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Global bifurcation investigation of an optimal velocity traffic model
with driver reaction time
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We investigate an optimal velocity model which includes the reflex time of drivers. After an
analytical study of the stability and local bifurcations of the steady state solution, we apply nu-
merical continuation techniques to investigate the global behavior of the system. Specifically, we
find branches of oscillating solutions connecting Hopf bifurcation points, which may be super- or
subcritical depending on parameters. This analysis reveals several regions of multistability.

I. INTRODUCTION

The aim of this paper is to begin a systematic global
investigation of the dynamics of car-following models of
highway traffic, which include explicitly the reaction-time
delay of drivers; see Helbing [1] for a recent large-scale
review of the modeling of highway traffic.

Car-following models describe vehicles as discrete en-
tities moving in continuous time and continuous one-
dimensional space (lane-changing effects are ignored).
Here we assume that vehicles have identical character-
istics, that their positions are denoted by x;, their veloc-
ities by v;, and their relative displacements (called head-
ways) by h; [see Fig. 1].

Each car-following model consists of the kinematic con-
ditions

h1(t) =vip1(t) —vi(t), (1)

where the dot denotes derivation with respect to time, to-
gether with a law that gives accelerations v; as a function
of stimuli. These stimuli are typically headways and ve-
locities / relative velocities of nearby vehicles. A famous
example is the so-called Optimal Velocity (OV) model
introduced by Bando et al. [2], where the acceleration of
the ith vehicle is given by

8i(t) = a [V (hi(8)) — vi(0)]. (2)

Here a > 0 is known as the sensitivity and V(h) is known
as the OV function. In this case the drivers’ responses to
stimuli are instantaneous, hence (1) and (2) constitute a
system of ordinary differential equations (ODEs) for the
vehicles” motions.

This paper is concerned with the OV model when
drivers do not react instantaneously to their headways,
so that the acceleration of the ith vehicle is given by

0i(t) = a[V(hi(t — 7)) —vi(t)] - 3)
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Here 7 is the reaction time of the drivers, which is as-
sumed to be the same for all drivers. (Note that 7 is
different from the characteristic relazation time T =1/«
for adjustment of the vehicles’ velocities, used by some
authors [2, 3].) Together (1) and (3) give a system of
delay differential equations (DDEs) for the vehicles’ mo-
tions. Model (3) has recently been investigated with nu-
merical simulation by Davis [4, 5]. The case where (the
same) delay occurs both in the drivers’ perceptions of
their headway and in their perceptions of their own ve-
locities, was considered by Bando et al. [6]. In our view,
it is more realistic to suppose that drivers know their
speed, i.e., they react to that instantaneously, but they
react only to their headway via the delay 7.
The above OV models admit a one-parameter family
of steady-state uniform flow solutions of the form
hi(t) =h*, wvi(t)=V(h"), (4)
for all ¢ and for any constant h* > 0. Previous stud-
ies in both ODE and DDE settings have been concerned
with the linear stability computation of these uniform
flow solutions and numerical simulation when the flow
is unstable. The loss of linear stability of uniform flow
solutions is widely accepted as a cause of traffic jams [1].
We begin in Sec. II by discussing details of the OV
model. Then, as in previous papers, in Sec. III we give
the linear stability calculation of the DDE system (1) and
(3) for the uniform flow (4), and compute the neutral sta-
bility curves in the (h*, ) plane. We then summarize the
results of the weakly nonlinear analysis (for details, see
[7]), which indicate that uniform flow may lose stability
via either sub- or supercritical Hopf bifurcations. The
presence of a subcritical bifurcation indicates the possi-
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FIG. 1: Sequence of cars on a single-lane road showing their
positions, velocities, and headways.



bility of the coexistence of stable solutions in a bistability
region.

In Sec. IV we employ numerical continuation tech-
niques to investigate efficiently the branches of oscillat-
ing solutions, far from bifurcation. The basic idea is to
find a parameter value where the dynamics change qual-
itatively; for example, where the steady state becomes
unstable. It is then possible to follow or continue the
bifurcating oscillating solution or the bifurcation itself in
several parameters; see Sec. IV for more information on
numerical continuation.

While numerical continuation for ODE systems is well
established (see, e.g., [8] and [9]), its implementation for
DDE systems is much more recent. Our computations
are done with the package DDE-BIFTOOL [10, 11], which is
able to find and follow branches of steady and oscillating
states irrespective of their stability.

To simplify these calculations and the exposition, we
restrict ourselves to the situation with n = 3 cars on a
closed ring. Nevertheless, this case is general enough to
identify many general features; in particular, the exis-
tence of several regions of bistability where stable oscil-
lating solutions coexist either with a stable uniform flow
state, or with other nontrivial stable oscillating solutions.
This is presented in a concise way in a two-dimensional
parameter space to get a global overview of the regions
of coexisting attractors. Furthermore, we consider a col-
lision manifold, a stopping manifold, and their interac-
tion with the two-dimensional bifurcation diagram (see
Sec. IV C).

