10 − 6i) are the two possible adjacent
singularities. The one-way adjacency (hierarchy property), which is hidden in (119),
clearly appears in the lower-order differential equations (117) and (118). One can
analyse each Stokes phenomenon as before. We see, for instance, that the right-hand
part of (117) encounters a Stokes phenomenon due to the singularity att = 35/4−3i;
replacing the functions by their asymptotic series expansion and applying the alien
derivatives1̇(35/4−3i) to (117), we obtain an equation similar to (114).

∗With an abuse of notation, in (115) and (116), I0(1)
and I00 stand for their asymptotics.
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Appendices

A. The space of homology classes
We detail here the proofs for Section2. We freely appeal to homology and geometric
integration theories. We refer readers unfamiliar with these topics to, for instance,
[75], [68], [60], and [14] (see also [37] for a physicist’s approach).

We recall thatS1, S2, . . . , Sm arem ≤ n smooth irreducible affine hypersurfaces.

A.1. Chains of integration and their homology classes
First we describe the space of allowed endless contours of integration running be-
tween valleys at infinity where<(k f ) → +∞ in the absence of boundaries. Follow-
ing Pham [62], [63], we introduce the half-planes: for allc > 0,

S+
c = S+

c (θ) =
{
t ∈ C, <(te−i θ ) ≥ c

}
, S−

c = S−
c (θ) =

{
t ∈ C, <(te−i θ ) ≤ c

}
.

(A.1)
Let 9 = 9(θ) be the family of closed subsetsA ∈ Cn such that, for allc > 0,
A ∩ f −1(S−

c ) is compact. As shown in [63], 9 is actually a “family of supports” in
Cn in the sense of homology theory, which allows us to define a complex of chains
C9

? (Cn) such that, for all nonzerok, the integrals
∫

e−k f (z)g(z) dz(1)
∧ · · · ∧ dz(n)

along the elements ofC9
? (Cn) are convergent and satisfy the Stokes theorem. We

recall that the functiong is assumed to be polynomial, so that the growth ofg at
infinity remains small compared with the exponential’s decay.

In order to deal with chains bounded byS = S1 ∪ · · · ∪ Sm, it is natural to
introduce the relative chain complex

C9
? (Cn, S) := C9

? (Cn)/I?C
9
? (S), (A.2)

whereI : S ↪→ Cn is the natural mapping. The space of contours of integra-
tion H9

? (Cn, S) defined in Section2.2 is precisely the homology of this complex
of chains.

The fact that integrals of type (1) are still convergent along the elements of the
complex of chains (A.2) and satisfy the Stokes theorem follows from arguments used
in the appendix of [63]. From the fact that theSi ’s are the zero level of (irreducible)
polynomialsPi , the “semialgebraic” nature of the subchain complexC[9]

? introduced
by Pham is preserved under the mappingI .

Throughout this article, integrals (1) are defined onn-cycles belonging to the
homology groupH9

n (Cn, S).
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A.2. Global fibration and homology
We recall thatS1, S2, . . . , Sm are assumed to be in general position (see Hypothesis
H1), so that the spaceCn has a natural (Whitney) stratification.∗

It is also assumed thatf and its restriction on each stratum have no singularity
at infinity (see Hypothesis H2). Whenf is concerned, this could mean in practice
that it is tame, for instance; that is, there existsδ > 0 such that the set{z ∈ Cn , ‖

grad f (z) ‖≤ δ} is compact, or evenM -tame (see [51]). Of course, the sole tameness
condition on f does not prevent critical points at infinity for the restricted function

f | on the strata (just considerf (z(1), z(2), z(3)) = z(1)2
z(2)

− z(1)z(3)
+ z(2)(z(3)

− 1)

with the boundaryz(3)
= 1), and this has to be checked otherwise.†

Under Hypothesis H2,f realises a topological trivial stratified fibration outside
an open ballB ⊂ Cn of large enough radius (topological triviality at infinity). The fol-
lowing theorem is then a direct consequence of the Thom-Mather first isotopy lemma
(see, e.g., [27], [60], [20]).

