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Abstract. Global attractivity and oscillatory behavior of the following nonlinear impul-
sive parabolic differential equation which is a general form of many population models{

∂u(t, x)

∂t
= 4u(t, x)− δu(t, x) + f(u(t− τ, x)), t 6= tk,

u(t+k , x)− u(tk, x) = gk(u(tk, x)), k ∈ I∞,
(∗)

are considered. Some new sufficient conditions for global attractivity and oscillation of

the solutions of (∗) with Neumann boundary condition are established. These results not

only are true but also improve and complement existing results for (∗) without diffusion

or impulses. Moreover, when these results are applied to the Nicholson’s blowflies model

and the model of Hematopoiesis, some new results are obtained.

1. Introduction

There has been increasing interest in impulsive partial differential system [1],
[2], [5], [6], [7], [8], [9], [12], [13] since the first paper [4] was published which has
shown that impulsive partial differential equations provided a natural framework
for mathematical modeling of population growth in 1991. As far as we know, the
authors in [4], [8], [9], [18] have studied the global asymptotic stability of unique
positive equilibrium for this kind of systems, however, there are almost nobody to
consider this fields with delay. Furthermore, although the oscillations for the kind
of systems were studied in many papers [1], [2], [5], [6], [7], [8], [9], [12], [13], the
nonlinear terms f(u) and gk(u) were assumed to be odd and f(u) was also provided
to be convex in most of these papers. In fact, many models for population growth
need to be described by a class of nonlinear impulsive partial differential system
with delay in which the nonlinear term f(u) and gk(u) are not needed to be odd
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or convex. For example, Nicholson’s blowflies model and model of Hematopoiesis.
Obviously, it is meaningful to investigate behavior of solution of the kind of systems.

In this paper, motivated by Erbe, Freedman, Liu and Wu [4], Gao and Wang [8],
Redlinger [15], [16] and Yang and So [20], using the solutions of impulsive ordinary
differential equations with delay, we first define a pair of lower-upper solution of a
class of nonlinear impulsive parabolic system with delay. Then, the main results
on the global attractivity are established by applying the method of lower-upper
solution pair for this system and a comparison theorem proved by us. Our oscilla-
tion result is obtained by using an oscillation theory which is developed by us and
parallels to the one in Kulenovic, Ladas and Meimaridou [11] and Yang and So [20]
for delay differential equations.

We note that our main results in this paper are also valid when this nonlinear
parabolic system is not effected by impulses or a spatial variable x ∈ Ω.

The rest of this paper is organized as follows. In Section 2, we give some nota-
tions and definitions. Section 3 is devoted to establish and prove some preliminary
information needed in the following. In section 4, the attractivity of positive equi-
librium is considered, while the oscillatory behavior of solutions about the positive
equilibrium is considered in section 5. In section 6, we use these results in diffusive
Nicholson’s blowflies model with impulse and diffusive model of Hematopoiesis with
impulse and obtain several new results.

2. Notations and definitions

In this paper, we consider the following nonlinear impulsive differential system
with delay:

(2.1)


∂u(t, x)

∂t
= 4u(t, x)− δu(t, x) + f(u(t− τ, x)), t 6= tk, t > 0,

∂u(t, x)
∂ν

= 0, t 6= tk, (t, x) ∈ Γ ≡ [0,∞)× ∂Ω,

u(t+k , x)− u(tk, x) = gk(u(tk, x)), k ∈ I∞, (t, x) ∈ D ≡ [0,∞)× Ω,

with initial condition

(2.2) u(θ, x) = φ(θ, x) ≥ 0, (θ, x) ∈ Dτ ≡ [−τ, 0]× Ω̄,

where δ > 0, τ > 0, I∞ = {1, 2, · · · }; Ω ⊂ Rn is a bounded domain with a smooth

boundary ∂Ω; ∆u(t, x) =
∑n

i=1

∂2u(t, x)
∂x2

i

;
∂

∂ν
denotes the exterior normal derivative

on ∂Ω; 0 < t1 < t2 < · · · < tk < · · · , infi∈N{ti+1−ti} = γ > 0 and limk→∞ tk = ∞.
Throughout this paper, we always assume that there exist three positive con-

stants y0 > 0,K > 0,M0 > 0 such that
(H1) f(y) ∈ C1(R,R+), f(y) is increasing on (0, y0) and decreasing on (y0,∞),

f(y0) = maxy∈[0,∞) f(y), f(0) = 0.
(H2) f(y) > δy for any y ∈ (0,K) and f(y) < δy, for any y ∈ (K,∞).
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(H3) gk ∈ C1(R+, R) for any k ∈ I∞, x + gk(x) is increasing for x ∈ R+ and
satisfies

x ≥ x + gk(x) ≥ K, x ≥ K,

x ≤ x + gk(x) < K, 0 < x < K,

|gk(x)| ≤ M0, x ≥ 0.

It is very important to investigate behavior of solution of system (2.1)-(2.2). In
fact, (2.1) can describe many models for population growth, among which are the
diffusive Nicholson’s blowflies model with impulse:

(2.3)


∂u(t, x)

∂t
= 4u(t, x)− δu(t, x) + pu(t− τ, x)e−au(t−τ,x), t 6= tk, t > 0,

∂u(t, x)
∂ν

= 0, t 6= tk, (t, x) ∈ Γ,

u(t+k , x)− u(tk, x) = gk(u(tk, x)), k ∈ I∞, (t, x) ∈ D,

and the diffusive model of Hematopoiesis with impulse:

(2.4)


∂u(t, x)

∂t
= 4u(t, x)− ru(t, x) +

βu(t− τ, x)
1 + um(t− τ, x)

, t 6= tk, t > 0,

∂u(t, x)
∂ν

= 0, t 6= tk, (t, x) ∈ Γ,

u(t+k , x)− u(tk, x) = gk(u(tk, x)), k ∈ I∞, (t, x) ∈ D.

