
QUARTERLY OF APPLIED MATHEMATICS
VOLUME LVIII, NUMBER 1
MARCH 2000, PAGES 69-83

GLOBAL ASYMPTOTICS
TOWARD THE RAREFACTION WAVE

FOR SOLUTIONS OF VISCOUS p-SYSTEM
WITH BOUNDARY EFFECT

By

AKITAKA MATSUMURA (Department of Mathematics, Graduate School of Science, Osaka
University, Japan)

KENJI NISHIHARA (School of Political Science and Economics, Waseda University, Tokyo,
Japan)

Dedicated to Professor Kiyoshi Mochizuki on his sixtieth birthday

Abstract. The initial-boundary value problem on the half-line R+ = (0, oo) for a
system of barotropic viscous flow vt — ux = 0, ut + p(v)x = n{y^)x is investigated,
where the pressure p(v) = v~y (7 > 1) for the specific volume v > 0. Note that
the boundary value at x = 0 is given only for the velocity u, say u_, and that the
initial data (vq,ilq)(x) have the constant states (u+,w+) at x = +00 with vq(x) > 0,
v+ > 0. If < u+, then there is a unique i>_ such that (f+,u+) G
(the 2-rarefaction curve) and hence there exists the 2-rarefaction wave uf)(x/t)
connecting (u_,u_) with (v+,u+). Our assertion is that, if w_ < u+, then there exists a
global solution (v,u)(t,x) in C°([0,00); Jcf1(R+)), which tends to the 2-rarefaction wave
(v?,u§)(x/t) I x>o as t —>■ 00 in the maximum norm, with no smallness condition on
|u+ — U-1 and ||(«o — v+,uq — u+) ||//1) nor restriction on 7 (> 1). A similar result to the
corresponding Cauchy problem is also obtained. The proofs are given by an elementary
L2-energy method.
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1. Introduction. We consider the initial-boundary value problem on R+ = (0, oo)
for a system of the barotropic viscous flow in the Lagrangean coordinate:

vt-ux= 0, (t, x) e R+ x R+,

ut +p{v)x = M ( — ) >
V V / x

u(t, 0) = U-,

(v,u)(0,x) = (vo,uo)(x), ^o(x) > 0,

(1.1)

where v (> 0) is the specific volume, u is the velocity, jj, (> 0) is the constant coefficient
of viscosity and p is the pressure given by

p(v) = v~7, 7 > 1. (1.2)

The initial data is assumed to tend to the constant state as x —> +oo:

lim (vo,uq)(x) = (u+,ti+), v+ > 0. (1.3)
X—+OC

The compatibility condition

uo(0) = u- (1.4)

is also assumed. Note that the boundary condition is posed only on u.
Our main concern is to investigate the large-time behavior of the solution (v,u)(t,x)

of (1.1) when

U- < u+. (1.5)

When u+ < u- = 0, see Matsumura and Mei [6]. Here we note that the condition u_ = 0
is not necessarily assumed. However, from the physical background of our problem we
have u_ = 0 in mind, which means the one-dimensional viscous flow with fixed boundary
at x = 0 in the Eulerian coordinate. For the problem of a single equation in the quarter
plane in (x, t), see [3], [4], [5] and the references therein.

To state our result, we now mention the corresponding Riemann problem on R =
(—00,00) for given constant states (u±,u±), v± > 0:

Vt — ux = 0, (t, x) e R+ x R,

ut +p(v)x = 0,

I (v-,u-) x < 0
I(d+,u+) x > 0

(v,u)(0,x) = {vg,uft)(x)

As is well known, if (v+,u+) £ Ri(v-,U-) (resp. Si(v-,U-)) for i = 1,2, then (1.6)
admits a weak entropy solution (v^,u^)(x/t) called the i-rarefaction wave (resp.
(vf, uf)(x — s^) is called the i-shock wave), where for a suitable neighborhood w of
(«-,«-) in R^m)

Ri(v-, U-) — {(f, u) G uj | u = u- — / Ai(s)ds, u>u_} (1.7)
J
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with the eigenvalues Ai(v) = (—l)l\/—p'(v) of (p'(v) o* )' anc^

Si(V-,U-) = {(v,u) £ lj \ u - u- = -y/\{v - v_)(jp(v) -p(u_))|,

(-1)> -1;_) > 0}

with the Rankine-Hugoniot conditions -Si(v+ - t>_) - (u+ - u_) = 0, — Si(u+ - u_) +
P(v+) -p{v-) = 0.

