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Abstract. In this paper, we prove the existence of a global attractor for the suspension

bridge equations with nonlinear damping.

1. Introduction. In this paper, we consider the asymptotic behavior of the solutions

of the following initial-boundary value problem:⎧⎪⎪⎨
⎪⎪⎩
utt +Δ2u+ ku+ + a(x)g(ut) + f(u) = h(x), in Ω× R

+,

u = Δu = 0, on Γ,

u(τ, x) = u0(x), ut(τ, x) = u1(x), in Ω,

(1.1)

where Ω is a bounded domain of R2 with a smooth boundary Γ and τ ∈ R
+. u(x, t) is an

unknown function, which represents the deflection of the road bed in the vertical plane.

k denotes the spring constant and h(x) ∈ L2(Ω). The function

u+ =

{
u, if u > 0,

0, if u ≤ 0.

The function a(x) satisfies:

a(x) ∈ L∞(Ω), a(x) ≥ α0 > 0 in Ω, (1.2)

where α0 is a constant.
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The nonlinear function f ∈ C2(R) satisfies the following assumptions: There exists a

constant C1 > 0 such that

lim inf
|s|→∞

F (s)

s2
≥ 0, F (s) =

∫ s

0

f(τ )dτ, (1.3)

lim sup
|s|→∞

|f ′(s)|
|s|γ = 0, where 0 ≤ γ < ∞, (1.4)

lim inf
|s|→∞

sf(s)− C1F (s)

s2
≥ 0. (1.5)

The damping function g ∈ C1(R) satisfies

g(0) = 0, g strictly increasing, and lim inf
|s|→∞

g′(s) > 0, (1.6)

|g(s)| ≤ C2(1 + |s|q), (1.7)

with 1 ≤ q < ∞.

The suspension bridge equations were presented by Lazer and McKenna as new prob-

lems in the field of nonlinear analysis [9]. For the problem corresponding to (1.1) without

nonlinear damping a(x)g(ut), there are many classical results. We refer the reader to

[1], [2], [9], [10], [11], [12], [13], [14], [16] and the references therein. An [2] obtained

the existence and uniqueness of a weak solution for k > −1 and then showed decay es-

timates of the solution for the suspension problem. Ma and Zhong [10] investigated the

existence of global attractors of the coupled system of a suspension bridge in the space

H2
0 (Ω) × L2(Ω). Zhong et al. [16] showed the existence of strong solutions and global

attractors for the suspension bridge equations in the stronger space.

The long-time behavior of solutions for the equation with nonlinear damping has

attracted much attention in recent years; we refer the reader to [3], [4], [5], [6], [7], [8],

[15]. Chueshov and Lasiecka [4] studied the existence of weak attractors for von Karman

equations with nonlinear dissipation. In that article the authors have proved the existence

of a global attractor for large values of the damping parameter. Khanmamedov [5], [6]

proved the global attractors for von Karman equations with nonlinear interior dissipation.

Recently, Yang and Zhong [15] studied the existence of a global attractor for the plate

equation without assuming large values for the damping parameter.

Motivated by the work in [16], we study the existence of the global attractor for

suspension bridge equations with nonlinear damping. We use the methods provided by

Yang and Zhong [15] to show the existence of the global attractor.

With the usual notation, we introduce the spaces H = L2(Ω), V = H2
0 (Ω), and endow

these spaces with the usual scalar products and norms, (·, ·), | · |, ((·, ·)), || · ||, where

(u, v) =

∫
Ω

u(x)v(x)dx, ((u, v)) =

∫
Ω

Δu(x)Δv(x)dx.

From the Poincaré inequality, there exists a proper constant Cλ > 0 such that

||u||2 ≥ Cλ|u|2, ∀u ∈ V. (1.8)

The notation used in this paper is standard. The organization of this paper is as

follows. In Section 2, we give some notation and prove some lemmas in order to show
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asymptotic compactness of S(t). In Section 3, we establish the existence of a bounded

absorbing set in V × H. In Section 4, we prove the existence of a global attractor in

V ×H.

2. Preliminaries and abstract results. In this section, we recall some definitions

and results concerning the attractor. It is known that under conditions (1.2)-(1.7) the

solution operator S(t) = (u(t), ut(t)), t ≥ 0, of problems (1.1) generates a (C0) semigroup

on the energy space V ×H (see [10], [15], [16]).

Theorem 2.1 ([10], [15]). Let Ω be a bounded domain of R2 with smooth boundary,

under assumptions (1.2)-(1.7). Then for any initial data (u0, u1)∈ V × H, problems

(1.1) have a unique global solution (u(t), ut(t)) ∈ C([0, T ];V × H) for any T > 0, and

(u(t), ut(t)) depends continuously on (u0, u1).

