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Abstract. In this paper we consider the interaction of the Lorenz manifold — the
two-dimensional stable manifold of the origin of the Lorenz equations — with the
two-dimensional unstable manifolds of the secondary equilibria or bifurcating periodic
orbits of saddle type. We compute these manifolds for varying values of the parameter
o in the Lorenz equations, which corresponds to the transition from simple to chaotic
dynamics with the classic Lorenz butterfly attractor at o = 28.

Furthermore, we find and continue in g the first 512 generic heteroclinic orbits
that are given as the intersection curves of these two-dimensional manifolds. The
branch of each heteroclinic orbit emerges from the well-known first codimension-one
homoclinic explosion point at ¢ = 13.9265, has a fold and then ends at another
homoclinic explosion point with a specific p-value. We describe the combinatorical
structure of which heteroclinic orbit ends at which homoclinic explosion point. This is
verified with our data for the 512 branches from which we automatically extract (by
means of a small computer program) the relevant symbolic information.

Our results on the manifold structure are complementary to previous work on
the symbolic dynamics of periodic orbits in the Lorenz attractor. We point out the
connections and discuss directions for future research.

AMS classification scheme numbers: 34C37, 70K44, 37Gxx

1. Introduction

We consider the well-known Lorenz equations [24], which can be written as the vector
field in R? given by

Tt = o(y—ux),
Y or —y — 2z, (1)
z = xy— Pz
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Figure 1. Bifurcation diagram of the equilibria and (saddle) periodic orbits of
(1) as a function of p. Indicated are the pitchfork bifurcation P of the origin at
o = 1, the homoclinic explosion point at o, & 13.9265, the heteroclinic bifurcation

at onet ~ 24.0579 where there is a pair of heteroclinic orbits from 0 to I'*, and the

subcritical Hopf bifurcation H of the secondary equilibria at o = % ~ 24.7368.

Equations (1) were derived by E.N. Lorenz in the 1960s as a much simplified model
of convection dynamics in the atmosphere and, quite by accident, he found that they
display very sensitive dependence on the initial condition. Indeed for the now classic
parameters values of ¢ = 10, § = 8/3, and ¢ = 28 one finds the butterfly-shaped Lorenz
attractor, which has since emerged as arguably the most famous example of a chaotic
attractor. An important and well-known feature of the Lorenz attractor and the Lorenz
equations (1) is their symmetry

(2, y,2) = (=2, -y, 2)
of rotation by 7 about the z-axis, which is invariant under the flow.

We concentrate here on the transition from simple to complex dynamics of the
Lorenz equations (1) when the parameter g is varied, while o and [ are kept fixed at
the classic values. Figure 1 summarizes the basic information about the bifurcation
diagram of the equilibria and periodic orbits as a function of g; see [15, Chapter 6.4]
and [33, Chapter 3]. The origin 0 is always an equilibrium with eigenvalues

-3 and - %(a—i— 1) + %\/(0’—1— 1)2+40(0—1).

Hence, 0 is stable for o < 1 and becomes a saddle in a pitchfork bifurcation at o = 1. For

0 > 1 the origin has a one-dimensional unstable manifold W*(0) and a two-dimensional
stable manifold 1W*(0), which we refer to as the Lorenz manifold. For ¢ > 1 there are
two other, secondary equilibria

pt=(EVBe—1),£VBe—1),0—1)

that are each other’s image under the symmetry. The secondary equilibria are attractors

with a pair of complex conjugate eigenvalues until they lose stability in a subcritical
Hopf bifurcation at

470
on=0B+c+3)(c—-B-1)"'= To ~ 24.7368.
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Figure 2. Organisation of the unstable manifold W*(0) (red curve) for o = 23.5 (a),
for o = 24.0579 (b), and for o = 24.5 (c), that is, before, approximately at and and
after the heteroclinic bifurcation at gne; between the origin 0 and the periodic orbits
I'* (green curves).

Past the Hopf bifurcation for o > oy the equilibria p* are saddle points and have
two-dimensional unstable manifolds W*(p*), associated with the complex conjugate
eigenvalues, and one-dimensional stable manifolds W*(p*).

The two saddle periodic orbits I'* that bifurcate in the Hopf bifurcation exist
in the interval o, < 0 < op. They bifurcate at o, ~ 13.9265 in a symmetrically
related pair of homoclinic orbits of the origin; see figure 1. This codimension-one
homoclinic bifurcation is also known as a homoclinic explosion point. It is the source
of all complicated dynamics in the Lorenz system: for o > p, &~ 13.9265 one finds in a
tubular neighbourhood of the two homoclinic loops not only the two periodic orbits I'*
but also infinitely many other saddle periodic orbits (of well-known symbolic description)
[14, 33]. The manifestation of the homoclinic explosion at g, in terms of the invariant
manifolds involved is discussed in detail in section 2.

Note that the homoclinic explosion point at o, does not produce a chaotic attractor.
Rather one initially finds ‘preturbulence’in the form of a chaotic transient before the
system settles down to one of the attracting equilibria p* [18, 33]. At gne; ~ 24.0579
there is a codimension-one heteroclinic bifurcation that creates a chaotic attractor. At
Onet there are two symmetrically related heteroclinic orbits between the origin 0 and
the saddle periodic orbits I'*. This bifurcation is further illustrated in figure 2. For
0 < Onet the unstable manifold W*(0) lies in the basin of attraction of the attractors pt.
At the heteroclinic bifurcation at gpet the one-dimensional manifold W*(0) connects 0
to the saddle periodic orbits I'F, that is, W*(0) is entirely contained in W*(I'¥). As a
result, for 0 > onee W*(0) no longer lies in the basin of attraction of p*, but instead
its closure is a chaotic attractor. This chaotic attractor coexists with the attracting
equilibria p* until they disappear in the Hopf bifurcation at oz. Hence, for o > oy the
chaotic attractor is the only attractor.
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Figure 3. Original sketches by C. Perellé. The Lorenz manifold W*(0) at the
homoclinic explosion (a), and W#(0) just before the attractors become saddles (b).
Panel (c1) shows the unstable manifold W#(A) of a secondary saddle point A (p* in
our notation), while panel (c2) illustrates its multi-sheeted nature.

Reproduced with kind permission of Springer Science and Business Media from

C. Perelld, Intertwining invariant manifolds and the Lorenz attractor, in Global theory
of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, IIL.,
1979), Lecture Notes in Math. 819, Springer-Verlag, Berlin, pp. 375-378. ©1979

Springer-Verlag.

In this paper we address the question of how the transition through the homoclinic
explosion and beyond manifests itself in terms of the organisation of the respective two-
dimensional invariant manifolds of 0, p* and I'*. Specifically, in section 2 we compute
W#(0), W*(p*) and W*(I'*) for different values of ¢ with specialized software that
has become available only in recent years; see the survey [22]. We use the geodesic
level set (GLS) method of [19, 20] for computing W*(0) and a boundary value problem
(BVP) approach (see [22, Sec. 3]) for computing W*(p*) and W*(I'#), respectively.
This allows us to study how the global manifolds and their intersections change with
the parameter p. In section 3 we use a boundary value approach to find the first 512
of the infinitely many codimension-zero heteroclinic orbits that form the intersection
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between 1W*(0) and W*(p*) for ¢ = 28.0. We introduce their symbolic structure and
then, in section 4, continue all 512 heteroclinic orbits in p. All these heteroclinic orbits
are born in the homoclinic explosion point o, ~ 13.9265. When continued for increasing
o each branch of heteroclinic orbits has a fold and ends at a specific value of p in
another codimension-one homoclinic bifurcation. As is discussed in section 5, each of
these homoclinic bifurcations is also a homoclinic explosion point with a well-defined
symbol sequence. We give a complete description in terms of symbol sequences of which
heteroclinic orbits end at which homoclinic explosion points.

There is an enormous amount of literature on the Lorenz equations. We finish this
introduction by reviewing briefly some key references of direct relevance to the results
in this paper. A more detailed discussion of how the symbolic dynamics of heteroclinic
orbits discussed here relates to previous work on the symbolic dynamics of periodic obits
can be found in section 6.

As far as we are aware, Perellé [30] is the only one who considered directly the
dependence of the Lorenz manifold W*(0) on the parameter g, including the transition
through the homoclinic explosion. In fact, he produced the first ever three-dimensional
drawings of W*(0), which are reproduced in figure 3. The drawing in figure 3(a) shows
the geometry of W#(0) at the homoclinic explosion point at g,, while figure 3(b) shows
W#(0) just before the attractors become saddles. In fact, this drawing was a basis for
the illustrations by Abraham and Shaw [1] of the Lorenz manifold for p = 28.0. Notice
the emphasis on the two scrolls of W#(0) around the one-dimensional stable manifolds
of the secondary equilibria. The question of what this means for the overall geometry of
W#(0) was answered only quite recently when a sufficiently large piece of 1W*(0) could
be computed [21, 22, 27]. Perell6 also considered the unstable manifold of the secondary
equilibria. Figure 3(c) shows a part of W*(p*) and how it is bounded by W*(0). It
was obtained by Perell6 by “saturating” a line segment, which is remarkably close to
our approach of computing W*(p™*); see section 2.2.

There is quite some literature on the symbolic description of the Lorenz system,
namely to characterize the periodic orbits on the Lorenz attractor and their bifurcations.
Guckenheimer and Williams [16, 37], Afrajmovich, Bykov and Sil'nikov [2], and Rand
[31] introduced and studied a one-dimensional discontinuous map model of the attractor,
called the geometric Lorenz attractor. The geometric Lorenz attractor describes the
dynamics on the intersection of the Lorenz attractor with the Poincaré section X, =
{z = 0 — 1} through the secondary equilibria. The discontinuous one-dimensional map
(describing how leaves of the strong stable foliation map to one another) has a left and
a right branch, which defines the itinerary or kneading sequence of any point under
the dynamics in terms of an infinite sequence of 1s and rs (denoting application of
the respective branch). The chaotic dynamics arises in the geometric Lorenz attractor
just as we just described for the Lorenz system, namely via the equivalents of the
basic homoclinic explosion, heteroclinic bifurcation, and Hopf bifurcation; see [15,
Chapter 6.4] and [33, Chapter 3.4].
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Closely related to the geometric Lorenz attractor is the concept of the template of
the Lorenz system, which is a branched two-manifold that allows one to describe the
symbolic dynamics of the knot-types in R? of periodic orbits on the Lorenz attractor;
see the original paper by Lorenz [24], the work by Ghrist et al. [12, 38], and the
recent textbook [13]. In fact, figure 3(cl) by Perell6 nicely illustrates the Lorenz
template, which is effectively obtained by identifying the infinitely many (local) sheets
that meet along the initial piece of the unstable manifold W*(0); see also figure 7
below. The chaotic nature of the Lorenz system (for the classic parameter values) was
proved by Tucker [34] only quite recently by showing with computer-assisted rigorous
estimates that the Lorenz attractor indeed satisfies the technical conditions needed
in the reduction to the geometric Lorenz attractor; see also the review by Viana [35].
Therefore, properties of the geometric Lorenz attractor carry over to the Lorenz system,
which can be exploited to show properties of the attractor; see, for example, the recent
result on mixing by Luzatto et al. [25].