THEOREM A.1
We consider S with its natural stratification; then the mappingCn

\ f −1(3)
f |

−→ C\3

is a topological locally trivial stratified fibration.

Thus, for all t0 ∈ C\3, there exists an open neighbourhoodU ⊂ C\3 of t0, a
stratified setV , and a homeomorphismϕ : f −1(U ) → V × U which maps any
stratum of f −1(U ) onto the product of a stratum ofV by U . This result is central to
our analysis of the homology through its main consequence, the lifting property.

As a first consequence, ifc > c′ > 0 are large enough thatf −1(S+

c′ ) does not
contain any element of3, then the natural mapping(

Cn, f −1(S+
c )
)

↪→
(
Cn, f −1(S+

c′ )
)

(A.3)

as well as (
S, S∩ f −1(S+

c )
)

↪→
(
S, S∩ f −1(S+

c′ )
)

(A.4)

can be considered as equivalences of homotopy. Thus the complex of chainsC9
? (Cn)

(resp.,C9
? (S)) can be identified with the projective limit

C9
? (Cn) = lim proj

c→+∞
C?

(
Cn, f −1(S+

c )
)
,

respectively,

C9
? (S) = lim proj

c→+∞
C?

(
S, S∩ f −1(S+

c )
)
. (A.5)

∗The strata areCn
\S, Si \

⋃
j 6=i Si ∩ Sj , Si ∩ Sj \

⋃
k 6=i, j Si ∩ Sj ∩ Sk, and so on (see [20]).

† We have no general practical way of doing this, the gradient tool not being available, as a rule.
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We therefore get the following projective limit of isomorphisms:

H9
n (Cn, S) = Hn

(
Cn

; S, f −1(S+
c )
)

= Hn
(
Cn, S∪ f −1(S+

c )
)

(A.6)

for all c large enough. NowCn being contractible (and working with a reduced ho-
mology), we finally get the isomorphism

H9
n

(
Cn, S)

∂
→ Hn−1(S∪ f −1(t)

)
(A.7)

for t ∈ S+
c .

In the absence of boundaries and iff has only isolated critical points, it is well
known that the (reduced) homologyHn−1( f −1(t)) (henceH9

n (Cn)) of the generic
fiber f −1(t) is a freeZ-module of finite rank, its rankµ f

∗ being the sum of the
Milnor numbers at the critical points off in Cn. In the language of the saddle-point
method, this translates to being able to decompose the unbounded chain of integration
into a chain of steepest-descentn-folds.

Following (A.7) and from an algebraic viewpoint, analysingH9
n (Cn, S) reduces

to computing the total Milnor number of the (generic) fiberP = 0, whereP is the
polynomial( f − t)

∏n
i =1 Pi (eachSi being defined by the polynomialPi ). We, how-

ever, follow another way for two reasons: (1) our hypotheses (especially Hypothe-
sis H2) do not translate easily in terms of fibration properties ofP; (2) having the
saddle-point method in mind, it is useful to understandH9

n (Cn, S) directly in terms
of steepest-descent cycles. We do this in SectionA.3.

A.3. Localization at the target
Following ideas developed in [63], in the complex plane we draw the family(Lα)

of closed half-linesLα = fα + ei θR+ for all fα belonging to3. Assume also that
θ has been chosen generically so that no Stokes phenomenon is currently occurring;
that is, all these half-lines are two-by-two disjoint. For allfα ∈ 3, let Tα be a closed
neighbourhood ofLα, retractable by deformation ontoLα. It is assumed that all these
Tα are disjoint from one another, as shown in Figure A.1.

The reduction process hereafter draws heavily on the work of Pham [63], and so
the discussion is brief. We start with (A.6), construct a deformation-retraction ofC
ontoS+

c ∪ fα Tα, and lift it by f (by virtue of TheoremA.1). This gives

Hn
(
Cn, S∪ f −1(S+

c )
)

= Hn

(⋃
fα

f −1(Tα ∪ S+
c ),

⋃
fα

( f |S)−1(Tα) ∪ f −1(S+
c )
)
.