Since there is a boundary at x = 0 in our problem, the backward flow reflects at the
boundary and the total flow is eventually expected to move forward and behave as the
2-rarefaction wave for large time because u+ > u_. Thus, we reach the conjecture that
the solution (v,u) of (1.1) behaves as

('V2R,U?)(x/t) := (v?){x/t)\x>o, (1.8)

where

(V2,u,2)(x/t) is the 2-rarefaction wave connecting two
constant states (v_,m_) to (v+,u+), with v_ (> 0)
uniquely determined by (v+,u+) 6 i?2(^_,M-) for given
constants v+ (> 0) and u±.

(1.9)

For simplicity we call (1.8) the "rarefaction wave". Recently, the stability of the weak
rarefaction wave (V^, U^)(x/t) has been shown by Pan, Liu, and Nishihara [9].

Our purpose is to show the large-time behavior of the solution (v,u) of (1.1) without
restrictions on \u+ — U-\, ||uo — v+,Uo — w+||#i(R+), and 7 (> 1)-

Theorem 1.1. For given constants u+,u± satisfying (1.5), suppose that (u0 — v+,uq —
u+) € H1(R+) with (1.4). Then there exists a unique global solution (v,u)(t,x) of (1.1)
in C°([0, oo); i?1(R+)) that satisfies

sup \(v - V^,u - U^)(t,x)\ —> 0 as t —> oo, (1-10)
R+

where (V^, is given by (1.8) and (1.9).

We now mention the corresponding Cauchy problem for given constant states (v±,u±),
v± > 0:

vt — Ux = 0, (t, x) € R+ x R,

ut + p(v)x = n ( — ) , (1.11)
\ V / x

_ (v, u)(0, x) = (vq, u0)(x) -> (v±,U±), X -> ±00.

Here we assume that

(u+,u+) G Rr(v-,U-) = j(f,u) € w | « > u_ 'II Ai(s) ds,

u > u- — J A2(s) ds, u > U- >
(1.12)
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and there exists a unique state (v,u) € such that (v+,u+) € R.2(v,u), and
that the Riemann problem (1.6) admits a rarefaction wave connecting (v-,u_) with
(u+,u+):

(vR, uR){x/t) := (vp + vR - v, uR + uR - u)(x/t), (1-13)

where (vR,uR) is the 1-rarefaction wave connecting (t>_,u_) with (v,u), and (vR,uR) is
the 2-rarefaction wave connecting (v,u) with (f+,u+).

In [8] the authors showed that a unique solution (v, u) of (1.11) behaves as (vRuR)(x/t)
in (1.13) provided that

1<7<2. (1.14)

Our result here is that the same theorem as in [8] holds even for any 7 > 1.

Theorem 1.2. For given constant states (v±,u±), v± > 0, with (v+,m+) € Rr(v-,u-),
suppose that the Riemann problem (1.6) admits a unique continuous solution
(vR,uR){x/t) in (1.13). If (v0-vff,u0-ufi) € £2(R), (v0x,u0x) € £2(R) with v0(x) > 0,
then the Cauchy problem (1.11) has a unique global solution (v,u) in time satisfying

(v -vR,u- uR) e C°([0,00); L2) H L°°(0,00; L2),

(V, u)x € C°([0,00); L2) n L°°(0, c»; L2) n L2((0,00) x R),

Uxx e L2((0,00) x R),

and

lim sup |(i; — vR, u — uR){t, x)\ =0.
00 R

The proof of Theorem 1.2 is almost the same as in the previous work [7], but more
delicate estimates are necessary to remove (1.14), which will be given in the same way as
the estimates in the proof of Theorem 1.1. Especially, see Step 3 in Sec. 4. Therefore, in
the sections below we devote ourselves to the initial-boundary value problem and so the
proof of Theorem 1.1. Our plan of this paper is as follows. In the next two sections we
construct a smooth rarefaction wave (V,U)(t,x) of (VR,UR)(x/t) = {vR,ug)(x/t)\ x>0,
and reformulate our problem to that of the perturbation (<p,xp) from (V,U)(t,x), for
which the L2-energy method will be employed. In the last section we establish the a
priori estimates.