While the results mentioned above are quite theoretical in nature, there have been
a number of investigations of periodic orbits of the Lorenz system that also involve
numerical tools. The periodic orbits of the Lorenz attractor itself (for fixed o = 28.0)
have been computed systematically with varying accuracy and up to different lengths
of their (repeating) symbol sequences. Franceschini et al. [11] computed all periodic
orbits with up to 9 symbols and Eckhardt and Ott [8] all periodic orbits with up to 11
symbols. Viswanath [36] builds up longer periodic orbits recursively from shorter ones
and computes all periodic orbits with up to 20 symbols, as well as some with very long
symbol sequences (up to 347 symbols).

A more general topic is the dependence of the periodic orbits on parameters. A
wealth of information on this subject is contained in Sparrow’s book [33]. By means of
careful investigations with numerical integration in combination with theoretical results
from bifurcation theory, he gives a consistent picture in terms of symbol sequences of
the periodic orbits in the dependence on the parameter p. The periodic orbits can be
followed from the basic homoclinic explosion point at g, towards larger values of ¢ and
through folds back to different homoclinic explosion points. New branches are born in
period-doubling bifurcations and also end at homoclinic explosion points. These results
in [33] are summarized in a bifurcation diagram of periodic orbits with different symbol
sequences; see also [13]. Note that [33] also contains information on the dependence
of the system on other parameters, including results on the limits of large o and small
B, as well as conjectured bifurcaton diagrams in the (3, o)-plane (for the classic value
of o = 10); see also the work by Robbins [32]. Recently, Dullin et al. [7] considered
the entire (g, 0)-plane and found an alternating periodic pattern of stability regions of
symmetric and non-symmetric periodic orbits, which they explain by considering certain
limits of large p and o.

Overall, the work presented here is quite similar in spirit to that by Perelld
and Sparrow. The sketches in figure 3 were developed by Perell6 with the help of
representative trajectories generated on a “desktop computer with a plotter” [30].
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Similarly, the bifurcation diagrams of periodic orbits versus g and the determination
of their symbolic dynamics by Sparrow [33] were obtained with a systematic numerical
exploration by means of numerical integration guided by theoretical insight and
expectation. Both Perellé and Sparrow used state-of-the-art numerical tools at the
time, namely numerical integration to solve initial value problems. Similarly, we use
state-of-the-art numerical tools of today, most importantly manifold computation and
the continuation of solutions of suitable boundary value problems. Only with the
development of these tools has it become possible to investigate in detail how the Lorenz
manifold W#(0) interacts with W*(p*) and W*(I'*). Therefore, in many respects our
work continues from and complements their earlier work.

2. Dependence of the manifolds on p

For the standard value of p = 28.0 the Lorenz system has a strange attractor which is the
global attractor of the system. The global dynamics of how trajectories spiral into the
Lorenz attractor is organized by the Lorenz manifold W*(0), which essentially separates
trajectories that follow the left branch or the right branch of W*(0), respectively, when
they pass close to the origin 0. From a geometrical point of view, computed up to fixed
geodesic distance, the two-dimensional surface W*(0) is the smooth image of a disk that
simultaneously ‘rolls’ into the right and left ‘wing’ of the Lorenz attractor. As is now
known, this results in a primary helix along the positive z-axis, with infinitely many
secondary helices close to this primary helix; for more information on the geometry of
the Lorenz manifold see [21, 27, 28|.

In this section we consider how the Lorenz manifold W*(0) changes when p is
decreased through the bifurcation diagram in figure 1. Similarily we study how the
unstable manifolds W*(p*) and W*(I'#), respectively, change in this transition.

2.1. The stable manifold W*(0)

Figure 4 shows four images of W*#(0) for different values of p as computed with the GLS
method of [20] in the implementation described in [10] (which uses AUTO’s collocation
and pathfollowing routines). All four manifolds were computed up to geodesic distance
100.0, so include the z-axis from (0,0, —100.0) to (0,0, +100.0). We coloured W*(0) in
shades that get paler as the geodesic distance increases; the boundary of W#*(0), that
is, the geodesic level set of distance 100, is drawn as a darker curve. The changes of
the manifold with o is best seen in the accompanying animation 1. In particular, the
torsion of the helix around the positive z-axis increases as ¢ decreases.

Figure 4(a) shows the Lorenz manifold W*(0) for the classical value of o = 28.0.
The manifold rolls up around the one-dimensional stable manifolds W*(p*) (not shown)
of the secondary equilibria p4 and thereby forms the primary helix along the positive z-
axis. Until the Hopf bifurcation at oy ~ 24.7368, the situation remains topologically the
same. Then the saddles p* become attractors that co-exist with the Lorenz attractor.
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Figure 4. The manifold W#(0) up to geodesic distance 100 for ¢ = 28.0 (a), for
0o = 19.0 (b), for p = 10.0 (¢), and for ¢ = 1.0 (d). To help identify the changes
to W#(0) the shade of blue changes from darker to lighter as the geodesic distance
increases and the boundary at geodesic distance 100 is highlighted as a dark blue
curve; see also the accompanying animation 1.

The Lorenz manifold W#(0) now rolls around the stable manifolds W*(I'¥) (not shown)
of the saddle periodic orbits I'*, which form the basin boundaries of p*. As an example,
the manifold for o = 19.0 is shown in figure 4(b) and, in fact, this is the situation sketched
by Perell6 in figure 3(b). We remark that the transition through the Hopf bifurcation
results in a continuous deformation of W*(0).
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Figure 5. Organisation of manifolds W*(0) (blue surface), W*°(0) (blue curve) and
W*(0) (red curve) for p = 15.0 (a), for o = 13.9265 (b), and for o = 13.0 (c), that is,
before, approximately at, and after the homoclinic bifurcation. On the left W*(0) is
clipped along a plane spanned by the z-axis and the unstable eigenvector of the origin,
and on the right it is rendered transparent. In row (b) W#(0) is of geodesic distance
64.175 and in rows (a) and (c) it is of geodesic distance 100.0. Row (a) also shows the
two bifurcating saddle periodic orbits I'y (green curves).
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The transformation through the homoclinic explosion at o, &~ 13.9265, on the other
hand, results in a more dramatic change of W#(0). When p is decreased from 24.7368
towards this homoclinic bifurcation point, the saddle periodic orbits I't grow larger in
radius, while W#(0) rolls around I'* and W*(I'F). At g, the unstable manifold W*(0)
lies in W*(0) and forms a homoclinic loop. At this moment W?*(0) is degenerate. It
rolls around p* exactly once and ends along the strong stable manifold W*(0) € W*(0).
For o < 13.9265 the Lorenz manifold 1#(0) rolls around p* exactly once, after which
it turns back along itself exponentially closely toward the direction of negative z. This
change of the manifold can be seen clearly in figure 4(c) and (d). Notice the parts of
the boundary of W*#(0) that now lie in the region of negative z, indicating that there
are now several sheets of the computed manifold in this region.

Figure 5 shows the transition through the homoclinic explosion at o, in more detail.
Shown are the stable and unstable manifolds W*(0) and W*(0) for o = 15.0, 13.9265,
and 13.0; the one-dimensional blue curve is the strong stable manifold W*(0). Note
that we describe the transition through the homoclinic bifurcation for decreasing o to
be consistent with figure 4. In the left column of figure 5 only the part of W#*(0) is
shown that lies ‘behind’ the plane normal to 7 := v*(0) x (0,0, 1) through the point
0.17. That is, we clip W#(0) with the plane spanned by the z-axis and the unstable
eigenvector v"(0). The right column of figure 5 shows W*(0) in transparent blue. The
manifold W*(0) was computed up to geodesic distance 100.0 for ¢ = 13.0 and 15.0; for
o0 = 13.9265 it was computed up to geodesic distance 64.175.

Figure 5(a) shows the situation for ¢ = 15.0 with the pair of periodic orbits T'*
already approaching the origin quite closely. Observe how W*#(0) returns close to the
origin and then turns upwards (towards positive values of z): effectively, 17*(0) rolls
around I'* infinitely many times. Notice that the unstable manifold W*(0) ‘crosses
behind” W*(0), so that its left branch accumulates on the attractor p™ and its right
branch on p~. Figure 5(b) shows the situation (approximately) at the homoclinic
explosion for ¢ = 13.9265. The two branches of W*(0) no longer accumulate on p*, but
come back to the origin to form two (symmetrically related) homoclinic orbits, being
entirely contained in W*(0); see panel (b2). The Lorenz manifold W*(0) was computed
up to the geodesic distance 64.175 when it comes back to the origin along the homoclinic
orbit. Indeed W#(0) cannot be parametrized by smooth geodesic level sets for larger
geodesic distances. Rather, this two-dimensional manifold aligns with and ‘closes up’,
much like a zipper, along W*5(0). Figure 5(c) shows the situation for ¢ = 13.0. The
equilibria p* are now the only attractors and W#*(0) separates their respective basins of
attraction. Now the left branch of W"(0) spirals directly into p~ and the right branch
directly into p*. The Lorenz manifold W*(0) folds around p* once, comes very close
to the origin, or more precisely close to W®(0), and then, rather than making another
revolution around p*, folds away downwards (towards negative values of z) and back
along itself; see panel (cl) and compare with Figure 4(c) and (d). In particular, all
trajectories on W#(0) go to infinity in backward time.
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2.2. The unstable manifolds W*(p*) and W*(T'F)

For p = 28.0 the unstable manifolds W*(p*), which are each other’s image under the
symmetry, both accumulate on the Lorenz butterfly attractor. The local manifolds
near p- are approximate nice disks but, as they grow and accumulate on the Lorenz
attractor, they each pass back and forth infinitely many times between the two wings
of the attractor. In other word, W*(p*) has infinitely many sheets, which are actually
extremely close together due to the contraction rates involved. Collapsing these sheets
leads to the well-known template of the Lorenz system in the form of a branched surface
(12, 13].

When p is decreased below the Hopf bifurcation at oy ~ 24.7368 then W*(p*)
transforms into W*(I'*). Locally near I'* this manifold now has two parts, one inside
and one outside W*(I't). The inside branch is a topological disk that has the attractor
p™T as its closure, while the outside branch is as complicated as W*(p*) for o > 24.7368.
When o is decreased further, the periodic orbits I'* grow until they finally disappear in
the explosion point at o, ~ 13.9265. The manifolds W?*(I'*) also cease to exist in this
bifurcation.

Computing a good representation of W*(p*) and W*(I'*) is quite a challenge. Due
to extreme folding of the manifolds the GLS or other growth methods quickly run into
difficulties. As an alternative we find and continue suitable orbit segments with a BVP
approach [22, Sec. 3]. Specifically, we compute two families of orbit segments as shown
in figure 6 for o = 28.0 with the package AUTO [4]. Both families start along a vector
in the linear unstable eigenspace of p*; in fact the end points of the orbit segments
hardly change and are marked by a diamond. The orbit segments in figure 6(a) spiral
around p* a number of times, then make one revolution around p~ and end in the
section ¥, = {# = p — 1} (on the far side of p*). Similarly, the orbit segments in
figure 6(b) spiral around p* a number of times, then make one and a half revolutions
around p~ and end in X, (on the far side of p~). Starting from an orbit segment found
by continuation in the integration time 7', the respective families are then continued as
two-point boundary value problems with AUTO.

The two families (represented by black curves) are bounded by the purple and
red orbits in figure 6, which are concatenations of a heteroclinic orbit from p* to the
origin 0 with a piece of W*(0). The heteroclinic part of the two purple orbits makes
infinitely many revolutions around p* before ending up at 0 (symbolized by R), while the
heteroclinic part of the two red orbits also makes a single revolution around p~ before
ending up at 0 (symbolized by R1). These heteroclinic orbits are intersection curves (of
codimension zero) of W*(p™) with W#(0). As we discuss in detail in section 4, infinitely
many such heteroclinic orbits with a well-defined symbolic description organize the
intersections between W*(0) and W*(p*) and W*(I'*), respectively.