Next, we recall the simple compactness criterion stated as [3], [4], [15].

Definition 2.1 ([4], [15]). Let X be a Banach space and B be a bounded subset of

X. We call a function φ(·, ·) which is defined on X ×X a contractive function on B ×B

if for any sequence {xn}∞n=1 ⊂ B, there is a subsequence {xnk
}∞k=1 ⊂ {xn}∞n=1 such that

lim
k→∞

lim
l→∞

φ(xnk
, xnl

) = 0.

Denote all such contractive functions on B ×B by C(B).

Theorem 2.2 ([4], [15]). Let {S(t)}t≥0 be a semigroup on a Banach space (X, || · ||)
that has a bounded absorbing set B0. Moreover, assume that for any ε ≥ 0 there exist

T = T (B0, ε) and φT (·, ·) ∈ C(B) such that

||S(T )x− S(T )y|| ≤ ε+ φT (x, y) for all x, y ∈ B0,

where φT depends on T. Then {S(t)}t≥0 is asymptotically compact in X; i.e., for any

bounded sequence {yn}∞n=1 ⊂ X and {tn} with tn → ∞, {S(tn)yn}∞n=1 is precompact in

X.

Lemma 2.1 ([5]). Let g(·) satisfy condition (1.6). Then for any δ > 0 there exists c(δ) > 0

such that

|u− v|2 ≤ δ + c(δ)(g(u)− g(v))(u− v) for u, v ∈ R. (2.1)

3. Absorbing set in V ×H. In this section, we prove the existence of the bounded

absorbing set in V ×H.

Lemma 3.1. Under assumptions (1.2)-(1.7), the semigroups {S(t)}t≥0 corresponding to

problems (1.1) have a bounded absorbing set in V ×H.

Proof. We set

E(t) =
1

2
(|ut|2 + ||u||2 + k|u+|2) +

∫
Ω

(F (u)− hu)dx.
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Multiplying (1.1) by ut and integrating over Ω, we get

d

dt
E(t) +

∫
Ω

a(x)g(ut)utdx = 0, (3.1)

so from (1.2) and (1.6) we have

E(t) ≤ E(0), ∀ t ≥ 0. (3.2)

It is obvious that (1.2) and (1.6) imply that there are δ > 0 and Cδ > 0 such that

(a(x)g(ut), ut) ≥ 2δ|ut|2 − Cδmeas(Ω),

(a(x)g(ut)− δut, ut) ≥ δ|ut|2 − Cδmeas(Ω), (3.3)

and from (1.3) and (1.5) we know that there are Cλ > C ′
λ > 0 and C0 = C1 − 2(C ′

λ)
−1

such that

(f(u), u)− C1

∫
Ω

F (u)dx ≥ −C ′
λ

4
|u|2 − C0meas(Ω), (3.4)∫

Ω

F (u)dx > −C ′
λ

8
|u|2 − C0meas(Ω), (3.5)

for any u ∈ V. From (1.8), (3.2) and (3.5), we obtain

−C1(meas(Ω) + |h|2) ≤ −C1(meas(Ω) + |h|2) + 1

2
(|ut|2 + k|u+|2) + 1

4
||u||2

≤ E(t) ≤ E(0). (3.6)

So from (3.1) and (3.6), we have

∫ t

0

∫
Ω

a(x)g(ut)utdxds ≤ E(0)− E(t) ≤ E(0) + C1(meas(Ω) + |h|2), ∀ t ≥ 0. (3.7)

By assumptions (1.6) and (1.7), we have

|g(s)|
q+1
q = |g(s)| 1q · |g(s)| ≤ C(1 + |s|)|g(s)| ≤

{
C, |s| ≤ 1,

2Cg(s)s, |s| ≥ 1,
(3.8)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



GLOBAL ATTRACTORS FOR THE SUSPENSION BRIDGE EQUATIONS 469

where C is a constant which is independent of s. Then from (1.2), (3.8), using Hölder’s

inequality and Young’s inequality, we obtain

|
∫
Ω

a(x)g(ut)udx|

≤
∫
Ω(|ut|≤1)

|a(x)g(ut)u|dx+

∫
Ω(|ut|≥1)

|a(x)g(ut)u|dx

≤
∫
Ω(|ut|≤1)

g(1)|a(x)u|dx

+ (

∫
Ω(|ut|≥1)

a(x)|g(ut)|
q+1
q dx)

q
q+1 (

∫
Ω(|ut|≥1)

a(x)|u|q+1dx)
1

q+1

≤
∫
Ω(|ut|≤1)

