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Abstract. In this paper we consider the interaction of the Lorenz manifold — the

two-dimensional stable manifold of the origin of the Lorenz equations — with the

two-dimensional unstable manifolds of the secondary equilibria or bifurcating periodic

orbits of saddle type. We compute these manifolds for varying values of the parameter

̺ in the Lorenz equations, which corresponds to the transition from simple to chaotic

dynamics with the classic Lorenz butterfly attractor at ̺ = 28.

Furthermore, we find and continue in ̺ the first 512 generic heteroclinic orbits

that are given as the intersection curves of these two-dimensional manifolds. The

branch of each heteroclinic orbit emerges from the well-known first codimension-one

homoclinic explosion point at ̺ = 13.9265, has a fold and then ends at another

homoclinic explosion point with a specific ̺-value. We describe the combinatorical

structure of which heteroclinic orbit ends at which homoclinic explosion point. This is

verified with our data for the 512 branches from which we automatically extract (by

means of a small computer program) the relevant symbolic information.

Our results on the manifold structure are complementary to previous work on

the symbolic dynamics of periodic orbits in the Lorenz attractor. We point out the

connections and discuss directions for future research.

AMS classification scheme numbers: 34C37, 70K44, 37Gxx

1. Introduction

We consider the well-known Lorenz equations [24], which can be written as the vector

field in R
3 given by











ẋ = σ(y − x),

ẏ = ̺x − y − xz,

ż = xy − βz.

(1)
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Figure 1. Bifurcation diagram of the equilibria and (saddle) periodic orbits of

(1) as a function of ̺. Indicated are the pitchfork bifurcation P of the origin at

̺ = 1, the homoclinic explosion point at ̺r ≈ 13.9265, the heteroclinic bifurcation

at ̺het ≈ 24.0579 where there is a pair of heteroclinic orbits from 0 to Γ±, and the

subcritical Hopf bifurcation H of the secondary equilibria at ̺H = 470

19
≈ 24.7368.

Equations (1) were derived by E.N. Lorenz in the 1960s as a much simplified model

of convection dynamics in the atmosphere and, quite by accident, he found that they

display very sensitive dependence on the initial condition. Indeed for the now classic

parameters values of σ = 10, β = 8/3, and ̺ = 28 one finds the butterfly-shaped Lorenz

attractor, which has since emerged as arguably the most famous example of a chaotic

attractor. An important and well-known feature of the Lorenz attractor and the Lorenz

equations (1) is their symmetry

(x, y, z) 7→ (−x,−y, z)

of rotation by π about the z-axis, which is invariant under the flow.

We concentrate here on the transition from simple to complex dynamics of the

Lorenz equations (1) when the parameter ̺ is varied, while σ and β are kept fixed at

the classic values. Figure 1 summarizes the basic information about the bifurcation

diagram of the equilibria and periodic orbits as a function of ̺; see [15, Chapter 6.4]

and [33, Chapter 3]. The origin 0 is always an equilibrium with eigenvalues

−β and −
1

2
(σ + 1) ±

1

2

√

(σ + 1)2 + 4σ(̺ − 1).

Hence, 0 is stable for ̺ < 1 and becomes a saddle in a pitchfork bifurcation at ̺ = 1. For

̺ > 1 the origin has a one-dimensional unstable manifold W u(0) and a two-dimensional

stable manifold W s(0), which we refer to as the Lorenz manifold. For ̺ > 1 there are

two other, secondary equilibria

p± = (±
√

β(̺ − 1),±
√

β(̺ − 1), ̺ − 1)

that are each other’s image under the symmetry. The secondary equilibria are attractors

with a pair of complex conjugate eigenvalues until they lose stability in a subcritical

Hopf bifurcation at

̺H = σ (β + σ + 3) (σ − β − 1)−1 =
470

19
≈ 24.7368.
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Figure 2. Organisation of the unstable manifold Wu(0) (red curve) for ̺ = 23.5 (a),

for ̺ = 24.0579 (b), and for ̺ = 24.5 (c), that is, before, approximately at and and

after the heteroclinic bifurcation at ̺het between the origin 0 and the periodic orbits

Γ± (green curves).