We note that bistability has been demonstrated by
Igarashi et al. [12] (in the Newell model, which includes
delay) and by Sugiyama and Yamada [3] for model (2)
(that is, without delay) using numerical simulation of the
initial value problem. However, numerical continuation
techniques give us a more efficient way to characterize
different regions of parameter space.

Finally, in Sec. V, we present practical conclusions and
suggest possible extensions of this work.

II. DETAILS OF THE MODEL

We consider a single-lane model without overtaking, as
shown in Fig. 1. To further simplify matters, we suppose
that n vehicles are placed on a circular road of length L,
so that

Zhi:L. (5)

It follows that the nth car follows the first car and we are
able to define h,, = L — 377" h; so that h, = v) — v,.
The equation of motion of the ith car is governed by the
delay equation (3), and the uniform flow equilibrium (4)
is given by

hi(t)=h* =L/n, wv(t)=V(h*), (6)

foralli =1,...,n, where h* = L/n is called the average
headway. In this paper we focus mostly on the case n = 3.

The main task now is to identify desirable properties
of the OV function V(h) and to estimate physical ranges
for the parameters. Since V(h) describes the uniform
flow equilibria, the following properties seem necessary
from the modeling point of view:

(1) V(h) is continuous, nonnegative, and monotone in-
creasing. [Drivers wish to travel forward and the desired
velocity should increase smoothly as headway increases.
Note that if V(h) were to attain negative values, there
would exist unrealistic equilibria where vehicles reverse.]

(2) V(h) — v° as h — oo. [In the case of very large
headway, the desired velocity should approach an upper
limit v°. This limit should be related to the legal speed
limit.|

(3) There exists a jam headway hstop > 0 such that
V(h) = 0 for h € [0, hgtop)- [If cars become too closely
packed, then drivers want to come to a full stop.] In our
view, one should take hgop strictly positive. Firstly, this
is because real vehicles have finite length, so that small
positive headways correspond to collisions, and secondly
because real traffic flows have a finite characteristic jam
density at which traffic comes to a complete stop.

Note that a further advantage of choosing hgtop > 0 is
that maximum principles may be used to show that vehi-
cles do not reverse under any (even dynamic) situations,
for either model (2) or (3). However, it is still possi-
ble for vehicles to collide if other parameters are chosen
appropriately.

In the original paper by Bando et al. [2], the OV func-
tion was given (in rescaled coordinates) by

Vg1(h) = tanh(h — 2) + tanh(2) . (7)

It may be shown that this OV function satisfies each of
the properties (1)—(3) above, although with hgop = 0,
which we do not regard as suitable. The later paper [6]
uses a dimensional OV function of the form

Vi (h) = 16.8[tanh (0.086(h — 25)) + 0.913],  (8)

which was fitted to Japanese highway traffic data. Here
h is measured in meters and V(h) in meters per second.
It may be shown that hgiop >~ 7.0319 m and 00 ~ 32.1384
ms~!. However, Vpz(h) is a poor model for small head-
ways since it is negative for h € [0, hggop]. Thus properties
(1)—(3) are satisfied by the OV function

Vps(h) = max|[0, Vpa(h)]. (9)

The numerical continuation method used in this paper
requires the continuous differentiability of the model’s
right-hand side in terms of its dependent variables. Since

53(h) is not continuous at h = hgtop, We must use a
different OV function. Our goal is therefore to choose an
OV function V(h) which satisfies properties (1)—(3) with
hstop > 0 and for which V’(h) is continuous. The OV
function should also have the correct S shape, i.e., we



Name Symbol |Estimated values
Reaction/reflex time T 05—-2s
Relaxation time |7 =1/« 0.5—-50s
Sensitivity a 0.02—-2s7"?
Desired speed 0° 10 — 35 ms™!
Jam headway hstop 2—15m
Average headway |h* = L/n

TABLE I: Dimensional parameters with estimates of their
ranges.

require V'(h) to have a single maximum strictly to the
right of Agtop-

Our approach is to first nondimensionalize (3). Since
we assume that 7,hgop > 0, we may introduce the
rescaled variables # := t/7 and h := h/hgep. All speed-
like quantities (including the OV function) have rescal-
ings of the form ¥ = v7/hgop. To simplify notation we
remove tildes, so that the rescaled version of (3) becomes

0:(t) = a[V(hi(t = 1)) — wi(D)]. (10)

Table I suggests ranges for dimensional parameters and
Table II gives the nondimensionalized counterparts.

Note that the equilibrium may still be written in the
form (6) using rescaled quantities. The rescaled OV func-
tion V(h) has the following properties:

(1) V(h) is continuous, nonnegative, and monotone in-
creasing.