(A.8)

∗This is the total Milnor number, usually defined asµ f = dimCC[z]/(∂ f ).
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Tα

fα Lα

S+
c

Figure A.1. The family of half-linesLα and their closed
neighbourhoodsTα for θ = 0

By excision and deformation-retraction (using TheoremA.1), we have

Hn
(
Cn, S∪ f −1(S+

c )
)

= Hn

(⋃
fα

f −1(Tα),
⋃
fα

(
( f |S)−1(Tα) ∪ f −1(Tα ∩ S+

c )
))

=

⊕
fα∈3

Hn
(

f −1(Tα), ( f |S)−1(Tα) ∪ f −1(Tα ∩ S+
c )
)
.

(A.9)

For eachfα ∈ 3, let Dα be an open disc centered atfα with a very small radiusr and
D+

α (θ) = Dα ∩ {<((t − fα)e−i θ ) ≥ r/2} (cf. Figure A.2). Then, again by excision
and deformation-retraction,

Hn
(
Cn, S∪ f −1(S+

c )
)

=

⊕
fα∈3

Hn
(

f −1(Dα), ( f |S)−1(Dα)∪ f −1(D+
α (θ))

)
. (A.10)

This result shows that the homology group of our integration chains can be de-
composed into a direct sum of subgroups by localisation near each of the target critical
values. In order to categorise all these subgroups, we must perform a detailed anal-
ysis at the source inCn, under suitable hypotheses about the critical points. This is
the purpose of SectionA.4, which draws heavily on existing work from many authors
(e.g., [60], [72]; see also [4], [5]), but the latter half contains the new results necessary
to extend the saddle-point method.
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D+
α

fα

Dα

Figure A.2. Localisation nearfα for θ = 0

A.4. Localisation at the source
We have reduced the problem to a local analysis above small open discs centered
on the critical values. Up until now, nothing was assumed about the corresponding
critical points. It is now time to add Hypotheses H2 and H3.

Note. In what follows, it is assumed that one works with a reduced homology.

A.4.1. First-type case
We localise near an (isolated) first-type singular pointzα of depth p = 0; hence
fα ∈ 3( ) andzα does not belong toS.

It is well known since Milnor (see [50]; see also [58], [20]) that one can choose
an open ballBα centered onzα and with radiusε small enough such that the level set
Xt

α = {z ∈ Bα, f (z) = t} intersects transversely the boundary ofBα for all t ∈ Dα

(for the radiusr of Dα such thatε � r > 0). This means that the restricted function
f | f −1(Dα) ∩ Bα from f −1(Dα) ∩ Bα to Dα is a trivial fibration, thus allowing us
to analyse the homology group by localisation at the source.

We use the notationXα = Bα ∩ f −1(Dα), X+
α = Bα ∩ f −1(D+

α (θ)).
It follows from our hypotheses that

Hn
(

f −1(Dα), ( f |S)−1(Dα) ∪ f −1(D+
α (θ))

)
= Hn

(
f −1(Dα), f −1(D+

α (θ))
)

(A.11)
by an easy argument of deformation-retraction. Moreover, from [63] or [3, Section
11], one has the following isomorphisms:

Hn
(

f −1(Dα), f −1(D+
α (θ))

)
= Hn(Xα, X+

α )
∂

→ Hn−1(Xt
α) (A.12)

for all t ∈ D+
α (θ).

From Milnor [50] again, we obtain that the fibreXt
α has the homotopy type of a

bouquet (wedge) ofµ spheres, whereµ = µα is the Milnor number of the critical
point zα; henceHn−1(Xt

α) = Zµ, the so-called vanishing homology of the critical
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point. Whenµ = 1, the relative homologyHn(Xα, X+
α ) is generated by the Lefschetz

thimble0t
α, as shown in Figure 1.

A.4.2. Critical values from the boundary: Second-type case
We concentrate now on the case wherefα is of the second type, with depthp > 0.
Up to a reordering, we can assume thatfα belongs to3(1,...,p).