Past the Hopf bifurcation for ̺ > ̺H the equilibria p± are saddle points and have

two-dimensional unstable manifolds W u(p±), associated with the complex conjugate

eigenvalues, and one-dimensional stable manifolds W s(p±).

The two saddle periodic orbits Γ± that bifurcate in the Hopf bifurcation exist

in the interval ̺r < ̺ < ̺H . They bifurcate at ̺r ≈ 13.9265 in a symmetrically

related pair of homoclinic orbits of the origin; see figure 1. This codimension-one

homoclinic bifurcation is also known as a homoclinic explosion point. It is the source

of all complicated dynamics in the Lorenz system: for ̺ > ̺r ≈ 13.9265 one finds in a

tubular neighbourhood of the two homoclinic loops not only the two periodic orbits Γ±

but also infinitely many other saddle periodic orbits (of well-known symbolic description)

[14, 33]. The manifestation of the homoclinic explosion at ̺r in terms of the invariant

manifolds involved is discussed in detail in section 2.

Note that the homoclinic explosion point at ̺r does not produce a chaotic attractor.

Rather one initially finds ‘preturbulence’in the form of a chaotic transient before the

system settles down to one of the attracting equilibria p± [18, 33]. At ̺het ≈ 24.0579

there is a codimension-one heteroclinic bifurcation that creates a chaotic attractor. At

̺het there are two symmetrically related heteroclinic orbits between the origin 0 and

the saddle periodic orbits Γ±. This bifurcation is further illustrated in figure 2. For

̺ < ̺het the unstable manifold W u(0) lies in the basin of attraction of the attractors p±.

At the heteroclinic bifurcation at ̺het the one-dimensional manifold W u(0) connects 0

to the saddle periodic orbits Γ±, that is, W u(0) is entirely contained in W s(Γ±). As a

result, for ̺ > ̺het W u(0) no longer lies in the basin of attraction of p±, but instead

its closure is a chaotic attractor. This chaotic attractor coexists with the attracting

equilibria p± until they disappear in the Hopf bifurcation at ̺H . Hence, for ̺ > ̺H the

chaotic attractor is the only attractor.
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Figure 3. Original sketches by C. Perelló. The Lorenz manifold W s(0) at the

homoclinic explosion (a), and W s(0) just before the attractors become saddles (b).

Panel (c1) shows the unstable manifold W s(A) of a secondary saddle point A (p+ in

our notation), while panel (c2) illustrates its multi-sheeted nature.

Reproduced with kind permission of Springer Science and Business Media from

C. Perelló, Intertwining invariant manifolds and the Lorenz attractor, in Global theory

of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill.,

1979), Lecture Notes in Math. 819, Springer-Verlag, Berlin, pp. 375–378. c©1979

Springer-Verlag.

In this paper we address the question of how the transition through the homoclinic

explosion and beyond manifests itself in terms of the organisation of the respective two-

dimensional invariant manifolds of 0, p± and Γ±. Specifically, in section 2 we compute

W s(0), W u(p±) and W u(Γ±) for different values of ̺ with specialized software that

has become available only in recent years; see the survey [22]. We use the geodesic

level set (GLS) method of [19, 20] for computing W s(0) and a boundary value problem

(BVP) approach (see [22, Sec. 3]) for computing W u(p±) and W u(Γ±), respectively.

This allows us to study how the global manifolds and their intersections change with

the parameter ̺. In section 3 we use a boundary value approach to find the first 512

of the infinitely many codimension-zero heteroclinic orbits that form the intersection
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between W s(0) and W u(p±) for ̺ = 28.0. We introduce their symbolic structure and

then, in section 4, continue all 512 heteroclinic orbits in ̺. All these heteroclinic orbits

are born in the homoclinic explosion point ̺r ≈ 13.9265. When continued for increasing

̺ each branch of heteroclinic orbits has a fold and ends at a specific value of ̺ in

another codimension-one homoclinic bifurcation. As is discussed in section 5, each of

these homoclinic bifurcations is also a homoclinic explosion point with a well-defined

symbol sequence. We give a complete description in terms of symbol sequences of which

heteroclinic orbits end at which homoclinic explosion points.

