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A study is carried out of the linear global behaviour corresponding to the absolute
instability of the rotating-disc boundary layer. It is based on direct numerical
simulations of the complete linearized Navier–Stokes equations obtained with the
novel velocity–vorticity method described in Davies & Carpenter (2001). As the
equations are linear, they become separable with respect to the azimuthal coordinate,
θ . This permits us to simulate a single azimuthal mode. Impulse-like excitation is used
throughout. This creates disturbances that take the form of wavepackets, initially
containing a wide range of frequencies. When the real spatially inhomogeneous
flow is approximated by a spatially homogeneous flow (the so-called parallel-flow
approximation) the results of the simulations are fully in accordance with the theory of
Lingwood (1995). If the flow parameters are such that her theory indicates convective
behaviour the simulations clearly exhibit the same behaviour. And behaviour fully
consistent with absolute instability is always found when the flow parameters lie
within the theoretical absolutely unstable region. The numerical simulations of the
actual inhomogeneous flow reproduce the behaviour seen in the experimental study
of Lingwood (1996). In particular, there is close agreement between simulation
and experiment for the ray paths traced out by the leading and trailing edges of
the wavepackets. In absolutely unstable regions the short-term behaviour of the
simulated disturbances exhibits strong temporal growth and upstream propagation.
This is not sustained for longer times, however. The study suggests that convective
behaviour eventually dominates at all the Reynolds numbers investigated, even for
strongly absolutely unstable regions. Thus the absolute instability of the rotating-
disc boundary layer does not produce a linear amplified global mode as observed
in many other flows. Instead the absolute instability seems to be associated with
transient temporal growth, much like an algebraically growing disturbance. There is
no evidence of the absolute instability giving rise to a global oscillator. The maximum
growth rates found for the simulated disturbances in the spatially inhomogeneous flow
are determined by the convective components and are little different in the absolutely
unstable cases from the purely convectively unstable ones. In addition to the study of
the global behaviour for the usual rigid-walled rotating disc, we also investigated
the effect of replacing an annular region of the disc surface with a compliant
wall. It was found that the compliant annulus had the effect of suppressing the
transient temporal growth in the inboard (i.e. upstream) absolutely unstable region.
As time progressed the upstream influence of the compliant region became more
extensive.
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1. Introduction
For more than fifty years the rotating disc has been the model flow for studying

three-dimensional boundary-layer instability and transition. During this period many
papers have appeared describing theoretical and experimental research on this topic.
One might have been forgiven, then, for assuming that the major features of instability
and transition had already been discovered for this model flow and that only rather
academic and arcane points remained to be elucidated. This view was to be dispelled
by the revelation of Lingwood (1995) that the rotating-disc flow is absolutely unstable.
Furthermore, the theoretical critical Reynolds number for absolute instability is more
or less coincident with the experimentally observed transition point. A little later
Lingwood (1996) also described an experimental investigation which appeared to
corroborate her earlier theoretical study.

Absolute instability is a local concept in that it is defined theoretically by a stability
analysis of the local velocity profiles. In effect, such an analysis assumes a spatially
homogeneous flow. This is often termed the parallel-flow approximation. However, this
term is, perhaps, not entirely appropriate for the rotating-disc flow as the boundary
layer remains at constant thickness throughout. For this flow it is the increase in
the magnitude of the undisturbed velocity field proportionately to radius that is
responsible for the spatial inhomogeneity. In the present paper we investigate how
spatial inhomogeneity affects the global response of this locally absolutely unstable
flow. The study is based on direct numerical simulations of the complete linearized
Navier–Stokes equations, obtained with the novel velocity–vorticity method presented
in Davies & Carpenter (2001, hereafter referred to as I).

It is important to emphasize that our numerical simulations are not equivalent to
an instability analysis. In fact, they have more in common with physical experiments
than stability theory. Beyond omitting the nonlinear terms in the form of the Navier–
Stokes equations governing the perturbation flow field, the form of the perturba-
tions in our simulations is not specified in any way. Just like a physical experiment
the perturbations are initially excited by a local time-dependent displacement of the
disc surface. The subsequent evolution of the disturbance is governed purely by the
(linearized) Navier–Stokes equations. Accordingly, there is no need to evoke causality
as in instability analysis, any more than one would need to do so for a physical
experiment. Indeed, it would be inappropriate to attempt to do so.

Ours appears to be the first study of the global behaviour corresponding to
the absolute instability of the rotating-disc boundary layer,† although, of course,
Lingwood’s experimental investigation is perforce also a study of the global behaviour.
Previous numerical studies of the rotating-disc flow that took account of the
inhomogeneous radial variation either did not reveal any vestige of absolute instability
(Spalart 1991), or were based on the parabolic-stability-equation (PSE) approach
(Malik & Balakumar 1992) and therefore not able to accommodate the upstream
propagation of disturbances.

Lingwood’s discovery of the absolute instability was completely novel and came as
a surprise to the research community. Nevertheless, as she herself pointed out, there
were clues to be found in the previous experimental studies. (We will not attempt to
review the relevant literature here, but instead refer the reader to the reviews by Reed
& Saric (1989) and Saric, Reed & White (2003) and the introduction in Cooper &

† During the revision of our paper we became aware of the analytical study of Peake & Garrett
(2003) which will be discussed below.
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Carpenter (1997a).) For example, in the surface flow visualizations of Gregory, Stuart
& Walker (1955), using the china-clay technique, the transitional radius is very sharp.
More recent flow visualizations (e.g. Kobayashi, Kohama & Takamadate 1980) also
exhibit the same feature. The sharpness of the transition line on the rotating disc
contrasts markedly with those normally found when boundary-layer transition is
due to the amplification of convective instabilities like Tollmien–Schlichting waves.
In these cases one typically sees wedges of turbulent flow upstream of the main
transition line that are created by local roughness formed by the pigment or tracer
particles used for the flow visualization. Lingwood (1995) also pointed out that the
values of transitional Reynolds number measured in the many experimental studies
of the rotating-disc flow differed by less than 3% from the average value of about
513. Again, this is in sharp contrast with transition in flows dominated by convective
instabilities, such as pipe flow or boundary layers over flat plates. In the latter case, for
example, the transitional Reynolds number is very sensitive to background noise and
environmental factors; consequently, transitional Reynolds numbers ranging from
100 000 to in excess of 2 × 106 have been reported in the literature (Schlichting 1979).

Theoretical evidence pointing to the possibility of absolute instability was also
available in the literature. First, as pointed out by Lingwood (1995), the velocity
profiles for the rotating-disc boundary layer exhibit reverse flow when resolved in
a range of directions between the radial and azimuthal directions. Since absolute
instability requires upstream propagation, and a reverse undisturbed flow facilitates
upstream propagation, it is found in many examples of absolutely unstable flow.
Examples are given by Huerre & Monkewitz (1990). These include countercurrent
mixing layers in circular jets (Strykowski & Niccum 1991), and the wakes behind
circular cylinders (Mathis, Provansal & Boyer 1984; Koch 1985; Triantafyllou,
Triantafyllou & Chryssostomidis 1986; Monkewitz 1988; Strykowski & Sreenivasan
1990), blunt bodies (Hannemann & Oertel 1989; Oertel 1990) and a floating cylinder
(Triantafyllou & Dimas 1989). But reverse flow certainly does not guarantee absolute
instability, nor is it always necessary.

There were also more subtle theoretical indicators for absolute instability. It was
known that the eigenspectrum for the local stability analysis of the rotating-disc
boundary layer consisted of at least three distinct eigenmodes. Type I – the cross-flow
vortices – was originally identified by Gregory et al. (1955) and is essentially inviscid.
Type II is destabilized by Coriolis acceleration and is essentially viscous. It was
originally discovered by Faller & Kaylor (1966) (see also Faller 1991). Both types can
exist in stationary and travelling form. A third eigenmode (Type III) was discovered
by Mack (1985). The complexity of the eigenspectrum is relevant because for an
absolute instability to occur two eigenmodes have to coalesce. In fact, Lingwood
(1995) shows that Types I and III coalesce to form the absolute instability. This
can, perhaps, be understood physically in terms of energy. The various eigenmodes
(when distinct) can be classified as either positive- or negative-energy waves (PEW
or NEW); see e.g. Cairns (1979). Irreversible energy transfer has a stabilizing effect
on the PEW but a destabilizing effect on the NEW. Accordingly, one might expect
that, owing to their opposite response to energy transfer, when a PEW and a NEW
coalesce they become capable of being a true self-excited instability, rather than a
noise amplifier like a convective instability. Cooper & Carpenter (1997a) showed
that Types I and II are NEW and PEW respectively. It is not clear whether or not
Type III is a PEW, but presumably it is. Energy considerations suggest that Types I
and II also could coalesce and form a self-excited instability. In fact, as shown
by Lingwood (1995) and Cooper & Carpenter (1997a), they do coalesce, but the
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result is an algebraically growing disturbance rather than an absolute instability. This
phenomenon was investigated in I and also in a recent paper by Turkyilmazoglu &
Gajjar (2000).

Huerre & Monkewitz (1990) give an excellent review of the global instability
of spatially developing flows, especially its relationship to absolute instability.
Accordingly, we will largely confine ourselves to reviewing the developments since
1990 that are relevant to our study. The concepts of absolute and convective instability
are strictly only valid for a spatially homogeneous flow. They are extended to spatially
developing flows by making a so-called quasi-parallel-flow approximation whereby
one examines the stability of a model spatially homogeneous flow having the same
streamwise velocity profile as the real spatially inhomogeneous flow at the selected
spatial location. Thus a dispersion relation

D(α, ω; R) = 0 (1)

can be formulated linking the complex frequency and wavenumber at a given value
of R where α and ω are the non-dimensional wavenumber and frequency. R is the
Reynolds number based on the local spatial coordinate or variables. For example, for
the rotating disc

R =
r∗
r√

ν/Ω
,

where r∗
r is the radial location where the stability analysis is carried out, ν is the

kinematic viscosity, and Ω the rotational speed of the disc. Thus the coordinate
at a fixed radial position is made dimensionless with reference to the constant
boundary-layer displacement thickness. The same length scale is also used to make
the wavenumber dimensionless and the reference time, 1/(ΩR), is used to make
frequency dimensionless.