The families of orbit segments in figure 6 were used to render the manifolds W*(p™)
and W"(p~) (by symmetry) as surfaces. Taken together, they constitute a numerical
version of the template of the Lorenz system. In fact, we chose the families of orbit
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Figure 6. Two families of orbit segments were used to compute (a part of) W*(p™) or
W4(I'"); the example shown is for o = 28.0. The orbits segments start in the unstable
eigenspace (near ¢) of W"(p™) and end in the section {z = p — 1}, either near p*
(al) or near p~ (bl). Both families limit on the two singular orbit segments in panels
(a2)/(a3) and (b2)/(b3), which are composed of a heteroclinic orbit (of type R and R1,
respectively) composed with an initial piece of W*(0).
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(a) (b)

Figure 7. The manifolds W (p*) for o = 28.0 (a), and W*(I'F) for o = 23.0 (b),
0 = 19.0 (c), and o = 14.0 (d), respectively, as rendered from the families of orbit
segments in figure 6; see also the accompanying animation 2.

segments such that they encode the ‘switching from right to left’ that is the hallmark
of this template. We remark that we used the same families also to compute W*(I'*)
(for lower values of p).

Figure 7 and the accompanying animation 2 show how WU(p*) and W*(I'%)
change with p. Note that the holes around the secondary equilibria p* in figure 7
could be filled with simple disks. However, we felt that it is better to show only the
computed orbit families, as this also emphasizes the dynamics on W*(p*) and W*(T'F).
In figure 7(a) for the classical value of o = 28.0 one can recognise the computed part
of W¥(p*) as forming the template of the Lorenz system. In effect, each family of
orbit segments transports (backward in time) the respective one-dimensional intersection
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Figure 8. A transparent rendering of W#(0) (blue surface) as it intersects the unstable
manifolds (red surfaces) W*(p*) for o = 28.0 (a), and W*('*) for o = 23.0 (b),
0=19.0 (c), and o = 15.0 (d), respectively; see also the accompanying animation.

curve W(p*)UX,. In this sense, our method of computing W*(p*) is similar to Perelld’s
method of ‘saturating’ a line segment; compare figure 7(a) with figure 3(c). In particular,
the computed part of W*(p*) is bounded by W*(0). Figure 7(b) shows the computed
part of W¥(I'*) for o = 23.0, which is still bounded by W*(0). As p is decreased
further to o = 19.0 in figure 7(c), the holes around p* grow, which indicates that the
orbit families we considered cover less and less of W*(I'*). In fact, as is illustrated in
figure 7(c) for o = 14.0 very near the homoclinic bifurcation, the computed families of
orbit segments have the homoclinic orbits as their limit.

Figure 8 and the accompanying animation 3 show W?*(0) together with TW*(p*)
and W¥(T'F), respectively, as o is changed. Here W#*(0) is rendered transparent and
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all panels show the same part of the phase space. Notice how W*(I'*) become smaller
and then disappear for decreasing o. The two sets of manifolds intersect in infinitely
many codimension-one heteroclinic orbits; the purple and red orbits in figure 6 are two
concrete examples.

3. Generic heteroclinic orbits for o = 28.0

While figure 8 gives a good impression of the overall geometric arrangment of the
manifolds, it is practically impossible to resolve from this figure the heteroclinic orbits
that form the intersection set. Therefore, we now adopt the approach of identifying the
generic heteroclinic orbits for ¢ = 28.0 directly with a continuation method. In the next
section we then follow these heteroclinic orbits in the parameter p.

Specifically, we fix ¢ = 28.0 and systematically find the heteroclinic orbits from
the secondary equilibrium p* to the origin as follows. First we perform a continuation
with AUTO [4] in integration time (parameter T') where we start from an initial condition
along a particular direction in the unstable eigenspace E“(p*) at distance rq from p™.
We then fix the integration time 7' at a suitable value and continue the initial orbit
segment in the parameter ry. During this continuation the orbit segment sweeps over
W*(p*) and, hence, also over the heteroclinic orbits we are seeking. Importantly, the
heteroclinic orbits stand out as local minima of the arclength, as well as the Ly or
integral norm, because most of the integration time 7" is spent near the origin. Since the
orbit spirals near p*, the result of the continuation effectively repeats itself after ry has
covered a fundamental domain. In our procedure a fundamental domain can be defined
conveniently as the ro-range between successive detections of the basic heteroclinic orbit
that spirals around p* and then connects directly to the origin, which has the overall
smallest norm of any orbit.

Figure 9 shows the norm of the resulting family of orbit segments for fixed T" over
a fundamental domain in ro. The (approximate) heteroclinic orbits from p* to 0 are
clearly identified as very distinct local minima. What is more, figure 9 brings out the
tree structure of the heteroclinic orbits, which is directly related to their description by
symbol sequences.

We introduce a symbolic coding for heteroclinic orbits that is very similar to what
has been used for periodic orbits; see [33] and also [36]. We refer to p~ and p* as the left
(1) and right (r) equilibria and use R as an abbreviation for infinitely many revolutions
around p*. The basic heteroclinic orbit connects p* directly with 0 and has the symbol
sequence R.

For any other heteroclinic orbit infinitely many revolutions around p* are followed
by an initial (Oth) revolution around p~. Then follow finitely many revolutions in some
order around p* or p~ before the heteroclinic orbit ends at 0. Therefore, its symbol
sequence is defined as

s; = 1 if the jth revolution is around p~,
Rls;---Sy, where . , R N (2)
s; = r if the jth revolution is around p™.
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Figure 9. Family for o = 28.0 of orbit segments of fixed time 7" = 30.1473 that
start at distance ro along a vector in E%(p™). Local minima of the integral norm ||.||
correspond to (approximate) heteroclinic orbits from p™ to 0; their symbol sequences
for levels 0 to 3 are shown. The continuation in rg covers one fundamental domain,
starting and ending at the basic heteroclinic orbit R.

Here, N is the number of subsequent revolutions around p~ and p*, to which we refer as
the level of the symbol sequence or heteroclinic orbit. Symbol sequences for heteroclinic
orbits from p~ to the origin are defined in complete analogy, where we use L as an
abbreviation of the initial infinitely many revolutions around p~. Due to the symmetry
of the Lorenz equations, for every heteroclinic orbit with sequence R1s; - - - s there exists
the symmetrically related heteroclinic orbit with sequence Lrs; - - - Sy, where T = 1 and
l1=r.

The notion of a revolution around the points p* or p~ can be made precise: each
such revolution corresponds to a unique intersection point of the heteroclinic orbit with
the section X, (located at the height of the secondary equilibria) where the flow is
pointing upwards (in the direction of increasing z). Note that this definition agrees
with the symbol sequences as used for the approximation of the return map of (1) on
the section X, by a one-dimensional discontinuous map (see [16] and [33, Chapter 3.4]),
where 1 corresponds to the left branch and r to the right branch of the map.

One key aspect of definition (2) is that the symbol sequence of a heteroclinic orbit
can be extracted automatically from the approximating orbit segment. Figure 10 shows
as examples the heteroclinic orbits R1 (row a) and Rrlrlllr (row b) in phase space and
as a time series of the x-value. Notice how the symbolic code can be determined easily
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Figure 10. The heteroclinic orbits from p* to 0 of (1) for ¢ = 28.0 with symbolic
sequences R1 (a) and Rlrlllr (b), shown in phase space (left) and as time series of
the z-value (right).

from the plot of the x-coordinate versus rescaled time ¢/7.

In figure 9 the basic heteroclinic orbit R and all non-basic heteroclinic orbits of levels
0 to 3 are labelled. The family of orbit segments shown in figure 9 actually allowed us to
extract automatically all heteroclinic orbits and symbolic sequences up to level 8. We
found 2¢ in all levels for i < 8, a total of 512 heteroclinic orbits. Figure 9 also constitutes
clear numerical evidence that, as a function of the parameter ry, the heteroclinic orbits
on W*(p*) actually occur in the recursive ordering on a full binary tree, which can be
defined formally as follows.

Definition Given two symbol sequences Rsg - - - sy and Rig - - -ty where s;,t; € {r,1}
let 0 < k < min(N, M) be the largest integer such that s; =t; for 0 < j < k. Then

Skr1 = 1, tg; = r and k < min(N, M),

Sgr1 =Ll and k= M,
tykyr =rand k= N.

(3)

Rsg:--sy <Rtg---ty if

The ordering can be described locally as

Rsg---sy1l <Rsg---sy <Rsp---spyr.
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Figure 11. All computed curves of heteroclinic orbits R* up to level 8, shown as
the maximum of |z| over the heteroclicic orbit versus p; the curves up to level 4
are highlighted in black. All curves emanate from the homoclinic explosion point at
or ~ 13.9265. With the exception of curve R, all curves have folds and end at co-
dimension-one homoclinic orbits of the origin. For example, curve R1 ends at the
homoclinic orbits rl, while curve R1r ends at 1r, which is the co-existing symmetric
counterpart for the same p-value. For level 4 the limiting homoclinic orbit with the
lowest p-value is r11111; see also figure 15 and figure 16.

In other words, the ordering (3) can be obtained by projecting all nodes of the binary
tree onto a line, which corresponds in figure 9 to projection onto the ry axis. Due to
symmetry, we have that Lsg--- sy has the same place in the ordering as its symmetric
counterpart Rsg - - - Sy

4. Continuation of heteroclinic orbits in p

It is an immediate question what happens to the binary tree of heteroclinic orbits when
one varies the parameter p. The discussion in section 1 and figure 8 suggest that all
heteroclinic orbits we found for o = 28.0 are created in the homoclinic explosion at
or ~ 13.9265. Hence, one would expect that the heteroclinic orbits can be followed for
decreasing p to this value. On the other hand, it is not so clear what happens to the
structure of heteroclinic orbits when one increases o.

To address these questions we started continuations from all 512 heteroclinic orbits
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for o = 28.0 for decreasing and increasing p. This process was implemented by level,
so that all 2¢ heteroclinic branches of level i are computed by starting a single script.
To start the continuation of a given heteroclinic orbit a Newton step was applied to the
approximate orbit corresponding to the respective minimum in figure 9. This ensures
that the projection boundary conditions near the origin are satisfied within a high
numerical accuracy, that is, the orbit segment ends in £°(0) near 0. This orbit segment
was then continued in p, where the total integration time 7' is a free parameter.

The computation is performed in two runs, one for initially decreasing ¢ and one for
initially increasing p. In the former case we pass the Hopf bifurcation at oy = 41—73). From
then on the heteroclinic orbit is between the saddle periodic orbit I't and the origin. In
the computation we continue the eigendirection and appropriate distance from p*. For
0 < oy we approximate a direction in E*(I'") by a direction in E¥(p™). We checked that
this approximation is acceptable; due to the ‘flat’ nature of I't and E“(T't) any small
initial distance from W*(I'") decays after at most two revolutions around I'* to below
the accuracy of the computation. Therefore, simply by following the same boundary
value setup through the Hopf bifurcation we obtain a smooth continuation process that
then follows the homoclinic orbit from I'* to 0. This procedure is numerically stable
and stops (at the basic homoclinic explosion point g,) when the total integration time
T reaches a prespecified bound. Due to the required high accuracy, with a necessarily
fine mesh of up to 4801 mesh points (AUTO constants NTST=1200 and NCOL=4),
the overall amount of data thus created to represent the 512 solution branches is over
400Mb (before compression), while not even including all computed orbits.

