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Abstract. We obtain a condition for the positive equilibrium to be a global attractor
of the survival model of red blood cells proposed by Wazewska and Lasota. Our technique
is novel in the sense that a pair of nonlinear equations is utilized, and our result improves
earlier results in [3] and [4].

1. Introduction. A well-known model for the survival of red blood cells was pro-
posed by Wazewska-Czyzewska and Lasota in 1976 [1] and stated in terms of a nonlinear
ordinary differential equations with a delayed parameter:

N'(t) = + pe"7jv(t-T), t > 0, (1)

where fi £ (0,1) and 7,p, r G (0,oo). Here N(t) denotes the number of red blood cells
at time t, ^ is the probability of death of a red blood cell, p and 7 are positive constants
related to the production of red blood cells per unit time, and r is the time required to
produce a red blood cell.

The properties of this equation are of interest from both a mathematical and a biolog-
ical point of view. In particular, one main concern is when the equilibrium will become a
global attractor of solutions defined by "positive initial conditions". More precisely, let

Ci = {4> e C([-t,0], [0,00)) | 0(0) > 0}.

The solution N = N(t) of (1) defined by the initial condition N(t) — <p(t) for t e [—r, 0]
exists, is unique and is positive for t > 0 by means of the standard method of steps (see,
e.g., [2, p. 89]). As an example, a constant solution N(t) = N* can be found and is given
by the unique positive solution of the transcendental equation

fiN* = pe~iN'.
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This solution is called the equilibrium solution and the number N* is called the (positive)
equilibrium point of (1). If N* has the property that for any solution N(t) of (1) that
satisfies N(t) = 4>{t) for t e [—r, 0], we have lim^oo N(t) = N*, then N* is said to be a
global attractor of (1) for solutions originating from Cl.

There are a number of results that tell us when N* is a global attractor. For example,
in [3], it is shown that if

7W*(1 — e_Mr) < In2,

then N* is a global attractor. As an improvement, it is shown in [4] that the same
conclusion will hold even if the number In 2 in the above condition can be replaced by
the larger number 1. The question then arises as to whether sharper conditions can be
found. In this paper, we will address this relatively difficult problem and show that the
improved condition

7jV(i-e-"T)<i + __ (2)

is sufficient for N* to be a global attractor for solutions originating from f2.

2. Auxiliary inequalities. Our investigations lead to the following coupled pair of
inequalities:

y + e-^ln^l + J^) <M(e"*-l), (3)

x

jN*
where we have set

M = 77V*(1 - e~^T)

for the sake of convenience. Clearly, (x, y) — (0,0) is a solution of (3)-(4). We will need
the fact that there are no nontrivial solutions of (3)-(4) in the region

$ = {(x, y) | - 7N* < x < 0 < y < oo}.

Theorem 1. If (2) holds, then (0,0) is the only solution of (3)-(4) in <£.

Proof. There are three cases to consider: M < 1, 1 < M < 1 + e_/jr/(jN*), and
M = 1 + e~MT/(7N*). Suppose first that M < 1. Let (a,(3) be a solution of (3)-(4) in
$. Then in view of M <1,

P < P + e_MT In ^1 + < M{e~a - 1) < e"Q - 1,

a > a + e_MT In (1 + ) > M(e"/3 - 1) > e'0 - 1,
V 1N* J

so that

fj < exp(l — e_/3) — 1. (5)

Note, however, that the function

h(t) = exp(l — e_t) — 1 — t, t > 0,

x + e~^T In ( 1 H ) > M(e~v — 1), (4)
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satisfies h(0) = 0,

h'(t) = e_t exp(l — e_t) — 1,

and

h"(t) = e~t(e~t — 1) exp(l — e_t) < 0

for t > 0. Thus h'(t) < h'{0) = 0 for t > 0, which shows that h(t) cannot have any root
in (0, oo). As a consequence, (5) can only hold for (3 = 0. Similarly, we may show that
a = 0.