(2) V(h) — v% as h — cc.

(3) V(h) =0 for h € [0,1].

The remainder of this paper uses the rescaled OV func-
tion

0 0<h<1,
_ 3
NORE SR CESV/2 (1)
1+ [(h—1)/s]3
which satisfies properties (1)—(3) above, has the requi-
site shape, and is smooth at h = 1. This OV function
possesses two nondimensional parameters, namely v° and
s. The former is determined by the dimensional version
of ¥ and the applied rescaling. However, s is a wholly
new parameter that describes how the OV function is
stretched to the right of h = 1. In this paper we choose
s = 1; the parameter s may be varied to shift the value
of h at which V’(h) attains its maximum.
Figures 2(a) and 2(b) compare (11) and its derivative
(solid curves) with the the rescaled version of the OV

Name Symbol and Definition | Estimated values
Sensitivity a=ta=1/T 0.01 —4
Desired speed 90 = ’UOT/hstop 0.33 - 35
Average headway h* =h* /hstop

TABLE II: Nondimensionalized parameters and their ranges.

0.8

0.4

0.8

FIG. 2: Three different rescaled optimal velocity (OV) func-
tions with an enlargement of the region around h = 1 (a), and
the derivatives of the OV functions with respect to h (b).

function Vps(h) (9) (dashed curves). For comparison,
we have also included a plot of the OV function

Vs(h) =2°(1 —1/h), (12)

(dashed-dotted curves), which does not have an S shape
for h > 1.

III. LOCAL BIFURCATIONS

Bando et al. [2, 6] and many subsequent papers have
explained traffic jam formation in terms of the loss of
linear stability of the equilibrium (6) to oscillations. Here
we perform a linear stability analysis of (10), which is a
DDE system and yields a more complicated characteristic
equation than for ODE models.

Defining the perturbed solution

T‘i(t): = hi(t) —h* s (13)

and using the Taylor series expansion of V(h) around h*
in the third order of r;(t), Eq. (10) gives the differential
equation system

0;(t) = —aw;(t) + V' (K" )ri(t — 1)

1 1 14
+ §aV”(h*)r?(t 1)+ EaV"’(h*)r?(t —1). 1)



In addition, the kinematic condition (1) can be written
in the form

In Egs. (14) and (15) we model the circular road by iden-
tifying the (n + 1)-th vehicle with the first one.

We now consider the linear part of Eq. (14) and use
the trial solution

rz(t) = Cie)\t ) (16)

where A\, ¢; € C, for i = 1,...,n, to obtain the linear
homogeneous equation

A | ¢ | =o, (17)
Cn
where A € C™ x C". The characteristic equation is given
by
D(A) = det A(\) = A2 + aX + aV/(h*)e "

18

— [aV'(h*)e " = 0. (18)
To obtain the neutral stability curves, we substitute the
critical eigenvalue A\ = iw, w € R into Eq. (18) and af-
ter taking real and imaginary parts, and some further
calculation, we find that

Vi) = 2 cos(w — km/n) sin(kw/n)’
a = —w cot(w—km/n), (19)

where k = 1,...,n — 1 is introduced by taking the nth
root of unity.

By substituting (19) into Eq. (17), we may find the
eigenvector components

2
C; = exp (17Tkz) , (20)
n

which show that k is the discrete spatial wave number
of oscillations along the ring. Note that we have omitted
the discussion of the & = 0 (spatially independent) mode,
since it violates the constraint

n

> ri=0, (21)

i=1

implied by (5).

Further, note that if (w,k) solves (19), then so does
(—w,n — k). Here we chose to work with w > 0 and the
full set of k. Alternatively, one could work with general
w € R and restrict attention to k = 1,...,n/2 (even n)
ork=1,...,(n—1)/2 (odd n).

Next, note that Eqgs. (19) describe branches of curves in
the [V/(h*), a] parameter plane, which are parametrized
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FIG. 3: Stability charts of the three-car system, where shad-
ing denotes the stable region. (a) Sensitivity a vs slope of
the OV function V'(h*); (b) and (c) Sensitivity « vs aver-
age headway h* for v = 0.6 and for v° = 0.8, respectively.
(This corresponds to Vi, ~ 0.504 and Vi,.x ~ 0.672, re-
spectively).

by the frequency w. Since we require w,a, V/(h*) > 0,
for each k, we find a sequence of feasible intervals

k k
w € <_7T+7:r+2l7r7 TZT+2Z7T>HR+7 l:07172a"'

2
(22)
Each interval of w traces out a different stability curve.
Hence, we have a two-parameter family of stability curves
described by k=1,...,.n—1and [ =0,1,2,...