Figure 11 shows all 512 branches of heteroclinic orbits up to level 8 in a plot of
the maximum of |z| over the heteroclinic orbit versus the parameter p. To highlight
the structure of this set the branches up to level 4 are shown in black, while those of
higher levels are in gray. The overall result is that indeed all 512 branches emanate
from the homoclinic explosion at o, &~ 13.9265. As we have seen in figure 5, the periodic
orbits I'* approach the homoclinic orbits r and 1, respectively, and this implies that all
heteroclinic orbits in W*(I'*) UW?*(0) must do the same. This is illustrated in figure 12
for the examples of the heteroclinic orbits from figure 10 with symbolic sequences rl
and r1llr.

When continued from the basic heteroclinic explosion point for increasing o the
heteroclinic orbit R continues on to infinity. All other branches of heteroclinic orbits
have folds (LP points of AUTO) and then continue back to smaller values of p. Each fold
in Figure 11 represents a heteroclinic tangency between W*(p*) and W*(0), where two
intersection curves (with the same symbol sequence) come together and disappear as p
increases. As is apparent from figure 11, the intersection curves are lost in pairs one-by-
one in heteroclinic tangencies until, for o larger than about 194.6 the two-dimensional
manifolds W*(p™) and W*(0) intersect only in the curve R, which cannot be removed
and remains as an intersection curve for all o > p,. Notice also that the folds accumulate
at distinct p-values and, in fact, many folds agree up to the first four digits of o; see
the full data in Appendix A. This is due to the fact that W*(p™) contains many sheets
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Figure 12. All branches of heteroclinic orbits emanate from the basic homoclinic
explosion point at g, ~ 13.9265. Shown is how the heteroclinic orbits from figure 10
with symbolic sequences rl (a) and rlllr (b), respectively, accumulate on the basic
homoclinic orbit r; the limits are shown in phase space (left) and as time series of the
z-value (right).

close to each other, which one-by-one have a tangency with W*(0) in a very small o-
interval. Indeed, this agrees with the notion that heteroclinic or homoclinic tangencies
are typically accumulated by other tangencies [29].

Each branch of heteroclinic orbits, when continued from the basic homoclinic
explosion at o, past its fold ends at a well-defined value of p. For example, as is shown
in figure 11, the heteroclinic orbits R1 and Rlr both end at o,; =~ 54.6460. Note that
all computed end points have p-values larger than o = 28.0. The left-most end point of
any branch in level 4 is at g11111 &~ 39.1157.

The obvious question is what characterizes the end points of the branches of
heteroclinic orbits. In fact, each such end point is also a homoclinic explosion, that
is, a homoclinic bifurcation of the origin just like that at g, ~ 13.9265 but involving a
more complicated pair of homoclinic orbits (and bifurcating periodic orbits). To define
symbol sequences of these homoclinic orbits, note that the right branch of W*(0) at
or ~ 13.9265 returns directly to 0 and we describe it with the symbol sequence r
(hence, the naming of ¢,). For ¢ > g, the right branch of the unstable manifold 1W*(0)
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Figure 13. When followed in g past the fold, the heteroclinic orbits from figure 10 limit
on the homoclinic orbits with symbolic sequences rl (a) and r1llr (b), respectively;
the limits are shown in phase space (left) and as time series of the z-value (right).

immediately crosses over to make at least one revolution around the left equilibrium p~;
see, for example, figure 5(a) and figure 2. Therefore, for all other homoclinic explosions
the next symbol of its right homoclinic orbit is defined as hg = 1. The symbol sequence
of the right homoclinic orbits is then defined as

r1hy - hy. where { h; =1 if the jth revolution is around p~,

h; = r if the jth revolution is around p*.

Again, we refer to N as the level of the homoclinic orbit. By symmetry the left
homoclinic orbit of the pair has the symbol sequence 1rhy - - - hy.

Figure 13 shows the limits of the heteroclinic orbits R1 and R1rlllr of Figure 10
when continued in ¢ to their respective explosion points where they disappear. As the
explosion point is approached, the heteroclinic orbit passes closer and closer near the
origin. In the limit we obtain a heteroclinic orbit from p* to 0 folowed by a homoclinic
orbit from 0 back to itself. How this homoclinic orbits ‘splits off” can be seen in the
time plots in the right column of figure 13. Notice that the heteroclinic orbit R1 ends at
the homoclinic explosion rl, while R1r111lr ends at the homoclinic explosion r1llr. In
other words, in the former case an extra r is split off from the infinitely many revolutions
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Figure 14. All computed curves of heteroclinic orbits (levels 0 to 8) in the plane
of time T of the approximating orbit segment versus p. Values of o where T goes to
infinity correspond to limiting co-dimension-one homoclinic orbits of the origin. For
the heteroclinic orbits up to level 4 (black curves) the symbol sequences of the limiting
homoclinic orbits (starting with r) are shown. Note that the symmetric counterparts
of these homoclinic orbits co-exist for the same p-values, and are the limits of some
heteroclinic orbits; see also figure 15 and figure 16.

represented by R, while in the latter case the limiting homoclinic orbit consists of only
a subpart of the symbolic sequence of the heteroclinic orbit R1rlllr. Notice also that
in figure 11, both R1 and Rlr end up at the same homoclinic explosion point labeled
rl. However, R1r has the symmetric counterpart 1r as its limit.

5. Combinatorics of limiting homoclinic explosions

To determine which heteroclinic orbits end up at which homoclinic explosion points we
extract automatically for each of the 512 branches of heteroclinic orbits the location of
the fold, as well as the p-value and symbol sequence of the limiting homoclinic orbit.
This information is presented level by level in Appendix A and constitutes a major
result of this paper. The key is that symbolic information is derived reliably on a
large scale from numerical continuations of suitable orbit segments. We show now that
this approach indeed allows for insight into the structure of how W#*(0) interacts with
W (p*) and W*(I'*) and, more generally, it reveals new aspects of how the dynamics
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of the Lorenz system depends on p.

In figure 14 we show all computed branches of heteroclinic orbits up to level 8 in
the range o € [35.0,60.0]. In contrast to figure 11, we now plot the integration time T
of the approximating orbit segment. In this way, limiting codimension-one homoclinic
orbits of the origin are made visible as points where T' goes to infinity. All symbol
sequences of the limiting homoclinic orbits for the black branches of heteroclinic orbits
up to level 4 are shown at the top of figure 14. Note that we only show the symbol
sequences starting with r, while some of the branches actually end up at the symmetric
counterparts of these homoclinic orbits. Figure 14 clearly shows that many different
branches of heteroclinic orbits end up at the same homoclinic explosion. Furthermore,
not all possible symbol sequences of the binary tree up to level 4 (and up to level 8; see
the data in Appendix A) appear as homoclinic orbits of explosion points.

To describe which homoclinic explosion points do occur we consider the recursive
ordering of the the associated homoclinic orbits, which is defined exactly as in (3) where
R is replaced by an initial r. Again, 1hg---hy has the same place in the ordering as
thy---hy.

Main results

(R1) For the heteroclinic orbit with symbol Rsg--- sy (recall that sy = 1) consider the
smallest (with respect to the recursive ordering) of the NV +2 subsequences s; - - - sy
for 0 < j < N together with rsg---sy. The corresponding branch of heteroclinic
orbits ends at the homoclinic explosion point associated with the homoclinic orbit
with this smallest symbol sequence; see figure 15.

(R2) As a consequence we find only those homoclinic explosion points as limits of
heteroclinic orbits whose symbol rhq---hg (recall that hy = 1) (of the right
homoclinic orbit) does not have a smaller subsequence, that is,

rhy- - hi < hj---hx forall0<j<K (4)

We call these the homoclinic explosion points and associated homoclinic orbits
admissible. The recursive ordering of the admissible homoclinic explosion points
agrees with their ordering in terms of p-values; see figure 16.

(R3) All branches of heteroclinic orbits that end up at the same homoclinic explosion
point (that is, those that have a given symbol sequences rhg---hy or the
symmetric counterpart 1hg---hy as their smallest subsequence) have their folds
at approximately the same value of p; see figure 11.

Figure 15 illustrates (R1) with the binary tree of all heteroclinic orbits from p™ to 0 up
to level 5. The limiting homoclinic orbits are shown in boldface where colour indicates
whether the first excursion is to the right or left, respectively. The reader may wish to
check that the data in figure 15 indeed supports the criterion in (R1). Effectively, this
tree illustates the many-to-one map from the full tree of heteroclinic orbits to the set of
admissible homoclinic orbits.
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Figure 15. (Colour online) Tree up to level 5 of heteroclinic orbits from p™ to 0
for o = 28.0 (all symbols), and their limiting homoclinic orbits (boldface symbols) at
the respective homoclinic explosion point. The colour/grayscale of boldface symbols
distinguishes between homoclinic orbits that initially go to the left or to the right,
respectively; the symmetric counterpart of any boldface symbol is the limit of the
symmetrically related heteroclinic orbits from p~ to 0.

The admissible homoclinic orbits up to level 6 are shown boldface in the binary
tree in figure 16 together with their p-values as found in the continuation. Again, it
can be checked that the admissible symbols satisfy the criterion given in (R2). Note
that subtrees that do not contain any admissible homoclinic orbits have been left out of
figure 16. For example, the entire subtree with root r1r does not contain any admissible
homoclinic orbits.

Results (R1)-(R3) have been derived from and checked against the entire data in
Appendix A. While this does not constitute a proof, this approach is similar to that of
previous work on the symbolic dynamics of the Lorenz system — most notably that in
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Figure 16. Tree of all admissible homoclinic explosion orbits (bold) up to level 6 and
the p-values of the respective homoclinic explosion points.

[33]. Note also that (R1)-(R3) are entirely in line with what one might expect from the
knowledge of similar results for periodic orbits; see also section 6.

We remark that the admissible symbol sequences that we find as limits of
heteroclinic orbits are exactly those that uniquely represent the homoclinic orbits in
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which periodic orbits bifurcate in one-dimensional maps; see [33] and [17, Appendix A.1].
For example, the symbols symbol rll, 1rl and 1lr describe the same periodic orbit
when interpreted as an infinitely repeating itinerary. However, only rll is admissible
as a homoclinic orbit, and also represents the itinerary of the bifurcating periodic orbit.
Furthermore, admissible symbol sequences correspond to bifurcating periodic orbits of
minimal period, which means that multiples of smaller periods are excluded as symbols.

All heteroclinic orbits that end in the same homoclinic explosion points are created
in folds in a very narrow interval of p-values. As was discussed in section 4, this is
actually what one might expect in light of the multi-sheeted nature of W*(p*): there
are infinitely many tangencies with W#(0) with the different infinitely many sheets
arbitrarily close together in p; see also figure 3(c2). Indeed (R3) states that the final part
of the symbol sequence is necessarily the same for all these orbits. In other words, these
heteroclinic orbits only differ in their transient behaviour (of a well-defined symbolic
type). In fact, these transients are very close together in the phase space of the Lorenz
system. Nevertheless, our boundary value approach is perfectly able to distinguish them.

6. Discussion and open problems

We considered how the Lorenz manifold 1*(0) and the unstable manifolds W*(p*)
and W*('*) of the secondary equilibria and bifurcating periodic orbits depend on
the parameter p. We computed these manifolds directly and also found and followed
numerically their intersection curves, which are generic heteroclinic orbits between the
origin and p* or I'*, respectively. Each homoclinic orbit is born in the basic well-known
homoclinic explosion point at g, ~ 13.9265 and was followed in g past a fold to another
homoclinic explosion point. We gave a self-consistent description of this scenario in
terms of symbolic sequences of heteroclinic orbits and their limiting homoclinic explosion
points. The basis for our results is the data set in Appendix A of automatically extracted
symbolic information from continuations of the first 512 branches of heteroclinic orbits.