There is an enormous amount of literature on the Lorenz equations. We finish this

introduction by reviewing briefly some key references of direct relevance to the results

in this paper. A more detailed discussion of how the symbolic dynamics of heteroclinic

orbits discussed here relates to previous work on the symbolic dynamics of periodic obits

can be found in section 6.

As far as we are aware, Perelló [30] is the only one who considered directly the

dependence of the Lorenz manifold W s(0) on the parameter ̺, including the transition

through the homoclinic explosion. In fact, he produced the first ever three-dimensional

drawings of W s(0), which are reproduced in figure 3. The drawing in figure 3(a) shows

the geometry of W s(0) at the homoclinic explosion point at ̺r, while figure 3(b) shows

W s(0) just before the attractors become saddles. In fact, this drawing was a basis for

the illustrations by Abraham and Shaw [1] of the Lorenz manifold for ̺ = 28.0. Notice

the emphasis on the two scrolls of W s(0) around the one-dimensional stable manifolds

of the secondary equilibria. The question of what this means for the overall geometry of

W s(0) was answered only quite recently when a sufficiently large piece of W s(0) could

be computed [21, 22, 27]. Perelló also considered the unstable manifold of the secondary

equilibria. Figure 3(c) shows a part of W u(p+) and how it is bounded by W u(0). It

was obtained by Perelló by “saturating” a line segment, which is remarkably close to

our approach of computing W u(p+); see section 2.2.

There is quite some literature on the symbolic description of the Lorenz system,

namely to characterize the periodic orbits on the Lorenz attractor and their bifurcations.

Guckenheimer and Williams [16, 37], Afrajmovich, Bykov and Sil’nikov [2], and Rand

[31] introduced and studied a one-dimensional discontinuous map model of the attractor,

called the geometric Lorenz attractor. The geometric Lorenz attractor describes the

dynamics on the intersection of the Lorenz attractor with the Poincaré section Σ̺ =

{z = ̺ − 1} through the secondary equilibria. The discontinuous one-dimensional map

(describing how leaves of the strong stable foliation map to one another) has a left and

a right branch, which defines the itinerary or kneading sequence of any point under

the dynamics in terms of an infinite sequence of ls and rs (denoting application of

the respective branch). The chaotic dynamics arises in the geometric Lorenz attractor

just as we just described for the Lorenz system, namely via the equivalents of the

basic homoclinic explosion, heteroclinic bifurcation, and Hopf bifurcation; see [15,

Chapter 6.4] and [33, Chapter 3.4].
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Closely related to the geometric Lorenz attractor is the concept of the template of

the Lorenz system, which is a branched two-manifold that allows one to describe the

symbolic dynamics of the knot-types in R
3 of periodic orbits on the Lorenz attractor;

see the original paper by Lorenz [24], the work by Ghrist et al. [12, 38], and the

recent textbook [13]. In fact, figure 3(c1) by Perelló nicely illustrates the Lorenz

template, which is effectively obtained by identifying the infinitely many (local) sheets

that meet along the initial piece of the unstable manifold W u(0); see also figure 7

below. The chaotic nature of the Lorenz system (for the classic parameter values) was

proved by Tucker [34] only quite recently by showing with computer-assisted rigorous

estimates that the Lorenz attractor indeed satisfies the technical conditions needed

in the reduction to the geometric Lorenz attractor; see also the review by Viana [35].

Therefore, properties of the geometric Lorenz attractor carry over to the Lorenz system,

which can be exploited to show properties of the attractor; see, for example, the recent

result on mixing by Luzatto et al. [25].