We introduce as above the setsXα = Bα ∩ f −1(Dα), X+
α = Bα ∩ f −1(D+

α (θ)),
and Xt

α = Bα ∩ f −1(t) for t ∈ Dα(θ). We write alsoYi = Bα ∩ ( f |Si )
−1(Dα) =

Xα ∩ Si . Note thatYi = ∅ for all i /∈ {1, . . . , p} as a consequence of our hypothesis.
The restricted functionf | f −1(Dα) ∩ Bα now realises a trivial fibration of the

stratified set. Analysing the homology thus reduces to a local analysis near the critical
point zα, and copying arguments in [63, Section I.3], we obtain

Hn
(

f −1(Dα), ( f |S)−1(Dα)∪ f −1(D+
α (θ))

)
= Hn(Xα, X+

α ∪Y1∪· · ·∪Yp) (A.13)

as a preliminary result.
Following ideas developed in [60, Section 5.2], we now reduce the homology

step by step so as to reach the vanishing homology. We first use the fact thatXα and
Y1∪ · · · ∪Yp are contractible;∗ hence the exact sequence of a triple and a deformation-
contraction argument yield the isomorphism

Hn(Xα, X+
α ∪ Y1 ∪ · · · ∪ Yp)

∂
→ Hn−1

(
Xt

α, Xt
α ∩ (Y1 ∪ · · · ∪ Yp)

)
,

[0] 7→ ∂[0] (A.14)

for t ∈ D+
α (θ), where∂ is the boundary operator that selects the part of the bound-

ary lying on Xt
α. Second, we observe that bothXt

α and Xt
α ∩ (Y2 ∪ · · · ∪ Yp) are

contractible, so using the exact sequence of a triple again gives the isomorphism

Hn−1
(
Xt

α, Xt
α∩(Y1∪ · · · ∪Yp)

) ∂1
→ Hn−2

(
Y1∩Xt

α, Y1∩Xt
α∩(Y2∪ · · · ∪Yp)

)
, (A.15)

where∂1 is the boundary operator that takes the part of the boundary lying onY1.
The same argument can be usedp times, yielding the following sequence of

isomorphisms:

Hn(Xα, X+
α ∪ Y1 ∪ · · · ∪ Yp) (A.16)

∂
→ Hn−1

(
Xt

α, Xt
α ∩ (Y1 ∪ · · · ∪ Yp)

)
∂1
→ Hn−2

(
Y1 ∩ Xt

α, Y1 ∩ Xt
α ∩ (Y2 ∪ · · · ∪ Yp)

)
∂2
→ · · ·

∂i
→ Hn−i −1

(
Yi ∩ · · · ∩ Y1 ∩ Xt

α, Yi ∩ · · · Y1 ∩ Xt
α ∩ (Yi +1 ∪ · · · ∪ Yp)

)
∂i +1
→ · · ·

∂p−1
→ Hn−p(Yp−1 ∩ · · · ∩ Y1 ∩ Xt

α, Yp−1 ∩ · · · Y1 ∩ Xt
α ∩ Yp), (A.17)

∗ Just use the local representation (8).
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where∂i is the boundary operator that takes the part of the boundary lying onYi .
Now assuming thatp ≤ n − 1 and taking into account thatYp−1 ∩ · · · ∩ Y1 ∩ Xt

α

is still contractible by virtue of Hypothesis H3, it follows from the exact sequence of
a pair that

Hn−p(Yp−1∩· · ·∩Y1∩ Xt
α, Yp−1∩· · · Y1∩ Xt

α ∩Yp)
∂p
→ Hn−p−1(Yp∩· · ·∩Y1∩ Xt

α)

(A.18)
is again an isomorphism. We finally get the isomorphism

Hn(Xα, X+
α ∪ Y1 ∪ · · · ∪ Yp)

∂p◦···◦∂1◦∂
−→ Hn−p−1(Yp ∩ · · · ∩ Y1 ∩ Xt

α). (A.19)

Of course, this isomorphism depends on the chosen ordering ofY1, . . . , Yp (cf. [5,
Chapter 4, Section 1.14]).