The symbolic dynamics of the generic heteroclinic and limiting homoclinic explosion
points that we found is, by its nature, closely connected to the symbolic dynamics
of periodic orbits that bifurcate in the homoclinic explosions. Indeed Sparrow [33,
Chapter 5] presents a self-consistent scenario of how periodic orbits in the Lorenz
attractor are created and destroyed as a function of p in a combination of homoclinic
explosions, period-doublings and T-point bifurcations. This is summarized in the
bifurcation diagram [33, Fig. 5.12] and a list of homoclinic explosion points in [33,
Appendix I]. While we computed many more homoclinic explosion points than Sparrow,
we only find a subset of the explosion points for periodic orbits, namely the admissible
ones as defined in result (R2). We do not find homoclinic explosion points (such as
rlrl) that are due to period-doubled or symmetric periodic orbits, but the numerical
o-values in [33, Appendix I] of admissible explosion points agree with those in Appendix
A. Also note that the admissible homoclinic explosion points we find all appear to be of
‘type (a)’ in the notation of Sparrow, which effectively means that the chaotic dynamics
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i mowmin| )| e - 1) | B
0 rl | 5.4645952E+01

1 rll | 4.7053443E+01 7.592509

2 r1ll | 4.3198042E+01 3.855401 1.96932

3 r1l11l1 | 4.0788829E+01 2.409213 1.60027

4 r11111 | 3.9115749E+01 1.673080 1.43999

5 r111111 | 3.7875935E+01 1.239814 1.34946

6 r1111111 | 3.6915667E+01 0.960268 1.29111

7 r11111111 | 3.6147675E+01 0.767992 1.25036

8 | r111111111 | 3.5518339E+01 0.629336 1.22032

Table 1. Convergence behaviour of pmin(¢), the minimal p-value of any homoclinic
orbit in level 3.

they produce occurs for p-values larger than that of the respective homoclinic explosion
point.

The countable set of admissible homoclinic explosion points, which are due to the
intersections of the underlying two-dimensional manifolds, can be interpreted as the
backbone of the structure of all homoclinic explosion points. In order to bring out some
general properties of this set we show in table 1 the admissible homoclinic explosion
points r1’. According to result (R2), these have the smallest p-value, denoted o, (),
of all homoclinic explosion points of level i. Notice that gun(i) decreases with i, so
that the question arises what its limit is for ¢ — oco. This limit cannot be derived
from the data in table 1; the approximate convergence rate (last column) is far from
constant. However, we can determine the limit of gn;,(7) with a topological argument.
As o is decreased towards the codimension-one heteroclinic bifurcation point oy, the
right branch of the one-dimensional unstable manifold W*(0) initially makes more and
more turns around p~ and then (for p < gy ~ 24.7368) around ['~; see also figure 2.
Indeed, in the limit at gne; it has the itinerary rL. In other words, the limit of oy (%)
for © — oo is actually the codimension-one heteroclinic bifurcation point gne =~ 24.0579.
We conjecture that also the (accumulation points of) folds of the respective branches of
generic heteroclinic orbits in result (R3) accumulate on gpet; see also figure 11.

The emerging self-consistent scenario is that W#*(0) N W*(I'*) contains the entire
binary tree of possible heteroclinic orbits for ¢ € (o, onet). In other words, there are no
topological changes of W#(0) N W*(I'*) in this interval of ‘pre-turbulence’. In contrast,
for any fixed p > onet already infinitely many topological changes have taken place.
Namely, infinitely many extra heteroclinic orbits were created in admissible homoclinic
explosion points and then lost in folds with the respective heteroclinic orbits born at
or. One can determine which orbits are no longer present by considering the itinerary
of the right branch of W*(0). As is shown in figure 17, for the classic value of ¢ = 28.0
it has the itinerary r1%r---, that is, it initially makes exactly 25 revolutions around
p~ before returning back to near p*. It is important to realize that the right branch of
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Figure 17. The itinerary of right branch of W*(0) for o = 28.0 starts with r1%°r- - -,
which shows that the homoclinic explosion r12% occurs for ¢ < 28.0.

W*(0), which forms the boundary of W*(p™), constitutes the re-injection closest to p~;
see also figure 7(a). Therefore, after the initial infinitely many revolutions around p™,
any orbit on W*(p™) may have at most this maximal number of 25 revolutions around
p~ before the transition back to near p™. By taking into account the symmetry, we
can conclude that the limiting homoclinic explosion points of any branch of heteroclinic

1%6 or r?6 as a subsequence occur for p < 28.0.

orbits with symbol sequences containing
As was already noted in [33, Chapter 3.3], this has consequences for the periodic orbits
in the Lorenz attractor: any periodic orbit for o = 28.0 has at most 25 consecutive
revolutions around p~ or p*. (This corresponds to the fact that the orbit of (—1) under
the associated one-dimensional map determines the topological equivalence class of the
attractor [15, Chapter 6.4].) In particular, the longest periodic orbit of the form rl‘
is that for ¢ = 25. Note that, with his method, Viswanath [36] could only find these
periodic orbits up to r12?%; a reason for this may be that these periodic orbits pass closer
and closer near the origing at ¢ increases.

There are many avenues for future work. First of all, it is possible to consider
the dependence of the Lorenz manifold W*(0) in relation to the unstable manifolds
Wu(p*) and W*(I'*) with respect to the other parameters 8 and o. Indeed the
start data in figure 9 for the first 512 heteroclinic orbits can be used to follow the
respective branches in § or ¢. Furthermore, it would be an interesting and challenging
project to start continuations of periodic orbits from (all of) the homoclinic explosion
points in Appendix A. In this way, the sketched bifurcation diagram [33, Fig. 5.12]
could be computed directly and expanded upon. What is more, the codimension-
one bifurcations, namely the homoclinic explosion points and the folds of heteroclinic
branches (that is, heteroclinic tangency bifurcations), as well as period-doubling and
saddle-node bifurcations of periodic orbits, can be continued in two parameters. It is also
possible to use homoclinic branch switching as implemented in [26] to find homoclinic
bifurcations that are not part of our set of admissible homoclinic explosion points. The
combination of these techniques would allow one to compute and check the conjectural
bifurcation diagrams in the (3, o)-plane in [33, Chapter 9], as well as the bifurcation
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diagrams in the (g, o)-plane in [7].

Another interesting direction of research is to find and follow suitable orbit segments
(see also [9]) that allow one to compute directly the intersection curves of relevant two-
dimensional manifolds with a Poincaré section such as ¥,. This approach is much
more stable than single shooting methods, and it enables one to consider changes of
the manifold structure directly in the Poincaré section. This might provide useful
information on the associated foliations, which in turn are relevant for the reduction
of the Poincaré map to a one-dimensional map.

More generally, we hope that the results and methods presented here will stimulate
the analysis of the invariant manifold structure in other systems, whether they are
chaotic or not.
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Appendix A. Table of heteroclinic orbit data

Hom

rho-limit

1.946E+02

.4645952E+01

4.7053443E+01

.7053443E+01
.4645952E+01
.0590467E+01
.3198042E+01

.648E+01

.650E+01
.946E+02
.395E+02
.064E+01

N N N N RS

.3198042E+01
.05690467E+01
.4645952E+01
.7053443E+01
.7053443E+01
.8900976E+01
.5128887E+01
.0788829E+01

rho-limit

.064E+01
.397E+02
.946E+02
.650E+01
.648E+01
.123E+02
.272E+01
.898E+01

Rlrrrr
Rlrrrl
Rlrrlr
Rlrrll
Rlrlrr
Rlrlrl
Rlrllr
Rlrlll
Rllrrr
Rllrrl
Rllrlr
Rllrll
Rlllrr
Rlllrl
R111lr
R11111

rllr
rlll
lrrr
lrrl
rllrlr
rll
rlllrr
rlllrl
rllllr
r1l1l1l

[ I . T L N N & 2 [ & 2 [ ~ S S T S

.0788829E+01
.5128887E+01
.8900976E+01
.7053443E+01
.7053443E+01
.4645952E+01
.0590467E+01
.3198042E+01
.3198042E+01
.0590467E+01
.9703500E+01
.7053443E+01
.6005196E+01
.4240808E+01
.2034581E+01
.9115749E+01

oo N o N NP, P O O = 00O

.898E+01
.273E+01
.123E+02
.648E+01
.650E+01
.946E+02
.397E+02
.064E+01
.064E+01
.395E+02
.249E+02
.650E+01
.095E+01
.656E+01
.473E+01
.235E+01
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Hom

rho-limit

Rlrrrrr
Rlrrrrl
Rlrrrlr
Rlrrrll
Rlrrlrr
Rlrrlrl
Rlrrllr
Rlrrlll
Rlrlrrr
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Rlrllrr
Rlrlirl
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Rlrllll
Rllrrrr
Rllrrrl
Rllrrlr
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Rllrlrr
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Rl1llrrl
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R111lrr
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lrrrrr
lrrrrl
lrrrlr
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lrrlrl
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lrrr
1rrl
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rll
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rllirl
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lrrrr
1rrrl
lrrlr
rll
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rllrlrl
rllirllr
rlll
lrrr
rlllrrl
rlllirlr
rlllrll
rllllrr
rllllrl
rlllllr
r111111

.9115749E+01
.2034581E+01
.4240808E+01
.6005196E+01
.7053443E+01
.9703500E+01
.05690467E+01
.3198042E+01
.3198042E+01
.0590467E+01
.4645952E+01
.7053443E+01
.7053443E+01
.8900976E+01
.5128887E+01
.0788829E+01
.0788829E+01
.5128887E+01
.8900976E+01
.7053443E+01
.7053443E+01
.9320171E+01
.8476611E+01
.3198042E+01
.3198042E+01
.5585034E+01
.4668849E+01
.3786551E+01
.2573041E+01
.1472638E+01
.9996627E+01
. 7875935E+01

[ O e L T T N S S S S ~ T S T &) B €2 B S L L

rho-limit

5.235E+01
6.473E+01
7.657E+01
9.097E+01
9.650E+01
1.250E+02
1.395E+02
7.064E+01
7.064E+01
1.397E+02
1.946E+02
9.650E+01
9.648E+01
1.123E+02
8.273E+01
5.898E+01
5.898E+01
8.272E+01
1.123E+02
9.648E+01
9.650E+01
1.175E+02
1.072E+02
7.064E+01
7.064E+01
8.619E+01
7.953E+01
7.358E+01
6.758E+01
6.200E+01
5.573E+01
4.807E+01