While the results mentioned above are quite theoretical in nature, there have been

a number of investigations of periodic orbits of the Lorenz system that also involve

numerical tools. The periodic orbits of the Lorenz attractor itself (for fixed ̺ = 28.0)

have been computed systematically with varying accuracy and up to different lengths

of their (repeating) symbol sequences. Franceschini et al. [11] computed all periodic

orbits with up to 9 symbols and Eckhardt and Ott [8] all periodic orbits with up to 11

symbols. Viswanath [36] builds up longer periodic orbits recursively from shorter ones

and computes all periodic orbits with up to 20 symbols, as well as some with very long

symbol sequences (up to 347 symbols).

A more general topic is the dependence of the periodic orbits on parameters. A

wealth of information on this subject is contained in Sparrow’s book [33]. By means of

careful investigations with numerical integration in combination with theoretical results

from bifurcation theory, he gives a consistent picture in terms of symbol sequences of

the periodic orbits in the dependence on the parameter ̺. The periodic orbits can be

followed from the basic homoclinic explosion point at ̺r towards larger values of ̺ and

through folds back to different homoclinic explosion points. New branches are born in

period-doubling bifurcations and also end at homoclinic explosion points. These results

in [33] are summarized in a bifurcation diagram of periodic orbits with different symbol

sequences; see also [13]. Note that [33] also contains information on the dependence

of the system on other parameters, including results on the limits of large ̺ and small

β, as well as conjectured bifurcaton diagrams in the (β, ̺)-plane (for the classic value

of σ = 10); see also the work by Robbins [32]. Recently, Dullin et al. [7] considered

the entire (̺, σ)-plane and found an alternating periodic pattern of stability regions of

symmetric and non-symmetric periodic orbits, which they explain by considering certain

limits of large ̺ and σ.

Overall, the work presented here is quite similar in spirit to that by Perelló

and Sparrow. The sketches in figure 3 were developed by Perelló with the help of

representative trajectories generated on a “desktop computer with a plotter” [30].
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Similarly, the bifurcation diagrams of periodic orbits versus ̺ and the determination

of their symbolic dynamics by Sparrow [33] were obtained with a systematic numerical

exploration by means of numerical integration guided by theoretical insight and

expectation. Both Perelló and Sparrow used state-of-the-art numerical tools at the

time, namely numerical integration to solve initial value problems. Similarly, we use

state-of-the-art numerical tools of today, most importantly manifold computation and

the continuation of solutions of suitable boundary value problems. Only with the

development of these tools has it become possible to investigate in detail how the Lorenz

manifold W s(0) interacts with W u(p±) and W u(Γ±). Therefore, in many respects our

work continues from and complements their earlier work.

2. Dependence of the manifolds on ̺

For the standard value of ̺ = 28.0 the Lorenz system has a strange attractor which is the

global attractor of the system. The global dynamics of how trajectories spiral into the

Lorenz attractor is organized by the Lorenz manifold W s(0), which essentially separates

trajectories that follow the left branch or the right branch of W u(0), respectively, when

they pass close to the origin 0. From a geometrical point of view, computed up to fixed

geodesic distance, the two-dimensional surface W s(0) is the smooth image of a disk that

simultaneously ‘rolls’ into the right and left ‘wing’ of the Lorenz attractor. As is now

known, this results in a primary helix along the positive z-axis, with infinitely many

secondary helices close to this primary helix; for more information on the geometry of

the Lorenz manifold see [21, 27, 28].

In this section we consider how the Lorenz manifold W s(0) changes when ̺ is

decreased through the bifurcation diagram in figure 1. Similarily we study how the

unstable manifolds W u(p±) and W u(Γ±), respectively, change in this transition.

2.1. The stable manifold W s(0)

Figure 4 shows four images of W s(0) for different values of ̺ as computed with the GLS

method of [20] in the implementation described in [10] (which uses AUTO’s collocation

and pathfollowing routines). All four manifolds were computed up to geodesic distance

100.0, so include the z-axis from (0, 0,−100.0) to (0, 0, +100.0). We coloured W s(0) in

shades that get paler as the geodesic distance increases; the boundary of W s(0), that

is, the geodesic level set of distance 100, is drawn as a darker curve. The changes of

the manifold with ̺ is best seen in the accompanying animation 1. In particular, the

torsion of the helix around the positive z-axis increases as ̺ decreases.

