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0. Introduction

Let $M$ be a complete Riemannian manifold. $A$ curve $\gamma$ on $M$ parametrized

by its arc length $s$ is called a circle if it satisfies the following equations

$\nabla_{s}X_{s}=kY_{s},$ $\nabla_{s}Y_{s}=-kX_{s}$ , and $X_{s}=\dot{\gamma}(s)$

for some positive constant $k$ and a field of unit vectors $Y_{s}$ along $\gamma$ . Here $\nabla_{s}$

denotes the covariant differentiation along $\gamma$ with respect to the Riemannian

connection $\nabla$ of $M$. The positive constant $k$ is called the curvature of $\gamma$ . For given

a positive $k$ and an orthonormal pair of vectors $u,$ $v\in T_{x}M$ at a given point
$x\in M$ , we have a unique circle $\gamma$ defined for $-\infty<s<\infty$ such that
$\gamma(0)=x,\dot{\gamma}(0)=u$ and $(\nabla_{s}\dot{\gamma}(s))_{s=0}=kv$ (c.f. [7]). On a manifold of constant

curvature the feature of circles with curvature $k$ is well-known. On a Euclidean

space $R^{n}$ they are circles (in usual sense of Euclidean geometry) of radius $1/k$ . On

a sphere $S^{n}(c)$ of constant curvature $c$ , they are small circles with prime period
$2\pi/\sqrt{k^{2}+c}$ . In these cases all circles are closed. Here we call a circle $\gamma$ closed if

there exists nonzero constant $s_{0}$ with $\gamma(s_{0})=\gamma(0),$ $X_{s_{0}}=X_{0}$ and $Y_{s_{0}}=Y_{0}$ . The

minimum positive $s_{0}$ satisfying these equalities is called the prime period of $\gamma$ . On

a real hyperbolic space $H^{n}(-c)$ of constant curvature $-c$ , the feature of circles is
different from these two cases (c.f. [5]). When the curvature $k$ of a circle is greater

than $\sqrt{c}$ they are still closed with prime period $2\pi/\sqrt{k^{2}-c}$ . But when $k\leq\sqrt{c}$

they are unbounded. Similarly on a Hadamard surface it is known that circles are
unbounded if their curvature is smaller than the square root of the absolute value
of the upper bound of the curvature of the surface (see [2]).

In this paper we study global behaviours of circles on a complex hyperbolic

space $CH_{n}(-c)$ of holomorphic sectional curvature $-c$ . For a circle $\gamma$ on a
Kaehler manifold (with complex structure $J$ and with metric $\langle,$ $\rangle$ ) we have an
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important invariant $\tau=\langle X_{s}, JY_{s}\rangle$ , which is called the complex torsion, defined

by the associated vector fields $X_{s}$ and $Y_{s}$ . This invariant does not depend on $s$ ;

$\nabla_{s}\langle X_{s}, JY_{s}\rangle=\langle\nabla_{s}X_{s}, JY_{s}\rangle+\langle X_{s}, J\nabla_{s}Y_{s}\rangle$

$=k\cdot\langle Y_{s}, JY_{s}\rangle-k\cdot\langle X_{s}, JX_{s}\rangle=0$ .

We find that two circles are congment on a complex space form if and only if

they have the same curvatures and the same complex torsions (c.f. Theorem 5.1
in [6]). Here we say that two circles $\gamma$ and $\sigma$ are congment if there exists a
holomorphic isometry $\varphi$ on a complex space form satisfying $\gamma=\varphi 0\sigma$ .

In the preceeding paper [3], we studied the feature of circles on a complex

projective space $CP_{n}(c)$ of holomorphic sectional curvature $c$ . We showed that

there exist infinite many open circles: A circle on $CP_{n}(c)$ with curvature $k$ and

complex torsion $\tau$ is closed if and only if (i) $\tau=0,$ $\pm 1$ or (ii) a ratio of two

solutions for the cubic equation $c\lambda^{3}-(4k^{2}+c)\lambda+2\sqrt{c}k\tau=0$ is rational. In this

paper we show that the feature of circles on $CH_{n}(-c)$ is more complicated.

THEOREM 1. Let $\gamma$ be a circle with curvature $k$ and with complex torsion $\tau$

on a complex hyperbolic space $CH_{n}(-c)$ of holomorphic sectional curvature $-c$ .
For given $\tau$ we denote by $k(\tau)$ the unique positive solution for $k^{2}\tau^{2}-$

$(4/27)(k^{2}-1)^{3}=0$ . Then the following hold:

(1) When $k\leq\sqrt{c}k(\tau)/2,$
$\gamma$ is a simple two-sides unbounded open curve. Here

two-sides unbounded means that the sets $\{\gamma(s)|s\geq 0\}$ and $\{\gamma(s)|s\leq 0\}$ are
unbounded.

(2) When $k>\sqrt{c}k(\tau)/2$ and $\tau=0,$ $\gamma$ is a simple closed curve with prime

period $4\pi/\sqrt{4k^{2}-c}$ .
(3) When $k>\sqrt{c}k(\tau)/2$ and $\tau=1$ or $-1,$ $\gamma$ is a simple closed curve with

prime period $2\pi/\sqrt{k^{2}-c}$ .
(4) When $k>\sqrt{c}k(\tau)/2$ and $\tau\neq 0,$ $\pm 1$ , we denote by $a,$

$b$ and $d(a<b<d)$
the nonzero real solutions for

$c\lambda^{3}-(4k^{2}-c)\lambda-2\sqrt{c}k\tau=0$ .