2. Smooth rarefaction wave. Similar to [7], [8] we start with the Riemann problem
on R = (—00,00) for the typical Burgers equation:

wR + wRwR = 0, (t, x) e R+ x R,

fl/n ^ x<0'
I W+ x > 0

u; (0,:c) = wR(x) =
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with W- < W-(_. The weak solution of (2.1) with the entropy condition is a rarefaction
wave wR[x/t) connecting ui- with w+:

w_ x < w^t,

wR(x/t) = < x/t W-t < x < w+t, (2-2)

w+ w+t < x.<

In our problem the smooth rarefaction wave that is approximate to wR(x/t) is given by
a unique solution of

[wt+ wwx = 0,
|w(0,:r) = w0(x) := w + w ■ nq f^x( 1 + y2)~q dy,

where w = (w+ + u)-)/2,w = (w+ — w~)/2, e > 0 is a small constant to be determined
later, and Kq is a constant satisfying Kq {l+y2)~q dy = 1 for a large constant q (> 3/2)
also to be determined later.

We state the properties of w of (2.3) when w+ > w_ > 0, since the forward rarefaction
wave will be considered in our initial-boundary value problem.

Lemma 2.1. Let w+ > w_ > 0. Then, the unique, smooth and time-global solution
w(t, x) satisfies the following properties:

(i) < w(t,x) < w+, wx(t,x) > 0.
(ii) For any p (1 < p < oo) there exists a constant Cp,9 such that

lkx(£,')llip < CPtqmm(£l~1/pw,w1/pt~1+1/p),

\\wxx(t,-)\\Lv < min(e2-1/pu,,e(1-1/(29))(1-1/p)y)-(p-1)/(2p9)ri-(p-1)/(2p'?)).

(iii) For a positive constant Cq and any x < 0,

0 < w(t, x) — w_ < Cq( 1 + (ex)2)~q/3(l + (ew-t)2)~q/3,

0 < wx(t,x) < Cqsw( 1 + (ex)2)~qt2(\ + {ew-t)2)~ql2.

(iv) limt—,00 supR |w(t, x) — wR{x/t)\ = 0.

For the proof see Matsumura and Nishihara [7, 8].
For the positive eigenvalue \2{v) = \/—p'(v) and the constant states (v±,u±) with

(w+,u+) G R,2{v-,u-), define (V,U)(t,x) by

_ _ fV(t,x)
M{V)=w(t,x), U = u_ — / A2 (s)ds (2.4)

J V_

together with \2{v±) = w±, along the standard way of the construction of a 2-rarefaction
wave:

*2(vr{0) = wR(0, ur(£) = U-~ / A2(s)ds, £ = x/t.
J V-

Then, (V,U)(t,x) satisfies

\vt-ux = 0, ,
{_ L (2.5)
[Ut+p(V)x = 0.
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Moreover, the properties of w shift to those of (V, U).

Lemma 2.2. Let £ = |u+ — v- \ + |tt+ — u_|. Then (V,U) satisfies the following:
(i) Vt = Ux> 0.
(ii) For some positive constant C,

\VX\ < CVU Vt < Ce6.
(iii) For any p (1 < p < oo) there exists a constant Cp,? such that

I\(Vx,Ux)(t, OIIlp < CPtq min(fe1"1^, ^(l + *)"1+1/p),

\\(Vxx,uxx)(t,-)\\LP < min{s-(p-m2pq)£(i-m2q))(i-i/P){1 + t)-i-(P-i)/(2Pq)

+ 61/p(l + t)-2+1/p}.

Especially, when p > 1

\\(Vxx,Uxx)(t, OlltP dt < CnS-to-Wtol (2.6)

(iv) For a positive constant Cq and any x < 0

0 < (t>_ -V,U -u-)(t,x) < CqS(l + {et)2)~q/3,

0 < (-Fx,Ux)(t,x) < Cqe6( 1 + (et)2)-q/2-

(v) lim^ooSupR|(V,U)(t,x) - (vR,uR){x/t)\ =0.

We now set

(V,U)(t,x) := (V,U)(t,x\£,q,t0) = (V,U){t+ t0,x)\x>0 (2.7)

as a smooth approximation to (V^, U^) in (1.8), where the small parameter e > 0 and
large ones q (> 3/2), to > 0 will be determined later.

The property (2.6) is important to obtain the global result. In [9] the choice of wo(:r)
in (2.3) eliminates the boundary-layer, but no property such as (2.6) detains the result
weaker. Instead, we have the boundary-layer such as (iv) in Lemma 2.2, for which much
more delicate estimates of not only the nonlinear terms but also the values from the
boundary are necessary.