C|a(x)u|dx

+ (

∫
Ω(|ut|≥1)

2Ca(x)g(ut)utdx)
q

q+1 (

∫
Ω(|ut|≥1)

a(x)|u|q+1dx)
1

q+1

≤ C

∫
Ω

a(x)|u|dx+ Cη||u||
q−1
q

∫
Ω

a(x)g(ut)utdx+ η||u||2, (3.9)

where η is a constant. We set v = ut + δu and rewrite the equation of (1.1) as follows:

vt +Δ2u+ ku+ − δut + a(x)g(ut) + f(u) = h. (3.10)

Taking the scalar product in L2(Ω) of (3.10) with v and integrating over Ω, where δ

comes from (3.3), we obtain

d

dt

(1
2
(|v|2 + ||u||2 + k|u+|2 − δ2|u|2) +

∫
Ω

(F (u)− hu)dx
)
+ δ||u||2 + δk|u+|2

+(a(x)g(ut)− δut, ut) + δ(a(x)g(ut), u) + δ(f(u), u) = δ(h, u).

Set

Eδ(t) =
1

2
|v|2 + k

2
|u+|2 − δ2

2
|u|2 + 1

2
||u||2 +

∫
Ω

(F (u)− hu)dx

and

H(t) = (a(x)g(ut)− δut, ut) + δ(a(x)g(ut), u) + δ||u||2 + δk|u+|2

+δ(f(u), u)− δ(h, u),

so we have

d

dt
Eδ(t) +H(t) = 0. (3.11)

Now, using (3.5) and Young’s inequality, we can choose δ small enough such that

Eδ(t) ≥
1

2
|v|2 + k

2
|u+|2 + 1

4
||u||2 − C1(meas(Ω) + |h|2). (3.12)
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Similarly, from (1.8), (3.3)-(3.5) and (3.9), we get

H(t) ≥ δ|ut|2 − Cδmeas(Ω) + δk|u+|2 + δ||u||2

−δ(C

∫
Ω

a(x)|u|dx+ Cη||u||
q−1
q

∫
Ω

a(x)g(ut)utdx+ η||u||2)

−δ(
C1

2
+ 1)

C ′
λ

4
|u|2 − δC0meas(Ω)(C1 + 1)− δC ′

λ

4
|u|2 − δ

C ′
λ

|h|2

≥ δ|ut|2 − C ′
δ(meas(Ω) + |h|2) + δk|u+|2 + δ(

1

2
− C1

8
− η)||u||2

−δ(C

∫
Ω

a(x)|u|dx+ Cη||u||
q−1
q

∫
Ω

a(x)g(ut)utdx)

≥ C ′′
δ (|ut|2 + k|u+|2 + ||u||2)− C ′

δ(meas(Ω) + |h|2)

−CE(0)

∫
Ω

a(x)g(ut)utdx, (3.13)

where we can choose η so small that 1
2 − C1

8 − η > 0; CE(0) is a constant which depends

on δ, Cη and E(0); C ′′
δ and C ′

δ are constants depending on δ and C1. Note that

|ut|2 + ||u||2 = |ut + δu− δu|2 + ||u||2

≤ 2|v|2 + (
2δ2

Cλ
+ 1)||u||2 ≤ c0(|v|2 + ||u||2), (3.14)

where c0 = max{2, 1 + 2δ2C−1
λ }. Integrating (3.11), combining with (3.7), (3.12)-(3.14),

we deduce

|ut|2 + k|u+|2 + ||u||2 − 2c0C1(meas(Ω) + |h|2)− 2c0Eδ(0)

−2c0CE(0)(E(0) + C1(meas(Ω) + |h|2))

≤ −2c0

∫ t

0

(
C ′′

δ (|ut(s)|2 + k|u+(s)|2 + ||u(s)||2)− C ′
δ(meas(Ω) + |h|2)

)
ds. (3.15)

Therefore, for any ρ >
C′

δ(meas(Ω)+|h|2)
C′′

δ
, there exists t0 such that

||u(t0)||2 + |ut(t0)|2 + k|u+(t0)|2 ≤ ρ.

Set

B0 = {(u0, v0) ∈ V ×H| ||u0||2 + |v0|2 + |u+
0 |2 ≤ ρ},

so we have that B0 is a bounded absorbing set. Define

B1 =
⋃
t≥0

S(t)B0;

therefore, B1 is also a bounded absorbing set. �

4. Existence of global attractor in V ×H. In this section, we will first give some

a priori estimates about the energy inequalities on account of the idea presented in [3],

[4], [5], [15]. Then we use Theorem 4.1 to establish the asymptotic compactness in V ×H.
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For convenience, we always denote by B1 a bounded absorbing set obtained in Lemma

3.1. We will use the following notation:

Ew(t) =
1

2
|wt(t)|2 +

k

2
|w(t)+|2 + 1

2
||w(t)||2.