Then we find the following:
(i) If one of the three ratios $a/b,$ $b/d$ and $d/a$ is rational, $\gamma$ is a simple closed

curve. Moreover, the prime period of $\gamma$ is the least common multiple of
$4\pi/\sqrt{c}(b-a)$ and $4\pi/\sqrt{c}(d-a)$ .

(ii) If each of the three ratios $a/b,$ $b/d$ and $d/a$ is irrational, $\gamma$ is a simple

bounded open curve.



Global behaviours of circles 31

For a Hadamard manifold we have an important notion of the ideal
boundary. Real hyperbolic space and complex hyperbolic space are typical
examples of Hadamard manifold. With the ideal boundary we compactify
$CH_{n}(-c)$ and denote by $\overline{CH_{n}(-c)}$ . For a two-sides unbounded curve $\gamma$ we
denote by $\gamma(\infty)$ (resp. $\gamma(-\infty)$ ) if the limit $\lim_{s\rightarrow\infty}\gamma(s)$ (resp. $\lim_{s\rightarrow-\infty}\gamma(s)$ ) exists
in $\overline{CH_{n}(-c)}$ . When these points on the ideal boundary exist, we say that $\gamma$ has
points at infinity. From this point of view the Comtet’s result is rewritten as
follows: In a real hyperbolic space $H^{n}(-c)$ , every circle $\gamma$ with curvature $k\leq\sqrt{c}$

has points at infinity. When $k=\sqrt{c}$ they coincide; $\gamma(\infty)=\gamma(-\infty)$ , and when
$k<\sqrt{c}$ they are distinct; $\gamma(\infty)\neq\gamma(-\infty)$ . For circles on a complex hyperbolic
space we can show the following.

THEOREM 2. Let $\gamma$ denote a circle with curvature $k$ and complex torsion $\tau$ on
$CH_{n}(-c)$ . Then the $fo$llowing hold:

(1) If $k=\sqrt{c}k(\tau)/2$ , then $\gamma$ is horocyclic. Here horocyclic means that
$\gamma(\infty)=\gamma(-\infty)$ and every geodesic $\rho$ with $\rho(\infty)=\gamma(\infty)$ crosses $\gamma$ orthogonally.

(2) If $k<\sqrt{c}k(\tau)/2$ , then $\gamma$ has two distinct points at infinity.

In section 1 we show by using the structure of the $S^{1}$ -fiber bundle $M$ over
$CH_{n}(-c)$ that horizontal lifts of circles on $CH_{n}(-c)$ into $M$ are helixes of order
2, 3 or 5. This gives us explicit expressions of circles in $CH_{n}(-c)$ . By using of

the explicit expressions of circles, we can investigate global behaviour of circles
in $CH_{n}(-c)$ . In section 2 we use another expression of complex hyperbolic
space, which is regarded as an open unit ball in $C^{n}$ , and show Theorem 2. These
generalize some results in [1].

1. Open circles and closed circles

Let $\gamma$ be a circle on a Riemannian manifold $(M, g)$ with curvature $k$ . When
we change the metric homothetically $g\rightarrow m^{2}\cdot g$ for some positive constant $m$ ,

the curve $\sigma(s)=\gamma(s/m)$ is a circle on $(M, m^{2}\cdot g)$ with curvature $k/m$ . Since we
can obtain $CH_{n}(-c)$ by changing the metric on $CH_{n}(-4)$ homothetically;
$g\rightarrow(4/c)g$ , and the complex torsion does not change in this operation, we may
just treat the case $c=4$ . Here, in general we note that on a Riemannian
manifold $(M, g)$ under the operation $g\rightarrow m^{2}g$ , the prime period of a closed
circle changes to m-times of the original prime period.

We shall start with giving some fundamental notations on a complex
hyperbolic space of holomorphic sectional curvature $-4$ . We denote $by\ll,$ $\gg the$
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Hermitian form on $C^{n+1}$ given by

$\ll z,$ $w\gg=-z_{0}\overline{w}_{0}+\sum_{j=1}^{n}z_{j^{\overline{\mathcal{W}}}j}$

for $z=(z_{0},z_{1}, \ldots,z_{n})$ and $w=(w_{0}, w_{1}, \ldots, w_{n})\in C^{n+1}$ . We define an indefinite
metric $\langle, \rangle$ on $C^{n+1}$ by $\langle, \rangle={\rm Re}\ll,$ $\gg$ . Let $M$ be the real hypersurface with

indefinite metric $\langle, \rangle$ in $C^{n+1}$ defined $by\ll z,$ $z\gg=-1$ . The group $S^{1}=\{e^{i\theta}\}$ acts

freely on $M$ by $z\rightarrow e^{i\theta}z$ . Henoe we can consider a base manifold $M^{\prime}$ of the

principal fiber bundle $\pi:M\rightarrow M^{\prime}$ with group $S^{1}$ . This base manifold $M^{\prime}$ with
positive definite metric $\langle, \rangle$ is called a complex hyperbolic space of holomorphic

sectional curvature $-4$ .
In this section, we shall investigate circles in $CH_{n}(-4)$ by making use of the

fibration $\pi:M\rightarrow CH_{n}(-4)$ . For the sake of simplicity we identify a vector field
$X$ on $CH_{n}(-4)$ with its horizontal lift $\chi*$ on $M$. We denote by $J$ the natural

complex stmcture on $C^{n+1}$ . We mix the complex structures of $C^{n+1}$ and
$CH_{n}(-4)$ . Let $z$ be a point of $M$. We denote by $N=N(z)$ the position vector of

the point $z$ . Note that the integral curves of tangent vector field $JN$ are the

fibers of the fiber bundle $\pi:M\rightarrow CH_{n}(-4)$ . The relation between the con-
nection V of $C^{n+1}$ and the connection $\tilde{\nabla}$ of $M$ is as follows:

(1.1) $\tilde{\nabla}_{U}V=\overline{\nabla}_{U}V-\langle U, V\rangle N$

for any vector fields $U$ and $V$ on $M$. In fact, sinoe $\langle N, N\rangle=-1,$ $\langle V,N\rangle=0$ and
$\overline{\nabla}_{U}N=U$ , we get

$\tilde{\nabla}_{U}V=\overline{\nabla}_{U}V-(\langle\overline{\nabla}_{U}V,N\rangle/\langle N,N\rangle)N$

$=\overline{\nabla}_{U}V+\langle\overline{\nabla}_{U}V, N\rangle N=\overline{\nabla}_{U}V-\langle U, V\rangle N$ .

Let $\nabla$ denote the Riemannian connection of $CH_{n}(-4)$ . We then find

(1.2) $\nabla_{X}Y=\tilde{\nabla}_{X}Y+\langle X,JY\rangle JN$

for any vector fields $X$ and $Y$ on $CH_{n}(-4)$ . In fact, since $\langle JN,JN\rangle=-1$ and
$\langle Y, N\rangle=\langle Y, JN\rangle=0$ , we have

$\nabla_{X}Y=\tilde{\nabla}_{X}Y-(\langle\tilde{\nabla}_{X}Y,JN\rangle/\langle JN, JN\rangle)JN=\tilde{\nabla}_{X}Y+\langle\tilde{\nabla}_{X}Y,JN\rangle JN$

$=\tilde{\nabla}_{X}Y-\langle Y,\overline{\nabla}_{X}(JN)\rangle JN=\tilde{\nabla}_{X}Y-\langle Y,JX\rangle JN$ .

Using this relationship we obtain the following fundamental result on circles in a
complex hyperbolic space.

PROPOSITION 1. Let $\gamma$ be a circle in $CH_{n}(-4)$ with curvature $k$ and complex

torsion $\tau$ satisfying: $\nabla_{s}X_{s}=kY_{s}$ and $\nabla_{s}Y_{s}=-kX_{s}$ . Then a horizontal lift $\tilde{\gamma}$ of $\gamma$
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into $M$ is a helix of order 2, 3 or 5 corresponding to $\tau=0,$ $\tau=\pm 1$ and $\tau\neq 0$,

$\pm 1$ . It satisfies the following $d\iota fferential$ equations:

$\left\{\begin{array}{l}\tilde{\nabla}_{s}X_{s}=kY_{s},\\\tilde{\nabla}_{s}Y_{s}=-kX_{s}-\tau JN_{s},\\\tilde{\nabla}_{s}JN_{s}=-\tau Y_{s}+\sqrt{1-\tau^{2}}z_{s},\\\tilde{\nabla}_{s}Z_{s}=\sqrt{1-\tau^{2}}JN_{s}+kW_{s},\\\tilde{\nabla}_{s}W_{s}=-kZ_{s},\end{array}\right.$

where the unit horizontal vector fields $Z_{s}$ and $W_{s}$ are given by

$Z_{s}=1/\sqrt{1-\tau^{2}}\cdot(JX_{s}+\tau Y_{s})$ and $W_{s}=1/\sqrt{1-\tau^{2}}\cdot(JY_{s}-\tau X_{s})$ .

Here we should note that the coefficient matrix of the equation of helix is
not skew-symmetric, because $\langle JN_{s},JN_{s}\rangle=-1$ .

We show Theorem 1 by dividing into three cases; $\tau=0,$ $\tau=\pm 1$ and
otherwise.

PROPOSITION 2. Let $\gamma$ be circle with curvature $k$ on $CH_{n}(-4)$ . Suppose that
the complex torsion $\tau$ of $\gamma$ is $0$ . Then the following hold:

(i) When $k>1,$ $\gamma$ is a simple closed curve with prime period $2\pi/\sqrt{k^{2}-1}$ .
(ii) When $k\leq 1,$

$\gamma$ is a simple two-sides unbounded open curve.

PROOF. By hypothesis a horizontal lift $\tilde{\gamma}$ of $\gamma$ on the hypersurface $M$

satisfies $\tilde{\nabla}_{s}X_{s}=kY_{s}$ and $\tilde{\nabla}_{s}Y_{s}=-kX_{s}$ . We shall solve this differential equation
with the initial condition $\tilde{\gamma}(0)=z,$ $X_{0}=u$ and $Y_{0}=v$ . By using (1.1) we can
rewrite this equation into $\tilde{\gamma}^{(3)}+(k^{2}-1)\dot{\tilde{\gamma}}=0$ as a equation in $C^{n+1}$ . On the
other hand since the initial condition is rewritten as $\tilde{\gamma}(0)=z,\dot{\tilde{\gamma}}(0)=u$ and
$\ddot{\tilde{\gamma}}(0)=kv+z$ , we get

$\tilde{\gamma}(s)=\frac{1}{1-k^{2}}(-k^{2}+\cosh\sqrt{1-k^{2}}s)\cdot z+\frac{1}{\sqrt{1-k^{2}}}\sinh\sqrt{1-k^{2}}s\cdot u$

$+\frac{k}{1-k^{2}}(-1+\cosh\sqrt{1-k^{2}}s)\cdot v$ , if $k<1$ ,

$\tilde{\gamma}(s)=(2+s^{2})/2\cdot z+su+(s^{2}/2)v$ , if $k=1$ ,

$\tilde{\gamma}(s)=\frac{1}{k^{2}-1}(k^{2_{-\cos}}\sqrt{k^{2}-1}S)\cdot z+\frac{1}{\sqrt{k^{2}-1}}\sin\sqrt{k^{2}-1}s\cdot u$

$+\frac{k}{k^{2}-1}(1-\cos\sqrt{k^{2}-1}s)\cdot v$ , if $k>1$ .