We now focus on the case of n = 3 cars, where h* =
L/3 and wave numbers k = 1,2 describe the same spatial
pattern, i.e., one wave along the ring. It may be shown
that the k = 1, [ = 0 curve, which is parametrized by w €
(0,7/3) and depicted in Fig. 3(a), is the left-most curve
in the [V'(h*), o] plane found by the above theory. This
curve has a monotone shape with a vertical asymptote
at V!, = m/3/9, ~ 0.6046.

By considering large «, one may apply the infinite di-
mensional Routh-Hurwitz criteria (see Stépdn [13]), to
show that the uniform flow equilibrium is stable to the
left of this curve [shaded region in Fig. 3(a)] (all eigenval-
ues are situated in the left-half complex plane), and lin-
early unstable in a neighborhood of the right of the curve
(there exist eigenvalues in the right-half complex plane).
It is also possible to show that all other curves are desta-
bilizing in that, as they are crossed from left to right,
further eigenvalues move into the right-hand half plane.
Hence, the & = 1, I = 0 curve divides the [V'(h*), ]
plane into regions where the uniform flow state is lin-
early stable or unstable. When crossing this curve from
the stable to the unstable region, a complex conjugate
pair of eigenvalues crosses the imaginary axis at +iw and



a Hopf bifurcation takes place (see, e.g., [14-16]). Locally
this gives a small amplitude oscillatory solution with fre-
quency w. The Hopf bifurcation is called supercritical if
the oscillating solution is stable, and subcritical if it is
unstable.

Our main interest is to convert Fig. 3(a) to a stability
diagram in the average headway-sensitivity (h*, ) plane,
when we choose the OV function V(h) given by (11) with
s = 1. In this case V'(h) has a single maximum over
the interval h € [1,00) [solid line in Fig. 2(b)]. Hence,
the (h*,«) stability diagram can be obtained from the
[V'(h*), a] diagram by a kind of nonlinear folding about a
vertical line whose abscissa corresponds to the maximum
value V7 ... of V/(h) [see Figs. 3(b) and 3(c), where the
shaded regions are stable]. For V(h) given by (11) with
s =1, we have V/ . = (24/2/3) 1%, ~ 0.83991°. Hence,
two qualitatively different cases of diagrams in the (h*, @)
plane are possible:

(1) In the first case shown in Fig. 3(b), the maximum
value VI . is to the left of the asymptote V.  on the
[V/(h*), a] plane. This corresponds to v < 0.7198. In
this case, there is a critical sensitivity, aqit; such that for
Q@ > Qgrit, uniform flow equilibria are stable for all values
of headway h*. For a < aepit, there is a bounded interval
of headway h* corresponding to unstable equilibria.

(2) In the second case shown in Fig. 3(c), the maximum
value V/ .. is to the right of the asymptote V/, on the
[V/(h*),a] plane. This corresponds to v > 0.7198. In
this case, for any value of « there is an unstable interval
of headway h*. It is not possible to stabilize all uniform
flows by increasing a.

In the case without delay (that is, for 7 = 0), the
stability region in the (h*,«) plane takes the shape in
Fig. 3(b) generally (see, e.g., [2, 3]). A situation like
Fig. 3(c), where the unstable region is unbounded above,
is not possible.

Returning to the model with delay, in either of the
two cases above, decreasing « (or increasing v¥) increases
the size of the unstable h* interval, with the left-hand
end point approaching 1, and the right-hand end point
approaching +oo, as a — 0.

When we consider different values of the scaling param-
eter s the stability charts shown in Figs. 3(b) and 3(c)
do not change qualitatively. Here V/ ., = (24/2/3s)2°,
~ (0.8399/s) v for general s, which only yields quanti-
tative changes.

The qualitative picture for OV functions Vgs(h) (9)
and Vg(h) (12) is similar, except for the following. For
the function Vg(h), the left-hand end of the unstable h*
interval is fixed at h* = 1 for all o for which there is
instability. For the function Vgs(h), the left-hand end
point of the unstable h* interval attains h* = 1 for pos-
itive a. These features are due to the discontinuities in
the functions V;(h) and Vg(h) at A* = 1 and the fact
that V§(h) also has its maximum at h* = 1+.

We now briefly summarize the results of an analysis
of the local Hopf bifurcation, more details of which may
be found in Orosz and Stépéan [7]. That technique allows

one to determine the amplitude of the bifurcating orbit
and whether the Hopf bifurcation is sub- or supercrit-
ical. The calculations are based on third-order Taylor
expansion of the nonlinearity and give the first Fourier
approximation of the oscillating solution, which is valid
close to the bifurcation point.

Hopf calculations for DDEs are more complicated than
for ODEs, because delay extends the dimension of the
phase space to infinite (see Stépén [13], and Campbell
and Bélair [17]). An added problem for the traffic model
considered here is the translational symmetry along the
ring, which implies a singularity in the Jacobian operator
at the equilibrium, yielding further technical difficulties.
This analysis is tractable only in the case of n = 2 cars,
but it illustrates that the criticality of the Hopf bifurca-
tion is highly dependent on the properties of the chosen
OV function.