4.1. A priori estimates

To obtain the asymptotic compactness, we establish a priori estimates. The following

process is derived from the standard energy method given in [3], [4], [5], [15].

Let (ui(t), uit(t)) (i = 1, 2) be the corresponding solution to (ui
0, v

i
0) ∈ B1 and let

w(t) = u1(t)− u2(t). Then w(t) satisfies

wtt + a(x)(g(u1t)− g(u2t)) + Δ2w + kw+ + f(u1)− f(u2) = 0, (4.1)

with the initial condition (w(0), wt(0)) = (u1
0 − u2

0, v
1
0 − v20). At first, multiplying (4.1)

by w and integrating over [0, T ]× Ω, we get

∫ T

0

||w(s)||2ds+ k

∫ T

0

|w(s)+|2ds =
∫
Ω

wt(0)w(0)dx−
∫
Ω

wt(T )w(T )dx

+

∫ T

0

|wt(s)|2ds−
∫ T

0

∫
Ω

(f(u1(s))− f(u2(s)))w(s)dxds

−
∫ T

0

∫
Ω

a(x)(g(u1t(s))− g(u2t(s)))w(s)dxds. (4.2)

Secondly, multiplying (4.1) by wt and integrating over [s, T ]× Ω, we obtain

Ew(T ) +

∫ T

s

∫
Ω

a(x)(g(u1t(τ ))− g(u2t(τ )))wt(τ )dxdτ

≤ Ew(s)−
∫ T

s

∫
Ω

(f(u1(τ ))− f(u2(τ )))wt(τ )dxdτ, (4.3)

where 0 ≤ s ≤ T. Integrating (4.3) over [0, T ] with respect to s, we have that

TEw(T ) ≤
∫ T

0

Ew(s)ds−
∫ T

0

∫ T

s

∫
Ω

(f(u1(τ ))− f(u2(τ )))wt(τ )dxdτds. (4.4)

Moreover from (1.2), (4.3) and Lemma 2.1, we obtain that, for any δ > 0,

∫ T

0

|wt(τ )|2dτ ≤ δTmeas(Ω) + C2Ew(0)

−C2

∫ T

0

∫
Ω

(f(u1(τ ))− f(u2(τ )))wt(τ )dxdτ , (4.5)
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where a constant C2 = Cδα
−1
0 . Thus, from (4.2) and (4.5) we have

∫ T

0

Ew(s)ds ≤ δTmeas(Ω) + C2Ew(0) +

∫
Ω

wt(0)w(0)dx−
∫
Ω

wt(T )w(T )dx

−C2

∫ T

0

∫
Ω

(f(u1(τ ))− f(u2(τ )))wt(τ )dxdτ

−
∫ T

0

∫
Ω

(f(u1(s))− f(u2(s)))w(s)dxds

−
∫ T

0

∫
Ω

a(x)(g(u1t(s))− g(u2t(s)))w(s)dxds. (4.6)

Now, we are going to estimate the last term in (4.6). Multiplying (1.1) by uit(t), we

obtain

1

2

∫
Ω

(|uit |2 + |Δui|2 + k|u+
i |2 + 2F (u))dx+

∫
Ω

a(x)g(uit)uitdx =

∫
Ω

huitdx,

which, combining with the existence of a bounded absorbing set, implies that

∫ T

0

∫
Ω

a(x)g(uit)uitdxds ≤ Cρ (i = 1, 2), (4.7)

where Cρ is a constant which depends on meas(Ω), |h|2 and the size of B1. By the similar

method of (3.9) and (4.7), we obtain

|
∫ T

0

∫
Ω

a(x)g(uit(s))w(s)dxds|

≤
∫ T

0

∫
Ω(|uit |≤1)

|a(x)g(uit(s))w(s)|dxds+
∫ T

0

∫
Ω(|uit |≥1)

|a(x)g(uit(s))w(s)|dxds

≤ C

∫ T

0

∫
Ω(|uit |≤1)

|a(x)w|dxds

+ (

∫ T

0

∫
Ω(|uit |≥1)

a(x)|g(uit)|
q+1
q dxds)

q
q+1 (

∫ T

0

∫
Ω(|uit |≥1)

a(x)|w|q+1dxds)
1

q+1

≤ C

∫ T

0

∫
Ω(|uit |≤1)

|a(x)w|dxds

+ 2C(Cρ)
1

q+1T
1

q+1 (

∫ T

0

∫
Ω(|uit |≥1)

a(x)g(uit)uitdxds)
q

q+1

≤ C

∫ T

0

∫
Ω

a(x)|w|dx+ 2CCρT
1

q+1 (i = 1, 2). (4.8)
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Combining (4.4), (4.6) and (4.8), we have