These expressions tell us that $\gamma=\pi\circ\tilde{\gamma}$ is two-sides unbounded if $k\leq 1$ .



34 Toshiaki ADACHI and Sadahiro MAEDA

We now suppose that there exists some $s_{0}$ satisfying $\gamma(s_{0})=\gamma(0)$ , that is,
$\tilde{\gamma}(s_{0})=e^{\theta i}\tilde{\gamma}(0)(=e^{\theta i}z)$ for some $\theta\in[0,2\pi$). Since the vectors $z,$ $u$ and $v$ are
linearly independent in $C^{n+1}$ , these expressions imply the following:

$\left\{\begin{array}{l}cosh(\sqrt{1-k^{2}}s_{0})-k^{2}=(1-k^{2})e^{\theta i},\\sinh(\sqrt{1-k^{2}}s_{0})=0,\\cosh(\sqrt{1-k^{2}}s_{0})-1=0.\end{array}\right.$ if $k<1$ ,

$s_{0}=0$ , if $k=1$ ,

$\left\{\begin{array}{l}cos(\sqrt{k^{2}-1}s_{0})-k^{2}=(1-k^{2})e^{\theta i},\\sin(\sqrt{k^{2}-l}s_{0})=0,\\cos(\sqrt{k^{2}-1}s_{0})-1=0.\end{array}\right.$ if $k>1$ .

This yields that if $k\leq 1$ , then $s_{0}=0$ , so that $\gamma$ is a simple open curve, and that if
$k>1$ , then $\sqrt{k^{2}-1}s_{0}/2\pi\in Z$ and $\theta=0$ . We here note that $\sqrt{k^{2}-1}s_{0}/2\pi\in Z$

implies $\tilde{\gamma}(s_{0})=\tilde{\gamma}(0)$ and $\tilde{\gamma}(s_{0})=\tilde{\gamma}(0)$ , that is, $X_{s_{0}}=u$ and $Y_{s_{0}}=v$ . Therefore we
can see that $\gamma$ is a simple closed curve with prime period $2\pi\sqrt{k^{2}-1}$ . Of course $\tilde{\gamma}$

is also a simple closed curve with the same prime period.

REMARK. The circle $\gamma$ lies on an embedded real hyperbolic plane
$\pi((Rz\oplus Ru\oplus Rv)\cap M)$ .

For completeness we investigate the case of $\tau=\pm 1$ (c.f. [1]).

PROPOSITION 3. Let $\gamma$ be a circle with curvature $k$ in $CH_{n}(-4)$ . Suppose that

the complex torsion $\tau$ of $\gamma$ is 1 or $-1$ . Then the following hold:
(i) When $k>2,$ $\gamma$ is a simple closed curve with prime period $2\pi/\sqrt{k^{2}-4}$ .
(ii) When $k\leq 2,$ $\gamma$ is a simple two-sides unbounded open curve.

PROOF. We consider the case of $\tau=-1$ , that is, $Y_{s}=JX_{s}$ . By Proposition
1, a horizontal lift $\tilde{\gamma}$ of $\gamma$ satisfies the differential equation $\tilde{\nabla}_{s}X_{s}=kJX_{s}$ , so that
$\tilde{\gamma}-kJ\tilde{\gamma}-\tilde{\gamma}=0$ . Solving this equation under the initial condition $\tilde{\gamma}(0)=z$ and
$\dot{\tilde{\gamma}}(0)=u$ , we get

$\tilde{\gamma}(s)=e^{is}(1-is)z+se^{is}u$ , if $k=2$ ,

$\tilde{\gamma}(s)=\frac{1}{\alpha-\beta}(-\beta e^{\alpha s}+\alpha e^{\beta s})z+\frac{1}{\alpha-\beta}(e^{\alpha s}-e^{\beta s})u$ , if $k\neq 2$ ,
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where $\alpha$ and $\beta$ are the solutions of the characteristic equation $t^{2}-kit-1=0$ for
the equation for $\tilde{\gamma}$ and satisfy $\alpha+\beta=ki,$ $\alpha\beta=-1$ . By the same discussion as in
the proof of Proposition 2, we get the conclusion for $\tau=-1$ . If we reverse the

direction of a circle $\sigma(s)=\gamma(-s)$ , then the signature of the complex torsion
changes, so that we get our conclusion.

REMARK: The circle $\gamma$ lies on $\pi((Cz\oplus Cu)\cap M)$ .

The rest of this section is devoted to the study the case of $\tau\neq 0,$ $\pm 1$ . By

elementary calculations we get the following two lemmas.

LEMMA 1. For fixed $\tau,$ $-1<\tau<1$ , the following equation for $k$

(1.3) $k^{2}\tau^{2}-\frac{4}{27}(k^{2}-1)^{3}=0$ .

has a unique positive solution $k(\tau)$ , which satisfies the following:
1) $k(\tau)\geq\sqrt{1+(3}/2)|\tau|\geq 1$ ,

2) $k(-\tau)=k(\tau)$ ,

3) $k(\tau)$ is a monotone increasing function with respect to $\tau$ when $0\leq\tau\leq 1$ ,

4) $k(O)=1$ and $k(\pm 1)=2$ .

