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Abstract

Recursive Neural Networks have recently obtained state of the art performance on
several natural language processing tasks. However, because of their feedforward
architecture they cannot correctly predict phrase or word labels that are deter-
mined by context. This is a problem in tasks such as aspect-specific sentiment
classification which tries to, for instance, predict that the word Android is positive
in the sentence Android beats iOS. We introduce global belief recursive neural
networks (GB-RNNs) which are based on the idea of extending purely feedfor-
ward neural networks to include one feedbackward step during inference. This
allows phrase level predictions and representations to give feedback to words. We
show the effectiveness of this model on the task of contextual sentiment analy-
sis. We also show that dropout can improve RNN training and that a combination
of unsupervised and supervised word vector representations performs better than
either alone. The feedbackward step improves F1 performance by 3% over the
standard RNN on this task, obtains state-of-the-art performance on the SemEval
2013 challenge and can accurately predict the sentiment of specific entities.

1 Introduction

Models of natural language need the ability to compose the meaning of words and phrases in order
to understand complex utterances such as facts, multi-word entities, sentences or stories. There has
recently been a lot of work extending single word semantic vector spaces [27, 11, 15] to compo-
sitional models of bigrams [16, 29] or phrases of arbitrary length [25, 28, 24, 10]. Work in this
area so far has focused on computing the meaning of longer phrases in purely feedforward types
of architectures in which the meaning of the shorter constituents that are being composed is not
altered. However, a full treatment of semantic interpretation cannot be achieved without taking into
consideration that the meaning of words and phrases can also change once the sentence context is
observed. Take for instance the sentence in Fig. 1: The Android’s screen is better than the iPhone’s.
All current recursive deep learning sentiment models [26] would attempt to classify the phrase The
Android’s screen or than the iPhone’s, both of which are simply neutral. The sentiment of the over-
all sentence is undefined; it depends on which of the entities the user of the sentiment analysis cares
about. Generally, for many analyses of social media text, users are indeed most interested in the
sentiment directed towards a specific entity or phrase.

In order to solve the contextual classification problem in general and aspect-specific sentiment classi-
fication in particular, we introduce global belief recursive neural networks (GB-RNN). These models
generalize purely feedforward recursive neural networks (RNNs) by including a feedbackward step
at inference time. The backward computation uses the representations from both steps in its recur-
sion and allows all phrases, to update their prediction based on the global context of the sentence.
Unlike recurrent neural networks or window-based methods [5] the important context can be many
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Figure 1: Illustration of the problem of sentiment classification that uses only the phrase to be labeled
and ignores the context. The word Android is neutral in isolation but becomes positive in context.

words away from the phrase that is to be labeled. This will allow models to correctly classify that in
the sentence of Fig. 1, Android is described with positive sentiment and iOS was not. Neither was
possible to determine only from their respective phrases in isolation.

In order to validate the GB-RNN’s ability to contextually disambiguate sentiment on real text, we
use the Twitter dataset and annotations from Semeval Challenge 2013 Task 2.1 The GB-RNN out-
performs both the standard RNN and all other baselines, as well the winner of the Sentiment com-
petition of SemEval 2013, showing that it can successfully make use of surrounding context.

2 Related Work

Neural word vectors One common way to represent words is to use distributional word vectors
[27] learned via dimensionality reduction of large co-occurrence matrices over documents (as in
latent semantic analysis [13]), local context windows [15, 18] or combinations of both [11]. Words
with similar meanings are close to each other in the vector space. Since unsupervised word vec-
tors computed from local context windows do not always encode task-specific information, such
as sentiment, word vectors can also be fine-tuned to such specific tasks [5, 24]. We introduce a
hybrid approach where some dimensions are obtained from an unsupervised model and others are
learned for the supervised task. We show that this performs better than both the purely supervised
and unsupervised semantic word vectors.

Recursive Neural Networks The idea of recursive neural networks (RNNs) for natural language
processing (NLP) is to train a deep learning model that can be applied to inputs of any length.
Unlike computer vision tasks, where it is easy to resize an image to a fixed number of pixels, nat-
ural sentences do not have a fixed size input. However, phrases and sentences have a grammatical
structure that can be parsed as a binary tree [22].

Following this tree structure, we can assign a fixed-length vector to each word at the leaves of
the tree, and combine word and phrase pairs recursively to create intermediate node vectors of the
same length, eventually having one final vector representing the whole sentence [19, 25]. Multiple
recursive combination functions have been explored, from linear transformation matrices to tensor
products [26]. In this work, we use the simple single matrix RNN to combine node vectors at each
recursive step.