The homology groupHn−p−1(Yp∩· · ·∩Y1∩ Xt
α) = Hn−p−1(Sp∩· · ·∩S1∩ Xt

α)

is the vanishing homology of the critical point; it is isomorphic to the freeZ-module
Zµα , whereµα is the Milnor number of the critical pointzα of f(1,...,p). Whenµα =

1, the relative homologyHn(Xα, X+
α ∪ Y1 ∪ · · · ∪ Yp) is generated by the relative

Lefschetz thimble0t
α, as described in Figure 2.

The case of a corner, wherep = n, corresponds to the so-called linear pinching
case (see [60]) where∂p◦· · ·◦ ∂̌i ◦· · · ∂1◦∂[0] is just reduced to a point: no vanishing
cycle exists, and the local homologyHn(Xα, X+

α ∪ Y1 ∪ · · · ∪ Yp) is generated by a
single relative Lefschetz thimble (see Figure 3).

A.4.3. Concluding theorem
Putting the pieces together, we have shown how the homology groupH9

n (Cn, S) of
the allowed contours of integration in the presence of boundaries can be decomposed
into a direct sum (see SectionA.3) of free Z-modules of finite rank (see Section
A.4), at least under Hypothesis H5 (no critical value of the third type). We have also
demonstrated a natural way to define the rank by reduction to the vanishing homology
(if defined) through localisation on each stratum. Moreover, when the closed half-
linesLα = fα + ei θR+ ( fα ∈ 3) are two-by-two disjoint (θ is “generic in the Stokes
sense”), then a basis is given by the set of (relative) steepest-descentn-folds(0α)α∈3,
where each of the0α projects byf ontoLα ∈ C. We have thus obtained the following
theorem.

THEOREM A.2
The space H9n (Cn, S) of relative homology classes is a freeZ-module of finite rank.
Moreover, if all the half-lines Lα are two-by-two disjoint, then every cycle can be de-
composed into a chain of (relative) steepest-descent n-folds(0α)α∈3 of H9

n (Cn, S).
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B. Duality and Stokes phenomenon
The aim of this appendix is to provide the geometrical tools to understand the Stokes
phenomenon, as discussed in Section4. We discuss the now more or less classical
Picard-Lefschetz formulae, which help in understanding the Stokes phenomena as
singularities in the Borel plane. Then we see how a suitable duality provides a direct
insight into the Stokes phenomenon, in the spirit of the usual saddle-point method.

We here make use of Hypothesis H6, namely, that all singular points are nonde-
generate, with the following comment.

It is possible to extend the results hereafter by allowing degenerate critical points.
The generalised Picard-Lefschetz formulae, as well as the nondegeneracy properties
of the Kronecker index (seeB.6), follow from a local analysis near the critical points,
and this can be studied in the degenerate case by local generic deformations.∗ How-
ever, the information we would obtain does not translate easily into the language of
resurgence of asymptotic expansions.

B.1. Generalised Picard-Lefschetz
We assume thatθ has been chosen generically so that no Stokes phenomenon is oc-
curring. We denote by(0α) fα a basis of relative steepest-descentn-cycles (or relative

Lefschetz thimbles) ofH9(θ)
n (Cn, S) considered in Section 2 (with a given orienta-

tion). We introduce

γα(t) = ∂ 0α(t) ∈ Hn−1
(
Xt

α, Xt
α ∩ (S1 ∪ · · · ∪ Sm)

)
(B.1)

as well as its corresponding vanishing cycle. Iffα belongs to3(i1,...,iq), then

eα(t) = ∂iq ◦ · · · ◦ ∂i1 γα(t) ∈ Hn−q−1(Siq ∩ · · · ∩ Si1 ∩ Xt
α), (B.2)

which vanishes whent → fα alongLα(θ).
Let t? be a fixed regular point in the half-complex planeS+

c (θ) for c > 0 large
enough. We denote by(lα) a system of paths, wherelα starts fromt? and travels tofα
along a straight line. This system(lα) is a so-called distinguished system of paths (see
[3]), where the cycleeα(t) vanishes whent → fα alonglα. For eachlα we associate a
closed path̀ α starting fromt?, following lα, running aroundfα in the positive sense,
and returning tot? alonglα (see Figure B.1). This defines a basis(`α) fα of the free
fundamental groupπ1(C\3, t?). Hence the variation of the homology whent runs
along a loop inC\3 with t? as base point reduces to a description of what happens
for each of thè α.