LEMMA 2. We consider the following cubic equation;

(1.4) $\lambda^{3}-(k^{2}-1)\lambda-k\tau=0$ ,

where $k>0$ and $-1<\tau<1$ . Let $k(\tau)$ be the unique positive solution for (1.3).

Then the $fo$llowing hold:
(i) When $k<k(\tau)$ , the equation (1.4) has two conjugate non-real solutions,
(ii) When $k=k(\tau)$ , the equation (1.4) has double root,

(iii) When $k>k(\tau)$ , the equation (1.4) has three distinct real solutions.

We are now in a position to prove the following

PROPOSITION 4. Let $\gamma$ be a circle with curvature $k$ and with complex torsion
$\tau$ in $CH_{n}(-4)$ . Suppose that $\tau\neq 0,$ $\pm 1$ . Let $k(\tau)$ be the unique positive solution

for (1.3). Then the following hold:
(1) When $k\leq k(\tau),$ $\gamma$ is a simple two-sides unbounded open curve.
(2) When $k>k(\tau)$ , we denote by $a,$

$b$ and $d(a<b<d)$ nonzero real solutions

for (1.4). Then we find the following:
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(i) If one of the three ratios $a/b,$ $b/d$ and $d/a$ is rational, $\gamma$ is a simple

closed curve. In addition, the prime period of $\gamma$ is the least common

multiple of $2\pi/(b-a)$ and $2\pi/(d-a)$ .
(ii) If each of the three ratios $a/b,$ $b/d$ and $d/a$ is irrational, $\gamma$ is a

simple bounded open curve.

PROOF. By the first and the second equalities of Proposition 1, a horizontal

lift $\tilde{\gamma}$ of $\gamma$ satisfies $\tilde{\nabla}_{s}(\tilde{\nabla}_{s}X_{s})=-k^{2}X_{s}-k\tau JN_{s}$ . This, together with (1.1), implies

that $\tilde{\gamma}^{(3)}+(k^{2}-1)\tilde{\gamma}+k\tau i\tilde{\gamma}=0$ . Its characteristic equation

(1.5) $t^{3}+(k^{2}-1)t+k\tau i=0$

yields the equation (1.4) by setting $t=\lambda i$ . Solving the equation on $\tilde{\gamma}$ with initial

condition $\tilde{\gamma}(0)=z,\dot{\tilde{\gamma}}(0)=u$ and $\tilde{\gamma}(0)=kv+z$ , we get the following expression:

$\tilde{\gamma}(s)=Ae^{\alpha s}+Be^{\beta s}+Ce^{\delta s}$ , if $k\neq k(\tau)$ ,

$\tilde{\gamma}(s)=De^{\mu}+Ee^{vs}+Fse^{vs}$ , if $k=k(\tau)$ .

Here $\alpha,$
$\beta$ and $\delta$ are distinct solutions for (1.5) in the case of $k\neq k(\tau)$ , which

satisfy $\alpha+\beta+\delta=0,$ $\alpha\beta+\beta\delta+\delta\alpha=k^{2}-1$ , and $\alpha\beta\delta=-k\tau i$ . By Lemma 2,

when $k>k(\tau)$ they are pure imaginary; $\alpha=ai,$ $\beta=bi,$ $\delta=di$, and when $k<k(\tau)$

they are expressed as $\alpha=ai,$ $\beta=h+ig,$ $\delta=-h+ig$ with real $a,$ $h,$ $g(h>0)$ .
When $k=k(\tau)$ , the pure imaginary $\mu=ai$ and $v=bi$ are the solutions for (1.5)

with $a=-2b$ and $b=-sgn(\tau)\sqrt{(k(\tau)^{2}-1)/3}$, where $sgn(\tau)$ denotes the signature

of $\tau$ . The elements $A,$ $B,$ $C,$ $D,$ $E$ and $F$ of $C^{n+1}$ are given by

$A=\frac{-(\beta\delta+1)z-\alpha u-kv}{(\alpha-\beta)(\delta-\alpha)}$ , $B=\frac{-(\alpha\delta+1)z-\beta u-kv}{(\alpha-\beta)(\beta-\delta)}$ ,

$C=\frac{-(\alpha\beta+1)z-\delta u-kv}{(\beta-\delta)(\delta-\alpha)}$ , $D=\{(v^{2}+1)z-2vu+kv\}/9v^{2}$ ,

$E=\{(8v^{2}-1)z+2vu-kv\}/9v^{2}$ , $F=\{(1-2v^{2})z+vu+kv\}/3v$ .

By these expressions we can conclude $\gamma$ is two-sides unbounded if $k\leq k(\tau)$ , and

bounded if $k>k(\tau)$ .
We now suppose that there exists some $s_{0}$ satisfying $\gamma(s_{0})=\gamma(0)$ , that is

$\tilde{\gamma}(s_{0})=e^{\theta i}\tilde{\gamma}(0)$ for some $\theta\in[0,2\pi$). Our discussion consists of the three parts. In

the case that $k>k(\tau)$ , by the expression of $\tilde{\gamma}$ , this condition is equivalent to

$A+B\cdot\exp((b-a)is_{0})+C\cdot\exp((d-a)is_{0}))=z\cdot\exp((\theta-as_{0})i)$
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Since $\ll z,$ $u\gg=\ll z,$ $v\gg=0$ and $|\ll u,$ $v\gg|\neq 1$ , the vectors $z,$ $u$ and $v$ are linearly
independent. This equality, with the expression of $A,$ $B$ and $C$ , is equivalent to the
following:

(1.6) $\left\{\begin{array}{l}(b-d)(1-bd)+(d-a)(1-da)\cdot exp((b-a)is_{0})+(a-b)(1-ab)\\\times exp((d-a)is_{0})=(a-b)(b-d)(d-a)\cdot exp((\theta-as_{0})i).\\a(b-d)+b(d-a)\cdot exp((b-a)is_{0})+c(a-b)\cdot exp((d-a)is_{0})=0.\\b-d+(d-a)\cdot exp((b-a)is_{0})+(a-b)\cdot exp((d-a)is_{0})=0.\end{array}\right.$

Since $a,$
$b$ and $d$ are different each other, we get $\exp((b-d)is_{0})=1$ from the

second and the third equalities of (1.6). Hence we have $(b-d)s_{0}/2\pi\in Z$ .
Similarly we find that $(d-a)s_{0}/2\pi\in Z$ and $(b-a)s_{0}/2\pi\in Z$ . These yield

that $(b-a)/(d-a)$ is rational if $s_{0}\neq 0$ . As we have $(b-a)/(d-a)=$

$(b+(b+d))/(d+(b+d))=2-(3d/(b+2d))=2-(3/(2+b/d))$ , we get that
$b/d$ is rational if $s_{0}\neq 0$ . Thus $\gamma(s_{0})=\gamma(0)$ implies either $b/d$ is rational or
$s_{0}=0$ . Therefore if $b/d$ is irrational then the circle is a simple curve. Conversely

we suppose that $b/d$ is rational, that is $(b-a)/(d-a)$ is rational. Let $s_{0}$ be the

least common multiple of $2\pi/(d-a)$ and $2\pi/(b-a)$ . Then (1.6) holds with
$\theta\equiv as_{0}(mod 2\pi)$ , hence $\tilde{\gamma}(s_{0})=\exp(as_{0}i)\tilde{\gamma}(0)$ . Moreover one can easily get that $\tilde{\gamma}$

satisfies $\tilde{\gamma}(s_{0})=\exp(ais_{0})\tilde{\gamma}(0)$ and $\tilde{\gamma}(s_{0})+\tilde{\gamma}(s_{0})=\exp(ais_{0})\cdot(\tilde{\gamma}(0)+\tilde{\gamma}(0))$ . That is,
$X_{s_{0}}=X_{0}$ and $Y_{s_{0}}=Y_{0}$ . Therefore we conclude that if $b/d$ is rational then the
circle $\gamma$ is a simple closed curve and that its prime period is the least common
multiple of $2\pi/(b-a)$ and $2\pi/(d-a)$ . We here point out that “one of $a/b,$ $b/d$

and $d/a$ is rational“ is equivalent to “each of $a/b,$ $b/d$ and $d/a$ is rational”. In

case that each of $a/b,$ $b/d$ and $d/a$ is irrational, the circle $\gamma$ is a simple open
curve.

In the case that $k=k(\tau)$ , by the expression of $\tilde{\gamma}$ the condition $\tilde{\gamma}(s_{0})=e^{\theta i}\tilde{\gamma}(0)$

leads us to

$D\cdot\exp(-3bis_{0})+E+Fs_{0}=z\cdot\exp((\theta-as_{0})i)$ .

Since $z,$ $u$ and $v$ are linearly independent, we obtain with the expression of $D,$ $E$

and $F$ that

$-2\cdot\exp(-3bis_{0})+2+3bis_{0}=0$ ,

$\exp(-3bis_{0})-1+3bis_{0}=0$ .

Hence $s_{0}=0$ , so that the circle $\gamma$ is a simple open curve.
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In the case $k<k(\tau)$ , the condition $\tilde{\gamma}(s_{0})=e^{\theta i}\tilde{\gamma}(0)$ yields

$A+B\cdot\exp(hs_{0}+(g-a)is_{0})+C\cdot\exp(-hs_{0}+(g-a)is_{0})=\exp((\theta-as_{0})i)z$ .

Since $z,$ $u$ and $v$ are linearly independent we get by use of the expression of $A,$ $B$

and $C$ that

$\alpha(\beta-\delta)+\beta(\delta-\alpha)\exp(hs_{0}+(g-a)is_{0})+\delta(\alpha-\beta)\exp(-hs_{0}+(g-a)is_{0})=0$ .

$\beta-\delta+(\delta-\alpha)\exp(hs_{0}+(g-a)is_{0})+(\alpha-\beta)\exp(-hs_{0}+(g-a)is_{0})=0$ .

These lead us to

$\exp(hs_{0}+(g-a)is_{0})=\exp(-hs_{0}+(g-a)is_{0})$ ,

which, together with $h\neq 0$ , implies $s_{0}=0$ , so the circle $\gamma$ is a simple open curve.
Hence we complete the proof.

REMARK. The circle $\gamma$ lies on $\pi((Cz\oplus Cu\oplus Cv)\cap M)$ .

Summarizing Propositions 2, 3 and 4 we get Theorem 1. We should note
that for given $k>\sqrt{c}k(\tau)/2$ there exists open circles and closed circles with
curvature $k$ . We hope the reader compares the result on circles on a complex

projective space ([3]).