Purely in the context of boundary-layer instability over the rotating disc, the
following remarks can be made about the use of (1). In the approach taken in classic
linear instability theory one solves (1) for complex ω, specifying α and keeping it
real. Convective instability is then indicated when ωi > 0 for a given combination
of αr and R. Gaster (1962, 1965) showed that spatially growing waves are a better
representation of convectively unstable disturbances seen in most physical applications
and experiments. In this case, ω is specified and kept real, and (1) is then solved
for complex α, and −αi > 0 marks the onset of convective instability for a given
combination of ωr and R. A Gaster (1962, 1965) transformation can be used to
obtain an approximate relationship between the temporal and spatial growth rates,
namely

−αi � ωi

cg

, (2)

where cg = dω/dα is the local group velocity. So ωi > 0 remains the criterion for
convective instability. Evidently the Gaster transformation can only be used when
the group velocity is finite (Gaster 1968), i.e. when a wavepacket would be convected
away from its point of origin, as in figure 1(a). For absolute instabilities (figure 1b)
there is true exponential temporal growth at a given spatial location. Plainly, the
group velocity must be locally zero for absolute instability. However, this is not a
sufficient condition (e.g. in the case of the rotating disc the group velocity is zero
when the Types I and II eigenmodes coalesce, but the result is algebraic growth
followed by convective instability, rather than absolute instability). In order to detect
absolute instability one must allow both α and ω to be complex in the dispersion
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Figure 1. Schematic sketches of the evolution of a wavepacket generated by an impulse.
(a) Convective instability. (b) Absolute instability.

relation (1), and use it to investigate the nature of the Green’s function corresponding
to the response of the flow to an impulse. Absolute instability is then indicated by
the existence of a pinch-point in the complex α-plane, as originally demonstrated
by Briggs (1964) (see Huerre & Monkewitz 1990; Lingwood 1995, 1997a). The value
of ωi corresponding to the pinch-point gives the non-dimensional absolute temporal
growth rate, ωa,i .

In figure 2(a), we depict the characteristics of the convective and absolute
instabilities for the rotating-disc flow. In this case both absolute and convective
instability set in at distinct spatial locations. Formally the flow remains unstable for
all R > Rc (the critical Reynolds number for the onset of convective instability).
According to Lingwood (1995, 1997b) the critical value of the Reynolds number
for convective instability is about 290 and that for absolute instability is Ra =507.3
(corrected in Lingwood 1997b from the value of 510.6 given in Lingwood 1995).
Furthermore, as shown in figure 2(a), the maximum values of both ωi and ωa,i

are their asymptotic values as R → ∞. The asymptotic value of (ωa,i)max given in
figure 2(a) is taken from Lingwood (1995). This apparently distinguishes it from the
flows studied and reviewed by Huerre & Monkewitz (1990) for which the maximum
absolute growth rate occurred at finite values of R. For the rotating disc, one should
include the real azimuthal wavenumber, β , as a parameter in (1) as well as R. For
this reason the dependence of the region of absolute instability on both R and β is
sketched schematically in figure 2(b). Figure 2(b) also plots the asymptotic absolute
stability boundaries. The value for the upper branch, namely β = 0.265R, was given
by the inviscid analysis of Lingwood (1995), whereas the lower branch, β = 0.026R is
given by the recent analysis of Peake & Garrett (2003). Plainly, for a given R the flow
is only absolutely unstable for a range of values of β . (It should be noted that, in
fact, only integer values of β are physically admissible; but for simplicity β is shown
as continuously varying in figure 2b.)

In an important respect, however, the results presented in the previous paragraph,
while formally correct, are misleading. This is because as R → ∞, the azimuthal
wavenumber corresponding to (ωa,i)max varies as β � 0.1R. Thus the values of
(ωa,i)max plotted schematically in figure 2(a) do not correspond to fixed β . In fact,
as pointed out by Peake & Garrett (2003), the absolute growth rate for fixed β

not only exhibits a maximum, but only remains positive for a fixed range of R.
This also follows from the finite range of β corresponding to instability depicted in
figure 2(b). The growth rate for constant β is depicted as the short-dashed curve
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Figure 2. Schematic sketch depicting the characteristics of the local instability of the
rotating-disc boundary layer. (a) Maximum growth rates vs. R; - - -, growth rate for fixed β .
(b) Neutral curve defining the region of absolute instability; the labelled data points denote
the conditions for the various numerical simulations presented in § 3.

plotted in figure 2(a). Note that this curve is schematic only and does not provide a
reliable guide to the magnitude of the maximum growth rate nor to the relative extent
of the absolutely unstable region. Some idea of this can be deduced from the lower
asymptote β = 0.026R plotted in figure 2(b). From this we estimate that the abso-
lutely unstable regime for the critical azimuthal wave-number, β = 67, extends to
R � 2600.

Normally the region of absolute instability over the rotating disc is formally semi-
infinite in extent in R. And even for constant β absolute instability is found over a
wide range of R. It is possible, however, as explained below, to make it finite and
even relatively short, and therefore more similar to the cases discussed by Huerre &
Monkewitz (1990) and other authors. Cooper & Carpenter (1997b) showed that only



Absolute instability of the rotating-disc boundary layer 293

a slight degree of wall compliance is required to push the absolute instability much
further outboard or to eliminate it entirely. Thus by making the disc surface compliant
beginning at a radial location well into the absolutely unstable region, we can obtain
a flow that is absolutely unstable in a relatively small finite region.

It was our intention at the outset of our study to address three key questions. First,
is the existence of the semi-infinite region of absolute instability depicted in figure 2
associated with an amplified linear global response such that a typical flow variable

A ∼ e−iωGt (3)

(where ωG = ωG,r + iωG,i is complex and ωG,i > 0)? Secondly, if it is, what is the value
of ωG and how is it determined? Lastly, in the case with a partially compliant surface,
how large does the region of absolute instability need to be to elicit a linear global
response of the form (3)? We investigated these questions by means of a numerical
simulation of the complete, linearized, Navier–Stokes equations.

What guidance for investigating these questions do previous theoretical studies
offer? The forced linearized Ginzburg–Landau equation, namely

∂A

∂t
+ U

∂A

∂x
= µA + γ

∂2A

∂x2
+ H (t)F (t)δ(x), (4)

is one of the simplest systems that exhibits absolute instability. Here the system is
forced at the point x = 0 and the time variation of the forcing such that it is ‘switched
on’ at t = 0. The global instability of this equation with spatially inhomogeneous
coefficients has been investigated by various authors. In such cases, for the purposes of
theory the ‘slow’ spatial variable, X = εx (where ε is a small parameter, typically 1/R)
in a WKBJ approximation is regarded as complex. For example, Chomaz, Huerre &
Redekopp (1988) investigated the case of linearly varying µ = µ0 + µ1x (where
µ1 < 0). They established fundamental results that are central to the questions of
how the existence of global modes and the selection of their complex frequency are
connected to the local instability behaviour corresponding to µ = µ0 = const. (See
also Huerre & Monkewitz 1990.) They examined the global behaviour for fixed µ1 as
µ0 was increased from an initially negative value. Absolute instability occurs when
µ0 exceeds the critical value µa . But it was necessary for µ0 to exceed µG > µa before
the system became globally unstable. In other words the region of local absolute
instability had to reach a certain threshold size before global instability ensued.
(See, also, the WKBJ global stability analysis of the vorticity transport equation for
non-parallel shear flow by Monkewitz, Huerre & Chomaz 1993.) On the question of
how the global frequency is selected, Huerre & Monkewitz (1990) proved that ωG

corresponded to the frequency ωa(Xs) of the absolutely unstable local mode located
at a saddle point Xs in complex X-space. This selection principle differs from early
suggestions made by Pierrehumbert (1984), Koch (1985) and Monkewitz & Nguyen
(1987). It follows from the Huerre–Monkewitz selection principle that the global
growth rate satisfies the following inequality:

ωG,i � ωa,i(Xs) � (ωa,i)max. (5)

This implies that a necessary, but not sufficient, condition for global instability is the
existence locally of absolute instability. These principles have been rigorously proved
by Chomaz, Huerre & Redekopp (1991) for a class of Ginzburg–Landau equations
within the WKBJ framework. Hunt & Crighton (1991) also found that the frequency-
selection principle is exact in their study of the global instability of the linearized
Ginzburg–Landau equation.
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In the case of the rotating disc, the fact that ∂(ωa,i)max/∂R → 0 as R → ∞ might
seem to suggest that the equivalent of the saddle point Xs used to determine the
complex global frequency by Huerre & Monkewitz is located at R = ∞. If this
were so, then the Huerre–Monkewitz approach would be ill-posed in the case of the
rotating disc. However, as pointed out above, for fixed β the absolutely unstable
region is finite in extent. This suggests that the saddle point is located at a finite value
of R. Very recently, Peake & Garrett (2003) have carried out an inviscid analysis of
the global linear stability of the rotating-disc flow that shows the saddle point occurs
at a finite value of R.

There have also been some experimental studies and numerical simulations of global
instability. On the whole these are in accordance with the theoretical picture emerging
from the studies of the Ginzburg–Landau equation. Most notable are the various
experimental and numerical studies of the cylinder wake, reviewed by Huerre &
Monkewitz (1990) and briefly discussed above. The global instability of other wake
flows has also been investigated by numerical simulation, e.g. the wakes behind blunt
bodies (Hannemann & Oertel 1989; Oertel 1990), shallow-water flow past bottom
topography in the form of a circular bump (Schär & Smith 1993), and the wake of
a triangular cylinder (Zielinska & Westfreid 1995). Certain jet and plume flows have
also been found to exhibit global instability, e.g. hot jets (as reviewed by Huerre &
Monkewitz 1990), dripping taps (again, as reviewed by Huerre & Monkewitz 1990, see
also Le Dizès 1997), and, more recently, the flickering candle (Maxworthy 1999) and
the plane wake flow with base suction (Leu & Ho 2000). This last paper illustrates
well how global instability can be eliminated by shrinking the region of absolute
instability, here done by the application of base suction, which eliminates the global
instability, even though it causes (ωa,i)max to rise steeply. Moreover the level of base
suction required to suppress the global instability is reasonably well predicted by the
application of the WKBJ theory of Monkewitz et al. (1993).