We now apply the generalised Picard-Lefschetz formula described in [60] (see
also [72], [5]). Starting with the cycleγα(t), we follow its deformation whent runs

∗Such local Morsification does not bring into play any global deformation off , which may destroy Hy-
pothesis H2 (cf. [13]).
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Lαfα

fβ
`β

t∗

Figure B.1. The basis(`α) fα

along the pathlβ . We consider the traceγ ?
α of γα(t) in the Milnor ball Bβ as be-

longing to H F
n−1(Xt

β\Xt
β ∩ (S1 ∪ · · · ∪ Sm)), the closed homology group dual from

Hn−1(Xt
β , Xt

β ∩ (S1∪· · ·∪ Sm)) by the Poincaŕe duality (covanishing homology). We
can now define the variation operator Var whent goes aroundfβ along`β . Assuming
that fβ belongs to3(1,...,p), [60] now yields{

Varγ ?
α = καβ γβ ,

καβ = (−1)(n−p)(n−p+1)/2
〈eβ , εα〉,

(B.3)

where〈 , 〉 is the (Kronecker) index of intersection. The cycleεα ∈ Hn−p−1(S1 ∩

· · · ∩ Sp ∩ Xt
β) is deduced fromγ ?

α by

γ ?
α = δ1 ◦ · · · ◦ δp εα, (B.4)

whereδi denotes the Leray coboundary operator (cf. [42]) with respect toSi . More-
over, the index of self-intersection is given by

〈eβ , eβ〉 =

{
2(−1)(n−p)(n−p−1)/2 if n − p is odd,

0 if n − p is even.
(B.5)

Remarks.Whenm = n (corner critical point) andfβ belongs to3(1,...,n), then the
vanishing cycleeβ does not exist. We can give a meaning to the previous equations
with the conventioneβ = 0; hence〈eβ , εα〉− = 0.

One can remark also that iffα belongs to3(i1,...,iq), equalities (B.3) and (B.4)
show that when{1, . . . , p} is not a subset of the set{i1, . . . , iq}, thenγ ?

α has a trivial
variation aroundfβ (i.e.,καβ = 0).
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B.2. Duality from the viewpoint of Laplace integrals
The generalised Picard-Lefschetz formulae recalled in SectionB.1 follow from the
duality between vanishing homology and covanishing homology. Here we realise this
duality directly from the viewpoint of Laplace integrals by describing the dual space
of the homology groupH9

n (Cn, S) with which we started.
We consider a relativen-cycle 0 ∈ H9(θ)

n (Cn, S) with support in9(θ) and
ann-cycle0′

∈ H9(θ+π)
n (Cn

\S) with support in9(θ + π). Up to a deformation by
isotopy, these two cycles can be assumed to be in a general position. It follows now by
definition that the intersection9(θ) ∩ 9(θ + π) of the families of supports9(θ) and
9(θ +π) is the family of compact subsets ofCn. This implies that the intersection in
Cn of 0 with 0′ defines a 0-cycle with compact support and hence an integer because
H0(Cn) = Z. This allows us to define the index of intersection〈0′, 0〉 by the bilinear
map

〈 , 〉 : H9(θ+π)
n (Cn

\S) ⊗ H9(θ)
n (Cn, S) → Z. (B.6)

This is a direct generalisation of the Kronecker index introduced in [63]. Moreover,
arguments based on [63] show the following lemma.

LEMMA B.1
The bilinear map (B.6) is nondegenerate.