2. Asymptotic behaviours of unbounded circles

In this section we study the asymptotic behaviours of unbounded circles and
show Theorem 2. For this sake the following representation of a complex

hyperbolic space is convenient. We can identify $CH_{n}$ with the open unit
ball $D_{n}(C)=\{w\in C^{n}|\sum_{j=1}^{n}w_{j}\overline{w}_{j}<1\}$ in $C^{n}$ by the mapping $\Phi$ defined by
$\Phi(\pi(z_{0}, z_{1}, \ldots, z_{n}))=(z_{1}/z_{0}, \ldots, z_{n}/z_{0})$ . The compactification of a complex

hyperbolic space with its ideal boundary is nothing but taking the topological

closure of $D_{n}(C)$ with respect to the canonical topology of $C^{n}$ .
In the first place we show that a circle $\gamma$ with curvature $k=k(\tau)$ and

complex torsion $\tau$ is horocyclic. The circle $\gamma$ with $\gamma(0)=z,\dot{\gamma}(0)=u$ and
$(\nabla_{s}\dot{\gamma}(s))_{s=0}=kv$ is expressed as

$\gamma(s)=\pi((2+s^{2})/2\cdot z+su+(s^{2}/2)v)$ , if $\tau=0$ ,

$\gamma(s)=\pi(e^{\pm is}(1\mp is)z+se^{\pm is}u)$ , if $\tau=\pm 1$ ,



Global behaviours of circles 39

$\gamma(s)=\pi(\frac{-1}{9b^{2}}[\{(1-b^{2})e^{-2bis}-(1+8b^{2})e^{bis}+3bi(2b^{2}+1)se^{bis}\}z$

$+\{-2be^{-2bis}+(2b+3b^{2}is)e^{bis}\}Ju$

$+k\{e^{-2bis}+(-1+3bis)e^{bis}\}v]$ , if $\tau\neq 0,$ $\pm 1$ ,

where $b=-sgn(\tau)\sqrt{(k(\tau)^{2}-1)/3}$, which is nonzero when $\tau\neq 0$ . We therefore
get that $\gamma$ has a single point at infinity;

(2.1) $(\Phi\circ\gamma)(\infty)=\Phi\circ\gamma(-\infty)=(\frac{(2b^{2}+1)z_{j}+biu_{j}+kv_{j}}{(2b^{2}+1)z_{0}+biu_{0}+kv_{0}})_{1\leq j\leq n}$

for any $\tau$ . We now show that every geodesic $\rho$ going to the point $(\Phi\circ\gamma)(\infty)$

crosses $\gamma$ orthogonally. One can easily find that the geodesic $\rho$ in $CH_{n}$ which is
parametrized by its arc length satisfying $\rho(0)=z$ and $\dot{\rho}(0)=w$ is expressed as:

$\rho(s)=\pi(z\cdot\cosh s+w\cdot\sinh s)$ .

Then

$(\Phi\circ\rho)(\infty)=(\frac{z_{j}+w_{j}}{z_{0}+w_{0}})_{1\leq j\leq n}$

The condition $(\Phi\circ\rho)(\infty)=(\Phi\circ\gamma)(\infty)$ , together with (2.1), yields that $w=$

$(bJu+k(\tau)v)/(2b^{2}+1)$ . Since $b=-sgn(\tau)\sqrt{(k(\tau)^{2}-1)/3}$ and $k(\tau)\cdot\tau=$

$b^{3}-(k(\tau)^{2}-1)b$ (recall (1.4)), we have

$\Vert bJu+k(\tau)v\Vert^{2}=b^{2}-2bk(\tau)\cdot\tau+k(\tau)^{2}=(2b^{2}+1)^{2}$ ,

so that $w$ is a unit vector. Obviously $\langle w, u\rangle=0$ , which guarantees that every
geodesic $\rho$ going to the point $(\Phi\circ\gamma)(\infty)$ crosses $\gamma$ orthogonally.

We here interpret $k(\tau)$ in terms of sectional curvatures.

PROPOSITION 5. Let $\gamma$ be a circle with curvarure $k$, complex torsion
$\tau(-1\leq\tau\leq 1)$ and with the associated initial vectors $u$ , $v$ . Then $k(\tau)^{2}=$

$|Riem(u, w)|$ , where $w=(bJu+k(\tau)v)/(2b^{2}+1),$ $b=-sgn(\tau)\sqrt{(k(\tau)^{2}-1)/3}$ and

Riem $(u, w)$ is the sectional curvature of a plane spanned by $u,$ $w$ .

PROOF. The curvature tensor $R$ of $CH_{n}(-4)$ is as follows:

$R(X, Y)Z=-(\langle Y, Z\rangle X-\langle X, Z\rangle Y+\langle JY, Z\rangle JX-\langle JX, Z\rangle JY+2\langle X, JY\rangle JZ)$
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for all vector fields $X,$ $Y$ and Z. Hence we have

Riem $(u, w)=-4b^{2}+8bk(\tau)\tau-k(\tau)^{2}(1+3\tau^{2})$ ,

which, together with $k(\tau)\cdot\tau=b^{3}-(k(\tau)^{2}-1)b$ , yields the conclusion.