Plainly, however, for our present investigation the most important experimental
study is Lingwood (1996) that was aimed specifically at corroborating her theoretical
discovery of absolute instability in the rotating-disc flow. It is immediately clear from
her results that there is not a global response for the entire flow field. This had to
be so, of course, otherwise the absolute instability would have been discovered much
earlier. In her experiment the impulse excitation is triggered at a radial location,
Re, well inboard of Ra (the critical value for absolute instability). For this case
Lingwood proposed that the global response be as depicted in figure 3(a), where
the wavepacket propagates initially as a convective instability, but its trailing edge
turns as it approaches Ra and tends towards a vertical line RG, say, where RG is
a little greater than Ra . She does not make any suggestions about other aspects
of the global response. For example, does the flow downstream of R = RG possess
the same complex global frequency (i.e. oscillate at the same frequency and grow
at the same exponential rate)? This would seem somewhat unlikely in view of the
clearly convective nature of the part of the wavepacket in the vicinity of its leading
edge. Lingwood’s experimental results (see her figure 15) are certainly consistent with
the model depicted in figure 3(a). But, the main reason the experimental data carry
conviction in supporting the view summarized in figure 3(a), is that they appear to
corroborate her theory which, of course, is a purely local analysis. No evidence is
available with regard to the existence of an amplified linear global response of the
form (3). Nor is this to be expected, for, as Lingwood herself pointed out, in reality
nonlinear effects would determine the final form of the global response. It is worth
noting, perhaps, that the available theoretical and computational evidence on such
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Figure 3. Typical wavepacket evolution for the rotating-disc boundary layer according to
Lingwood’s conjecture. Impulsive excitation (a) at Re < Ra < RG (based on figure 1c of
Lingwood 1996); and (b) at Re > RG > Ra .

nonlinear effects (e.g. Hannemann & Oertel 1989; Zielinska & Westfreid 1995; Pier &
Huerre 1996) suggests that the form of the linear global mode is qualitatively
preserved, with nonlinear effects leading to saturation and in some cases causing
the global frequency to rise slightly. The exception to this is the steep nonlinear global
mode discovered by Pier et al. (1998) which may be more relevant in the present
case.

In contrast, our numerical simulations presented herein suggest that the global
behaviour of disturbances propagating in the rotating-disc boundary layer is
dominated by convective instability at all radii (i.e. Reynolds numbers). There is no
evidence of a persistent globally amplified mode of the form (3), indeed there is
counter-evidence. The picture emerging from our study is best sumarized schematically
in figure 4. Figure 4(a) shows the case when the boundary layer is forced impulsively
in the region of convective instability. It corresponds to Lingwood’s experiment and
to her interpretation shown in figure 3(a). Figure 4(a) is quite similar to figure 3(a)
and consistent with Lingwood’s experimental data. However, the trailing edge of the
wavepacket shows no sign of asymptoting to a vertical line anywhere near the critical
value of Ra � 507. Moreover, we give additional evidence showing that the long-term
behaviour is convective. A numerical simulation has the advantage compared with
an experiment that it is feasible to place the impulsive excitation at a location well
beyond Ra . This would correspond to figure 3(b). If an amplified global mode exists,
this arrangement would surely be more likely to reveal it than the one corresponding
to figure 4(a). Figure 4(b) shows schematically what we believe our simulations imply
about both the short- and long-time behaviour. Initially, the wavepacket behaves in
a manner consistent with an absolute instability and strong local temporal growth
occurs as well as upstream propagation. This is not sustained, however; it seems that
once the trailing edge of the wavepacket reaches a position near R = Ra , it begins
to turn and eventually reverses direction. Ultimately at large times the wavepacket
behaves convectively. The situation seems analogous to algebraic growth in that there
is strong temporal growth locally for a short duration, presumably strong enough for
nonlinear effects to enter and lead to transition. Like the algebraic growth investigated
in I, ultimately it is dominated by the strong convective instability. In many ways, it is
the reverse of the scenario described by Huerre & Monkewitz (1990) and found in the
cylinder wake, for example, whereby a region of absolute instability acts as a global
oscillator and dominates the downstream region of nominally convective instability.
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Figure 4. Schematic sketches of typical wavepacket evolution for the rotating-disc boundary
layer as revealed by our numerical simulations. Impulsive excitation (a) at Re < Ra; and
(b) at Re > Ra .

For the rotating disc the upstream convective behaviour appears to be so strong that
it dominates the extensive downstream region of absolute instability.

Our results do not seem to conform with the previous work on the global behaviour
associated with absolute instability. Evidence from two recent sources, however,
strongly suggests that the global response found in our study is not anomalous. First,
Monkewitz (2001, personal communication) points out that the behaviour depicted in
figure 4(b), whereby the trailing edge of the evolving wavepacket turns back on itself,
can be reproduced qualitatively by the linearized Ginzburg–Landau equation (4).
All that is required is for the growth rate in (4) to vary as µ = µ0 +µ1X with complex
coefficients such that Re(µ1) > 0. This corresponds qualitatively, more or less, with the
rotating-disc characteristics illustrated schematically in figure 2(a). Hunt & Crighton
(1991) did not consider this case with complex µ explicitly. But, as Monkewitz
explains, the generic behaviour referred to above can be deduced fairly easily from
the exact Green’s function (equation 31 of Hunt & Crighton). He further explains that



Absolute instability of the rotating-disc boundary layer 297

the reason why this behaviour only occurs for complex µ1 in the Ginzburg–Landau
model is intuitively understandable, since the downstream edge reaches more and
more ‘oscillators’ at frequencies that are increasingly different (without bound) from
the absolute frequency at any given spatial location.

The other recent evidence that supports the results of our study is due to Peake &
Garrett (2003). They carried out a global, linear, inviscid, stability analysis of the
boundary layer on rotating bodies including the rotating disc as a special case. They
find the saddle point that plays a crucial role in the Huerre–Monkewitz approach
is located at a finite (complex) value of non-dimensional radius. And, even more
significantly, they find that the linear global mode is damped, in agreement with the
results of our numerical-simulation study. These results may not be in conflict with
the inequality (5) and other principles laid out by Huerre & Monkewitz (1990) and
subsequent workers. It is just that for the rotating disc even a semi-infinite region
(finite, but extensive, for fixed β) of absolute instability is insufficient for an amplified
global response.

The remainder of the paper is set out as follows. The theoretical and numerical
approach has been presented in detail in I, so only fairly brief descriptions are given
in § 2. Section 3 is the main section of the paper. Here we present the results of
our numerical-simulation study of the global behaviour of impulsively generated
disturbances in the boundary layer of a rigid rotating disc. We study both cases which
are convectively unstable in the equivalent spatially homogeneous flow and those that
are absolutely unstable. In § 4 we investigate the effects of replacing part of the rigid
disc in the absolutely unstable region with a compliant annulus. Finally, conclusions
are given in § 5.

2. Theoretical and numerical approach
The theoretical and numerical approach is fully described in I. Accordingly, only

an outline will be given here.
For the rotating disc the dimensional flow field is defined with respect to a cylindrical

coordinate system (r∗, θ, z∗) that is fixed relative to the disc which rotates at speed
Ω . The asterisks denote dimensional length coordinates. The undisturbed flow field
in this coordinate system is given by the dimensional velocity vector

U∗ = (U ∗
r , U ∗

θ , W ). (6)

These velocity components are related to the von Kármán (1921) similarity solution
(F (z), G(z), H (z)) (where z = z∗√

Ω/ν and ν is the kinematic viscosity of the fluid)
for the rotating-disc boundary layer as follows:

U ∗
r = r∗ΩF (z), U ∗

θ = r∗ΩG(z), W =
√

νΩH (z). (7)

Thus the boundary-layer displacement thickness, δ∗ = (ν/Ω)1/2, is used as the reference
length scale for non-dimensionalization; but we also introduce another length scale,
namely r∗

r – a reference value of the radial coordinate. Thus r = r∗/δ∗ and the
Reynolds number is defined as R = r∗

r /δ
∗; r∗

r Ω is used as the reference velocity,
1/(RΩ) as reference time, RΩ as the reference vorticity and ρr∗2

r Ω2 as the reference
pressure. Note that there is some slight variation in notation from I where Ω was
used for undisturbed vorticity rather than rotation speed as here.
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Perturbations to the velocity and vorticity fields are introduced that in non-
dimensional form are denoted by

u = (ur, uθ , w), ω = (ωr, ωθ , ωz). (8)

It was shown in I that, subject to rather general conditions as z → ∞ that are
definitely satisfied in the present case, the Navier–Stokes equations are fully equivalent
the following system of governing equations for the primary variables (ωr, ωθ , w):

∂ωr

∂t
+

1

r

∂Nr

∂θ
− ∂Nθ

∂z
− 2

R

(
ωθ +

∂w

∂r

)
=

1

R

{(
∇2 − 1

r2

)
ωr − 2

r2

∂ωθ

∂θ

}
, (9)

∂ωθ

∂t
+

∂Nr

∂z
− ∂Nz

∂r
+

2

R

(
ωr − 1

r

∂w

∂θ

)
=

1

R

{(
∇2 − 1

r2

)
ωθ +

2

r2

∂ωr

∂θ

}
, (10)

∇2w =
1

r

(
∂ωr

∂θ
− ∂(rωθ )

∂r

)
. (11)

where

N = (Nr, Nθ, Nz) = (∇ × U) × u + ω × U + ω × u︸ ︷︷ ︸
nl

. (12)

The secondary variables are defined in terms of the primary ones as follows:

ur = −
∫ ∞

z

(
ωθ +

∂w

∂r

)
dz, (13)

uθ =

∫ ∞

z

(
ωr − 1

r

∂w

∂θ

)
dz, (14)

ωz =
1

r

∫ ∞

z

(
∂(rωr )

∂r
+

∂ωθ

∂θ

)
dz. (15)

Only the perturbations are to be determined in the numerical simulation. In the
present study we are only interested in disturbances with vanishingly small amplitude,
so we linearize the governing equations by simply omitting the term labelled nl in
(12). The resulting system of equations is fully equivalent to the complete linearized
Navier–Stokes equations. The linearization permits the boundary conditions at the
wall to be simplified in the case when the wall moves in the vertical direction.
Vertical displacement of the wall occurs when the wall is compliant and also in the
vicinity of the perturbation exciter or driver. The linearized no-slip conditions and
the wall-normal zero-displacement conditions become

ur = − r

R
F ′(0)η, uθ = − r

R
G′(0)η, w =

∂η

∂t
at z = 0, (16a, b, c)

where η is the non-dimensional vertical wall displacement. The wall displacement
equals zero for a rigid wall. Otherwise it is either specified, as in the case of the driver,
or governed by the equation of motion for the compliant wall (see I). Substituting
(16a) and (16b) into the definitions (13) and (14) for the secondary variables gives
the following integral constraints on the primary variables which replace the no-slip
conditions (16a) and (16b):∫ ∞

0

ωθ dz =
r

R
F ′(0)η −

∫ ∞

0

∂w

∂r
dz, (17)
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0

ωrdz = − r

R
G′(0)η +

∫ ∞

0

1

r

∂w

∂θ
dz. (18)

Equation (16c) in its original form as a boundary condition acts as the third constraint
on a primary variable.