Rlrrrrrr
Rlrrrrrl
Rlrrrrir
Rlrrrrll
Rlrrrlrr

lrrrrrr
lrrrrrl
lrrrrir
lrrrrll

lrrrlrr

3.7875935E+01
3.9996627E+01
4.1472638E+01
4.2573041E+01
4.3786551E+01

4.807E+01
5.573E+01
6.200E+01
6.758E+01
7.359E+01
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6-005
6-006
6-007
6-008
6-009
6-010
6-011
6-012
6-013
6-014
6-015
6-016
6-017
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6-020
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6-022
6-023
6-024
6-025
6-026
6-027
6-028
6-029
6-030
6-031
6-032
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6-038
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6-040
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6-044
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Rlrrlrrl
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Rlrrllrr
Rlrrllrl
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Rlrlrrrl
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Rlrlrrll
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Rlrlrlll
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Rlrllrrl
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Rlrlllrr
Rlrlllrl
Rlrlllir
R1rll1111l
Rllrrrrr
Rllrrrrl
Rllrrrir
Rllrrrll
Rllrrlrr
Rllrrlrl
Rllrrllr
Rllrrlll
Rllrlrrr
Rllrlrrl
Rllrlrir
Rllrlrll
Rllrllrr
R1lrllrl
Rllrlllir

lrrrirl
lrrrllr
rlll
lrrr
lrrlrrl
lrrirlr
rll

1rr
rllirl
rlllr
rllll
lrrrr
1rrrl
lrrlr
rll

1rr
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rllr
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lrrr
lrrl
rllrlr
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rlllrr
rlllrl
rllllir
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lrrrrr
lrrrrl
lrrrlr
lrrrll
1rr
lrrirl
rllr
rlll
lrrr
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rlirlrlr
rll

1rr
rllrllirl
rlllr
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.4668849E+01
.5585034E+01
.3198042E+01
.3198042E+01
.8476611E+01
.9320171E+01
.7053443E+01
.7053443E+01
.8900976E+01
.5128887E+01
.0788829E+01
.0788829E+01
.5128887E+01
.8900976E+01
.7053443E+01
.7053443E+01
.4645952E+01
.05690467E+01
.3198042E+01
.3198042E+01
.05690467E+01
.9703500E+01
.7053443E+01
.6005196E+01
.4240808E+01
.2034581E+01
.9115749E+01
.9115749E+01
.2034581E+01
.4240808E+01
.6005196E+01
.7053443E+01
.9703500E+01
.05690467E+01
.3198042E+01
.3198042E+01
.9907384E+01
.9502803E+01
.7053443E+01
.7053443E+01
.8288164E+01
.5128887E+01
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.954E+01
.620E+01
.064E+01
.063E+01
.072E+02
.176E+02
.650E+01
.648E+01
.123E+02
.272E+01
.898E+01
.898E+01
.273E+01
.123E+02
.648E+01
.650E+01
.946E+02
.397E+02
.064E+01
.064E+01
.395E+02
.250E+02
.650E+01
.097E+01
.657E+01
.473E+01
.235E+01
.235E+01
.473E+01
.656E+01
.095E+01
.650E+01
.249E+02
.395E+02
.064E+01
.064E+01
.302E+02
.213E+02
.650E+01
.648E+01
.039E+02
.273E+01
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6-047
6-048
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Rlllrrrr
Rlllrrrl
Rlllrrir
R11llrrll
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W W w s DD DD

.0788829E+01
.0788829E+01
.5128887E+01
.5783995E+01
.5381239E+01
.4875194E+01
.4466583E+01
.4008209E+01
.3198042E+01
.2840715E+01
.2317190E+01
.1745287E+01
.1178183E+01
.0366729E+01
.9604078E+01
.8536284E+01
.6915667E+01

rho-limit
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.898E+01
.898E+01
.272E+01
.824E+01
.421E+01
.122E+01
.805E+01
.508E+01
.064E+01
.950E+01
.616E+01
.332E+01
.062E+01
.726E+01
.418E+01
.030E+01
.507E+01

Rlrrrrrrr
Rlrrrrrrl
Rlrrrrrir
Rlrrrrrll
Rlrrrrlrr
Rlrrrrirl
Rlrrrrllr
Rlrrrrlll
Rlrrrlrrr
Rlrrrlrrl
Rlrrrlrlr
Rlrrrirll
Rlrrrllrr
Rlrrrllrl
Rlrrrllir
Rlrrrllll
Rlrrlrrrr
Rlrrlrrrl
Rlrrlrrlr
Rlrrlrrll
Rlrrlrlrr
Rlrrlirirl

lrrrrrrr
lrrrrrrl
lrrrrrlr
lrrrrrll
lrrrrlrr
lrrrrirl
lrrrrllr
lrrrrlll
lrrr
Irrrlrrl
lrrrirlr
lrrrirll
lrrrllrr
lrrrllrl
rlllr
rllll
lrrrr
lrrrl
lrrlrrlr
rll

1rr
lrririrl
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.6915667E+01
.8536284E+01
.9604078E+01
.0366729E+01
.1178183E+01
.1745287E+01
.2317190E+01
.2840715E+01
.3198042E+01
.4008209E+01
.4466583E+01
.4875194E+01
.5381239E+01
.5783995E+01
.5128887E+01
.0788829E+01
.0788829E+01
.5128887E+01
.8288164E+01
.7053443E+01
.7053443E+01
.9502803E+01
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.507E+01
.030E+01
.418E+01
.726E+01
.062E+01
.332E+01
.616E+01
.950E+01
.064E+01
.508E+01
.805E+01
.122E+01
.422FE+01
.825E+01
.272E+01
.898E+01
.898E+01
.273E+01
.039E+02
.648E+01
.650E+01
.214E+02
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7-022
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Rlrrlrllr
Rlrrlirlll
Rlrrllrrr
Rlrrllrrl
Rlrrllirlr
Rlrrllrll
Rlrrlllrr
Rlrrlllrl
Rlrrlllir
Rlrrlllll
Rlrlrrrrr
Rlrlrrrrl
Rlrlrrrlr
Rlrlrrrll
Rlrlrrlrr
Rlrlrrirl
Rlrlrrllr
Rlrlrrlll
Rlrlrlrrr
Rlrlrlrrl
Rlrlrlrir
Rlrlrlirll
Rlrlrllrr
Rlrlrllrl
Rlrlrllir
Rlrlrllll
Rlrllrrrr
Rlrllrrrl
Rlrllrrlr
Rlrllrrll
Rlrllrrlr
Rlrllrrll
Rlrllirlir
Rlrllrlll
Rlrlllrrr
Rlrlllrrl
Rlrlllrir
Rlrlllrll
Rlrllllrr
Rlrlllirl
Rlrlllllr
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lrrlrllr
rlll
lrrr
lrrl
rllrlr
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rlllirl
rllllir
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lrrrrr
lrrrrl
lrrrlr
lrrrll
1rr
lrrirl
rllr
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rll
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rllrl
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rllll
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rllllrr
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.9907384E+01
.3198042E+01
.3198042E+01
.0590467E+01
.9703500E+01
.7053443E+01
.6005196E+01
.4240808E+01
.2034581E+01
.9115749E+01
.9115749E+01
.2034581E+01
.4240808E+01
.6005196E+01
.7053443E+01
.9703500E+01
.05690467E+01
.3198042E+01
.3198042E+01
.05690467E+01
.4645952E+01
.7053443E+01
.7053443E+01
.8900976E+01
.5128887E+01
.0788829E+01
.0788829E+01
.5128887E+01
.8900976E+01
.7053443E+01
.7053443E+01
.9320171E+01
.8476611E+01
.3198042E+01
.3198042E+01
.5585034E+01
.4668849E+01
.3786551E+01
.2573041E+01
.1472638E+01
.9996627E+01
. 7875935E+01
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.303E+02
.064E+01
.064E+01
.395E+02
.249E+02
.650E+01
.095E+01
.656E+01
.473E+01
.235E+01
.235E+01
.473E+01
.657E+01
.097E+01
.650E+01
.250E+02
.395E+02
.064E+01
.064E+01
.397E+02
.946E+02
.650E+01
.648E+01
.123E+02
.270E+01
.898E+01
.898E+01
.272E+01
.123E+02
.648E+01
.650E+01
.176E+02
.072E+02
.064E+01
.064E+01
.620E+01
.954E+01
.359E+01
. 758E+01
.200E+01
.573E+01
.807E+01
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Global bifurcations of the Lorenz manifold

7-064
7-065
7-066
7-067
7-068
7-069
7-070
7-071
7-072
7-073
7-074
7-075
7-076
7-077
7-078
7-079
7-080
7-081
7-082
7-083
7-084
7-085
7-086
7-087
7-088
7-089
7-090
7-091
7-092
7-093
7-094
7-095
7-096
7-097
7-098
7-099
7-100
7-101
7-102
7-103
7-104
7-105

Rllrrrrrr
Rllrrrrrl
Rllrrrrlr
Rllrrrrll
Rllrrrlrr
Rllrrrirl
Rllrrrlir
Rllrrrlll
Rllrrlrrr
Rllrrlrrl
Rllrrlrir
Rllrrlirll
Rllrrllrr
Rllrrlirl
Rllrrlllr
Rllrrllll
Rllrlrrrr
Rllrlrrir
Rllrlrrir
Rllrlrrll
Rllrlrlrr
Rllrlrlrl
Rllrlrlir
Rllrlrlll
Rllrllrrr
Rllrllrrl
Rllrllrlr
Rl1lrllrll
Rllrlllrr
Rl11lrllirl
Rl11lrllllr
R11r11111
Rlllrrrrr
Rlllrrrrl
Rlllrrrir
Rl1llrrrll
Rlllrrlrr
Rlllrrirl
R1llrrllr
R11lrrlll
Rl1llrlrrr
Rlllrlrrl

lrrrrrr
lrrrrrl
lrrrrlr
lrrrrll
lrrrlrr
lrrrirl
lrrrlir
rlll
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rlllr
rllll
lrrrr
lrrrl
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rllrlrllir
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rllrllrrl
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rlllrr
rlllrl
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lrrrrr
lrrrrl
lrrrlr
lrrrll
rlllrrlrr
rlllrrlrl
rlllrrllr
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. 7875935E+01
.9996627E+01
.1472638E+01
.2573041E+01
.3786551E+01
.4668849E+01
.5585034E+01
.3198042E+01
.3198042E+01
.8476611E+01
.9320171E+01
.7053443E+01
.7053443E+01
.8900976E+01
.5128887E+01
.0788829E+01
.0788829E+01
.5128887E+01
.8900976E+01
.7053443E+01
.7053443E+01
.9415660E+01
.9223448E+01
.3198042E+01
.3198042E+01
.8575486E+01
.8378349E+01
.7053443E+01
.6005196E+01
.4240808E+01
.2034581E+01
.9115749E+01
.9115749E+01
.2034581E+01
.4240808E+01
.6005196E+01
.5882296E+01
.5689098E+01
.5479793E+01
.3198042E+01
.3198042E+01
.4775570E+01
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.807E+01
.573E+01
.200E+01
. 758E+01
.358E+01
.953E+01
.619E+01
.064E+01
.064E+01
.072E+02
.175E+02
.650E+01
.648E+01
.123E+02
.272E+01
.898E+01
.898E+01
.273E+01
.123E+02
.648E+01
.649E+01
.192E+02
.157E+02
.064E+01
.064E+01
.088E+02
.057E+02
.650E+01
.097E+01
.657E+01
.473E+01
.235E+01
.235E+01
.473E+01
.656E+01
.095E+01
.969E+01
.716E+01
.524E+01
.064E+01
.064E+01
.033E+01
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Global bifurcations of the Lorenz manifold

7-106
7-107
7-108
7-109
7-110
7-111
7-112
7-113
7-114
7-115
7-116
7-117
7-118
7-119
7-120
7-121
7-122
7-123
7-124
7-125
7-126
7-127