When gk(x) ≡ 0, (2.3) has been studied by Yang and So [20] and when gk(x) ≡ 0
and u(t, x) ≡ u(t), (2.4) was first proposed by Mackey and Glass[14] to describe
some physiological control system and has been investigated by Kuang [10] and
Saker[17].

For convenience, we introduce the following notations as that in Erbe et.al [4]

Pk = {(tk, x);x ∈ Ω}, P = ∪∞k=1Pk;

Λk = {(tk, x);x ∈ ∂Ω},Λ = ∪∞k=1Λk

and define PC1,2(Dτ ∪ D̄, P ) as the set of all functions u(t, x) : Dτ ∪ D̄ → R
satisfying the following conditions:

(i) u(t, x) is continuously differentiable for (t, x) ∈ Dτ ∪ D̄ \ (P ∪ Λ);
(ii) uxx(t, x) exists and is continuous for (t, x) ∈ D \ P ;
(iii) for v = (u, ut, ux, uxx), lim(s,y)→s<tk

(tk,x) v(s, y) = v(tk, x) and
lim(s,y)→s>tk

(tk,x) v(s, y) = v(t+k , x) exist for k ∈ I∞ and x ∈ Ω̄, where ux =

(
∂u

∂x1
, · · · ,

∂u

∂xn
), uxx = (

∂2u

∂x2
1

,
∂2u

∂x1x2
· · · ,

∂2u

∂x2
n

) and ut =
∂u

∂t
.

Definition 2.1. A function u(t, x) ∈ PC1,2(Dτ ∪ D̄, P ) is said to be a solution of
the initial boundary value problem (IBVP for short) (2.1)-(2.2) if it satisfies (2.1)-
(2.2).
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Definition 2.2. A non-zero solution u(t, x) of system (2.1) is said to be non-
oscillatory in D if it is either eventually positive or eventually negative. Otherwise,
it is called oscillatory in D.

3. Some lemmas and corresponding proofs

In order to prove our main results, we first give and prove some lemmas. Con-
sider the following three impulsive differential equations with delay:

(3.1)



∂u(t, x)
∂t

= 4u(t, x)− δu(t, x) + F (u(t− τ, x)), (t, x) ∈ D \ P,

∂u(t, x)
∂ν

= 0, (t, x) ∈ Γ \ Λ,

u(θ, x) = φ(θ, x) ≥ 0, (θ, x) ∈ Dτ ,
u(t+k , x)− u(tk, x) = Gk(u(tk, x)), x ∈ Ω̄, k ∈ I∞,

(3.2)


w′(t) = −δw(t) + F 1(w(t− τ)),
w(θ) = max(θ,x)∈Dτ

φ(θ, x),
w(t+k ) = w(tk) + G1

k(w(tk)),

and

(3.3)


v′(t) = −δv(t) + F 2(v(t− τ)),
v(θ) = min(θ,x)∈Dτ

φ(θ, x),
v(t+k ) = v(tk) + G2

k(v(tk)).

We assume that
(C1) Gk, G1

k, G2
k ∈ C(R,R), for any x, y, z ∈ R, x ≤ y ≤ z, satisfy x + G2

k(x) ≤
y + Gk(y) ≤ z + G1

k(z).
(C2) F, F 1, F 2 ∈ C(R,R), for any x, y, z ∈ R, x ≤ y ≤ z, satisfy F 2(x) ≤

F (y) ≤ F 1(z).

Lemma 3.1. Assume that the conditions (C1) and (C2) hold, w(t) and v(t) are the
solutions of (3.2) and (3.3), then every solution of (3.1) satisfies v(t) ≤ u(t, x) ≤
w(t), (t, x) ∈ D̄.

Proof. For any T > 0, let QT = [−τ, T ]× Ω̄, and there is a positive integer n such
that tn ≤ T < tn+1. We first prove that v(t) ≤ u(t, x) ≤ w(t), (t, x) ∈ QT .

For any ε > 0, let w(t, ε) and v(t, ε) be solutions of the two following equations
on QT 

w′(t, ε) = −δw(t, ε) + F 1(w(t− τ, ε)) + ε,
w(θ, ε) = max(θ,x)∈Dτ

φ(θ, x) + ε,
w(t+k , ε) = w(tk, ε) + G1

k(w(tk, ε)) + ε

and

(3.4)


v′(t, ε) = −δv(t, ε) + F 2(v(t− τ, ε))− ε,
v(θ, ε) = min(θ,x)∈Dτ

φ(θ, x)− ε,
v(t+k , ε) = v(tk, ε) + G2

k(v(tk, ε))− ε.
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It is not difficult to verify that limε→0 v(t, ε) = v(t), limε→0 w(t, ε) = w(t) uniformly
on [−τ, T ]. We claim that

v(t, ε) < u(t, x) < w(t, ε), (t, x) ∈ QT .