Linearization makes the problem separable with respect to the azimuthal coordinate
θ , which is particularly convenient given our use of a Fourier spectral representation to
discretize the azimuthal variation. Thus any given perturbation can be represented as a
linear superposition of independent azimuthal modes. We can therefore independently
calculate individual azimuthal modes of the perturbation velocity and vorticity fields
that take the form

(ur, uθ , w) = (ûr , ûθ , ŵ)einθ , (ωr, ωθ , ωz) = (ω̂r , ω̂θ , ω̂z)e
inθ , (19)

where ûr etc. are functions only of r and z, and n is the integer-valued azimuthal
mode number (this notation that recognizes explicitly the integer value replaces β

used in § 1 where, for convenience, the azimuthal wave-number was regarded as a real
number – see figure 2b). The remaining notation is conventional and should be clear.
All coordinates and flow quantities are non-dimensional unless specified otherwise.
Equation (19) is an inevitable consequence of linearization and not an additional
assumption. No other assumptions are made about the form of the perturbations.

As described in I, a fourth-order, centred, compact finite-difference scheme is used
for discretization in the r-direction, a Chebyshev spectral scheme used in the wall-
normal, i.e. z-direction, and Fourier spectral scheme used in the azimuthal direction. As
explained above, for a linear simulation, this form of azimuthal discretization permits
us to treat each azimuthal mode independently. Some of the simulations reported
below were also repeated using higher-order finite-difference schemes in order to
check that the phase errors with the fourth-order scheme were not significant.

All perturbation quantities are set equivalent to zero at the radial inflow boundary.
Various strategies for dealing with the outflow boundary condition are described in I.
For the numerical simulations described herein, that are particularly sensitive because
of the issue of absolute instability and possible global instability, we always took care
to assess whether there were any spurious effects that could be attributed to the outflow
(i.e. outer) radial boundary. Whenever possible, we ensured that the outflow boundary
remained well ahead of any disturbance with a discernible magnitude. However, for
some simulations it was necessary to undertake very long time integrations in order
to identify with confidence the qualitative form of the disturbance evolution. As a
consequence, even with the use of an extremely long computational domain, e.g.
router − rinner � 2500, it was not possible to ensure that the disturbance amplitude
always remained negligible at the outer radial boundary. In such cases strict tests were
carried out to confirm that, within the relatively small region of interest where we
were investigating the form of the disturbance in detail, there was no contamination
of the perturbation flow field due to spurious transmission effects being fed back from
the outer computational boundary. In practice, such checking involved the repetition
of simulations using computational domains of increasing radial extent. Additional
details are given in the Appendix. Anticipating the discussion of our results, it is
interesting to note that when the radial extent of the computational domain was
insufficient to avoid unwanted feedback, this was found to lead to spurious temporal
growth.
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3. Numerical simulations for rigid rotating discs
In I we investigated disturbances excited by time-periodic motion of the surface.

We now consider the development of disturbances generated by a localized impulsive
wall motion. The wall displacement η is taken to be of the form

η(r, θ, t) = a(δr) b(t) einθ , δr = r − re, (20)

with the temporal impulse given by

b(t) = (1 − e−σ t2 ) e−σ t2 . (21)

Typical forms for the function a used to localize the forcing motion around a given
radius r = re were described in I. As before, n is the azimuthal mode number. The
parameter σ , which fixes the duration of the impulse, was chosen to be large enough
for a broad range of temporal frequencies to be incorporated in the excitation. Its
magnitude, and hence the highest effective frequency excited, was limited only by the
need to retain full temporal resolution of the impulse.

Numerical simulations were conducted first with the fluid governing equations
simplified according to the so-called parallel-flow approximation, i.e. the equations
were made spatially homogeneous.† Results from these simulations were found
to conform with the theory of Lingwood (1995). In particular, the existence of
absolute instability could be inferred from the temporal behaviour of the simulated
disturbances at Reynolds numbers and azimuthal mode numbers lying within the
absolutely unstable region determined by Lingwood (see figure 2b). In order to keep
our exposition concise, we defer until later any further discussion of the results
obtained with the approximate, SH, governing equations. Attention will instead be
focused on the behaviour of disturbances that evolve in the real SI boundary layer.

Convective instability

Figure 5 shows time histories, at successive radial locations, for a disturbance with
azimuthal mode number n= 32 triggered by an impulse centred at re = 500. (This
combination is denoted by Point 1 in figure 2b.) The azimuthal component of the
vorticity ωθw at the wall is plotted for a fixed value of θ , along with the corresponding
envelopes ±|ωθw| obtained from the complex-valued amplitude. (No particular
significance should be attached to our repeated selection of ωθw as a convenient
flow-field variable when we discuss the evolution of disturbances. The description of
disturbance behaviour, particularly with regard to distinctions between absolute and
convective instability, would not need to be altered in any fundamental, qualitative,
manner if some other flow-field variable, such as the disturbance energy, were
monitored instead of ωθw . However, as would be expected, the mean-flow SI has
the effect of making any calculation of spatial growth rates dependent, to some
extent, on the variable selected for measuring the disturbance amplitude. Since we are
mostly concerned with detecting the presence or absence of temporal growth, such
subtleties need not detain us any further here.)

From figure 5(a), it can be seen that the disturbance decays rapidly at r = re. For
r > re, there is an initial period of quiescence while the disturbance propagates towards
the given location and away from its source. As would be expected, the length of this
quiescent time interval increases with the radius. When the disturbance eventually

† Hereafter the abbreviations SH and SI will be used respectively for spatially homogeneous and
spatially inhomogeneous (or spatial inhomogeneity).
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Figure 5. Time histories for ωθw (solid lines), together with corresponding envelopes ±|ωθw|
(broken lines), for an impulsively excited disturbance. n= 32 and re = 500. (a) r = re = 500,
(b) r =525, (c) r = 550, (d) r =575. T = 2πR is the non-dimensional time period for the disc
rotation.
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Figure 6. Spatio-temporal development of |ωθw| for an impulsively excited disturbance with
n= 32. The impulsive disc surface motion used to excite the disturbance was centred at re = 500.
(The contours are drawn using a logarithmic scale with levels A2m for m= 0, 1, 2 . . . , where A
is an arbitrary normalization factor.)

reaches each of the indicated radial positions, there is a period of growth followed
by a relatively slow decay. Such behaviour is clearly indicative of the convective
nature of the disturbance. That the flow is strongly unstable is evident from the radial
growth in the disturbance apparent in figure 5 when account is taken of the different
scales used for the axes in the separate plots. The convectively unstable character
of the disturbance is even more plain in the spatio-temporal contour plots of |ωθw|
that are displayed in figure 6. It is possible to identify both the leading and trailing
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Figure 7. Time histories for ωθw (solid lines), together with corresponding envelopes ±|ωθw|
(broken lines), for a disturbance with n= 75 that is impulsively excited at re =500.
(a) r = re =500, (b) r = 525, (c) r = 550, (d) r = 575.

edges of a radially extended disturbance wavepacket. Both ends of the wavepacket
propagate outwards with non-zero radial velocities, the leading edge travelling rather
more quickly than the trailing edge.

Disturbances that are absolutely unstable according to a local SH analysis

We next consider an impulsively excited disturbance with azimuthal mode number
n= 75. According to Lingwood’s (1995) local SH analysis this disturbance should
be absolutely unstable for r greater than approximately 520. Figure 7 presents the
temporal development of the disturbance at successive radial locations. As before,
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Figure 8. Spatio-temporal development of |ωθw| for an impulsively excited disturbance with
n= 75. The impulsive disc surface motion used to excite the disturbance was centred at re = 500.
(Contours drawn using a logarithmic scale, as in figure 6.)

excitation was located at re = 500. (See Point 2 in figure 2b.) It can be seen that the
disturbance still decays at r = re, but much less rapidly than for n= 32. At r = 525
there is a period of growth followed by a relatively weak decay. Further out, at r = 550
and r =575, the disturbance exhibits continuous growth over the whole of the time
interval considered. This behaviour provides a marked contrast with the brief growth,
followed by decay, exhibited at the corresponding radial positions when n= 32.

The spatio-temporal development of the disturbance with n= 75 is also displayed in
figure 8, using contour plots of |ωθw|. It may be seen that the leading edge propagates
radially outwards with a non-zero velocity comparable to that found when n= 32.
However, the trailing edge behaviour is very different than found previously. From
a comparison with figure 6, it appears that the trailing edge propagates much more
slowly for n= 75 than for n= 32. In fact, the contour plots suggest that the radial
velocity of the trailing edge may be approaching zero as the disturbance develops.
Such behaviour would be expected if the disturbance exhibited persistent temporal
growth at sufficiently large radii. Examination of the numerical simulation data
confirmed that, for the time interval of the simulation, there was continual growth
for all radial positions beyond r � 535. This result may be checked by undertaking
a graphical analysis of the contours displayed in figure 8. Locations where there is
temporal growth can be determined from the intersections between the contours and
vertical lines drawn at each selected radial position.