R1llrlrlr
R11lrlrll
R11l1lrllrr
R111lrlirl
R11lrlllr
R111r1111
R11llrrrr
R111lrrrl
R11llrrir
R1111rrll
R11llrlrr
R111llrlirl
R111llrllr
R1111r111
R1111l1rrr
R11111rrl
R11111rlr
R11111r11
R111111rr
R111111rl
R1111111r
R11111111

rlllirlirlr
rlllrlrll
rlllirllrr
rlllrllrl
rlllirlllr
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.4563090E+01
.4366435E+01
.4113118E+01
.3904242E+01
.3663185E+01
.0788829E+01
.0788829E+01
.2710418E+01
.2438623E+01
.2191696E+01
.1875364E+01
.1617139E+01
.1322385E+01
.1018158E+01
.0548574E+01
.0191753E+01
.9795226E+01
.9395336E+01
.8808602E+01
.8244501E+01
.7431219E+01
.6147675E+01
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.87T7TE+01
. 728E+01
.584E+01
.435E+01
.273E+01
.898E+01
.898E+01
.840E+01
.684E+01
.548E+01
.399E+01
.268E+01
.130E+01
.986E+01
.806E+01
.652E+01
.493E+01
.337E+01
.126E+01
.929E+01
.666E+01
.285E+01

Rlrrrrrrrr
Rlrrrrrrrl
Rlrrrrrrlr
Rlrrrrrrll
Rlrrrrrirr
Rlrrrrrirl
Rlrrrrrllr
Rlrrrrrlll
Rlrrrrlrrr
Rlrrrrlrrl
Rlrrrrlrlr
Rlrrrrlrll
Rlrrrrllrr
Rlrrrrlirl
Rlrrrrlllr
Rlrrrrllll
Rlrrrlrrrr

lrrrrrrrr
lrrrrrrrl
lrrrrrrlr
lrrrrrrll
lrrrrrirr
lrrrrrirl
lrrrrrllr
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lrrrrlrrr
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lrrrrlrlr
lrrrrlrll
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lrrrrlllr
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.6147675E+01
.7431219E+01
.8244501E+01
.8808602E+01
.9395336E+01
.9795226E+01
.0191753E+01
.0548574E+01
.1018158E+01
.1322385E+01
.1617139E+01
.1875364E+01
.2191696E+01
.2438623E+01
.2710418E+01
.0788829E+01
.0788829E+01
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.285E+01
.666E+01
.929E+01
.126E+01
.337E+01
.493E+01
.652E+01
.806E+01
.986E+01
.130E+01
.269E+01
.399E+01
.548E+01
.684E+01
.840E+01
.898E+01
.898E+01
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Global bifurcations of the Lorenz manifold

8-017
8-018
8-019
8-020
8-021
8-022
8-023
8-024
8-025
8-026
8-027
8-028
8-029
8-030
8-031
8-032
8-033
8-034
8-035
8-036
8-037
8-038
8-039
8-040
8-041
8-042
8-043
8-044
8-045
8-046
8-047
8-048
8-049
8-050
8-051
8-052
8-053
8-054
8-055
8-056
8-057
8-058

Rlrrrlrrrl
Rlrrrlrrlr
Rlrrrlrrll
Rlrrrlrlirr
Rlrrrlrirl
Rlrrrlrllr
Rlrrrlrlll
Rlrrrllrrr
Rlrrrllrrl
Rlrrrllrlr
Rlrrrllrll
Rlrrrlllrr
Rlrrrlllirl
Rlrrrllllr
Rlrrrlllll
Rlrrlrrrrr
Rlrrlrrrrl
Rlrrlrrrlr
Rlrrlrrrll
Rlrrlrrlrr
Rlrrlrrirl
Rlrrlrrllr
Rlrrlrrlll
Rlrrlrlrrr
Rlrrlirlrrl
Rlrrirlirlr
Rlrrlrlrll
Rlrrlirllrr
Rlrrlrlirl
Rlrrlirlllr
Rlrrlrllll
Rlrrllrrrr
Rlrrllrrrl
Rlrrllrrlr
Rlrrllrrll
Rlrrllrlrr
Rlrrllrirl
Rlrrllrllr
Rlrrllirlll
Rlrrlllrrr
Rlrrlllrrl
Rlrrlllirlr

lrrrirrrl
lrrrlrrlr
lrrrirrll
lrrrlrirr
lrrrirlirl
lrrrlrlilr
rlll

lrrr
lrrrllrrl
lrrrllrlr
lrrrllrll
rlllrr
rlllirl
rllllir
r1l1l1l
lrrrrr
lrrrrl
lrrrlr
lrrrll
1rr
lrrirrirl
lrrlrrllr
rlll

lrrr
lrrirlrrl
lrrirlirlr
rll

1rr

rllrl
rlllr
rllll
lrrrr
Irrrl
1rrlr

rll

1rr
rllirirl
rllrllr
rlll

lrrr
rlllirrl
rlllrlr
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.3663185E+01
.3904242E+01
.4113118E+01
.4366435E+01
.4563090E+01
.4775570E+01
.3198042E+01
.3198042E+01
.5479793E+01
.5689098E+01
.5882296E+01
.6005196E+01
.4240808E+01
.2034581E+01
.9115749E+01
.9115749E+01
.2034581E+01
.4240808E+01
.6005196E+01
.7053443E+01
.8378349E+01
.8575486E+01
.3198042E+01
.3198042E+01
.9223448E+01
.9415660E+01
.7053443E+01
.7053443E+01
.8900976E+01
.5128887E+01
.0788829E+01
.0788829E+01
.5128887E+01
.8900976E+01
.7053443E+01
.7053443E+01
.9320171E+01
.8476611E+01
.3198042E+01
.3198042E+01
.5585034E+01
.4668849E+01
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.273E+01
.436E+01
.584E+01
. 728E+01
.878E+01
.033E+01
.064E+01
.064E+01
.525E+01
.T17E+01
.970E+01
.095E+01
.656E+01
.473E+01
.235E+01
.235E+01
.473E+01
.657E+01
.097E+01
.650E+01
.057E+02
.088E+02
.064E+01
.064E+01
.158E+02
.192E+02
.650E+01
.648E+01
.123E+02
.273E+01
.898E+01
.898E+01
.272E+01
.123E+02
.648E+01
.650E+01
.175E+02
.072E+02
.064E+01
.064E+01
.619E+01
.953E+01
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Global bifurcations of the Lorenz manifold

8-059
8-060
8-061
8-062
8-063
8-064
8-065
8-066
8-067
8-068
8-069
8-070
8-071
8-072
8-073
8-074
8-075
8-076
8-077
8-078
8-079
8-080
8-081
8-082
8-083
8-084
8-085
8-086
8-087
8-088
8-089
8-090
8-091
8-092
8-093
8-094
8-095
8-096
8-097
8-098
8-099
8-100

Rlrrlllrll
Rlrrllllrr
Rlrrlllirl
Rlrrlllllr
Rlrrl11111
Rlrlrrrrrr
Rlrlrrrrrl
Rlrlrrrrlr
Rlrlrrrrll
Rlrlrrrlrr
Rlrlrrrirl
Rlrlrrrllr
Rlrlrrrlll
Rlrlrrlrrr
Rlrlrrlrrl
Rlrlrrirlr
Rlrlrrlrll
Rlrlrrllrr
Rlrlrrlirl
Rlrlrrlllr
Rlrlrrllll
Rlrlrlrrrr
Rlrlrlrrrl
Rlrlrlrrlr
Rlrlrlrrll
Rlrlrlrirr
Rlrlrlrllr
Rlrlrlrllr
Rlrlrlrlll
Rlrlrllrrr
Rlrlrllrrl
Rlrlrllrlr
Rlrlrllrll
Rlrlrlllrr
Rlrlrllirl
Rlrlrllllr
Rlrlrl1111
Rlrllrrrrr
Rlrllrrrrl
Rlrllrrrlr
Rlrllrrrll
Rlrllrrlrr

rlllirll
rllllrr
rllllrl
rlllllr
r111111
lrrrrrr
lrrrrrl
lrrrrlr
lrrrrll
lrrrlrr
lrrrlrl
lrrrllr
rlll
lrrr
lrrlrrl
lrririr
rll

1rr
rlirl
rlllr
r1lll
lrrrr
Irrrl
1rrlr
rll

1rr
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rllr
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lrrr
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rll
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rllllr
r11111
lrrrrr
lrrrrl
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lrrrll
1rr
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.3786551E+01
.2573041E+01
.1472638E+01
.9996627E+01
. 7875935E+01
. 7875935E+01
.9996627E+01
.1472638E+01
.2573041E+01
.3786551E+01
.4668849E+01
.5585034E+01
.3198042E+01
.3198042E+01
.8476611E+01
.9320171E+01
.7053443E+01
.7053443E+01
.8900976E+01
.5128887E+01
.0788829E+01
.0788829E+01
.5128887E+01
.8900976E+01
.7053443E+01
.7053443E+01
.4645952E+01
.0590467E+01
.3198042E+01
.3198042E+01
.05690467E+01
.9703500E+01
.7053443E+01
.6005196E+01
.4240808E+01
.2034581E+01
.9115749E+01
.9115749E+01
.2034581E+01
.4240808E+01
.6005196E+01
.7053443E+01
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.358E+01
. 758E+01
.200E+01
.573E+01
.807E+01
.807E+01
.573E+01
.200E+01
. 758E+01
.359E+01
.954E+01
.620E+01
.064E+01
.064E+01
.072E+02
.176E+02
.650E+01
.648E+01
.123E+02
.272E+01
.898E+01
.898E+01
.273E+01
.123E+02
.648E+01
.650E+01
.946E+02
.397E+02
.064E+01
.064E+01
.395E+02
.250E+02
.650E+01
.097E+01
.657E+01
.473E+01
.235E+01
.235E+01
.473E+01
.656E+01
.095E+01
.650E+01
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Global bifurcations of the Lorenz manifold

8-101
8-102
8-103
8-104
8-105
8-106
8-107
8-108
8-109
8-110
8-111
8-112
8-113
8-114
8-115
8-116
8-117
8-118
8-119
8-120
8-121
8-122
8-123
8-124
8-125
8-126
8-127
8-128
8-129
8-130
8-131
8-132
8-133
8-134
8-135
8-136
8-137
8-138
8-139
8-140
8-141
8-142