Since the proof of the case u(t, x) < w(t, ε), (t, x) ∈ QT is the same as the case
v(t, ε) < u(t, x), (t, x) ∈ QT , we just prove that v(t, ε) < u(t, x), (t, x) ∈ QT . Let
mε(t, x) = u(t, x) − v(t, ε). If the conclusion is not true, then there exists t0 > 0
and x0 ∈ Ω̄ such that one of the following three cases holds:

Case 1 t0 6= tk, 1 ≤ k ≤ n, mε(t0, x0) = 0 and mε(t, x) > 0 on (0, t0)× Ω̄;
Case 2 t0 = tk, for some k, 1 ≤ k ≤ n, mε(tk, x0) = 0 and mε(t, x) > 0 on

(0, tk)× Ω̄;
Case 3 t0 = tk, for some k, 1 ≤ k ≤ n, mε(t+k , x0) ≤ 0 and mε(t, x) > 0 on

(0, tk]× Ω̄.
In Case 1, if (t0, x0) ∈ (0, T ]× ∂Ω. For any (t, x) ∈ [0, t0]× Ω̄, we have

∂mε

∂t
−4mε(t, x) + δmε(t, x)

=
∂u

∂t
−4u− v′(t, ε) + δ(u(t, x)− v(t, ε))

= F (u(t− τ, x))− F 2(v(t− τ, ε)) + ε

≥ ε > 0.

Note δ > 0 and by strong minimum principle of Hopf, we have

∂u(t0, x0)
∂ν

=
∂mε(t0, x0)

∂ν
< 0,

which leads to a contradiction with
∂u(t0, x0)

∂ν
= 0. Hence (t0, x0) ∈ (0, T ] × Ω.

Since mε(t, x) attains its minimum at (t0, x0), we have

(3.5)
∂mε(t0, x0)

∂t
≤ 0 and 4mε(t0, x0) ≥ 0.

Note the condition (C2), (3.1), (3.4) and the second inequality of (3.5), we get

∂mε(t0, x0)
∂t

= ∆mε(t0, x0)− δmε(t0, x0) + F (u(t0 − τ, x0))− F 2(v(t0 − τ, ε)) + ε

≥ ∆mε(t0, x0) + ε

≥ ε > 0,

which is a contradiction with the first inequality of (3.5).
By using the same type of argument as in the proof Case 1 one obtains that

Case 2 is not true.
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In Case 3, note that mε(tk, x0) > 0, we obtain

0 ≥ mε(t+k , x0)
= mε(tk, x0) + Gk(u(tk, x0))−G2

k(v(tk, ε)) + ε

≥ ε > 0,

which leads to a contradiction.
Therefore, we have v(t, ε) < u(t, x), (t, x) ∈ QT , and

v(t) = lim
ε→0

v(t, ε) ≤ u(t, x), (t, x) ∈ QT .

Similarly, we get
w(t) ≥ u(t, x), (t, x) ∈ QT .

Since T is arbitrary we have

v(t) ≤ u(t, x) ≤ w(t), (t, x) ∈ [−τ,∞)× Ω̄.

The proof of Lemma 3.1 is complete. �

Remark 3.1. Assume that m = min(t,x)∈[−τ,∞)×Ω̄ u(t, x),M = min(t,x)∈[−τ,∞)×Ω̄ u(t, x).
Lemma 3.1 is also valid if the assumption (C2) is replaced by the following weaker
condition

(C3) F, F 1, F 2 ∈ C(R,R), for any x, y, z ∈ [m,M ], x ≤ y ≤ z, satisfy F 2(x) ≤
F (y) ≤ F 1(z).

Consider the two following impulsive differential inequalities,

(3.6)


w′(t) ≥ −δw(t) + F 1(w(t− τ)),
w(θ) ≥ max(θ,x)∈Dτ

φ(θ, x),
w(t+k ) ≥ w(tk) + G1

k(w(tk)),

and

(3.7)


v′(t) ≤ −δv(t) + F 2(v(t− τ)),
v(θ) ≤ min(θ,x)∈Dτ

φ(θ, x),
v(t+k ) ≤ v(tk) + G2

k(v(tk)).

Definition 3.1. (v, w) is said to be a lower-upper solution pair of (3.1) if the
conditions (C1) and (C3) hold and v(t) and w(t) are solutions of (3.6) and (3.7)
respectively.

Remark 3.2. From Lemma 3.1, it is not difficult to see that if (v, w) is a lower-
upper solution pair of (3.1) then every solution of (3.1) satisfies v(t) ≤ u(t, x) ≤
w(t), (t, x) ∈ [−τ,∞)× Ω̄.
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Assume that q > 0, τ > 0 and bk > −1, k ∈ I∞. Consider the three following
impulsive differential systems:

(3.8)


∂u(t, x)

∂t
−4u(t, x) + qu(t− τ, x) = 0, t 6= tk,

∂u(t, x)
∂ν

= 0,

u(t+k , x)− u(tk, x) = bku(tk, x), k ∈ I∞, (t, x) ∈ D,

(3.9)
{

U ′(t) + qU(t− τ) = 0, t 6= tk,
U(t+k )− U(tk) = bkU(tk), k ∈ I∞,

and

(3.10) y′(t) + q
∏

t−τ≤tk<t

(1 + bk)−1y(t− τ) = 0.

Lemma 3.2(Li et al. [13]). Every solution of system (3.8) oscillates in D if and
only if every solution of system (3.9) oscillates.

Lemma 3.3(Yan et al. [19]). Every solution of system (3.9) oscillates if and only
if every solution of system (3.10) oscillates.