Denoting the value of h* at the Hopf bifurcation point
by h%., the Lyapunov coefficient can be computed as

cr?

V() (@@ 4w +a+w?)
°= 8[V/(h:)Pa? (2+a)? + (a/w—w)? (23)

When 6 > 0 (resp. § < 0) there is a subcritical (resp.
supercritical) bifurcation. Since all other quantities are
positive in the above expression, the sign of § is deter-
mined by the sign of V”(h%.). This means that the third
derivative of the OV function (whose sign is not obvi-
ous from a glance at the graph) plays an essential role in
determining the global behavior of the system.

The amplitude of the headway oscillations can be com-
puted as

2V'(he) . .
A_Q\/_V’”(h’;)(h —h%), (24)

and the bifurcating oscillation in headway is described
by the formula

sin(wt) , (25)

where the vector [—1,1]7 corresponds to the real part of
(20) with k= 1.

IV. CONTINUATION ANALYSIS

In this paper we perform a bifurcation analysis of an
optimal velocity traffic model with driver reaction time.
The basic idea is to find a bifurcation (a parameter value
where the dynamics changes qualitatively) and then fol-
low or continue either the bifurcating solution or the bi-
furcation condition as parameters are changed. While it
is not as straightforward as numerical simulation, bifur-
cation analysis is a powerful tool in that it allows one to
map out the dynamics of a system in a systematic and
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FIG. 4: Amplitude of oscillations of the velocity of the ith
car vs average headway h*. The horizontal axis represents
the equilibrium state. Solid curves denote stable, and dashed
curves denote unstable states; the dotted curve represents the
collision region. The value of « is depicted in each panel (a)—
(d) and v° = 0.35 in all panels.

efficient way. This approach is well established for sys-
tems modeled by ODEs and has been applied successfully
in many areas of application (see, e.g., [14-16] as entry
points to the extensive literature).

Dealing with a system with delay results in techni-
cal difficulties, due to the fact that the phase space of a
DDE is infinite dimensional. For example, the lineariza-
tions around steady states and oscillating solutions are
infinite-dimensional operators instead of matrices. This
means that standard continuation software for ODEs,
such as AUTO [9], cannot be used. However, recently,
the package DDE-BIFTOOL, which works under Matlab,
was developed by Engelborghs et al. [10, 11]. This soft-
ware uses truncated matrices of appropriate sizes instead
of operators, and is able to find and follow equilibria and
oscillating solutions in DDEs even when they are unsta-
ble. Furthermore, it allows one to detect local bifurca-
tions, where a solution changes its stability. In our model
we find the Hopf bifurcation (where small amplitude os-
cillations are born) and the fold bifurcation of oscillating
solutions (when two oscillating solutions of different sta-
bilities merge and disappear).

DDE-BIFTOOL has not yet been used extensively in ap-
plications; examples of its use include the study of semi-
conductor laser systems (see Green and Krauskopf [18],
and Haegeman et al. [19]). We use it here to investigate
the dynamics of the smooth OV function (11) with s =1
[solid line in Fig. 2]. Specifically, we follow branches of
steady states and oscillating solutions and detect bifurca-
tions when changing the parameter h* for different values
of a and v°. The results are shown in Figs. 4-7. In the
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FIG. 5: Oscillations of the velocity of the first car over one
period, shown as solid curves to the scale on the left-hand
side, and oscillations of the headway of the first car over one
period, shown as dashed curves to the scale on the right-hand
side. Cases A-F correspond to the marks in Fig. 4.

respective bifurcation diagrams the horizontal axis rep-
resents the equilibrium state. A solution is stable when
plotted as a bold curve and unstable when dashed.

The branch of equilibria is unstable between two Hopf
bifurcation points (denoted by *), in accordance with the
results in Figs. 3(b) and 3(c). The bifurcating branches of
oscillating solutions are represented by the amplitude of
oscillation of the vehicles’ velocities, through out v;™* =

(vmax —yminy /2 which is the same for all cars (i = 1,2, 3).

A. Oscillation and Collision

Let us first concentrate on the continuation results
when the parameter « is changed and the parameter v°
is fixed to v° = 0.35. This value of v° gives qualitatively
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FIG. 6: Amplitude of oscillations of the velocity of the ith
car vs average headway h*. The horizontal axis represents
the equilibrium state. Solid curves denote stable, and dashed
curves denote unstable states. The value of v° is depicted in
each panel (a)-(d) and o = 0.1 in all panels.

the stability behavior as shown in Fig. 3(b). For large
values of o the two Hopf bifurcations are supercritical,
as shown in Fig. 4(a). The computation of the bifurcat-
ing oscillating solution shows a stable oscillation branch
above the unstable part of the equilibrium. We remark
that the unstable part of the equilibrium disappears for
extremely large « [see Fig. 3(b)]: the two Hopf bifur-
cation points come together and disappear, leaving the
equilibrium stable for all A*.