A more detailed examination of the simulation data plotted in figure 8 revealed
that the temporal growth of the disturbance at any fixed radial position was much
weaker than the convective growth occurring along the trajectory of the maximum
of the wavepacket amplitude. For instance, at r = 550 the disturbance amplitude,
as measured by ωθw , grows by a factor O(23) between t = 0.2 T and t = 0.4 T , where
T = 2πR is the non-dimensional time period for the disc rotation. The amplitude then
grows more weakly, by a further factor less than 2, between t = 0.4 T and t = 0.6 T .
Over the first of these two time intervals the location of the maximum amplitude of
the disturbance wavepacket shifts radially outwards from r � 545 to r � 600 and the
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Figure 9. Development of the maximum value of |ωθw| for disturbance wavepackets generated
by impulsive excitation centred about re = 500 for n= 75 and n= 32. (a) Radial trajectories
of the amplitude maxima; (b) magnitudes of the maxima plotted on a logarithmic scale.
For both n= 75 and n= 32 the magnitudes have been normalized so that they are equal to
unity for t = 0.1T . With such a normalization, the quantity displayed in (b) is defined to be
M = log2 |ωθw|max where the maximum is taken over all radial locations for each time instant.

magnitude of the maximum grows by a comparatively large factor O(26). During the
second of the stated time intervals the maximum disturbance amplitude grows by a
still larger factor O(27) and moves out to r � 665. Figure 9 displays the trajectory
and amplification of the wavepacket maximum, both for n= 75 and n= 32. From
the plots of the trajectories it may be seen that the maximum in the disturbance
wavepacket amplitude propagates outwards slightly more quickly for n= 32 than for
n= 75, but otherwise the paths taken are quite similar. Thus the disparity that was
noted between the radial velocities of the trailing edges is not reflected in the radial
propagation of the wavepacket maxima. Further similarities in the evolution of the
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Figure 10. Time histories for ωθw (solid lines), together with corresponding envelopes ±|ωθw|
(broken lines), for a disturbance with n= 75 that is impulsively excited at re =550. (a) r = 525;
(b) r = re = 550; (c) r = 575; (d) r = 600.

disturbance wavepacket maxima for n= 75 and n= 32 are evident from the plots of
the magnitudes of the maxima that are plotted in figure 9(b). It can be seen that
for early times, at least, the amplification experienced by the disturbance wavepacket,
when measured in terms of the maxima of the ωθw , is not greatly different for n= 75
and n= 32.

In contrast, the time histories plotted in figure 10 provide further illustration of
disturbance behaviour that appears to be more characteristic of an absolute instability.
The azimuthal mode number is again taken to be n= 75, but the disturbance is now
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Figure 11. Spatio-temporal development of |ωθw| for an impulsively excited disturbance with
n= 75. The impulsive disc surface motion used to excite the disturbance was centred at re =550.
(Contours drawn using a logarithmic scale, with levels separated by factors of two.)

impulsively excited at re =550 (see Point 3 in figure 2b) instead of at re = 500.
The excitation now lies well inside the absolutely unstable region according to the
SH linear stability theory of Lingwood (1995) – in fact, the situation corresponds to
figure 3(b). It can be seen that there is temporal growth at all selected radial positions.
In particular, the disturbance grows at r = re =550. It also grows at r = 525 < re. At
this inward position the surface motion associated with the ‘impulsive’ forcing was
relatively small, but not completely negligible. Nevertheless, we do not believe that
the continual temporal growth observed at r = 525 is simply the localized response
to a locally prescribed wall motion of small but finite extent. Temporal growth was
not sustained at r = 525 for the previous case with re =500 (see figure 5), yet the
distance from the centre of the excitation is the same, albeit in the opposite radial
direction, and consequently the small wall motion associated with the forcing would
have been very similar. These differences in the disturbance behaviour at r = 525,
between two simulations conducted with different forcing locations, show that there
can be upstream information transmission in the radial direction. Stronger evidence
for the existence of substantial radially inward propagation effects can be obtained
by examining the overall development of the disturbance wavepacket for n= 75 and
re = 550, using spatio-temporal contour plots, as before. From the contours displayed
in figure 11 it is evident that, over the time interval considered, the trailing edge of
the disturbance propagates along the inward radial direction, rather than radially
outward as was the case when the excitation was applied at re = 500. However, it
may also be observed that the temporal growth experienced by the disturbance at any
given radial position remains rather weak in comparison with the convective growth
revealed by tracing the wavepacket amplitude maximum.

Figure 12 presents results from a simulation of disturbance evolution from an
impulsively excited disturbance in the approximate SH flow. The azimuthal mode
number was again taken to be n=75 and the Reynolds number set equal to R = 550,
in order to facilitate comparisons with the SI simulation described immediately above.
A comparison of figures 11 and 12 makes it plain that the inward radial propagation is



Absolute instability of the rotating-disc boundary layer 307

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
525 550 575 600 625 650

t
T

r

Figure 12. Spatio-temporal development of |ωθw| an impulsively excited disturbance in a
spatially homogeneous flow. The azimuthal mode number is n= 75 and the Reynolds number
is R = 550. The arbitrary origin for the radial coordinate has been chosen so that the impulsive
disc surface motion was centred at re = 550. (Contours drawn using a logarithmic scale, with
levels separated by factor of two.)

more pronounced in the SH case. This is as might be expected. For the SI simulation,
the radially inward direction corresponds to decreasing Reynolds numbers and hence
decreasing instability for the disturbance. When the SH approximation is applied,
all radial locations become equivalent because they are all associated with the same
Reynolds number. Consequently, the disturbance is not subject to any stabilization
as it propagates radially inwards. The effects of the mean-flow SI on the evolution
of the wavepacket amplitude maximum are also as might have been anticipated.
In the real SI flow the radially outward propagation exhibited by the amplitude
maximum is associated with an increasing local Reynolds number, and hence with
greater instability. Thus the temporal growth of the wavepacket amplitude maximum
is enhanced, as may be confirmed upon making reference, once more, to the detailed
differences between the contours plotted in figure 11 and figure 12.

Further comparisons between the data obtained from the SI and SH simulations
reveals the existence of more subtle effects attributable to the mean-flow SI. Figure 13
contains a plot that illustrates the temporal evolution of the disturbance for the SH
case with R =550. The figure also includes a replot of the evolution obtained at the
corresponding radial position re = 550 in the real SI boundary layer. It can be seen
that the two plotted curves are quite close together for the early part of the time
interval. However, over a longer time period, there is weaker accumulated growth
in the SI case, together with a phase shift that is indicative of disparate temporal
frequencies. Differences in the growth rates and the frequencies can be identified, in
a more precise manner, by considering the complex-valued quantity defined by

β̃ =
i

A

∂A

∂t
,

where A is some measure of the disturbance amplitude that is known for each radial
position and time instant. In keeping with what was done before, we will choose
ωθw for A. Provided that β̃ is found, in practice, not to vary too rapidly in either
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Figure 13. Comparison of the variation of ωθw for a disturbance with n= 75 evolving in
spatially homogeneous and inhomogeneous flows. The temporal development is shown for the
radius r = re where the impulsive excitation was centred. Solid line: inhomogeneous flow with
re = 550; dashed line: homogeneous flow with R = 550.

space or time, its real and imaginary parts may be interpreted as being, respectively,
the local temporal frequency and the local temporal growth rate of the disturbance.
This interpretation presumes that there is only a single mode of disturbance with a
significant level of excitation at any specific radial location and time. The identification
of the real and imaginary parts of β̃ as the unique local temporal frequency and growth
rate would not be appropriate if there were a superposition of a number of discrete
modes of disturbance, each with a different characteristic frequency.

Figure 14 displays the local temporal frequencies and growth rates, computed using
ωθw , for the SH simulation. Plots are given for r = re and for an additional three
equally spaced positions that are taken radially inwards and outwards from r = re. It
may be observed that there is a constant-frequency response at r = re. (Note that the
evolution for the very earliest times has been deliberately omitted from the figure. This
has been done to avoid difficulties of interpretation during the initial transient phase.
Owing to the impulsive forcing many other modes of disturbance are initially excited
with a wide range of frequencies. These other modes may initially obscure the single
mode that eventually becomes dominant.) The temporal frequency of the disturbance
at the other three radial positions can be seen to asymptote to the constant frequency
found at r = re. It may be surmized that, as time passes, the response at every radial
position settles upon a single frequency. This behaviour is not very surprising, since all
radial positions are equivalent for the approximate SH flow. The equivalence between
different radial positions is also evidenced by the plots for the locally defined temporal
growth rates. It appears that, for all of the selected radial positions, the growth rates
asymptote to a constant value. However, the asymptotic approach to a constant
value, at any given radial location, is somewhat more protracted for the growth rates
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Figure 14. Local temporal frequencies β̃rR and temporal growth rates β̃iR for a disturbance
with n= 75 in a spatially homogeneous flow for R =550. The temporal development is plotted
for four different radial positions: (i) r = re , (ii) r = re − 25, (iii) r = re + 25, (iv) r = re + 50.

than for the frequencies. Thus for the SH flow, as expected from Lingwood’s (1995)
analysis, a response of the form (3) is generated.

Figure 15 displays local temporal frequencies and growth rates that were obtained
from the SI simulation. The selected radial positions are the same as for figure 1.
It is immediately obvious that in this case there is no tendency to asymptote to a
constant frequency. The local frequencies evolve, initially, in the same manner as for
the SH case. But after the initial period their magnitudes fall at all radial locations.
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Figure 15. Local temporal frequencies β̃rR and temporal growth rates β̃iR for a disturbance
with n= 75 developing in a spatially inhomogeneous flow. The impulsive excitation was
centred at re = 550. The temporal development is plotted for four different radial positions:
(i) r = re =550; (ii) r =525; (iii) r = 575; (iv) r =600.

(Note that the frequencies are negative in figures 14 to 16.) The local temporal growth
rates also exhibit significantly different behaviour compared with the SH flow. For
all radial locations the long-term trend is for the growth rate to diminish steadily
with time. It appears from this trend that the growth rates would eventually either
asymptote to zero or become negative. Unfortunately, longer simulations, which could
have confirmed whether or not the disturbances ultimately decayed, were extremely
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difficult to carry out. Convergence problems were encountered with the iteration
scheme used to solve the discretized governing equations, owing to the very large
range of disturbance magnitudes that developed within the computational domain.
In the absence of any nonlinearity, the maximum amplitude of the disturbance
wavepacket was free to exhibit unhindered exponential growth. (For t/T ∼ 1.4 the
maximum disturbance wavepacket amplitude was more than O(1020) times larger
than the amplitude found at r = re. The incommensurability between the temporal
growth at a fixed radial position and the growth obtained by following the trajectory
of the wavepacket amplitude maximum was discussed above.)