Bidirectional-recurrent and bidirectional-recursive neural networks. Recurrent neural networks
are a special case of recursive neural networks that operate on chains and not trees. Unlike recursive
neural networks, they don’t require a tree structure and are usually applied to time series. In a re-
current neural network, every node is combined with a summarized representation of the past nodes
[8], and then the resulting combination will be forwarded to the next node. Bidirectional recur-
rent neural network architectures have also been explored [21] and usually compute representations
independently from both ends of a time series.

Bidirectional recursive models [12, 14], developed in parallel with ours, extend the definition of the
recursive neural netword by adding a backward propagation step, where information also flows from
the tree root back to the leaves. We compare our model to theirs theoretically in the model section,
and empirically in the experiments.

1http://www.cs.york.ac.uk/semeval-2013/task2/

2

http://www.cs.york.ac.uk/semeval-2013/task2/


Figure 2: Propagation steps of the GB-RNN. Step 1 describes the standard RNN feedforward pro-
cess, showing that the vector representation of “Android” is independent of the rest of the document.
Step 2 computes additional vectors at each node (in red), using information from the higher level
nodes in the tree (in blue), allowing “Android” and “iOS” to have different representations given the
context.

[20] unfold the same autoencoder multiple times which gives it more representational power with
the same number of parameters. Our model is different in that it takes into consideration more
information at each step and can eventually make better local predictions by using global context.

Sentiment analysis. Sentiment analysis has been the subject of research for some time [4, 2, 3, 6,
1, 23]. Most approaches in sentiment analysis use “bag of words” representations that do not take
the phrase structure into account but learn from word-level features. We explore our model’s ability
to determine contextual sentiment on Twitter, a social media platform.

3 Global Belief Recursive Neural Networks

In this section, we introduce a new model to compute context-dependent compositional vector rep-
resentations of variable length phrases. These vectors are trained to be useful as features to classify
each phrase and word. Fig. 2 shows an example phrase computation that we will describe in detail
below. This section begins by motivating compositionality and context-dependence, followed by a
definition of standard recursive neural networks. Next, we introduce our novel global belief model
and hybrid unsupervised-supervised word vectors.

3.1 Context-Dependence as Motivation for Global Belief

A common simplifying assumption when mapping sentences into a feature vector is that word order
does not matter (“bag of words”). However, this will prevent any detailed understanding of language
as exemplified in Fig. 1, where the overall sentiment of the phrase “Android beats iOS”, is unclear.
Instead, we need an understanding of each phrase which leads us to deep recursive models.

The first step for mapping a sentence into a vector space is to parse them into a binary tree structure
that captures the grammatical relationships between words. Such an input dependent binary tree then
determines the architecture of a recursive neural network which will compute the hidden vectors in a
bottom-up fashion starting with the word vectors. The resulting phrase vectors are given as features
to a classifier. This standard RDL architecture works well for classifying the inherent or context-
independent label of a phrase. For instance, it can correctly classify that a not so beautiful day is
negative in sentiment. However, not all phrases have an inherent sentiment as shown in Fig. 1.

The GB-RNN addresses this issue by propagating information from the root node back to the
leaf nodes as described below. There are other ways context can be incorporated such as with
bi-directional recurrent neural networks or with window-based methods. Both of these methods,
however, cannot incorporate information from words further away from the phrase to be labeled.

3.2 Standard Recursive Neural Networks

We first describe a simple recursive neural network that can be used for context-independent phrase-
level classification. It can also be seen as the first step of a GB-RNN.
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Assume, for now, that each word vector a ∈ Rn is obtained by sampling each element from a
uniform distribution: ai ∼ U(−0.001, 0.001). All these vectors are columns of a large embedding
matrix L ∈ Rn×|V |, where |V | is the size of the vocabulary. All word vectors are learned together
with the model.

For the example word vector sequence (abc) of Fig. 2, the RNN equations become:

p1 = f

(
W

[
b
c

])
, p2 = f

(
W

[
a
p1

])
, (1)

where W ∈ Rn×2n is the matrix governing the composition and f the non-linear activation func-
tion. Each node vector is the given as input to a softmax classifier for a classification task such as
sentiment analysis.