Decreasing «, the right Hopf point becomes subcriti-
cal, i.e., the right-hand side of the branch of oscillating
solutions turn to unstable. Where the stable and unsta-
ble parts meet, a fold bifurcation takes place (marked
by x) as depicted in Fig. 4(b). Hence, a bistable area
appears to the right of the right-most Hopf point, which
means that the system tends to the oscillatory state or to
the equilibrium, depending on the initial condition. We
remark that this bistability has been found by numeri-
cal simulations in several car-following models [1], but we
show that even a simple OV model as described here dis-
plays this effect for adequate values of parameters. When
decreasing « further, the branch of oscillating solutions
grows, as is visualized in Fig. 4(c), thus the bistable area
becomes wider.

We marked some points A—C on the branch in Fig. 4(c)
and display the associated time profiles in Figs. 5(a)-
5(c). We show the velocity (solid curve) and the headway
(dashed curve) over one oscillation period for the first
car. (The plots are the same for all cars, except for a
time shift.)

Note that in case A [Fig. 5(a)] vehicles nearly stop,
and in case C [Fig. 5(c)] the maximum speed is close to
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FIG. 7: Stopping motion for v = 1.0 and a = 1.0. (a) Am-
plitude of oscillations of the velocity of the ith car vs average
headway h*. (b) Equilibrium state V(h*) (upper curve) and
minimum of oscillations of the velocity of the ith car v
(lower curve) vs average headway h*. In panels (a) and (b)
solid curves denote stable, and dashed curves denote unstable
states. Panels (c)—(e) show oscillations of the velocity of the
first car over one period as solid curves to the scale on the
left-hand side, and oscillations of the headway of the first car
over one period as dashed curves to the scale on the right-
hand side. Cases G-I correspond to the marks in panels (a)
and (b).

the desired speed v°. Otherwise, there is no qualitative
change between cases A—C. In addition, one can see that
the oscillations of the headway are more harmonic than
those of the velocity, that is, they are quite well approx-
imated by the first term of the Fourier expansion.

Reducing « further, two interesting things happen as
is visible in Fig. 4(d). First, an unstable part appears on
the left-hand side of the branch of oscillating solutions
(new dashed section) bounded by two fold bifurcations.
This results in a second bistable region in the parameter
h*, where two different stable oscillations coexist, one
with a smaller and one with a larger amplitude. As « is
decreased further, the lower fold point tends to the left
Hopf point, but does not reach it even when « is close to
Zero.

The second noticeable change in Fig. 4(d) is that the
headway crosses zero during its oscillation along the dot-



ted section of the oscillating branch: cars move ”through
one another”. Clearly the model is not valid in this situa-
tion, as collisions are not taken into account. We marked
some points D—F on the branch of oscillating solutions
and displayed the respective oscillations of the velocity
and the headway in Figs. 5(d)-5(f). One can see in case
D that the vehicles nearly stop and in case F they nearly
reach the maximum speed [Figs. 5(d) and 5(f)]. Fur-
thermore, in cases D and E [Figs. 5(d) and 5(e)] cars
touch each other, because these points are on the edge
of the collision region as shown in Fig. 4(d). Reducing «
further, this collision section becomes larger and finally
covers the entire stable part of the branch.

The height of the branch of oscillating solutions
changes proportionally with v°, because drivers want to
reach the desired speed even during oscillations. Fixing
a = 0.1 and changing v°, we obtain a series of bifurcation
diagrams shown in Fig. 6. When increasing v°, we ob-
serve the same qualitative changes as in Fig. 4. However,
we did not encounter collisions, but they may occur at
higher vY. In fact, high desired speed, which is usually
controlled by a given speed limit, can cause oscillations.
We remark that in the above cases we showed that colli-
sions may happen even for moderate 1°.

B. Stopping motion

We present the results in the range o 2 0.4 of the
sensitivity parameter to discover different bifurcation be-
havior. Note that here the relaxation time 1/« is small,
hence large acceleration can be achieved (the case of
"rocket cars”). If we change v” in this regime of « (for
example, for @ = 1.0), then we again get a series of grow-
ing branches of oscillating solutions and qualitatively the
same branches as we obtained in Figs. 6(a)-6(c). How-
ever, instead of the behavior in Fig. 6(d), we experience
the dynamics depicted in Fig. 7(a). On both sides of the
branch of oscillating solutions, the same type of bista-
bility appears, namely an unstable section of the branch
of oscillating solutions between a fold and a subcritical
Hopf bifurcation.