3. Reformulation of the problem. We rewrite (1.1) by a system of the perturba-
tion (4>, ip) from the smooth rarefaction wave {V, U) in (2.7):

4>t-ipx = o, (t, x) 6 R+ x R+,

i>t + {p(v + <j>) - p(V))x - n =gx,

ip(t, 0) = b(t) := u- — U(t, 0),
((f), tp)(0,x) = (cfio,->Po)(x) ■= (v0{x) - V{0,x),uo(x) - f/(0, x)),

where

Gx = ^(y) • (3.2)
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Though (3.1) is a system of (<j>, ip), we often use the notation v = V + <f>, u = U + ip. By
virtue of Lemma 2.2 and the definition (2.7),

0 > b(t) > -C( 1 + (£t0)2)-q/6(l + (et)2yq/6, (3-3)

0 < b'(t) = -Ut(t,0) < Ce( 1 + (£t0)2)"9/4(l + (£tf)-q/4, (3.4)

and

fJO
\\Gx{t,-)\\dt<C. (3.5)

Here and after, we denote several generic constants depending on a,b,... by Ca,b,... or
simply by C without confusion, and also by || • || denote the norm in the Lebesque space
L2 = L2(R+).

We look for the solution of (3.1) in the solution space X(0, oo) := Uo<m<M<oo
rio<ti<t2<oo^m.M(£i,£2), where for ti,t2 (0 < t\ < t2 < oo) and m,M (0 <m < M <
oo)

xmM(tut2) = {(</>,V) I

4>x € L2(ti, t2\ L2), ipx £ t2~, H1),

tp(ti,0) = b(h), sup |\(</),il>)(t)\\i < M, (3.6)

and inf inf (V(t, x) + 4>(t, a;)) > m
R- }

Here, Hk (k > 0) denotes the usual Sobolev space on R+ of order k with the norm || • ||fc.
In particular, H° = L2 and || ■ ||o = II • II-

For the proof of Theorem 1.1 it suffices to show

Theorem 3.1. Suppose that (c/>o,ipo) € H1. Then, there exist a unique solution (^>, ip) €
X(0, oo) and a positive constant Co for a suitably small e > 0 and suitably large q, to > 0
that satisfy

Cq1 <V + cj) < Co,
poo

suplK^VOOOIIi + / (IIV^MII2 + + \\ipx(r)\\i) dr
t> 0 Jo

< Co(||0o,Hi + 1)-
Theorem 3.1 is obtained by the combination of the local existence with the a priori

estimates. To state the local existence theorem we consider the initial-boundary value
problem with initial time r (> 0):

<l>t ~ ipx = o, t > T, X e R,

to-= {37)
tp(t,0) = b(t), t>T,
(<A, V)(r, x) = (4>r, tpr)(x), ipr = b{r)
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instead of (3.1), where

+ +GX. (3.8)

Then, the local existence theorem is given as follows:

Proposition 3.1. For any given (0T,-0T) e Hl with ijjT{0) = b(r), ||<At-, Vvlli < M and
infR+(V(r,x) + tpT{x)) > to, there exists a constant to = to(m,M) independent of r
such that there is a unique solution (0,-0) of (3.7) in Xmt2m(t,t + to)-

The linear initial-boundary value problem on the half-line for the parabolic equation

ipt ~ (a{t,x)ipx)x = f(t,x), t > r, x e R+,

ip(t, 0) = b(t), t > r, (3.9)
^}{t,x) = tpT(x), x £ R+,

has a smooth solution il>(t, x). For example, see [2, Chapt. 4], Therefore, the approximate
solution {(^n\ip^n))} = {(0(fc)\^((fc))} is taken by

(0t(/c) •> VV(/c))(%) € H {J* ^

and

*'M) - " (t+^5)
with V("+1)|t=T = ipT(k)(x), ^(n+1)|x=0 = b(t),

_ <^ra+1) (t, x) = (j>T{k) + /1 ipin+1) (r, x) dr,

where as k —> oo

{4>T(k),^r(k)) -> {4>t,^t) in//1,

with ||0r(fc),-0T(fc)111 < |M and infR+(F(r,x) + 4>r{k)) > ~m for any k > 1. Then we
have the Cauchy sequence (^j,^)) in n and {<l>(k),ip(k)) '■= limn^oo(0(fcj,ipfy) in
J|,2m(t)t + to)- Finally, taking k —> oo, we obtain Proposition 3.1, though the details
are omitted.