Rlrllrrirl
Rlrllrrllr
Rlrllrrlll
Rlrllrrlrr
Rlrllrrlir 1
Rlrllrrllr
Rlrllrrll 1
Rlrllrllrr
Rlrllirlirl
Rlrllrlllr
Rlrllirllll
Rlrlllrrrr
Rlrlllrrrl
Rlrlllrrlr
Rlrlllrrll
Rlrlllrlrr
Rlrlllrlirl
Rlrlllrllr
Rlrlllrlll
Rlrllllrrr
Rlrllllrrl
Rlrllllrlr
Rlrllllrll
Rlrlllllrr
Rlrlllllirl
Rlrl1111lr
R1rl111111
Rllrrrrrrr
Rllrrrrrrl
Rllrrrrrlr
Rllrrrrrll
Rllrrrrilrr
Rllrrrrirl
Rllrrrrllr
Rllrrrrlll
Rllrrrlrrr
Rllrrrlrrl
Rllrrrirlr
Rllrrrlrll
Rllrrrllrr
Rllrrrlirl
Rllrrrlllr
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lrrr
rllrlrrl
rlirlirlr
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1rr
rlirlirl
rlllr
rllll
lrrrr
lrrrl
rlllrrlr
rlllirrll
rlllrirr
rlllirirl
rlllrllr
rlll
rllllrrr
rllllrrl
rllllrlr
r1lllrll
rlllllrr
r1lllirl
r11l1lllr
r1111111
lrrrrrrr
lrrrrrrl
lrrrrrlr
lrrrrrll
lrrrrlrr
lrrrrirl
lrrrrllr
lrrrrlll
lrrr
lrrrlrrl
lrrrlrlr
lrrrirll
lrrrllrr
lrrrllrl
rlllr
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.9703500E+01
.0590467E+01
.3198042E+01
.3198042E+01
.9907384E+01
.9502803E+01
.7053443E+01
.7053443E+01
.8288164E+01
.5128887E+01
.0788829E+01
.0788829E+01
.5128887E+01
.5783995E+01
.5381239E+01
.4875194E+01
.4466583E+01
.4008209E+01
.3198042E+01
.2840715E+01
.2317190E+01
.1745287E+01
.1178183E+01
.0366729E+01
.9604078E+01
.8536284E+01
.6915667E+01
.6915667E+01
.8536284E+01
.9604078E+01
.0366729E+01
.1178183E+01
.1745287E+01
.2317190E+01
.2840715E+01
.3198042E+01
.4008209E+01
.4466583E+01
.4875194E+01
.5381239E+01
.5783995E+01
.5128887E+01
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.249E+02
.395E+02
.064E+01
.064E+01
.303E+02
.214E+02
.650E+01
.648E+01
.039E+02
.273E+01
.898E+01
.898E+01
.272E+01
.825E+01
.422FE+01
.122E+01
.805E+01
.508E+01
.064E+01
.950E+01
.616E+01
.332E+01
.062E+01
.726E+01
.418E+01
.030E+01
.507E+01
.507E+01
.030E+01
.418E+01
.726E+01
.062E+01
.332E+01
.616E+01
.950E+01
.064E+01
.508E+01
.805E+01
.122E+01
.421E+01
.824E+01
.272E+01
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Global bifurcations of the Lorenz manifold

8-143
8-144
8-145
8-146
8-147
8-148
8-149
8-150
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8-163
8-164
8-165
8-166
8-167
8-168
8-169
8-170
8-171
8-172
8-173
8-174
8-175
8-176
8-177
8-178
8-179
8-180
8-181
8-182
8-183
8-184
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Rllrrllrrl
Rllrrllrlr
Rllrrllrll
Rllrrlllirr
Rllrrllirl
Rllrrllllr
Rl1lrrl1111
Rllrlrrrrr
Rllrlrrrrl
Rllrlrrlrr
Rllrlrrirl
Rllrlrrlrr
Rllrlrrirl
Rllrlrrllr
Rllrlrrlll
Rllrlirlrrr
Rllrlrlrrl
Rllrlirlirlr
Rllrlrlrll
Rllrlirllrr
Rllrlrlirl
Rllrlrlllr
Rllrlrllll
Rllrllrrrr
Rllrllrrrl
Rllrllrrlr
Rllrllrrll
Rllrllrlrr
Rllrllrirl
Rllrllrllr
R11rllrlll
Rllrlllrrr
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lrrlrrlr
rll
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lrririrl
lrrlrllr
rlll

lrrr

lrrl
rllrlr

rll

rlllrr
rlllirl
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rllrlrrllr
rlll
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rllrlrlrrl
rlirlrlrlr
rll

1rr

rllrl
rlllr
rllll
lrrrr
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rllrllrrlr
rll
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rllrllirirl
rlirlirllr
rlll
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.0788829E+01
.0788829E+01
.5128887E+01
.8288164E+01
.7053443E+01
.7053443E+01
.9502803E+01
.9907384E+01
.3198042E+01
.3198042E+01
.0590467E+01
.9703500E+01
.7053443E+01
.6005196E+01
.4240808E+01
.2034581E+01
.9115749E+01
.9115749E+01
.2034581E+01
.4240808E+01
.6005196E+01
.7053443E+01
.9703500E+01
.9859773E+01
.3198042E+01
.3198042E+01
.9549049E+01
.9457208E+01
.7053443E+01
.7053443E+01
.8900976E+01
.5128887E+01
.0788829E+01
.0788829E+01
.5128887E+01
.8619199E+01
.7053443E+01
.7053443E+01
.8335452E+01
.8240007E+01
.3198042E+01
.3198042E+01

N~ = O O~ 0001 0 © O, P, NNF, PP, O ONOOLooOo N O O, P, NN~k P, O O = 00 oo,

.898E+01
.898E+01
.273E+01
.039E+02
.648E+01
.650E+01
.213E+02
.302E+02
.064E+01
.064E+01
.395E+02
.249E+02
.650E+01
.095E+01
.656E+01
.473E+01
.235E+01
.235E+01
.473E+01
.657E+01
.097E+01
.650E+01
.250E+02
.276E+02
.064E+01
.064E+01
.225E+02
.203E+02
.650E+01
.648E+01
.123E+02
.273E+01
.898E+01
.898E+01
.272E+01
.102E+02
.648E+01
.650E+01
.048E+02
.029E+02
.064E+01
.064E+01
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Global bifurcations of the Lorenz manifold

8-185
8-186
8-187
8-188
8-189
8-190
8-191
8-192
8-193
8-194
8-195
8-196
8-197
8-198
8-199
8-200
8-201
8-202
8-203
8-204
8-205
8-206
8-207
8-208
8-209
8-210
8-211
8-212
8-213
8-214
8-215
8-216
8-217
8-218
8-219
8-220
8-221
8-222
8-223
8-224
8-225
8-226

R1lrlllrrl
Rllrlllirlr
R11rlllrll
R11lrllllrr
R11rl1lllirl
R11r1111lr
R11r111111
Rlllrrrrrr
Rlllrrrrrl
Rlllrrrrlr
Rlllrrrrll
Rlllrrrlrr
Rlllrrrirl
Rlllrrrllr
R1llrrrlll
Rlllrrlrrr
Rl1llrrlrrl
Rlllrrirlr
R11llrrlrll
Rl1llrrllrr
R11llrrlirl
R1llrrlllr
R11lrrl1l1
Rlllrlrrrr
Rl1llrlrrrl
Rlllrlrrlr
R1llrlrrll
Rl1llrlrlrr
R1llrlrlirl
R11llrlrllr
R111lrlrlll
R1llrllrrr
R11lrllrrl
R111rllrlr
R111rllrll
R111r1llrr
R111r1lirl
R111r111lr
R111r11111
Rl11llrrrrr
R111lrrrrl
R11llrrrlr

rlllirrl
rlllrlr
rlllirll
rllllrr
rllllrl
rlllllr
r111111
lrrrrrr
lrrrrrl
lrrrrlr
lrrrrll
lrrrlrr
lrrrirl
lrrrllir
rlll

lrrr
rlllrrlrrl
rlllrrlrlr
rlllrrlrll
rlllrrllrr
rlllrrllirl
rlllr
rllll
lrrrr
rlllrlirrrl
rlllrlrrlr
rlllrlirrll
rlllrirlirr
rlllrlirirl
rlllrirllr
rlll

lrrr
rlllrllrrl
rlllrllirlr
r1llrllrll
rlllrlllrr
r1llrlllirl
rllllr
r1l1l1l
lrrrrr
lrrrrl
rllllrrrlr
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.5585034E+01
.4668849E+01
.3786551E+01
.2573041E+01
.1472638E+01
.9996627E+01
. 7875935E+01
. 7875935E+01
.9996627E+01
.1472638E+01
.2573041E+01
.3786551E+01
.4668849E+01
.5585034E+01
.3198042E+01
.3198042E+01
.5834624E+01
.5734217E+01
.5642662E+01
.5527060E+01
.5433311E+01
.5128887E+01
.0788829E+01
.0788829E+01
.4929693E+01
.4822577E+01
.4727701E+01
.4610270E+01
.4517247E+01
.4414996E+01
.3198042E+01
.3198042E+01
.4062616E+01
.3953988E+01
.38562278E+01
.3719110E+01
.3607222E+01
.2034581E+01
.9115749E+01
.9115749E+01
.2034581E+01
.2771509E+01

OO o001 OO N N NN NNNN NN N0 0o o000 0000 000NN 0N NOoOOOO0 oo 00NN

.620E+01
.954E+01
.359E+01
. 758E+01
.200E+01
.573E+01
.807E+01
.807E+01
.573E+01
.200E+01
. 758E+01
.358E+01
.953E+01
.619E+01
.064E+01
.064E+01
.885E+01
.7T69E+01
.660E+01
.B7T7E+01
.474E+01
.272E+01
.898E+01
.898E+01
.192E+01
.075E+01
.990E+01
.917E+01
.841E+01
.7T67E+01
.064E+01
.064E+01
.545E+01
.471E+01
.398E+01
.317E+01
.22bE+01
.473E+01
.235E+01
.235E+01
.473E+01
.884E+01
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Global bifurcations of the Lorenz manifold

8-227
8-228
8-229
8-230
8-231
8-232
8-233
8-234
8-235
8-236
8-237
8-238
8-239
8-240
8-241
8-242
8-243
8-244
8-245
8-246
8-247
8-248
8-249
8-250
8-2561
8-252
8-253
8-254
8-255

R111lrrrll
R11llrrlrr
R111lrrirl
R1111rrllr
R1111rrlll
R11llrlrrr
R1111rlrrl
R111lrlrlr
R1111rlrll
R1111lrllrr
R1111rllirl
R1111rlllr
R1111r1111
R1111lrrrr
R11111rrrl
R11111rrlr
R11111rrll
R11111rlrr
R11111rlirl
R11111rllr
R11111r111
R111111lrrr
R111111rrl
R111111rlr
R111111r11
R1111111rr
R1111111rl
R11111111r
R111111111

rllllrrrll
rllllrrlirr
rllllrrirl
r1llllrrllr
r1l1llrrlll
rllllrlrrr
rl1lllrlrrl
rllllrlrlr
r1lllrlrll
rllllrllrr
r1lllrllirl
rl1l1llrlllr

rllll
rlllllirrrr
rll1lllirrrl
r11lllirrlr
r1l11llirrll
r11lllirlrr
r11lllirlirl
r1l1lllrllr
r11111rl1ll
r1l11l1llrrr
r11111lrrl
r1l111l1lrlr
r111111r11
r1111111rr
r1111111rl
r11111111r
r111111111

W W W W W wWwowowowowow D™ & BB DD DSBS DSBS D B BB DD

.2648619E+01
.2498340E+01
.2380900E+01
.2252449E+01
.2125933E+01
.1942515E+01
.1812713E+01
.1678309E+01
.1553298E+01
.1390232E+01
.1254997E+01
.1097213E+01
.0788829E+01
.0645580E+01
.0460316E+01
.0274867E+01
.0105387E+01
.9885911E+01
.9705695E+01
.9497790E+01
.9280785E+01
.8941527E+01
.8680279E+01
.8386885E+01
.8087790E+01
.7641023E+01
.7204862E+01
.6562390E+01
.5518339E+01

I T A © 2 B @ 2 N & 2 B @2 B & 2 @2 B & 2 B 6 ) BN &2 IS ) @) Bl o) @) Nl o) Bl o) B o) Bl o) Bl o) Bl ©) B o) Bl @) B @)}

.T99E+01
.T19E+01
.651E+01
.582E+01
.509E+01
.437E+01
.366E+01
.299E+01
.237E+01
.163E+01
.098E+01
.024E+01
.898E+01
.864E+01
. T66E+01
.687E+01
.616E+01
.530E+01
.457E+01
.377E+01
.294E+01
.174E+01
.080E+01
.978E+01
.876E+01
. 732E+01
.595E+01
.404E+01
.114E+01
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