These simulation results suggest that the global behaviour may well be convective.
But numerical problems prevented us from continuing the simulations for a sufficiently
long time to provide more definite evidence. To overcome these numerical problems
we carried out another series of simulations for which re = 530 and n= 67. These
parameters still lie well within the region of absolute instability – see Point 4 in
figure 2(b) – but the absolute instability is less powerful than for the previous
simulation. Figure 16 plots the variations in the temporal growth rates and frequencies
corresponding to these new parameters for both SI and SH simulations. In this case
the closer proximity to the boundary of the absolutely unstable region permits a more
definite identification of the changeover from temporal growth to temporal decay.
The locally defined growth rates and frequencies determined from the SI simulation
are plotted for equally spaced radial positions, as before. For the SH simulation,
the values for the temporal growth rate and frequency are only displayed for r = re,
using the same axes as for the SI results. (The SH frequency agrees exactly with the
absolute-instability frequency given by Lingwood (1995) for the same combination of
parameters.) It is now clear that in the SI flow the growth rates eventually become
negative for all monitored radial locations. Thus the disturbance shows a long-term
decay after an initial period of growth. This is particularly marked for r = re where
little growth occurs at all; for the more outboard radial locations there is much
stronger transient growth before any decay sets in.

The results displayed in figure 16 strongly suggest that the long-term global
behaviour is consistent with convective instability, i.e. the global behaviour is similar
to that found in spatially inhomogeneous systems that are everywhere at most
convectively unstable. The convective nature of the long-term behaviour is even more
clearly apparent in the contrasting ray diagrams presented in figures 17(a, b). The SH
simulation gives a pattern typical of absolute instability. For the SI simulation, on
the other hand, the rays which initially propagate upstream, turn back on themselves
in the manner suggested by figure 4(b). Although there is always room for doubt in
any numerical simulation or physical experiment, the results displayed in figures 16
and 17 unmistakably indicate that the long-term global behaviour is not consistent
with a linear amplified global mode of the form (3), i.e.

A ∼ e−iωGt ,

but is, instead, consistent with convective instability. This conclusion cannot be
dismissed as being due to a minor adjustment in the boundary of the absolute-
unstable region caused by SI. Numerical simulations conducted for both the SI
and SH flows for different azimuthal mode numbers, and also for an impulsive
excitation applied at much higher Reynolds numbers, provided firm evidence that the
convective-like long-term behaviour is, in fact, typical.

For instance a SI flow simulation conducted for n= 75 and re = 650 (see Point 5
of figure 2b) gave local temporal growth rates that showed a very clear long-term
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Figure 16. Local temporal frequencies β̃rR and temporal growth rates β̃iR for a disturbance
with n= 67. For the curves labelled (i)–(iv) the impulsive excitation was centred at re =530
and the flow is spatially inhomogenous. The temporal development is plotted for the radial
positions: (i) r = re = 530; (ii) r = 505; (iii) r = 555; (iv) r = 580. The curves labelled (v) show
the development at the point of impulsive excitation of a similar disturbance in a spatially
homogeneous flow with R = 530. The constant frequency obtained from the simulation for
the homogeneous flow is in exact agreement with the frequency of the absolute instability
predicted by Lingwood (1995).

diminution, when compared with the corresponding SH simulation. The local growth
rates, computed for a range of radii around the impulse location, are plotted in
figure 18, along with the corresponding temporal frequencies. It can be seen that
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Figure 17. Spatio-temporal development of |ωθw| for an impulsively excited disturbance with
n= 67. The impulsive disc surface motion used to excite the disturbance was centred at re = 530.
(a) Spatially inhomogeneous flow; (b) spatially homogeneous flow with R =530. (Contours
drawn using a logarithmic scale with levels separated by a factor of two.)

for the simulation with n= 75 and re = 650, the locally computed temporal growth
rates show the same clear trend, namely to decay, as was previously identified for a
simulation with n= 75 and re = 550. The qualitative form of the temporal behaviour
is retained, despite the fact that increasing the Reynolds number from R = 550 to
R = 650 produces more than double the temporal growth rate for the SH flow with
n= 75. Exactly the same kind of long-term behaviour was found in another example
simulation that was conducted with n= 67 and re = 750 (see Point 6 of figure 2b).
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Figure 18. Local temporal frequencies β̄rR and temporal growth rates β̄iR for a disturbance
with n= 75. For the curves labelled (i)–(iv) the impulsive excitation was centred at re =650
and the flow is spatially inhomogeneous. The temporal development is plotted for the radial
positions: (i) r = re = 650; (ii) r = 625; (iii) r = 675; (iv) r = 700. The curves labelled (v) show
the development at the point of impulsive excitation of a similar disturbance in a spatially
homogeneous flow with R = 650.
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Figure 19. Spatio-temporal development of |ωθw| for an impulsively excited disturbance with
n= 67 and re =311. ×, + denote experimental data points for the leading and trailing edges
of the wavepacket taken from figure 15(b) of Lingwood (1996). (Contours drawn using a
logarithmic scale with levels separated by a factor of two.)

In this case the disturbance was excited at a location even further into the region
of absolute instability, at a radius that corresponds to approximately one and a half
times the critical Reynolds number for the onset of absolute instability in the SH
flow. This is very far beyond any radius at which the rotating-disc boundary layer
has been found to remain laminar in physical experiments.

Comparison with Lingwood’s experimental data

It is not possible to carry out a simulation that exactly mimics the experiment
described in Lingwood (1996). Both the numerical and physical experiments generate
the initial disturbances with excitations that roughly approximate a point impulse.
Thus a wide range of frequencies and azimuthal wavenumbers are generated in each
case. Lingwood excited the disturbances by a pressure pulse generated by a small
transient jet that was triggered once per revolution of the disc. The precise spectral
content of the initial experimental disturbances is not known, but it is likely to differ
considerably from that of the numerically generated disturbances. Thus we cannot
sensibly compare experimental and numerical wavepackets containing many different
azimuthal wave-numbers because we have no way of knowing the relative amplitudes
of the azimuthal modes in the experiment. All we can sensibly do is compare the
numerically simulated development of an impulsively excited wavepacket containing
a single azimuthal mode with that of the experimentally generated wavepacket. The
logical choice for the single azimuthal mode is n= 67, as this is the first to become
absolutely unstable.

Figure 19 displays space–time contours obtained from a SI numerical simulation
of a disturbance with n= 67, that was excited by an impulse centred at re = 311 like
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the experiment. Now the impulse is located well inboard of the region of absolute
instability – see Point 7 in figure 2(b). This situation corresponds to figures 3(a)
and 4(a) and to Lingwood’s (1996) experimental investigation. Lingwood applied a
pressure impulse through a hole in the rotating disc surface and then tracked the
evolution of the leading and trailing edges of the resulting wavepackets. It can be
seen that reasonably good agreement is found in figure 19 between the leading and
trailing edges of the numerically simulated wavepacket and Lingwood’s experimental
data. She argued that her experimental data for the trailing edge of the wavepackets
could be fitted well by a curve that asymptoted to a constant radius as t → ∞. The
constant radius selected corresponded, of course, to the critical value for absolute
instability.

It is only fair to point out that the choice of threshold disturbance amplitude
marking the leading and trailing edges of the numerically generated wavepacket
in figure 19 is somewhat arbitrary. The choice of threshold amplitude makes little
difference to the location of the leading edge, but the precise location of the trailing
edge is quite sensitive to the threshold level chosen. In contrast, the slope of the
trailing edge is insensitive both to the precise value of n as long as it is fairly close
to n= 67, and to the value of the threshold amplitude. Furthermore, only a single
azimuthal mode is included in the numerical simulation, whereas the experimentally
generated wavepacket contains a superposition of azimuthal modes. We have carried
out similar numerical simulations for a range of azimuthal modes corresponding to
values of n between 30 and 75. The azimuthal mode with n= 67 is the first to become
absolutely unstable. This is why it was chosen for figure 19. For r > ra the value of
n corresponding to the most unstable azimuthal mode rises. As n rises up to n= 75,
the slope of the wavepacket’s trailing edge tends to become steeper. The leading
edge is insensitive to the value of n or r . It is plain from figure 19 that the n= 67
mode is initially damped for r > re. What probably happens with the experimental
wavepacket is that at relatively low values of r > re, it is initially dominated by the
most convectively unstable modes (n ∼ 30). But absolutely unstable modes dominate
the wavepacket at later times as r → ra .

Thus we can conclude from figure 19 that the simulations are consistent with the
experiments. Furthermore, the numerical simulation does not appear to be inconsistent
with asymptotic behaviour proposed by Lingwood. It is plausible, on a first inspection,
to believe that the disturbance trailing edge depicted in figure 19 is beginning to
asymptote to a constant radius, rather than propagating further and further away from
its source at re =311. Unfortunately it was not possible with Lingwood’s experiments
to follow the development of the wavepacket for times beyond about t/T =2.6 and
to higher values of r in order to establish more certainly that the trailing edge really
does asymptote to a constant radius. Equally we cannot continue the numerical
simulation for times beyond about t/T = 2.4 owing, as explained above, to the
enormous exponential growth of the convectively unstable component of the
wavepacket. However, one advantage of the numerical, as compared with a physical,
experiment, is that it is possible to monitor the development of the disturbances
within the absolutely unstable region itself. Even over the limited time period of the
present simulation, a more careful examination of the disturbance time histories at
particular radial locations in the absolutely unstable region provides strong evidence
against the existence of a temporally growing global mode. Figure 20 shows the time
history for the n= 67 disturbance development at r = 551. As has been noted before,
this location is well within the region of absolute instability. It can been seen that,
once the disturbance has reached this location after propagating radially outwards
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Figure 20. Variation of ωθw for a disturbance with n= 67 excited by an impulse centred at
re = 311. The temporal development is shown for r =551.

from its source, there is a period of rapid temporal growth which is followed by
equally strong decay.

It could be argued that such behaviour is, perhaps, not necessarily inconsistent
with the existence of a temporally amplified global mode. It is possible that such
a local temporal maximum in the disturbance amplitude could come about because
convective components of the disturbance, with frequencies different from those
predicted for the absolute instability, are the first to arrive at the selected radial
position. Thus the failure to observe any sustained temporal growth might be
attributed to the limited time duration of the numerical simulation. Over a longer
time interval, if a temporally growing global mode did exist, the disturbance would
be expected to grow once more. An explanation along these lines might also account
for the differences between the behaviour displayed in figure 17 and that depicted
earlier in figure 11. As we have already suggested, it is conceivable that in the latter
case the radially outward propagation of different frequency components excited
by the impulse could lead to transient disturbance behaviour that would mask the
appearance of any sustained temporal growth. However, an investigation of locally
computed temporal frequencies strongly suggests that this explanation is unlikely to
be correct. Figure 21 displays the local temporal frequencies at r = 551 for n=67 and
re = 311. A line corresponding to the asymptotic frequency obtained from the SH flow
simulation with n= 67 and R = 551 is also included. By making reference to the time
history plotted in figure 21 it may be seen that the local temporal frequency defined at
r = 551 is close to that obtained from the SH simulation at exactly those times when
the disturbance amplitude is approaching its maximum. In other words, the maximum
amplitude occurs in the SI boundary layer when the disturbance is oscillating with a
temporal frequency that corresponds to the absolute instability predicted for the SH
flow. Such behaviour would not seem to be consistent in any obvious fashion with
the existence of global mode having the form A ∼ exp(−iωGt) in the SI flow.
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Figure 21. Variation of local temporal frequency β̃rR for a disturbance developing in the
spatially inhomogeneous flow with n= 67 excited by an impulse centred at re = 311. The solid
line plots the temporal development for r =551. The dashed line corresponds to the asymptotic
frequency for the corresponding spatially homogeneous flow with R = 551.