By Lemma 3.2 and Lemma 3.3, we can easily get the following Lemma.

Lemma 3.4. Every solution of system (3.8) oscillates in D if and only if every
solution of system (3.10) oscillates.

It is known from the work of Yan et al. [19] and Lemma 3.4, one can easily get
the following result.

Lemma 3.5. If

(3.11) q lim inf
t→∞

∫ t

t−τ

∏
s−τ≤tk<s

(1 + bk)−1ds >
1
e
.

then every solution of system (3.8) oscillates in D.

Now we consider the relationship between system (3.8) and the following im-
pulsive differential system

(3.12)


∂u(t, x)

∂t
= 4u(t, x)−Q(t, x)u(t− τ, x), t 6= tk,

∂u(t, x)
∂ν

= 0,

u(t+k , x)− u(tk, x) = hk(tk, x)u(tk, x), k ∈ I∞, (t, x) ∈ D,
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where hk ∈ C(R×Rn, (−1,∞)), for any k ∈ I∞ such that

(3.13) lim
t→∞

hk(t, x) = bk > −1,uniformly in x

and Q(t, x) ∈ C(R×Rn, R+) satisfies

(3.14) lim
t→∞

Q(t, x) = q > 0,uniformly in x.

Lemma 3.6. If (3.11), (3.13) and (3.14) hold then every solution of system (3.12)
oscillates in D.

Proof. If (3.11) holds, then one can take a ε > 0 such that 0 < ε � q and

(3.15) (q − ε) lim inf
t→∞

∫ t

t−τ

∏
s−τ≤tk<s

(1 + bk + ε)−1ds >
1
e
.

In fact, for any q > ε > 0, let

η(ε) = (q − ε) lim inf
t→∞

∫ t

t−τ

∏
s−τ≤tk<s

(1 + bk + ε)−1ds

It follows from (3.11) that η(ε) is continuous and decreasing on [0,∞), η(ε) ≤
η(0) = η. If η = ∞, then we let

q

2
> ε > 0 be small enough such that η(ε) ≥ η

2
. In

this case, (3.15) is true; if 0 < η < ∞, (3.15) is also valid by continuity of η(ε).
Suppose for the purpose of contradiction that (3.12) has an eventually positive

solution u(t, x). Then there exists a sufficiently large T1 > 0 such that u(t, x) > 0
and u(t − τ, x) > 0, (t, x) ∈ [T1,∞) × Ω̄. Let ε > 0 be sufficiently small such that
(3.15) and by (3.13), (3.14), there exists a sufficiently large T > T1 such that

(3.16) −ε < hk(t, x)− bk < ε, k ∈ I∞,

and

(3.17) −ε < Q(t, x)− q < ε.

for any (t, x) ∈ [T,∞) × Ω̄. Hence, by (3.12), (3.16) and (3.17), we have u(t, x) is
an eventually positive solution of the following inequality:

(3.18)


∂u(t, x)

∂t
−4u(t, x) + (q − ε)u(t− τ, x) ≤ 0, t 6= tk,

∂u(t, x)
∂ν

= 0,

u(t+k , x)− u(tk, x) ≤ (bk + ε)u(tk, x), k ∈ I∞, (t, x) ∈ D,

However, from Lemma 3.4, Lemma 3.5 and (3.15), one can get that (3.18) hasn’t
any eventually positive solution, which is a contradiction.
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Similarly, (3.12) hasn’t any eventually negative solution. The proof of Lemma
3.6 is complete. �

Consider the impulsive differential system

(3.19)


∂u(t, x)

∂t
= 4u(t, x)− δu(t, x)−Q(t, x)u(t− τ, x), t 6= tk,

∂u(t, x)
∂ν

= 0,

u(t+k , x)− u(tk, x) = hk(tk, x)u(tk, x), k ∈ I∞, (t, x) ∈ D.

Let u(t, x) = e−δtv(t, x), then
∂v(t, x)

∂t
= 4v(t, x)− eδτQ(t, x)v(t− τ, x), t 6= tk,

∂u(t, x)
∂ν

= 0,

v(t+k , x)− v(tk, x) = hk(tk, x)v(tk, x), k ∈ I∞, (t, x) ∈ D.

Since the change of variable u(t, x) = e−δtv(t, x) does not change the oscillation of
solution, we have

Corollary 3.7. Assume that (3.13), (3.14) and eδτq lim inft→∞
∫ t

t−τ

∏
s−τ≤tk<s(1+

bk)−1ds >
1
e

hold then every solution of (3.19) oscillates in D.

Remark 3.3. When u(t, x) does not depend a spatial variable x ∈ Ω or hk(t, x) ≡ 0
for any k ∈ I∞, the corresponding results are also true.

4. Global attractivity of the positive equilibrium

In this section, we will prove the global attractivity of the positive equilibrium
K when K < y0. We first prove the following theorem.

Theorem 4.1. If (H1)-(H3)hold, then the following statements are true:
(i) every solution u(t, x) of (2.1)-(2.2) satisfies

0 ≤ lim sup
t→∞

u(t, x) ≤ f(y0)
δ

+
M0

1− eδγ
, uniformly in x.

(ii) every solution u(t, x) of (2.1)-(2.2) satisfies u(t, x) ≥ 0,(t, x) ∈ (0,∞)× Ω̄.
(iii) if φ(θ, x) ≡/ 0,(t, x) ∈ Dτ , then every solution u(t, x) of (2.1)-(2.2) satisfies
u(t, x) > 0, (t, x) ∈ (τ,∞)× Ω̄.