In the second place we show that a circle $\gamma$ with curvature $k<k(\tau)$ and

complex torsion $\tau$ has two distinct points at infinity. The circle $\gamma$ with
$\gamma(0)=z,\dot{\gamma}(0)=u$ and $(\nabla_{s}\dot{\gamma}(s))_{s=0}=kv$ is expressed corresponding to $\tau$ as:

$\gamma(s)=\pi(\frac{1}{1-k^{2}}(-k^{2}+\cosh\sqrt{1-k^{2}}s)\cdot z+\frac{1}{\sqrt{1-k^{2}}}\sinh\sqrt{1-k^{2}}s\cdot u$

$+\frac{k}{1-k^{2}}(-1+\cosh\sqrt{1-k^{2}}s)\cdot v)$ , if $\tau=0$ and $k<1$ ,

$\gamma(s)=\pi(\frac{\exp(\pm kis)}{\sqrt{4-k^{2}}}\{(ki\cdot\sinh\sqrt{4-k^{2}}s+\sqrt{4-k^{2}}\cosh\sqrt{4-k^{2}}s)z$

$+\sinh\sqrt{4-k^{2}}s\cdot u\}$ , if $\tau=\pm 1$ and $k<2$ ,

$\gamma(s)=\gamma(\frac{-1}{(\alpha-\beta)(\beta-\delta)(\delta-\alpha)}[\{(\beta-\delta)(\beta\delta+1)e^{\alpha s}+(\delta-\alpha)(\alpha\delta+1)e^{\beta s}$

$+(\alpha-\beta)(\alpha\beta+1)e^{\delta s}\}z+\{\alpha(\beta-\delta)e^{\alpha s}+\beta(\delta-\alpha)e^{\beta s}+\delta(\alpha-\beta)\}u$

$+k\{(\beta-\delta)e^{\infty}+(\delta-\alpha)e^{\beta s}+(\alpha-\beta)e^{\delta s}\}v]$ ,

if $\tau\neq 0,$ $\pm 1$ and $k<k(\tau)$ .

Here $\alpha=ai,$ $\beta=h+ig$ and $\delta=-h+ig(h>0)$ are distinct solutions for the

equation (1.5). Now we remark that for any $\tau(-1\leq\tau\leq 1)$ we have

$(\Phi\circ\gamma)(\infty)=(\frac{(\alpha\delta+1)z_{j}+\beta u_{j}+kv_{j}}{(\alpha\delta+1)z_{0}+\beta u_{0}+kv_{0}})_{1\leq j\leq n}$

and

$(\Phi\circ\gamma)(-\infty)=(\frac{(\alpha\beta+1)z_{j}+\delta u_{j}+kv_{j}}{(\alpha\beta+1)z_{0}+\delta u_{0}+kv_{0}})_{1\leq j\leq n}$

Of course the numbers $\alpha,$
$\beta$ and $\gamma$ in the above expressions of $(\Phi\circ\gamma)(\infty)$ and

$(\Phi\circ\gamma)(-\infty)$ are distinct solutions for (1.5). However, in case that $\tau=0$ , $\pm 1$ ,
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in particular we set $\alpha$ , $\beta$ and $\delta$ as follows; When $\tau=0$ , $\alpha=0$ and
$\beta=-\delta=\sqrt{1-k^{2}}$ . When $\tau=\pm 1$ , $\alpha=\pm ki$, $\beta=(\pm ki+\sqrt{4-k^{2}})/2$ and
$\delta=(\pm ki-\sqrt{4-k^{2}})/2$ .

If we suppose that $(\Phi\circ\gamma)(\infty)=(\Phi 0\gamma)(-\infty)$ , then for $1\leq j\leq n$

(2.2) $(1-\alpha^{2})(u_{j}z_{0}-z_{j}u_{0})+k\alpha(v_{j}z_{0}-z_{j}v_{0})+k(u_{j}v_{0}-v_{j}u_{0})=0$ .

Multiplying both hand sides of (2.2) by $\overline{z}_{j}$ and summing up with respect to $j$, we
obtain from $\ll z,$ $z\gg=-1$ and $\ll z,$ $u\gg=\ll z,$ $v\gg=0$ that

(2.3) $(1-\alpha^{2})u_{0}+\alpha kv_{0}=0$ .

Similarly multiplying both sides of (2.2) by $\overline{u}_{j}$ or $\overline{v}_{j}$ and summing up, we get with
$\ll u,$ $ v\gg=i\langle u, Jv\rangle=i\tau$ that

(2.4) $\{(1-\alpha^{2})z_{0}+kv_{0}\}-ki\tau(\alpha z_{0}-u_{0})=0$ .

(2.5) $\{(1-\alpha^{2})z_{0}+kv_{0}\}i\tau+k(\alpha z_{0}-u_{0})=0$ .

When $\alpha=0$ , that is $\tau=0$ , we have from (2.3), (2.4) and (2.5) that

$u_{0}=v_{0}=z_{0}=0$ . When $\tau=\pm 1$ , that is $v=\mp Ju$ and $\alpha=\pm ki$ , we find from
(2.4) that $z_{0}=0$ . But we emphasize that $z_{0}\neq 0$ , because $\ll z,$ $z\gg=-1$ . When
$\tau\neq 0$ , $\pm 1$ , we know that $\alpha\neq 0$ . It follows from (2.4) and (2.5) that
$(1-\alpha^{2})z_{0}+kv_{0}=0$ and $u_{0}=\alpha z_{0}=0$ . These imply that

$(\alpha\delta+1)z_{0}+\beta u_{0}+kv_{0}=(\alpha\beta+1)z_{0}+\delta u_{0}+kv_{0}=0$ .

This, together with the expressions of $(\Phi 0\gamma)(\infty)$ and $(\Phi 0\gamma)(-\infty)$ , shows that

$(\alpha\delta+1)z_{j}+\beta u_{j}+kv_{j}=(\alpha\beta+1)z_{j}+\delta u_{j}+kv_{j}=0$ .

Hence $u_{j}=\alpha z_{j}$ for $1\leq j\leq n$ , so that $u=\alpha v$ . In any case we have a contradiction.

We therefore get $(\Phi\circ\gamma)(\infty)\neq(\Phi\circ\gamma)(-\infty)$ , and conclude the assertion of

Theorem 2.
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