Discussion

The outcome of our investigation of the global behaviour of the rotating-disc flow
has certainly surprised us. To some extent it runs counter to conventional wisdom.
Accordingly, we would expect our numerical methodology to be questioned and will
now discuss some of the possible numerical pitfalls. It is well known that the inflow
and outflow boundary conditions can lead to spurious effects, even when carefully
implemented. For example, Buell & Huerre (1988) (cited in Cossu & Loiseleux 1998)
showed that spurious, destabilizing, pressure-feedback loops can be generated by the
influence of the numerical outflow boundary conditions on an upstream boundary,
causing flows that are everywhere convectively unstable to exhibit spurious self-
sustained oscillations in the numerical simulations. Kaiktsis, Karniadakis & Orszag
(1996) also warn of the dangers of obtaining spurious results due to problems with
the outflow boundary conditions when using numerical simulations to study global
temporal modes. In their simulations of flow over a backward-facing step, they found
that unless the computational domain was sufficiently long, the results were seriously
affected when the disturbance was merely set equal to zero at the outflow boundary.

We were well aware of these problems and took great care, as described in I and
§ 2, with our implementation of the outflow boundary conditions. Our computational
domains extended very much further than the range shown in any of the figures
displaying simulation results. Furthermore we ran extensive validation tests, some
of which are reported in I. In the course of carrying out these tests we have
carefully checked that the results presented here are independent of the size of
the computational domain, providing it is sufficiently large. In any case, since our
results are surprising because a sustained, temporally growing, global mode is not
found, it is not likely that our simulations were adversely affected by the pressure-
feedback problem identified by Buell & Huerre. In this connection, it is worth noting
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again (see § 2) that, in our experience also, spurious temporal growth resulted when
computational domains were so short that unwanted feedback occurred from the
outflow boundary.

A different numerical problem has been recently revealed by Cossu & Loiseleux
(1998). They have investigated the numerical dispersion relations obtained for the
linear Ginzburg–Landau equation (see § 1) using the Euler explicit and implicit,
and Crank–Nicholson schemes. For example, in the case of the last of these three
schemes, they found that in cases where an absolute instability should exist, there is a
range of spatial step sizes for which it is impossible to obtain an absolute instability
numerically, irrespective of the time step. This problem only existed for relatively
small values of µ in (4). Nevertheless, it provides a valuable warning that numerically
stable schemes may still exhibit spurious convectively unstable behaviour, or for that
matter erroneous absolutely unstable behaviour. For our simulations, we used schemes
with better stability characteristics than Crank–Nicholson (see I). But, probably, the
best evidence that we were not unwittingly suffering from the problems analysed by
Cossu & Loiseleux is the fact that our numerical simulations of the (artificial)
spatially homogeneous flow always correctly identified the type of instability (i.e.
whether absolute or convective), appropriate to the choice of flow parameters, in
accordance with Lingwood’s (1995) stability theory. One final point may be worth
making à propos the reliability of the computational results. This concerns our use in I
of an inertial frame fixed with respect to the rotating disc for the formulation. Recently
we have reformulated the governing equations and numerical schemes in terms of a
fixed laboratory coordinate system. The results thus obtained were indistiguishable
from those presented here.

The picture emerging from our simulations is summarized schematically in figures
4(a) and 4(b). The long-term global behaviour appears to be convective in the real
spatially inhomogeneous flow. The absolute instability does not lead to sustained
temporal growth. However, there is strong, localized, temporal growth, accompanied
by upstream (inboard) propagation, over relatively short time scales. In this respect
the behaviour is not unlike localized algebraic growth. This localized growth would
ensure that the already existing, strongly growing, convective disturbances grow very
strongly in the vicinity of the absolute instability. This localized growth is likely to be
more than sufficient to bring in the nonlinear effects that govern the final stages of
transition. The associated short-term upstream propagation would also ensure that
the transition point was well-defined and not sensitive to background noise. Thus
the picture revealed by the simulations and depicted in figures 4(a) and 4(b) is fully
consistent with Lingwood’s (1996) experiments.

Given the discussion in the previous paragraph, would the existence or otherwise
of a linear, temporally growing, global mode have any implications for the observable
physical behaviour of the flow? Or, is it merely a question of mathematical interest?
On one level it certainly has important physical implications. Had such a global
mode existed, we would have expected that the flow downstream of the onset of
absolute instability would have behaved like a self-sustained oscillator. In practice,
this would mean that the spectrum of the turbulent boundary layer would have been
dominated by the global frequency, much like the turbulent wake behind a circular
cylinder. Assuming that the picture revealed by our simulations is correct, what we
would expect to see is a boundary layer dominated by convective structures. The
three-dimensional, turbulent boundary layer on the rotating disc is unlikely to be
closely similar to that over a flat plate; but, at least, without the global mode, it
should not be radically different on a qualitative level.
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Compliant
annulus

Figure 22. Schematic sketch showing a compliant annulus set into the disc surface.

4. Numerical simulations for compliant rotating discs
There is a continuing interest in the use of wall compliance as a method of laminar-

flow control (see Carpenter, Davies & Lucey 2000, 2001 for recent reviews). In recent
years there have been theoretical (Cooper & Carpenter 1997a, b), experimental (Colley
et al. 1999), and numerical-simulation studies (see I) of the effects of wall compliance
on boundary-layer stability and transition over the rotating disc. In particular, Cooper
& Carpenter (1997b) demonstrated theoretically that only a small degree of wall
compliance is sufficient to postpone the onset of absolute instability to much higher
Reynolds numbers or suppress it entirely. It is therefore of interest to examine briefly
the effects of wall compliance in the present numerical-simulation study. There is
further theoretical motivation for such a study arising from the possibility of using
wall compliance to reduce the extent of the absolutely unstable region. Had we found
that the unbounded absolutely unstable region (recall that for fixed β it is finite,
albeit extensive, in extent) existing over purely rigid rotating discs was associated
with a globally amplified mode as described in Huerre & Monkewitz (1990), it would
have been interesting to see how large the absolutely unstable region needed to be
for the existence of global instability. But our study strongly suggests that there is no
long-term temporal growth anywhere on the disc. Instead the absolute instability is
associated with strong transient temporal growth. Accordingly, we might ask whether
reducing the extent of the absolutely unstable region suppresses even this transient
temporal growth, just as in cases where it exists the global instability can be suppressed
if the absolutely unstable region is too small.
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The formulation and numerical methods described in I allowed us to make part of
the disc’s surface compliant. In fact, results were presented in I showing the evolution
of disturbances generated by periodic wall forcing in the boundary layer over a disc
with a compliant annulus, as shown schematically in figure 22. It was shown that the
Type I disturbances were subject to significant stabilization. The stabilizing effect on
the Type II disturbances was found to be much weaker, with negligible modification
to radial growth rates. In both cases the surface stiffness parameters that characterize
the spring-backed plate model used for the compliant part of the disc were chosen
so as to avoid the onset of flow-induced surface instabilities. It was noted that our
numerical simulation results in I were in broad agreement with the linear stability
results obtained by Cooper & Carpenter (1997a) for a compliant surface formed from
a single visco-elastic layer.

We will now present the results obtained from a numerical simulation of the
development of a disturbance generated by an impulsive excitation of the real spatially
inhomogeneous flow when part of the rotating-disc surface incorporates a compliant
annulus. As in one of the numerical simulations described before, the azimuthal
wavenumber of the disturbance was n= 75 and the prescribed impulse centred around
re = 550. The surface was compliant over an annular region ranging from r =600 to
650. (The inner radial boundary of the compliant annulus thus lies well beyond
the experimentally observed transition point. It also lies well within the absolutely
unstable region determined by Lingwood’s linear stability analysis. Similar, but less
clear, effects were obtained when the inner boundary of the compliant annulus was
located at a smaller radius.) The non-dimensional surface compliance parameters
were selected in accordance with the optimization scheme described by Carpenter
& Morris (1990). The flow-induced surface modes were expected to be, to a first
approximation, marginally stable at the outermost radius of the compliant insert. The
non-dimensional critical wavenumber, ᾱd , for the divergence mode, in terms of which
the optimized compliant surface parameters could all be expressed, was chosen to
have the value 0.2.

The presence of the compliant annulus eliminates the absolute instability for
r � 600. Of course, owing to the finite width of the annulus, technically the absolute
instability reappears for r � 650. Our interest lies in the disturbance evolution
in the region r � 650. The numerical simulations show that restricting the size
of the region of absolute instability greatly weakens the transient temporal global
amplification. This is clear from the simulation results presented in figure 23. Here
the temporal development of the disturbance is plotted at several radial positions
spaced at equal intervals outwards from r = re. Corresponding disturbance amplitude
envelopes are also plotted for the case where the disc surface is entirely rigid. It is clear
that the compliant annulus exerts a considerable stabilizing influence. Although the
disturbance grows over a short time interval in all cases, the medium-term temporal
growth of the disturbance is reversed, or very substantially diminished, at each of the
radial positions considered. It is particularly interesting to note that the disturbance
is stabilized at the two radial positions inboard from the inner boundary of the
compliant annulus. The compliant wall has a strong influence inboard (i.e. upstream)
on the flow over the rigid wall. In fact, as time progresses the influence of the compliant
part of the surface becomes more extensive over the inboard (i.e. upstream) region.
It is worth observing, however, that such behaviour is highly elliptic and could not
be simulated by numerical methods that rely on the perturbations evolving in a
quasi-parabolic manner.