3.3 GB-RNN: Global Belief Recursive Neural Networks

Our goal is to include contextual information in the recursive node vector representations. One
simple solution would be to just include the k context words to the left and right of each pair as in
[25]. However, this will only work if the necessary context is at most k words away. Furthermore,
in order to capture more complex linguistic phenomena it may be necessary to allow for multiple
words to compose the contextual shift in meaning. Instead, we will use the feedforward nodes from
a standard RNN architecture and simply move back down the tree. This can also be interpreted as
unfolding the tree and moving up its branches.

Hence, we keep the same Eq. 1 for computing the forward node vectors, but we introduce new
feedbackward vectors, denoted with a down arrow ↓, at every level of the parse tree. Unlike the
feedforward vectors, which were computed with a bottom-up recursive function, feedbackward vec-
tors are computed with a top-down recursive function. The backwards pass starts at the root node
and propagates all the way down to the single word vectors. At the root note, in our example the
node p2, we have:

p↓2 = f (V p2) , (2)

where V ∈ Vnd×n so that all ↓-node vectors are nd-dimensional. Starting from p↓2, we recursively
get ↓-node vectors for every node as we go down the tree:[

a↓

p↓1

]
= f

(
W ↓

[
p2
p↓2

])
,

[
b↓

c↓

]
= f

(
W ↓

[
p1
p↓1

])
(3)

where all ↓-vectors, are nd-dimensional and hence W ↓ ∈ R(n+nd)×(n+nd) is a new de-composition
matrix. Figure 2 step 2 illustrates this top-down recursive computation on our example. Once we
have both feedforward and feedbackward vectors for a given node, we concatenate them and employ
the standard softmax classifier to make the final prediction. For instance, the classification for word

a becomes: ya = softmax

(
Wc

[
a
a↓

])
, where we fold the bias into the C-class classifier weights

Wc ∈ RC×(n+1).

At the root node, the equation for x↓root could be replaced by simply copying x↓root = xroot. But
there are two advantages of introducing a transform matrix V . First, it helps clearly differentiat-
ing features computed during the forward step and the backward step in multiplication with W ↓.
Second, it allows to use a different dimension for the x↓ vectors, which reduces the number of pa-
rameters in the W ↓ and Wclass matrices, and adds more flexibility to the model. It also performs
better empirically.

3.4 Hybrid Word Vector Representations

There are two ways to initialize the word vectors that are given as inputs to the RNN models. The
simplest one is to initialize them to small random numbers as mentioned above and backpropagate
error signals into them in order to have them capture the necessary information for the task at hand.
This has the advantage of not requiring any other pre-training method and the vectors are sure to
capture domain knowledge. However, the vectors are more likely to overfit and less likely to gener-
alize well to words that have not been in the (usually smaller) labeled training set. Another approach
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Figure 3: Hybrid unsupervised-supervised vector representations for the most frequent 50 words
of the dataset. For each horizontal vector, the first 100 dimensions are trained on unlabeled twitter
messages, and the last dimensions are trained on labeled contextual sentiment examples.

is to use unsupervised methods that learn semantic word vectors such as [18]. One then has the
option to backpropagate task specific errors into these vectors or keep them at their initialization.
Backpropagating into them still has the potential disadvantage of hurting generalization apart from
slowing down training since it increases the number of parameters by a large amount (there are usu-
ally 100, 000× 50 many parameters in the embedding matrix L). Without propagating information
however one has to hope that the unsupervised method really captures all the necessary semantic
information which is often not the case for sentiment (which suffers from the antonym problem).

In this paper we propose to combine both ideas by representing each word as a concatenation of both
unsupervised vectors that are kept at their initialization during training and adding a small additional
vector into which we propagate the task specific error signal. This vector representation applies only
to the feedforward word vectors and shold not be confused with the combination of the feedwordard
and feedbackward node vectors in the softmax.

Figure 3.4 shows the resulting word vectors trained on unlabeled documents on one part (the first
100 dimensions), and trained on labeled examples on the other part (the remaining dimensions).

3.5 Training

The GB-RNN is trained by using backpropagation through structure [9]. We train the parameters by
optimizing the regularized cross-entropy error for labeled node vectors with mini-batched AdaGrad
[7]. Since we don’t have labels for every node of the training trees, we decided that unlabeled
nodes do not add an additional error during training. For all models, we use a development set to
cross-validate over regularization of the different weights, word vector size, mini-batch size, dropout
probability and activation function (rectified linear or logistic function).

We also applied the dropout technique to improve training with high dimensional word vectors.
Node vector units are randomly set to zero with a probability of 0.5 at each training step. Our
experiments show that applying dropout in this way helps differentiating word vector units and
hidden units, and leads to better performance. The high-dimensional hybrid word vectors that we
introduced previously have obtained a higher accuracy than other word vectors with the use of
dropout.