Proof. (i) Let w(t) be the solution of the following equation

(4.1)


w′(t) = −δw(t) + f(y0), t ≥ 0, t 6= tk,
w(0) = max(t,x)∈Dτ

φ(t, x), t ∈ [−τ, 0],
w(t+k ) = w(tk) + gk(w(tk)), k ∈ I∞.
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It follows from (H1)-(H3) and Definition 3.1 that (0, w) is a lower-upper pair of
(2.1)-(2.2). So by Remark 3.2, we have

(4.2) 0 ≤ u(t, x) ≤ w(t), (t, x) ∈ [−τ,∞)× Ω̄.

Note that the solution w(t) of (4.1) can be written as

(4.3) w(t) =
f(y0)

δ
+ e−δt(w(0)− f(y0)

δ
) +

∑
0<tk<t

e−δ(t−tk)gk(w(tk)), t ≥ 0.

Let tk < t < tk+1, by infi∈N{ti+1 − ti} = γ > 0, we have

t− t1 > tk − t1 =
k−1∑
i=1

(ti+1 − ti) ≥ (k − 1)γ.

Therefore, ∑
0<tk<t

e−δ(t−tk) ≤
∞∑

i=0

e−δγi =
1

1− eδγ
.

According to the above formula, (4.2),(4.3) and (H3), we get

0 ≤ lim sup
t→∞

u(t, x) ≤ lim sup
t→∞

w(t) ≤ f(y0)
δ

+
M0

1− eδγ
.

(ii) By (4.2),(ii) is valid.
(iii) In view of (ii), we have u(t, x) ≥ 0, (t, x) ∈ D̄.There are now two possible

cases to consider.
Case 1, φ(0, x) ≡/ 0. We claim that u(t, x) > 0, (t, x) ∈ (0,∞) × Ω̄. If the

conclusion is not true, then there exists (t0, x0) ∈ (0,∞) × Ω̄ such that one of the
following three subcases holds:

Subcases 1.1, for any k ≥ 1, t0 6= tk, u(t, x) > 0 on (0, t0)× Ω̄ and u(t0, x0) = 0.
If t0 6= tk, (t0, x0) ∈ ∂Ω, then by strong minimum principle of Hopf, we have
∂u(t0, x0)

∂ν
< 0, which leads to a contradiction with

∂u(t0, x0)
∂ν

= 0. Hence (t0, x0) ∈
(0,∞)× Ω, but it is impossible according to the minimum principle.

Subcases 1.2, t0 = tk for some k ∈ I∞, u(t, x) > 0 on (0, tk)× Ω̄ and u(tk, x0) =
0. By using the same type of argument as in the proof of Subcase 1.1 one obtains
that Subcases 1.2 is not true.

Subcases 1.3, t0 = tk for some k ∈ I∞,u(t, x) > 0 on (0, tk]×Ω̄ and u(t+k , x0) ≤ 0.
If u(t+k , x0) = 0, then by (H3), we have u(tk, x0) = 0, which is a contradiction with
u(tk, x0) > 0; if u(t+k , x0) < 0, then it follows from (H3), we have 0 > u(t+k , x0) =
u(tk, x0) + gk(u(tk, x0)) ≥ 0, which leads a contradiction.

Case 2, φ(0, x) ≡ 0, x ∈ Ω̄. We first show that u(t, x) ≡/ 0 for (t, x) ∈ (0, τ ]× Ω̄.
Suppose not. From (2.1), we have φ(θ, x) ≡ 0 for (θ, x) ∈ Dτ , which contradicts
the assumption φ(θ, x) ≡/ 0 on Dτ . Therefore there exists t0 ∈ (0, τ ] such that
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u(t0, x) ≡/ 0 for x ∈ Ω̄. Now using the same argument as in Case 1 one can show
that u(t, x) > 0 for (t, x) ∈ (t0,∞)× Ω̄. The proof of Theorem 4.1 is complete. �

Theorem 4.2. Assume that (H1)-(H3) and M0 ≤ (y0 −
f(y0)

δ
)(1 − e−δγ).

If K < y0, then every solution u(t, x) of (2.1)-(2.2) satisfies limt→∞ u(t, x) =
K, uniformly in x.

Proof. In view of Theorem 4.1(i) and M0 ≤ (y0−
f(y0)

δ
)(1− e−δγ), we may assume

without loss of generality that every solution u(t, x) of (2.1)-(2.2) satisfies

(4.4) 0 ≤ u(t, x) ≤ f(y0)
δ

+
M0

1− eδγ
≤ y0, on Dτ ∪ D̄.

Let U(t) = minx∈Ω̄ u(t, x), U(t) = maxx∈Ω̄ u(t, x), U = lim inft→∞ U(t) and U =
lim supt→∞ U(t). By (4.4), we have

(4.5) 0 ≤ U ≤ U ≤ y0.

From Theorem 4.1(iii), set

(4.6) z0 = min{ min
(t,x)∈[2τ,∞)×Ω̄

u(t, x),
K

2
} > 0.

Now we define two sequences {zn} and {yn} to satisfy, respectively,

zn =
f(zn−1)

δ
, n ∈ I∞,

and

yn =
f(yn−1)

δ
, n ∈ I∞.