Corresponding to Proposition 3.1, the a priori estimates are mentioned as follows.

Proposition 3.2 (A Priori Estimates). Let (<jf>,ip)(t,x) be a solution of (3.1) in X(0,T)
for some T > 0. Then there is a constant C\ independent of T such that for 0 < t < T,

cr1 < V(t,x) + 4>(t,x) < Ci, (3.10)

M,m)\\i+ [\\\VVtHr)f + \\Mr)\\2 + \\Mr)\\i)dr
Jo (A^J

£ C(||to, V'olli + !)■
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4. A priori estimates. It suffices to establish the a priori estimates for a sufficiently
smooth solution (<p,ijj)(t,x) € X(0,T), because the arguments on the molifier can be
applied. Note that it is important to obtain (3.10). In a series of several steps we show
(3.10), which will be done in Step 5, and so (3.11).

Step 1. Multiplying (3.1)2 (second equation of (3.1)) by ip and using (3.1)i, we have
a divergence form

jl^2 + $(i>,y)| + |(p(v + 4>) -p(V))<4>- n (^x+^x - ^

++ {p{vp{v) - p'(vwv* =
(4.1)

where

pV+(p
$(v, V) = p(V)0 - / p{s)ds. (4.2)

Jv

If we put p(V + 4>) — p{V) — p'(V)<f> = f(v,V)(t>2 and regard the last three terms in
the left-hand side of (4.1) as a quadratic equation of v^^/t and \/f(v, V)Vt<j>, then the
discriminant is

n .... Vt .
^V2vf{v, V)

Since f{v,V) = 0(v~7) as v —> 0+ and f(v,V) = O(u^1) as v —> oo, 0 < Vivf^v <
C < +oo for any v (0 < v < oo). Noting that 0 < Vt < Ce by Lemma 2.2, we fix e > 0
so small that D < 0. (Later, it is necessary to take e smaller as needed. See Step 3.)
Thus, integrating (4.1) over [0,i] x R+, we have the first lemma.

Lemma 4.1. It follows that

+

<

rt

fi.OO

+ / V)(t, x) dx
Jo

c_i J! r {{p{v+(t>)~p{v) ~pi{y)m +
C||0o,^o||2 + f\\Gx{r)|| U{r)\\dT

Jo

+Jo ~p^y))^~m{^x +v^x -

+ ^\ dxdr
V

(4.3)

dr.
c=0
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If we adopt a new variable v = v/V and use Vj = Ux, <j>t = 4>x, then (4.3) is rewritten
as

1 r°° ~
2 IIV'(^) l|2 + J

+ c"ll {M^~1 + 7(i~1)) + l^l + ?}'"T
< C||0o,^o||2 + [ I|Gt(t)|| \\i/j(t)\\ dr

Jo

Jo |(p(v + <t>) ~ p{V))il> - I* (^Jx+^x - ^

(4.3)'

+

where

dr,
x=0

I'1' (4.4)
H-l- to'-T-l)/(7-l), 7 > 1-

Step 2. We rewrite (3.1) to the form of v:

t

Multiply (4.5) by vx/v to get

2

Vx , -yvx -yVx ( 1 ,

+ 1*1 + 7^ / J_ _ .A ̂  = _G _ Vx + 4% _ HxVt
(4.6)

T/7{j7+2 1/7+1 I £J7 J ft ft v vy

Noting the term from the boundary in (4.3)', we add A /0' f0x" (4.6) dxdr to (4.3)' for a
small constant A (0 < A 1) to obtain

C 1 M|^(£)||2 + J j^(M)1 y$(v(t,x)) + (f,a:)j dx

a:mrk ( - 1 + t(® - !>) +

v V^vi+2 J

H>xVt

<c(\\Ml + mi'* +J\lGAr)ll (iWr)ll

I'JJo Jo

nt r oc

+ A7 vx f±_Avx
V7+1 I y-y I $

.. +

dx dr

vV

vx, ,

J(T) dr
(4.7)

+ J* [(P(V + <f>) - p{V))r/> - - A) + Vt (l -~)) v}

The key point is to estimate the last two terms in (4.7).