3.6 Comparison to Other Models

The idea of unfolding of neural networks is commonly used in autoencoders as well as in a recursive
setting [23], in this setting the unfolding is only used during training and not at inference time to
update the beliefs about the inputs.

Irsoy and Cardie [12] introduced a bidirectional RNN similar to ours. It employs the same standard
feedforward RNN, but a different computation for the backward ↓ vectors. In practice, their model is
defined by the same forward equations as ours. However, equation 3 which computes the backward
vectors is instead: [

b↓

c↓

]
= f

([
V b+W ↓lbp

↓
1

V c+W ↓rbp
↓
1

])
(4)
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Correct FUSION’s 5th General Meeting is tonight at 7 in ICS 213! Come out and carve pumpkins mid-quarter
with us!

Correct I would rather eat my left foot then to be taking the SATs tomorrow

Correct Special THANKS to EVERYONE for coming out to Taboo Tuesday With DST tonight! It was
FUN&educational!!! :) @XiEtaDST

Correct Tough loss for @statebaseball today. Good luck on Monday with selection Sunday

Correct I got the job at Claytons!(: I start Monday doing Sheetrock(: #MoneyMakin

Correct St Pattys is no big deal for me, no fucks are given, but Cinco De Mayo on the other hand .. thats my
2nd bday .

Incorrect “@Hannah Sunder: The Walking Dead is just a great tv show” its bad ass just started to watch the
2nd season to catch up with the 3rd

Figure 4: Examples of predictions made by the GB-RNN for twitter documents. In this example,
red phrases are negative and blue phrases are positive. On the last example, the model predicted
incorrectly “bad ass” as negative.

Where W ↓lb and W ↓rb are two matrices with dimensions nd × nd. For a better comparison with our
model we rewrite Eq. 3 and make explicit the 4 blocks of W ↓:

Let W ↓ =

[
W ↓lf W ↓lb
W ↓rf W ↓rb

]
, then

[
b↓

c↓

]
= f

([
W ↓lfp1 +W ↓lbp

↓
1

W ↓rfp1 +W ↓rbp
↓
1

])
, (5)

where the dimensions of W ↓lf and W ↓rf are nd×n, and the dimensions of W ↓ld and W ↓rd are nd×nd.

A closer comparison between Eqs. 4 and 5 reveals that both use a left and right forward transfor-
mation W ↓lfp1 and W ↓rfp1, but the other parts of the sums differ. In the bidirectional-RNN, the
transformation of any children is defined by the forward parent and independent on its position (left
or right node). Whereas our GB-RNN makes uses of both the forward and backward parent node.
The intuition behind our choice is that using both nodes helps to push the model to disentangled
the children from their backward parent vector. We also note that our model does not use the for-
ward node vector for computing the backward node vector, but we find this not necessary since the
softmax function already combines the two vectors.

Our model also has n · nd more parameters to compute the feedbackward vectors than the
bidirectional-RNN. The W ↓ matrix of our model has 2n2

d + 2n · nd parameters, while the other
model has a total of 2n2

d + n · nd parameters with the W ↓lf , W ↓rf and V matrices. We show in the
next section that GB-RNN outperforms the bidirectional RNN in our experiments.

4 Experiments

We present a qualitative and quantitative analysis of the GB-RNN on a contextual sentiment clas-
sification task. The main dataset is provided by the SemEval 2013, Task 2 competition [17]. We
outperform the winners of the 2013 challenge, as well as several baseline and model ablations.

4.1 Evaluation Dataset

The SemEval competition dataset is composed of tweets labeled for 3 different sentiment classes:
positive, neutral and negative. The tweets in this dataset were split into a train (7862 labeled phrases),
development (7862) and development-test (7862) set. The final test set is composed of 10681 exam-
ples. Fig. 4 shows example GB-RNN predictions on phrases marked for classification in this dataset.
The development dataset consists only of tweets whereas the final evaluation dataset included also
short text messages (SMS in the tables below).