We prove that {zn} and {yn} are monotonic and bounded. First of all, we prove
{zn} is monotonically increasing and K is the least upper bounded. Note that
f(y) > δy, for any y ∈ (0,K),z0 < K and f(y) is increasing on [z0,K] ⊂ [0, y0] we
have

z1 =
f(z0)

δ
> z0, and z1 =

f(z0)
δ

<
f(K)

δ
= K.

By induction and direct computation, we have

(4.7) 0 < z0 < z1 < · · · < lim
n→∞

zn = K.

Similarly, we have

(4.8) 0 > y0 > y1 > · · · > lim
n→∞

yn = K.
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Without loss of generality, we assume that t1 > 3τ and define v1(t) and w1(t)
to be the solution of the following differential equation, respectively,

(4.9)


v′1(t) = −δ[v1(t)− z1], t ≥ 3τ, t 6= tk,
v1(θ) = z0 < K, θ ∈ [2τ, 3τ ],
v1(t+k ) = v1(tk) + gk(v1(tk)),

and

(4.10)


w′1(t) = −δ[w1(t)− y1], t ≥ 3τ, t 6= tk,
w1(θ) = y0 > K, θ ∈ [2τ, 3τ ]
w1(t+k ) = w1(tk) + gk(w1(tk)).

Therefore, from (H1), (H3) and Definition 3.1, it is not difficult to verify that
(v1(t), w1(t)) is a lower-upper pair of (2.1) with initial condition z0 ≤ u(t, x) ≤ y0

on [2τ, 3τ ]× Ω̄. Consequently, by Remark 3.2, we have

(4.11) v1(t) ≤ u(t, x) ≤ ω1(t) on [2τ,∞)× Ω̄.

For t ∈ [3τ, t1], by (4.7) and (4.9), we have

v1(t) = z1 + e−δ(t−3τ)(z0 − z1) ≥ z0,

and
z0 ≤ v1(t1) = z1 + e−δ(t1−3τ)(z0 − z1) ≤ z1 < K.

Moreover, by (H3) we have

(4.12) z0 ≤ v1(t1) ≤ v1(t+1 ) = v1(t1) + g1(v1(t1)) < K.

For t ∈ (t1, t2], from (4.7), (4.9) and (4.12), we get

v1(t) = z1 + e−δ(t−t1)(v1(t+1 )− z1) ≥ z0,

and

v1(t2) = z1 + e−δ(t2−t1)(v1(t+1 )− z1) ≤ z1(1− e−δ(t2−t1)) + e−δ(t2−t1)K < K.

Also, by (H3) we obtain

z0 ≤ v1(t2) ≤ v1(t+2 ) = v1(t1) + g2(v1(t2)) < K.

Applying this argument repeatedly, one can easily show that v1(t) is increasing on
[3τ,∞) and such that

v1(t) = z1 + e−δ(t−3τ)(z0 − z1) +
∑

3τ<tk<t

e−δ(t−tk)gk(v1(tk)), t ≥ 3τ.
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Therefore, we get

(4.13) z1 ≤ lim
t→∞

v1(t).

Similarly, by using the same argument as the above, one can show that the
solution w1(t) of (4.10) is decreasing on [3τ,∞) and such that

(4.14) lim
t→∞

w1(t) ≤ y1.

Note that v1(t) and w1(t) are monotonic functions and (4.11), (4.13) and (4.14), we
have

z1 ≤ U ≤ U ≤ y1.

Define vn(t) and wn(t) to be the solutions of the following differential equations,
respectively, 

v′n(t) = −δ[vn(t)− zn], t ≥ 3τ, t 6= tk,
vn(θ) = zn−1 < K, θ ∈ [2τ, 3τ ],
vn(t+k ) = vn(tk) + gk(vn(tk)),

and 
w′n(t) = −δ[wn(t)− yn], t ≥ 3τ, t 6= tk,
wn(θ) = yn−1 > K, θ ∈ [2τ, 3τ ],
wn(t+k ) = wn(tk) + gk(wn(tk)).

Repeating the above procedure, we have the following relation,

(4.15) z0 < z1 < · · · < zn ≤ U ≤ U ≤ yn < · · · < y1 < y0.

By (4.7), (4.8) and (4.15), we have

K = lim
n→∞

zn ≤ U ≤ U ≤ lim
n→∞

yn = K,

which implies
lim

t→∞
u(t, x) = K, uniformly in x.

The proof of Theorem 4.2 is complete. �

If gk(x) ≡ 0 for any k ∈ I∞ in (2.1), then from the proof of Theorem 4.2, one
easily obtains the following result.

Corollary 4.3. Suppose that (H1) and (H2)hold. If K ≤ y0, then every solution
u(t, x) of (2.1)-(2.2) satisfies limt→∞ u(t, x) = K, uniformly in x.

5. Oscillation about the positive equilibrium

In this section we will show that under some additional restrictions on the time
delay τ , f ′(K) and g′k(K) for any k ∈ I∞, all non-trivial solutions of (2.1)-(2.2)
oscillate about positive equilibrium K given K > y0. Now, we give and prove our
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main result of this section.

Theorem 5.1. Assume that (H1)-(H3) hold. If y0 < K, g′k(K) > −1 for any
k ∈ I∞ and

(5.1) −eδτf ′(K) lim inf
t→∞

∫ t

t−τ

∏
s−τ≤tk<s

(1 + g′k(K))−1ds >
1
e
,

then every solution u(t, x) of (2.1)-(2.2) oscillates about positive equilibrium K in
D.