An important qualitative difference is that vehicles
stop in one section of oscillations while there are no col-
lisions [see time profiles Figs. 7(c)— 7(e) belonging to the
marked points G-I of the oscillation branch]. This is due
to the large acceleration. In fact, only for extremely large
values of v°, collisions appear in this regime of large .

The stopping section is the largest in case G, is smaller
in case H, and disappears in case I. However, in case H the
maximum speed nearly reaches the desired speed. The
collective motion of the system is a stop-and-go traffic
jam: the congestion consisting of standing vehicles prop-
agates upstream along the ring, because cars leave the
jammed region at the front and enter at the back. Note
that in case of three cars this jam is not pronounced, but
the qualitative features of the oscillations are exactly the
same as in the many-car case. We depict the equilibrium

state and the minimum of the oscillations in Fig. 7(b),
where the minimum curve practically coincides with the
horizontal axis in a large region in the parameter h*. This
shows that here, the stopping motions are typical system
behavior.

C. Two dimensional bifurcation diagrams

The information concerning the dynamics of our model
was presented in the previous sections, for example in
Fig. 4, by plotting the amplitude of the oscillations as a
function of the control parameter h* for different fixed
values of o (and fixed for v°). In this way we detected
points of bifurcation, where the dynamics changes quali-
tatively.

We now present this information in Fig. 8 in a more
concise way as a two-dimensional bifurcation diagram in
the (h*,a) plane (for fixed v°). Specifically, we show
solid curves of Hopf bifurcation, dashed curves of fold bi-
furcation of oscillating solutions, gray curves of first col-
lision, and dotted curves of first stopping. These curves
divide the (h*, @) plane into regions of qualitatively dif-
ferent behavior. In this representation, the diagrams we
showed earlier correspond to horizontal cross sections for
the fixed values of a that are indicated in Fig. 8 by dot-
ted horizontal lines. We show the bifurcation diagram
in the (h*, ) plane for three representative values of v°,
namely for 0.35, 0.65, and 1.0.

The Hopf curves are the only curves that can be com-
puted directly with DDE-BIFTOOL. Folds can only be
detected by this software, and the fold curves were found
by a script that detects a suitable number of individual
fold points for (about 50) different values of the param-
eter . In a similar approach, the collision curve was
found by detecting points where the headway h; of the
oscillating solution first crosses zero. Similarly, the stop-
ping curve was found by detecting when the velocity vy
first becomes (approximately) zero; in practice we used
the criterion that v; < 0.01 because the velocity never
actually attains zero in the numerical representation.

We now discuss the results in Fig. 8 in some detail. For
v = 0.35 [Fig. 8(a)] the Hopf curve is one single curve
as in Fig. 3(b) (the top of the curve is not visible in the
chosen window of «). There are fold curves on the right
and on the left. The fold curve on the right starts at a de-
generate Hopf point DH,. and approaches the h* axis as
shown. Above DH,. the Hopf bifurcation is supercritical
and below DH,. it is subcritical. The region between the
Hopf and the fold curve is thus identified as a region of
bistability, where the equilibrium and a stable oscillating
solution coexist. On the left-hand side, the Hopf bifur-
cation is always supercritical and the bistability appears
via a cusp bifurcation where, two fold curves are born [see
the inset of Fig. 8(a)]. The two fold curves end at the
points (0.0,0.0167) and (1.0,0.0), respectively. The re-
gion between the two fold curves is a region of bistability.
The Hopf curve divides this region into two subregions, in
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FIG. 8: Two-dimensional bifurcation diagrams for different
values of v° as indicated. The horizontal dotted lines in panels
(a) and (c) correspond to the values of « used in Figs. 4 and
7(a), respectively.

which the one on the left corresponds to the coexistence
of an equilibrium and a stable oscillating solution, while
the very small region on the right corresponds to the
coexistence of two stable oscillating solutions; compare
Fig. 4(d). For v" = 0.35 there is no stopping motion, but
we find the gray curve of the first collision cutting across
the bifurcation diagram. For any value of (h*,«) below
this curve collisions occur, which means that there are no
collisions for « 2 0.0805. The individual panels of Fig. 4
correspond to horizontal cross sections through Fig. 8(a)
at the indicated values of . In particular, Fig. 4(d) fea-
tures collisions for values of h* from the section between
the two intersection points with the collision curve. This
section becomes larger as « is decreased further. Where
the collision manifold is tangent to the fold curve, col-
lisions occur over the entire branch of stable oscillating
solutions.