Tweets were parsed using the Stanford Parser [22] which includes tokenizing of negations (e.g.,
don’t becomes two tokens do and n’t). We constrained the parser to keep each phrase labeled by the
dataset inside its own subtree, so that each labeled example is represented by a single node and can
be classified easily.
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Classifier Feature Sets Twitter 2013 (F1) SMS 2013 (F1)
SVM stemming, word cluster, SentiWordNet

score, negation
85.19 88.37

SVM POS, lexicon, negations, emoticons,
elongated words, scores, syntactic de-
pendency, PMI

87.38 85.79

SVM punctuation, word n-grams, emoticons,
character n-grams, elongated words,
upper case, stopwords, phrase length,
negation, phrase position, large senti-
ment lexicons, microblogging features

88.93 88.00

GB-RNN parser, unsupervised word vectors (en-
semble)

89.41 88.40

Table 1: Comparison to the best Semeval 2013 Task 2 systems, their feature sets and F1 results on
each dataset for predicting sentiment of phrases in context. The GB-RNN obtains state of the art
performance on both datasets.

Model Twitter 2013 SMS 2013
Bigram Naive Bayes 80.45 78.53
Logistic Regression 80.91 80.37
SVM 81.87 81.91
RNN 82.11 84.07
Bidirectional-RNN (Irsoy and Cardie) 85.77 84.77
GB-RNN (best single model) 86.80 87.15

Table 2: Comparison with baselines: F1 scores on the SemEval 2013 test datasets.

4.2 Comparison with Competition Systems
The first comparison is with several highly tuned systems from the SemEval 2013, Task 2 compe-
tition. The competition was scored by an average of positive and negative class F1 scores. Table 1
lists results for several methods, together with the resources and features used by each method. Most
systems used a considerable amount of hand-crafted features. In contrast, the GB-RNN only needs
a parser for the tree structure, unsupervised word vectors and training data. Since the competition
allowed for external data we outline below the additional training data we use. Our best model is an
ensemble of the top 5 GB-RNN models trained independently. Their predictions were then averaged
to produce the final output.

4.3 Comparison with Baselines
Next we compare our single best model to several baselines and model ablations. We used the same
hybrid word vectors with dropout training for the RNN, the bidirectional RNN and the GB-RNN.
The best models were selected by cross-validating on the dev set for several hyper-parameters (word
vectors dimension, hidden node vector dimension, number of training epochs, regularization param-
eters, activation function, training batch size and dropout probability) and we kept the models with
the highest cross-validation accuracy. Table 2 shows these results. The most important comparison
is against the purely feedforward RNN which does not take backward sentence context into account.
This model performs over 5% worse than the GB-RNN.

For the logistic regression and Bigram Naive Bayes classification, each labeled phrase was taken
as a separate example, removing the surrounding context. Another set of baselines used a context
window for classification as well as the entire tweet as input to the classifier.

Optimal performance for the single best GB-RNN was achieved by using vector sizes of 130 dimen-
sions (100 pre-trained, fixed word vectors and 30 trained on sentiment data), a mini-batch size of
30, dropout with p = 0.5 and sigmoid non-linearity. In table 3, we show that the concatenation of
fixed, unsupervised vectors with additional randomly initialized, supervised vectors performs better
than both methods.

4.4 Model Analysis: Additional Training Data
Because the competition allowed the usage of arbitrary resources we included as training data la-
beled unigrams and bigrams extracted from the NRC-Canada system’s sentiment lexicon. Adding
these additional training examples increased accuracy by 2%. Although this lexicon helps reduc-
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Word vectors dimension Twitter 2013 SMS 2013
supervised word vectors 15 85.15 85.66
semantic word vectors 100 85.67 84.70
hybrid word vectors 100 + 34 86.80 87.15

Table 3: F1 score comparison of word vectors on the SemEval 2013 Task 2 test dataset.
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Figure 5: Change in sentiment predictions in the tweet chelski want this so bad that it makes me even
happier thinking we may beat them twice in 4 days at SB between the RNN (left) and the GB-RNN
(right). In particular, we can see the change for the phrase want this so bad where it is correctly
predicted as positive with context.

ing the number of unknown tokens, it does not do a good job for training recursive composition
functions, because each example is short.

We also included our own dataset composed 176,311 noisily labeled tweets (using heuristics such as
smiley faces) as well as the movie reviews dataset from [26]. In both datasets the labels only denote
the context-independent sentiment of a phrase or full sentence. Hence, we trained the final model in
two steps: train the standard RNN, then train the full GB-RNN model on the smaller context-specific
competition data. Training the GB-RNN jointly in this fashion gave a 1% accuracy improvement.

5 Conclusion
We introduced global belief recursive neural networks, applied to the task of contextual sentiment
analysis. The idea of propagating beliefs through neural networks is a powerful and important piece
for interpreting natural language. The applicability of this idea is more general than RNNs and can
be helpful for a variety of NLP tasks such as word-sense disambiguation.
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