Proof. Let u(t, x) = v(t, x) + K, then (2.1)-(2.2) can be rewritten as follows:

(5.2)


∂v(t, x)

∂t
= 4v(t, x)− δv(t, x) + f(v(t− τ, x) + K)− δK, t 6= tk, t > 0,

∂v(t, x)
∂ν

= 0, t 6= tk, (t, x) ∈ Γ,

v(t+k , x)− v(tk, x) = gk(v(tk, x) + K), k ∈ I∞, x ∈ Ω,

and

(5.3) v(θ, x) = φ(θ, x)−K ≥ −K, (θ, x) ∈ Dτ .

Clearly, it follows from Definition 2.2, the non-trivial solution u(t, x) of (2.1)-(2.2)
oscillates about positive equilibrium K if and only if v(t, x) of (5.2)-(5.3) oscillates
about zero. So we will only show that v(t, x) of (5.2)-(5.3) oscillates about zero.
If the conclusion is not valid, then (5.2)-(5.3) has an eventually positive solution
v(t, x) or eventually negative solution v(t, x). We will show that either eventually
positive solution v(t, x) or eventually negative solution v(t, x) satisfies

(5.4) lim
t→∞

v(t, x) = 0,uniformly in x.

By Theorem 4.1, it is not difficult to verify that v(t, x) is bounded. Now consider
v(t, x), two cases are possible:

Case 1, v(t, x) is a eventually positive solution. That is, there exists T > 0
such that

v(t, x) > 0, v(t− τ, x) > 0,∀(t, x) ∈ [T,∞)× Ω̄.

Note that v(t−τ, x)+K > K for (t, x) ∈ [T,∞)×Ω̄ and assumptions (H1)-(H3)
and y0 < K,we have

(5.5)


∂v(t, x)

∂t
≤ 4v(t, x)− δv(t, x), t 6= tk, t > 0,

∂v(t, x)
∂ν

= 0, t 6= tk, (t, x) ∈ Γ,

v(t+k , x)− v(tk, x) ≤ 0, k ∈ I∞, x ∈ Ω.

By using the same type argument as in the proof Lemma 3.1 and (5.5) we can get
that (5.4) is correct.
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Case 2, v(t, x) is a eventually negative solution. Without loss of generality we
assume that −K < v(t, x) < 0, for all t ∈ [−τ,∞)× Ω̄. Let

g(y) = f(y + K)− δK = f(y + K)− f(K).

Since f is increasing on [0, y0] and decreasing on [y0,∞) and y0 < K, g(y) is
increasing on [−K, y0 − K] and decreasing on [y0 − K, 0]. Hence, from g(−K) =
−δK < 0 and g(y0 −K) = f(y0)− f(K) > 0, there exists a unique zero point A of
g(y) for −K < y < 0. Let

G(y) =
{

g(y), for y ∈ [−K, A],
0, for y ∈ (A, 0].

Consider the delay differential equation

(5.6)
{

w′(t) = −δw(t) + G(w(t− τ)), t ≥ 0,
w(θ) = minx∈Ω̄ v(θ, x) < 0, θ ∈ [−τ, 0].

It is not difficult to verify that δy ≤ G(y) for −K < y < 0. Hence, there exists a
constant α ∈ (−K, 0] such that limt→∞ w(t) = α(Ding[3] Theorem 2). We claim
that α = 0. In fact if α ∈ (−K, A], then by the first formula of (5.6),we have

lim
t→∞

v′(t) = −δ(α + K) + f(α + K) > 0,

which is a contradiction. Hence α ∈ (A, 0). Similarly, by (5.6), we get

lim
t→∞

v′(t) = −δα > 0,

which is a contradiction. Therefore,

lim
t→∞

w(t) = 0.

If we are able to prove that w(t) ≤ v(t, x) < 0 for all (t, x) ∈ [0,∞) × Ω̄,
then (5.4) is true. In view of lemma 3.1, to prove w(t) ≤ v(t, x) < 0 for all
(t, x) ∈ [0,∞)× Ω̄, it suffices to show that

(5.7) g(u) ≥ G(v), for any u, v ∈ [−K, 0] and u ≥ v.

There are three cases to consider:(i) A ≥ u ≥ v, (ii) u ≥ A ≥ v, (iii) u ≥ v ≥ A.
In case (i), (5.7) is true because G(y) = g(y) and g(y) is increasing for y ∈

[−K, A]. In case (ii), (5.7) is also correct since G(v) = g(v) ≤ 0, while, g(u) ≥ 0.
In case (iii), (5.7) again holds since G(v) = 0 and g(u) ≥ 0.

Therefore, summarizing the above discussion, (5.4) is valid.

Let hk(tk, x) =
gk(v(tk, x) + K)

v(tk)
, Q(t, x) =

f(v(t, x) + K)− δK

v(t, x)
. Then, (5.2)

can be rewritten as

(5.8)


∂v(t, x)

∂t
= 4v(t, x)− δv(t, x) + Q(t, x)v(t, x), t 6= tk, t > 0,

∂v(t, x)
∂ν

= 0, t 6= tk, (t, x) ∈ Γ,

v(t+k , x)− v(tk, x) = hk(tk, x)v(tk, x), k ∈ I∞, x ∈ Ω,
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By (5.4), we have

lim
t→∞

hk(t, x) = g′k(K) > −1, for any k ∈ I∞,uniformly in x

and
lim

t→∞
Q(t, x) = f ′(K),uniformly in x.