322 C. Davies and P. W. Carpenter

0.10

0.05

0

–0.05

–0.10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

t/T

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t/T

(b)
3.0

1.5

0

–1.5

–3.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(c)
20

10

0

–10

–20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(d )
200

100

0

–100

–200

t/T

t/T

Figure 23. Time histories of ωθw (solid lines) for a disturbance with azimuthal mode number
n= 75 that is impulsively excited at re = 550. The disc surface is compliant for 600 � r � 650.
Amplitude envelopes ±|ωθw| are also shown (broken lines), both for the simulation with the
compliant insert and for a corresponding simulation where the disc surface was entirely rigid.
(a) r = re =550; (b) r = 575; (c) r =600; (d) r = 625. The surface compliance parameters are
such that, notionally, there is marginal stability with respect to divergence and travelling wave
flutter modes at the outermost radius of the compliant annulus. The critical wavenumber for
the compliant surfaces is ᾱd =0.2.

The time history plotted in figure 23(d) for the mid-point r = 625 of the compliant
annulus indicates that the temporal growth of the disturbance is not suppressed
indefinitely. The disturbance begins to behave like it would over a rigid wall and grow
again at later times. It is plausible to attribute such longer-term behaviour to the
finite radial extent of the compliant annulus. Over the time interval considered, the
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disturbance exhibits continual temporal growth at locations beyond the outer radius
of the compliant insert, where the disc surface remains rigid. Ultimately, of course,
like the case of the purely rigid disc discussed in § 3, long-term temporal amplification
does not persist. However, it would appear that the growth of the disturbance over
the outermost portion of the disc influences the development elsewhere. Destabilizing
effects are eventually transmitted, radially inwards, back to the compliant part of the
disc surface. Evidence in support of such behaviour was obtained by conducting a
simulation for a compliant annulus with the same inner radius and identical material
properties, but a larger outer radius. The stabilization of the disturbance due to the
surface compliance was then found to be both stronger and more persistent than with
the previous simulation.

5. Conclusions
We have a carried out a study of the linear global behaviour corresponding to the

absolute instability of the rotating-disc boundary layer. This study is based on direct
numerical simulations of the complete linearized Navier–Stokes equations obtained
with the novel velocity–vorticity method described in Davies & Carpenter (2001).
As the equations are linear they become separable with respect to the azimuthal
coordinate, θ . This permits us to simulate a single azimuthal mode. Impulse-like
excitation is used throughout. This creates disturbances that take the form of
wavepackets, initially containing a wide range of frequencies. When the real spatially
inhomogeneous flow is approximated by a spatially homogeneous flow (the so-called
parallel-flow approximation) the results of our simulations are fully in accordance
with the theory of Lingwood (1995). If the flow parameters are such that her theory
indicates convective behaviour the simulations clearly exhibit the same behaviour.
And behaviour fully consistent with absolute instability is always found when the
flow parameters lie within the theoretical absolute-instability region. Our numerical
simulations also reproduce the behaviour seen in her experimental study (Lingwood
1996). In particular, there is close agreement between simulation and experiment for
the ray paths traced out by the leading and trailing edges of the wavepackets.

In absolutely unstable regions the short-term behaviour of the simulated
disturbances exhibit strong temporal growth and upstream propagation. This is not
sustained for longer times, however. Our study suggests that convective behaviour
dominates at all the Reynolds numbers we have investigated, even for strongly
absolutely unstable regions. The trends found in the simulation data indicate that
the disturbance behaviour eventually becomes convective, not just in the immediate
vicinity of the point of impulsive excitation, but also at the increasingly remote radial
locations that are encountered as the disturbance wavepacket propagates radially
outwards. Predominantly convective behaviour could still be detected even when the
initial impulse was positioned at a radius corresponding to one and a half times the
critical Reynolds number for the onset of absolute instability in the homogeneous
flow. In physical experiments the rotating-disc boundary layer has always been found
to be turbulent at radial positions associated with such high values of the Reynolds
number. Our simulations thus provide strong evidence that the absolute instability of
the rotating-disc boundary layer does not produce a linear amplified global mode in
the manner described by Huerre & Monkewitz (1990) and as observed in many other
flows.

In this respect, our results are in complete accord with the very recent study by Peake
& Garrett (2003) of the global linear stability of the rotating-disc boundary layer based
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on inviscid stability theory. Instead the absolute instability seems to be associated
with transient temporal growth, much like an algebraically growing disturbance. The
transient growth and associated upstream propagation would probably be sufficient
to provide a route to transition and to fix the transition point at the experimentally
observed location. However, the coherent structures in the downstream turbulent
boundary layer would be convective rather than dominated by global oscillatory
modes as in the cylinder wake. The maximum growth rates found for the simulated
disturbances in the real spatially inhomogeneous flow are determined by the convective
components and are little different in the absolutely unstable cases from the purely
convectively unstable cases. In short, the picture emerging from our study is the
opposite to the one described by Huerre & Monkewitz whereby a region of absolute
instability produces a global oscillator that dominates a downstream convectively
unstable region. For the rotating-disc boundary layer, in contrast, it appears that a
strong convective instability dominates a downstream region of absolute instability.

In addition to the study of the global behaviour for the usual rigid-walled rotating
disc, we also investigated briefly the effect of replacing an annular region of the disc
surface with a compliant wall. It had been shown earlier by Carpenter & Cooper
(1997b) that wall compliance strongly suppressed the absolute instability. Thus if
the inboard radius of the compliant annulus were located in the region of absolute
instability, it would have the effect of shrinking the region of absolute instability.
Huerre & Monkewitz (1990) and others found that in such cases when the region of
absolute instability is sufficiently small, the temporal growth tends to be suppressed.
In an analogous manner we found that the compliant annulus had the effect of
suppressing the transient temporal growth in the inboard (i.e. upstream) absolutely
unstable region. In fact, as time progressed the upstream influence of the compliant
region became more extensive.

We are well aware of the various problems that can beset numerical simulations of
absolutely unstable flows. Accordingly we took great care to ensure that our results
were not produced by spurious numerical effects. Even so, it is almost impossible
for a numerical simulation or experiment to establish the nature of the linear global
behaviour beyond doubt. Our results, although reasonably convincing, need to be
confirmed theoretically. This has been done very recently for inviscid instabilities, at
least, by Peake & Garrett (2003). Finally, it should be emphasized that our results
do not invalidate in any way the theory or experiments of Lingwood (1995, 1996).
Nor do they imply that absolute instability plays no role in the laminar–turbulent
transition process.

The research described in this paper was carried out in part with the support of
the Engineering and Physical Sciences Research Council.

Appendix. Checks on the influence of the outflow boundary condition
The simplest way of dealing with the outer radial boundary of the computational

domain is to keep it well removed from all locations where the disturbances have
evolved to an appreciable amplitude. This makes it unnecessary to model the
behaviour of the disturbance at the outflow. Whenever possible we adopted such an
approach. However, for simulations that involved extremely long time integrations, it
was not feasible to ensure that the disturbance amplitude remained negligible at the
outflow. Excessive computational expense would have been incurred in ensuring that
the domain always extended beyond the leading radial edge of the disturbance. Thus
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Figure 24. Time histories for ωθw for a disturbance with n= 67 that is impulsively excited at
re =530. (a) r = re = 530; (b) r = 630; (c) r = 730. The data are from two numerical simulations
conducted with different computational outflows located at ro = 1450 (diamonds); ro =1700
(dashed line).
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Figure 25. Instantaneous radial variation of ωθw for an impulsively excited disturbance with
n= 67 and re = 530. (a) t/T = 0.796; (b) t/T = 1.592. The computational outflows are again
located at ro =1450 (diamonds) (indicated in (b) by a vertical line): ro = 1700 (dashed lines).

it became expedient to employ wave-like outflow boundary conditions as described
in I.

As mentioned in the main part of the paper, extensive checking was undertaken to
confirm that there was no contaminaton of the disturbance evolution, due to spurious
transmission effects from the radial outflow boundary, in the relatively small region
of interest where the behaviour of the disturbance was being subjected to detailed
examination. Such checking involved the repetition of simulations using wave-like
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outflow boundary conditions that were applied at increasing radii. We illustrate this
for a particular case of a disturbance with azimuthal mode number n= 67 generated
by an impulsive disk surface motion centred at re = 530. The boundary-layer flow is
taken to be spatially inhomogeneous.

Figure 24 shows the time evolution of the disturbance at successive radial locations,
beginning at the radius where the disturbance was triggered. Data are presented
from two different numerical simulations. For the first simulation wave-like outflow
conditions are applied at ro = 1450, whereas for the second one this is increased
to ro = 1700. It can be seen that there is no discernible difference in the behaviour
of the disturbances over the range of radii and times considered, even though the
disturbance amplitude varies by a factor of O(1011). In particular, it can be seen that
the behaviour displayed at the centre of the impulsive excitation re =530 is robust.
There is a period of relatively weak growth between t/T � 0.5 and t/T � 0.9, but
otherwise the disturbance decays. Such behaviour accords with that described in the
main part of the paper, where growth rates were plotted in figure 16 for the same
form of disturbance.

Figure 25 displays the radial variation of the disturbance wavepacket for two
selected times that are close to the middle and end of the time period considered
in figure 24. Data are plotted from the two simulations conducted with different
outflow boundary locations, just as before. For the first instant of time, the maximum
wavepacket amplitude is located well away from the outflow boundary used in
either of the simulations, so the disturbance amplitude at both outflows remains
insignificant. Not surprisingly, there is no difference to be discovered in the data
obtained from the two simulations. For the second selected time, it can be seen that
the disturbance amplitude at the outflow boundary for the simulation conducted
with the shorter computational domain has reached a significant fraction of the
maximum wavepacket amplitude. This is not the case for the simulation carried out
for the longer computational domain, where the amplitude of the disturbance at
the outflow remains very small compared with the maximum. Nevertheless, there is
still very good agreement between the results of the two simulations. There is no
obvious evidence, from the radial distribution of the disturbance wavepacket, that
the use of the shorter domain has led to any spurious upstream transmission effects.
Returning to figure 24, it may also be noted that agreement is found in the temporal
evolution of the disturbance at the point of excitation re = 530 over the whole of
the time interval considered, despite the fact that, in the simulation conducted with
the shorter domain, the disturbance amplitude at the outflow ro =1450 grows to a
magnitude that is O(1026) times larger than the amplitude characterizing the intital
impulse.
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