TEw(T ) ≤ δTmeas(Ω) + C2Ew(0) +

∫
Ω

wt(0)w(0)dx−
∫
Ω

wt(T )w(T )dx

+C

∫ T

0

∫
Ω

a(x)|w|dx−
∫ T

0

∫
Ω

(f(u1(s))− f(u2(s)))w(s)dxds

+2CCρT
1

q+1 − C2

∫ T

0

∫
Ω

(f(u1(τ ))− f(u2(τ )))wt(τ )dxdτ

−
∫ T

0

∫ T

s

∫
Ω

(f(u1(τ ))− f(u2(τ )))wt(τ )dxdτds. (4.9)

Set

CB = δTmeas(Ω) + C2Ew(0) +

∫
Ω

wt(0)w(0)dx

−
∫
Ω

wt(T )w(T )dx+ 2CCρT
1

q+1 , (4.10)

φT ((u
1
0, v

1
0), (u

2
0, v

2
0))

= C

∫ T

0

∫
Ω

a(x)|w|dx

−
∫ T

0

∫
Ω

(f(u1(s))− f(u2(s)))w(s)dxds

− C2

∫ T

0

∫
Ω

(f(u1(τ ))− f(u2(τ )))wt(τ )dxdτ

−
∫ T

0

∫ T

s

∫
Ω

(f(u1(τ ))− f(u2(τ )))wt(τ )dxdτds. (4.11)

Then we have

Ew(T ) ≤
CB

T
+

1

T
φT ((u

1
0, v

1
0), (u

2
0, v

2
0)). (4.12)

4.2. Asymptotic compactness

In this subsection, following similar arguments as in [5], [7], [15], we shall prove the

asymptotic compactness of the semigroup {S(t)}t≥0 in V × H, which is given in the

following theorem.

Theorem 4.1. Under assumptions (1.2)-(1.7), then the semigroup {S(t)}t≥0 correspond-

ing to problems (1.1) is asymptotically compact in V ×H.

Proof. Since the semigroup {S(t)}t≥0 has a bounded absorbing set, for any fixed ε > 0,

we can first choose δ ≤ ε
2meas(Ω) , and then let T be so large that

CB

T
≤ ε.

Hence, thanks to Theorem 2.2, we only need to verify that the function φT (·, ·) defined
in (4.11) belongs to C(B1) for each fixed T. Let (un, utn) be the corresponding solution
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of (un
0 , v

n
0 ) ∈ B1, n = 1, 2, . . . . Then, since B1 is a bounded positively invariant set in

V ×H, without loss of generality, we assume that

un → u weakly star in L∞(0, T ;H2
0 (Ω)), (4.13)

unt
→ ut weakly star in L∞(0, T ;L2(Ω)), (4.14)

un → u strongly in L2(0, T ;L2(Ω)), (4.15)

un → u strongly in Lk(0, T ;Lk(Ω)), (4.16)

for k ≤ 2(γ + 1), where we use the compact embedding H2
0 ↪→ Lk. Now, we will deal

with each term corresponding to that in (4.11). At first, from (4.15), we have

lim
n→∞

lim
m→∞

∫ T

0

∫
Ω

(f(un(s))− f(um(s)))(un(s)− um(s))dxds = 0. (4.17)

Secondly, from (4.16) and (1.2), we obtain

lim
n→∞

lim
m→∞

∫ T

0

∫
Ω

a(x)|un(s)− um(s)|dxds = 0. (4.18)

Finally, following the similar argument given in [7], we get

lim
n→∞

lim
m→∞

∫ T

0

∫
Ω

(f(un(s))− f(um(s)))(unt
(s)− umt

(s))dxds = 0, (4.19)

lim
n→∞

lim
m→∞

∫ T

0

∫ T

s

∫
Ω

(f(un(τ ))− f(um(τ )))(unt
(τ )− umt

(τ ))dxdτds = 0. (4.20)

Hence, combining (4.17)-(4.20) we get φT (·, ·) ∈ C(B1) immediately.

�
4.3. Existence of global attractor

Theorem 4.2. Under assumptions (1.2)-(1.7), then problems (1.1) have a global attrac-

tor in V ×H, which is invariant and compact.

Proof. Lemma 3.1 and Theorem 4.1 imply the existence of a global attractor. �
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