dr.
x=0
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Step 3. (Estimate of the second to last term in (4.7)) Put

dx dr.
ft pOO

I := A7IfJo J0
Vx ( 1 Vx

J/7+1 \yl

When 7 = 1, simply, for small v > 0,

I< I f (vS +o/x2(1. u)2 !>dxdTi:n V3 V

-7+2 + CvCeVt I ^ - 1 + 7(v - 1) ) } dx dr,
(4.8)

which are both absorbed into the left-hand side of (4.7) for suitably small constants u
and e. When 7 > 1, let / be divided into three parts:

'-»/(/ +/ +/ WJo Wf2i(r) J n2(r) Ju3(t)J (4.9)
I\ + h + h,

where

f2i(t) = {16 R +;v(t,x) > 2},

n2(0 = {a; e R+; ^ < w(t, a:) < 2} ,
fl3(t) = {x <E R+;v(£,x) < 5} ■

For suitably small v > 0,

h<" [ [ J^dxdr + Cv f f V*{l7vl)2 dxdr
Jo Jn3(r) u7+ io (t)

-"[ ( -^rzodxdT+ C„ [ s\xv\Vx\- ( Vt(t>~7 - 1 + 7(0 - 1)) dxdr,
Jo Jo v7+ Jo R •/n3(r)

because ^ ~ — 1 + 7(5 — 1) as v —> 0. Here, /(x) ~ <?(x) asi-ta means that
for any x in the neighborhood of a,

C~lg(x) < /(x) < Cg{x).

Therefore, it follows that by Lemma 2.2,

\h\<vJoJo -^dxdT + C„Ce J Vt{v-^-l + 7(v-l))dxdT. (4.10)

It is clear that

\h\<v [ f -^-dxdT + C„CE f f Vt{v~i - 1+7(6-l))dxdr. (4.11)
Jo Jo v Jo Jo
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Finally,
rl r i5_

dx dr\h\<c f f |KI
Jo Jni

< v f f Vtvdxdr + Cv [ [ \Vx\^dxdr
Ji) JQi(t) Jo JCIi(t) v

< Cv [ [ Vt f J- 1+ j(v — 1)^ dxdr
Jo isii(r) W /

+ ,/7 AdxdT + Cvf' f \vx\^(^) dxdr,Jo JiMr) Vl+ J0 Aii(r) V " /

(4.12)

because S 7 — 1 + 7(0 — 1) ~ v as v —+ 00 and

r,2 |r, 12/7 \2/7'vt \v: \2h it r 1 , 1

(4.13)

Since supR |14(f,:r)| < C(1 + i)_1 by Lemma 2.2, (4.12) yields

|/i| -CuJ J Vt ~ 1 +7(w - 1)^ dxdr

+"LL S^dxdT+cl(i+Tr* L (t) ^
Thus, for small v and e > 0, all terms in (4.10), (4.11), and (4.13) except for the last
term in (4.13) are absorbed into the left-hand side of (4.7). The last term in (4.13) will
be estimated by the Gronwall inequality.

Remark. These estimates are still available for the Cauchy problem, so that these
improve the result in [8] restricted to 1 < 7 < 2 to Theorem 1.2. The details will be
omitted.

Step 4. (Estimates of the terms coming from the boundary) Since

d v(t, 0) / 1
= ^l0Si777-7Z-Vt(t,0)'

dt °V(t, 0) IV ' ' \v(t, 0) V(t, 0)

J := the last term in (4.7)

^ tp{r, 0) - (n - A) (£ log ^ ) V>(r, 0) | dr
q (\u(t, 0)7 V(r,0)7 / ' \dt V(t, 0)

(n - A) log jtt—Q- ■ ipt(T, 0) + ( 1 - 1 ) ip{r, 0) } dr

■■= Ji

V(r, 0) ' \v{t, 0)7 V(t, 0)7

(0 + [ J2{r)dT.
J 0

(4.14)
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Similar to the preceding step, we divide into three cases. For suitably small v\ (< v+ <
V(£,0) < u_), when v(t, 0) < v% or w(r,0) < v\,

-(/x - A) log ■ ip{t, 0) < 0,

(P ~ A) log ^T' ^ • ipt{r, 0) < 0, (4.15)
V (r, 0)

1 1
v(t, 0)t V(t, 0)t ip(r, 0) < 0,

because tp(t, 0) < 0 and ipt(t,0) > 0. Hence all terms can be dropped. Next, in order to
treat the case of large v(t, 0), we introduce

«({})= [ ^(rj)1/2 —, (4.16)
Jo V

which is equivalent to u1/2 as v —> oo. (Functions of this type were first introduced by
Kanel' [1].) Hence, when v(£,0) > vi for suitably large v2 (> > V(£, 0) > u+),

( \ \ 1 v(t>°)-(/x - A) log V(«,0)
1

v(«,0)T V(t, 0)T

< #({>(*, 0)),

< 0)),
(4.17)

and

*(«(*, 0)) =
j-oo a

Jo j®(5(M))+ (y) (t,a;)|dx.