Next we consider the case where 1 < M < 1 + e_Air/(jN*). Let functions / and g be
defined by

f(t) = t + e~^T In ^1 + , t > —7jV*,

and

g(t) = M(e~l - 1), te R,

respectively. Then (3) can be written as

f(y) < 9{x),
while (4) can be written as

f{x) > g(y).
We now show that the implicit relation f(y) = g(x) in $ defines a function y = C\{x) for
—7N* < x < 0, and the implicit relation f(x) = g(y) in $ defines a function y = C^(x)
for x in some interval of the form (a:*, 0] where -7N* < x* < 0. To see this, note that
/(0) = 0, limt_,_7/v. f{t) = -00, limt^oo f(t) = +00,

e~^T
f'V =1 + > "• »-<N~-

and

Thus / is a strictly increasing and strictly concave function defined on (—jN*,oc) and
its range is R. In particular, the inverse /_1 exists and is defined on R. This shows
that C\{x) = f~1{g(x)) for —7N* < x < 0. Similarly, g(0) = 0, limt__00 g(t) = +00,
lim^oo g(t) = -M,

g'(t) = -Me"' <0, t G R,

and

g"(t) = Me"' >0, t e R.

This shows that the inverse g~1 exists on (—M,+00). Note that the properties of /
guarantee that there is some point x* in (-~(N*,0) such that f(x*) = -M and f(x) >
—M for x > x*. Thus Cz{x) = g-1(/(x)) for x* < x < 0. Both graphs of the functions
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Ci and C2 pass through the point (0,0) since /(0) = g(0) = 0. They lie entirely in
since by means of implicit differentiation,

and

^(x)=m<0'
Furthermore, the graph of C2 lies above the straight line defined by y = —x, since
C^O) < — 1 and

1 e_/1T
^2 (x) = T7—7—rr + {C2{x)) > 0> x* < x < 0.2X ' Me~y (>yN* + x)2 v "

Next, we assert that they do not intersect each other in <3? except at the point (0,0).
To see this, it suffices to show that C2(x) > C\(x) for x* < x < 0. Indeed, note that
Ci(0) = C2(0) = 0, and

0 > CJ(0) = -M- —77—rrrr > -1 > -r^(l + e""T/(7N*)) = 0,(0)1W (1 + e~^T/{-yN*)) Mk /w " '

due to our assumption M < 1 + e_MT/(7/V*); thus C2(x) > —x > C*i(x) for x in a left
neighborhood of 0. Assume to the contrary that the graphs C1 and C2 intersect in $.
Then there must be some point (x, y) of intersection in <1> such that x £ (x*, 0), C2(x) >
C\(x) for x 6 (x, 0),

C2(x) = Ci(x) = y > -x > 0,

and

C'2{x) = C2(x) -C2(x + t)
C[ (x) t ™+ Ci (x) - Cx (x + t) - '

However, note that

C'2{x) = f'(x) f'(y)
C[{x) g'{y) g'(x)

At2 \ 7TV* + xJ \ 'jN*+y/
Therefore, there will be a contradiction if we can show that the function

't(") = ('+ WTi) ('+ WT~^) «*"*■
is increasing and <]/( — x) > M2. The required properties of can easily be seen. Indeed,

*(-*>= U + tttm: U + e
7N* + x J \ 7N* — x

* I
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Furthermore,
/ p M7" \ / p M7" p \

* («) = + 7iV* +£J + 77V* + u ~ (>yN*+u)2 )e+ '

But since M = 7iV*(l — e~MT) > 1, we see that

1
1 < -T7- < l-e"^T,

7 JV*
which implies

 -  <   <   < e_AtT(l - e~^T) < - (6)
(-yN*+u)2 (7N*)2 7 AT* 4

and

> f 1 + r/r f if,T + f] e*+u > «>-5,
\ *yN* + xJ \^N*+u 4/

as required. Finally, note that a point (x,y) £ $ satisfies f(x) > g(y) if, and only if, it
lies above or on the graph C2, and it satisfies f(y) < g(x) if, and only if, it lies below
or on the graph C\. Since we have just shown that C\ and C2 intersect each other only
at (0,0), thus the only (x,y) £ $ that satisfies (3)-(4) is (0,0). The proof of the second
case is complete.