For v = 0.65 [Fig. 8(b)] the bifurcation diagram is
qualitatively the same as for v° = 0.35 except for two
differences. First, the cusp point is gone and two degen-
erate Hopf points DH;; and DH;5 are now the end points
of the two fold curves on the left. (This change happens
for a specific value of v° when the cusp point reaches the
Hopf curve at o ~ 0.4.) The Hopf bifurcation is subcriti-
cal between these two degenerate Hopf points and super-
critical otherwise. Coexisting stable oscillating solutions
exist only in the tiny region between the Hopf curve and
the fold curve below DH;; (on the right side of the Hopf
curve). In the much larger region between the other fold
curve and the Hopf curve below DH;s (on the left side of
the Hopf curve), there is coexistence between the stable
equilibrium and stable oscillations. The collision domain
is qualitatively the same but it is now a bit larger; its top
is at a >~ 0.227. The other new feature is the existence of
stopping motion on the domain bounded by the left fold
curve and the dotted stopping curve. The curve of first
stopping appears to start at the point DH;2 and connect
to a point on the left-most fold curve. This suggests that
stopping motion is born when the cusp disappears.

For v° = 1.0 [Fig. 8(c)] there are now two verti-
cal asymptotes of the two Hopf curves as in Fig. 3(c),
meaning that the unstable area is now unbounded in «.
Compared with the situation for v© = 0.65, the points
DH;3 and DH, moved up in « and out of our window,
7dragging” the associated curves with them. In fact,
these points have disappeared so that the fold curves
and the stopping curve also now have vertical asymp-
totes. (We found that all vertical asymptotes develop
for v9 ~ 0.7198.) In other words, Fig. 8(c) is qualita-
tively the same as Fig. 8(b) for, say, o < 0.7. Notice how
the stopping region is now much larger. The indicated
horizontal section corresponds to Fig. 7(a), which indeed
showed a large section of stopping motion. Furthermore,
the collision domain is also much larger; its top is at
a~0.61.

When considering different values of the scaling param-
eter s, the only qualitative change is that the cusp point
may be below the collision curve. For the OV functions



Vgs(h) (9) or Vg(h) (12), one can obtain similar branches
of oscillating solutions as above, although the dynamics
may be nonsmooth and thus DDE-BIFTOOL may run into
difficulties.

V. CONCLUSION AND DISCUSSION

We presented a complete overview of the possible dy-
namics of the traffic model under consideration, in terms
of all the relevant control parameters. To this end, we
employed computational techniques and ideas from bi-
furcation theory. Our results show that even a simple
delayed OV model with varying parameters can display
many interesting features.

Specifically, we investigated the stability and the lo-
cal Hopf bifurcations of the equilibrium, and used nu-
merical continuation techniques to explore the bifurca-
tions of the branches of oscillating solutions. We showed
that, typically, an interval of h* values exists in which
the uniform flow solution is unstable. This region be-
comes larger when increasing the desired speed v° or the
relaxation time 1/a. We then explored the oscillating
solutions of the system by using continuation techniques,
which showed that there are regions of bistability near
the onset of oscillations; for example, between the uni-
form flow solution and oscillations. The different regions
of behavior of the system were presented in a concise way
in a bifurcation diagram in the (h*,a) plane (for fixed
vY). In this bifurcation diagram we also identified the
curves of (first) stopping and of (first) collision during
an oscillating solution. While collisions occur for suffi-
ciently small «, a region of stopping motion only occurs
for sufficiently large vg.

The next step is to use the approach taken here to per-
form bifurcation studies in more general situations. Here
we kept to the case of three cars to present key phenom-
ena in the simplest possible setting. A first exploratory
investigation for four and five cars indicates that increas-
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ing the number of cars n results in no change in the
qualitative structure of the stability diagram. While this
number of cars may still appear small compared to real
traffic situations, it nevertheless allows one to gain math-
ematical insight concerning the limit of a large numbers
of cars. However, quantitative information concerning
asymptotes changes and, as n is increased, we gain ad-
ditional Hopf bifurcation curves for wave number values
k > 2. Note that these extra bifurcation curves corre-
spond to additional spectrum crossing into the right half
plane when the uniform flow solution is already unsta-
ble. A bifurcation analysis of the n-car situation, espe-
cially the possibilities of interactions of different oscillat-
ing modes, is in progress.

We stress that numerical bifurcation techniques could
be applied to extend the understanding of other car-
following models incorporating delay (see Holland [20] for
a list, and more recently, Lenz et al. [21], Nagatani [22],
Wilson [23], and Sawada [24]). In some cases (see, e.g.,
Igarashi et al. [12], which discusses the Newell model),
bistability has already been observed using numerical
simulation techniques. The tools that were discussed
here give more efficient methods for tracing out the key
boundaries in parameter space (e.g., the characterization
of bistability regions). Finally, we remark that chaos
has been found in car-following models with delay by us-
ing numerical simulation; see Low and Addison [25], and
Safonov et al. [26]. Numerical continuation techniques
might, in the future, be applied to these models to gain
concise information about the routes to chaos.
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