(4.18)

Inequalities (4.15)-(4.18) yield

Ji(i) = -(/x-A) log ^ •V'M)

<

0 if u(£, 0) < i>i,
C„lji;2|^(i,0)| if < v(t,0) < v2,

V ^\.i.n n\\ f X./-.U _|_ f (t,x)\ dx ifv(t,0)>v2,-m,0)\JQ |$(^.®)) V

(4.19)
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and

■,0)>u2}
f J2(r)dr = [ +[ +[

JO J {v(t,0)<Vi } J {vi <v(r,0)<v2 } J {v(t, 0

< J CVuV2{\lpt(T,0)\ + \lp(T,0)\)dT

+ l |l/'f(T'0)l + IV'(T'0)l^ j$({i(r,x))+(V) (r,x)\dxdr.

(4.20)
Here, remember that ip(t, 0) and 0) are depending on t0 and tend to 0 as t0 —> oo,
and are integrable in t for large q, by virtue of (3.3) and (3.4).

Thus, combining (4.7), (4.13), (4.14), (4.19), and (4.20) in Steps 2-4 and using the
Gronwall inequality, we obtain the following lemma.

Lemma 4.2 (Basic Estimates). For suitably small e > 0 and large to, q > 0, it follows
that

2

\\mr+Jo | ®{v(t,x)) + (£,x)lcte

+ll
<C(||0o||? + ||Vo||2 + |(0o^o)(O)|2 + l).

HxVt
vV

ipl \ (4-21)+ h _ , , f dx dT
V vT+1 )

Step 5. Following Kanel' [1], we now have the key lemma.

Lemma 4.3. It follows that for some constant C independent of T,

C"1 < v = V + (p < C. (4.22)

Proof. Since

j —oo as v —* 0+,

I +oo as v —> +oo
*&({;)

and, similar to (4.17),

|$(5(t,a;))| f°° dJ —V(v(t,x))dx

J + (y) (*,x)j dx,

(4.22) follows from (4.21).
By virtue of (4.22), (4.21) is rewritten by the inequalities of (j), (t>x,ip,ipx as follows:

Lemma 4.4. It follows that

\\m\i + \\m\\2+ A||^(r)||2 + ||(^,^)(r)||2)dr
J o (4.zc>)

< C(ll^o||i + ||^o||2 + |(0o, V'o)(0)|2 + 1).
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Step 6. (Higher-order estimate) Making use of Lemma 4.3, we rewrite (3.1)2 as

^ - /'FTI =GX + H, (4.24)V + 0
where

H = 0((VX + Uxx)4>,(f>x,ipx,(j)xipx). (4.25)

Multiplying (4.24) by —ipxx, we have

- (V'tV'x)x + + F)^xx- (4.26)

The value from the boundary after integration of (4.26) in x is estimated as

\tptipx(t,0)\ < v\\ipxx(t)\\2 + C(||^x(i)||2 + \ipt(t, 0)|2).

In the final terms, for example, by (4.23)

|2 , /ON //.\||2 IT/ (4- ~\|2

/
Vx tp^i^xx dx < v\\ipxx(t)\\ + C||0(t)|| sup \Vx(t, x)|

R+

< vHxx(t)\\2 + C(1 + t) 2

/
&x'lpx'lpxx dx < sup \ipx(t, a;)| ■ H^xWII \\ipxx(t)\\

R+

< v\\ipxx{t)\\2 + C\\lpx(t)\\2.

Thus, we arrive at

Lemma 4.5. It follows that

Ux{t)\\2 + f W^xx{t)\\2 dr < C(||0o,Vo||i + !)•
Jo

Here we have used |(<^0, "0o)(O)|2 < C\\4>o, ipo\\f-
Combining Lemma 4.4 with Lemma 4.5 we complete the proof of Proposition 3.2.
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