As for the last case where M = 1 + e_MT/(7./V*), we define /, g, C\ and C2 as in the
previous case. Here, however, we may check that Ci(0) = C2(0) = 0, C((0) = C'2{0) =
-1,

«0) = «0) = 1 +

and

^(0)-C!»(0) = A(^)2-i.

Since M > 1, the inequalities in (6) hold, so that

C'i'{0) " C'C(0) < 3^ - 1 < 0.

Accordingly, by expressing C2(x) — C\(x) in the form of a third-order polynomial about
0 plus a remainder term of the form o(x3), we see that C2(x) > C\(x) for 1 in a left
neighborhood of 0. By the same arguments as shown above, we then see that C2(x) >
Ci(x) for x* < x < 0. This implies that (0,0) is the only solution of (3)-(4) in <3?. The
proof is complete. □

3. Proof of main result. The change of variables

N(t) = N* + -x(t)
7

reduces Eq. (1) to the delay differential equation

x'(t) + [ix(t) + 7/LxAr*(l — e~x(-t~T-)) = 0, t > 0. (7)
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Thus, in order to show that every solution of (1) that is positive for t > 0 will converge
to N*, it suffices to show that every solution x(t) of (7) that satisfies x(t) > —7N* for
t > 0 will converge to zero.

In order to see this, we need to consider three kinds of solutions. The first kind consists
of positive solutions, the second negative solutions, and the third oscillatory solutions.
It has already been shown (see, e.g., [2, 4]) that if x = x(t) is a solution of (7) that is
eventually positive or eventually negative, then x(t) —> 0 as t tends to 00. It has also
been shown [3] that if x = x(t) is an oscillatory solution of (7), then \x(t)\ < M for all
large t. Thus, if x{t) is an oscillatory solution of (7) such that x{t) > —7N* for t > 0,
then letting

and

X- = lim inf x(t)
t~* OO

x+ = limsup:r(i),
t—* OO

we see that

—7N* < —M < x- < 0 < x+ < 00.

We assert further that

®+ + e-'*rln(l + ^-) <M{e~*--\) (8)

and

x-+e-»Thi(l + ^)>M{e-*+-l). (9)

To see this, let s > 0 and T > 0 be such that

X+ - £ < x(t) < X+ + £, t >T + T.

Further, let be a positive, increasing, and divergent sequence of real numbers
such that x'(£„) = 0 for n > 1, and limn^oo x{tn) = x+. Then in view of (7),

®(*n)+7iV*( 1 - ea(t»-T)) = 0,

x(tn - t) = -In ( 1 + ) . (10)

so that

t.It.~. — = — In I 1
7 N

On the other hand, in view of (7),

(x{t)e^)' = 7/iAr*(e-x(t_T) - l)e^ < 7^N*(e~x-+£ - l)e^,

which yields, after integrating from tn — r to tn,

x(tn) - x(tn - t)e~^T < 7N*(e~x-+£ - 1)(1 - e"^).

Substituting (10) into the above expression, we see that

x(tn) + In (l + e~»T < M(e~x~+£ - 1).
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By taking limits on both sides as n —> oo and then as e —* 0, we see that (8) will follow
as required. The inequality (9) is similarly proved.

We now invoke Theorem 1 and conclude that x_ = x+ = 0. The formal result now
follows.

Theorem 2. Let N* be the unique positive solution of the equation /j,N* = pe~jN*.
Suppose

'rJV*(l-e-"T)<l + (11)

Then for every solution N = N(t) of (1) that is positive on [0, oo), limt_007V(i) = N*.

We remark that the condition (11) is nonvacuous in the sense that there are n € (0,1),
7,p,T € (0, oo) such that the equality sign in (11) is satisfied. Indeed, let /x, 7 and p satisfy

(y/2 + l)e^+1 = —,

and let r satisfy e~^T — 1/2. Then 7N* = \f2 + 1, so that

7«.( = = i +

as required.
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