However, Corollary 3.1 and (5.1) imply that every solution of (5.2)-(5.3) oscillates
in D, which is a contradiction. The proof of Theorem 5.1 is complete. �

If gk(x) ≡ 0 for any k ∈ I∞ in (2.1),then from Corollary 4.1 and the proof of
Theorem 5.1, the following results are easily obtained.

Corollary 5.2. If (H1) and (H2) hold then every non-oscillatory solution
u(t, x) of (2.1)-(2.2) about positive equilibrium K in D satisfies limt→∞ u(t, x) =
K, uniformly in x.

Corollary 5.3. Assume that (H1) and (H2) hold. In addition, if y0 < K and

−τeδτf ′(K) >
1
e
, then every solution u(t, x) of (2.1)-(2.2) oscillates about positive

equilibrium K in D.

6. Applications

We illustrate our main results to (2.3) and (2.4) in this section. First of all, for
(2.3), we assume that δ, τ, p and a are positive constants. Suppose that

p

δ
> 1. Take

y0 =
1
a
,K =

1
a

ln
p

δ
and f(y) = pye−ay. It is not difficult to see that the function

f(y) satisfies assumptions (H1) and (H2). Therefore, applying the above results to
(2.3), we have the following statements.

(i) If 1 <
p

δ
< e holds, then K =

1
a

ln
p

δ
<

1
a

= y0. Hence if gk(x) satisfies (H3)

and M0 ≤
1
a
(1 − p

δe
)(1 − e−δγ), from Theorem 4.2, then every solution u(t, x) of

(2.3) under condition (2.2) converges to K (uniformly in x)as t →∞.

(ii) If
p

δ
> e holds, then K =

1
a

ln
p

δ
>

1
a

= y0. Therefore, by Theorem 5.1, if

gk(x) satisfies (H3) and g′k(K) > −1 and eδτδ(ln
p

δ
−1) lim inft→∞

∫ t

t−τ

∏
s−τ≤tk<s(1+

g′k(K))−1ds >
1
e
, then every solution u(t, x) of (2.3) under condition (2.2) oscillates

about positive equilibrium K in D.
If gk(x) ≡ 0 for any k ∈ I∞ in (2.3), then we have the following results.
(iii) If 1 <

p

δ
≤ e holds, then from Corollary 4.3, every solution u(t, x) of (2.3)

under condition (2.2) converges to K (uniformly in x)as t →∞.

(iv) If
p

δ
> e and −τeδτf ′(K) = τeδτδ(ln

p

δ
− 1) >

1
e

hold, then from Corollary
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5.3, every solution u(t, x) of (2.3) under condition (2.2) oscillates about positive
equilibrium K in D.

(v) If
p

δ
> 1, then by Corollary 5.2, every non-oscillatory solution u(t, x) of (2.3)

under condition (2.2) about positive equilibrium K in D converges to K (uniformly
in x)as t →∞.

Remark 6.1. When
p

δ
> 1, (v) complements the results in Yang and So [20].

Moreover, (iii) and (iv) are the same as the statements obtained by Yang and So
[20].

Now, we consider (2.4) under condition (2.2) and assume that r, τ, β and m > 1

are positive constants. Suppose that
β

r
> 1.Take y0 = (

1
m− 1

)
1
m and (

β − r

r
)

1
m =

K. Using the same argument as in above, we will get the following conclusions:

(a1) If 1 <
β

r
<

m

m− 1
and gk(x) satisfies (H3) and M0 ≤ (y0−

f(y0)
δ

)(1−e−δγ),

then every solution u(t, x) of (2.4) under condition (2.2) converges to K (uniformly
in x)as t →∞.

(a2) If the condition
β

r
>

m

m− 1
, g′k(K) > −1 and

r[β(m− 1)−mr]
β

erτ lim inft→∞
∫ t

t−τ

∏
s−τ≤tk<s(1 + g′k(K))−1ds >

1
e

hold and

gk(x) satisfies (H3) and then every solution u(t, x) of (2.4) under condition (2.2)
oscillates about positive equilibrium K in D.

If gk(x) ≡ 0 for any k ∈ I∞ in (2.3), then we have the following results.

(a3) If 1 <
β

r
≤ m

m− 1
holds, then every solution u(t, x) of (2.4) under condition

(2.2) converges to K (uniformly in x)as t →∞.

(a4) If
p

δ
>

m

m− 1
and

rτ [β(m− 1)−mr]
β

erτ >
1
e

hold, then every solution

u(t, x) of (2.4) under condition (2.2) oscillates about positive equilibrium K in D.

(a5) If
β

r
> 1, then every non-oscillatory solution u(t, x) of (2.4) under condition

(2.2) about positive equilibrium K in D converges to K (uniformly in x)as t →∞.

Remark 6.2. Our results are new for the diffusive model of Hematopoiesis (2.4)
with conditions (2.2). Moreover, when (2.4) and (2.2) is not effected by impulses
and a spacial variable x ∈ Ω, that is

(6.1)

 u′(t) = −ru(t) +
βu(t− τ)

1 + um(t− τ)
, t > 0

u(θ) = φ(θ) ≥ 0, θ ∈ [−τ, 0],

our result (a3)-(a5) are also true. In addition, in (a3), our condition 1 <
β

r
≤ m

m− 1



610 Xiao Wang and Zhixiang Li

is stronger than the condition 1 <
β

r
<

4m

(m− 1)2
for 1 < m < 5 and weaker for

m ≥ 5 in Kuang[10]. In (a5), our condition
β

r
> 1 is weaker than the condition

β

r
> 2 in Saker[17].
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