This induces a duality betweenH9(θ)
n (Cn, S) andH9(θ+π)

n (Cn
\S).

We recall here thatθ has been chosen generically so that the linesLα(θ) ∪ Lα(θ+

π) are disjoint. We first remark that our bilinear map is diagonal for the decomposition
of the homology shown in AppendixA. This allows us to localise the study. Assuming
that fα belongs to3(1,...,q), we focus onHn(Xα, Sq ∪ · · · ∪ S1 ∪ X+

α ). Following
SectionA.4.2, this group is isomorphic toHn−q(Sq∩· · ·∩S1∩Xα, Sq∩· · ·∩S1∩X+

α )

via the isomorphism∂q ◦ · · · ◦ ∂1. Returning to the notation of SectionA.4.2, we now
define

D−
α = D+

α (θ + π) = Dα ∩
{
<
(
(t − fα)e−i (θ+π)

)
≥ r/2

}
(B.7)

and, respectively,X−
α . From [63, Section I.5] (see also the remark hereafter), we know

that the spaces of homologyHn−q(Sq ∩ · · · ∩ S1 ∩ Xα, Sq ∩ · · · ∩ S1 ∩ X+
α ) and

Hn−q(Sq ∩ · · · ∩ S1 ∩ Xα, Sq ∩ · · · ∩ S1 ∩ X−
α ) are dual.

As a consequence, eachn-cycle0 ∈ H9(θ)
n (Cn, S) can be decomposed as

0 =

∑
fα

〈0?
α, 0〉0α (B.8)

with respect to the basis(0α) fα of (oriented) relative Lefschetz thimbles, where
(0?

α) fα is the dual basis (hence〈0?
α, 0α〉 = +1). Figure B.2 describes this duality

for the Airy pattern.
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Remark. A “concrete dual basis” can be built as follows. We start with a basis of
relative Lefschetz thimbles(0α) fα of H9(θ)

n (Cn, S) with the standard orientation.
Assuming thatfα belongs to3(1,...,p), we introduce

χα = ∂p ◦ · · · ◦ ∂10α ∈ Hn−p(Sp ∩ · · · ∩ S1 ∩ Xα, Sp ∩ · · · ∩ S1 ∩ X+
α ). (B.9)

We defineχ?
α ∈ Hn−p(Sp ∩ · · · ∩ S1 ∩ Xα, Sp ∩ · · · ∩ S1 ∩ X−

α ) as this cycle
deduced fromχα by rotating the direction fromei θ to ei (θ+π) on S in the pos-
itive sense; thenχα (resp.,χ?

α) can be identified with the ascent (resp., descent)

gradient surfaces of a Morse functionF = x(p+1)2
+ · · · + x(n)2

− y(p+1)2
−

· · · − y(n)2
of index n − p in R2(n−p)

= C(n−p). We compare the orienta-
tion (∂/∂x(p+1), . . . , ∂/∂x(n), ∂/∂y(p+1), . . . , ∂/∂y(n)) with the canonical orienta-
tion (∂/∂x(p+1), ∂/∂y(p+1), . . . , ∂/∂x(n), ∂/∂y(n)) of C(n−p). This yields

〈χ?
α, χα〉 = (−1)(n−p)(n−p−1)/2. (B.10)

Using now the Leray coboundary isomorphisms, we can define

0?
α = δ1 ◦ · · · ◦ δp χ?

α, (B.11)

which extends as an element ofH9(θ+π)
n (Cn

\S). Using (B.10), we thus obtain a basis
(0?

α) fα of n-cycles ofH9(θ+π)
n (Cn

\S) dual to(0α) fα .

Valley

Hill Valley

Hill

ValleyHill

02
0∗

1

01

0∗

2

0∗
a

a

0a

Figure B.2. The 1-cycles(01, 0−1, 0a) as a basis ofH9
1 (C, a)

and its dual basis(0?
1, 0?

−1, 0?
a) for the Airy pattern
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[45] B. MALGRANGE, Intégrales asymptotiques et monodromie, Ann. Sci.École Norm.
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