Figure 4(a) shows the Lorenz manifold W s(0) for the classical value of ̺ = 28.0.

The manifold rolls up around the one-dimensional stable manifolds W s(p±) (not shown)

of the secondary equilibria p± and thereby forms the primary helix along the positive z-

axis. Until the Hopf bifurcation at ̺H ≈ 24.7368, the situation remains topologically the

same. Then the saddles p± become attractors that co-exist with the Lorenz attractor.
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Figure 4. The manifold W s(0) up to geodesic distance 100 for ̺ = 28.0 (a), for

̺ = 19.0 (b), for ̺ = 10.0 (c), and for ̺ = 1.0 (d). To help identify the changes

to W s(0) the shade of blue changes from darker to lighter as the geodesic distance

increases and the boundary at geodesic distance 100 is highlighted as a dark blue

curve; see also the accompanying animation 1.

The Lorenz manifold W s(0) now rolls around the stable manifolds W s(Γ±) (not shown)

of the saddle periodic orbits Γ±, which form the basin boundaries of p±. As an example,

the manifold for ̺ = 19.0 is shown in figure 4(b) and, in fact, this is the situation sketched

by Perelló in figure 3(b). We remark that the transition through the Hopf bifurcation

results in a continuous deformation of W s(0).
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Figure 5. Organisation of manifolds W s(0) (blue surface), W ss(0) (blue curve) and

Wu(0) (red curve) for ̺ = 15.0 (a), for ̺ = 13.9265 (b), and for ̺ = 13.0 (c), that is,

before, approximately at, and after the homoclinic bifurcation. On the left W s(0) is

clipped along a plane spanned by the z-axis and the unstable eigenvector of the origin,

and on the right it is rendered transparent. In row (b) W s(0) is of geodesic distance

64.175 and in rows (a) and (c) it is of geodesic distance 100.0. Row (a) also shows the

two bifurcating saddle periodic orbits Γ± (green curves).
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The transformation through the homoclinic explosion at ̺r ≈ 13.9265, on the other

hand, results in a more dramatic change of W s(0). When ̺ is decreased from 24.7368

towards this homoclinic bifurcation point, the saddle periodic orbits Γ± grow larger in

radius, while W s(0) rolls around Γ± and W s(Γ±). At ̺r the unstable manifold W u(0)

lies in W s(0) and forms a homoclinic loop. At this moment W s(0) is degenerate. It

rolls around p± exactly once and ends along the strong stable manifold W ss(0) ∈ W s(0).

For ̺ < 13.9265 the Lorenz manifold W s(0) rolls around p± exactly once, after which

it turns back along itself exponentially closely toward the direction of negative z. This

change of the manifold can be seen clearly in figure 4(c) and (d). Notice the parts of

the boundary of W s(0) that now lie in the region of negative z, indicating that there

are now several sheets of the computed manifold in this region.

Figure 5 shows the transition through the homoclinic explosion at ̺r in more detail.

Shown are the stable and unstable manifolds W s(0) and W u(0) for ̺ = 15.0, 13.9265,

and 13.0; the one-dimensional blue curve is the strong stable manifold W ss(0). Note

that we describe the transition through the homoclinic bifurcation for decreasing ̺ to

be consistent with figure 4. In the left column of figure 5 only the part of W s(0) is

shown that lies ‘behind’ the plane normal to ~n := vu(0) × (0, 0, 1)T through the point

0.1~n. That is, we clip W s(0) with the plane spanned by the z-axis and the unstable

eigenvector vu(0). The right column of figure 5 shows W s(0) in transparent blue. The

manifold W s(0) was computed up to geodesic distance 100.0 for ̺ = 13.0 and 15.0; for

̺ = 13.9265 it was computed up to geodesic distance 64.175.

Figure 5(a) shows the situation for ̺ = 15.0 with the pair of periodic orbits Γ±

already approaching the origin quite closely. Observe how W s(0) returns close to the

origin and then turns upwards (towards positive values of z): effectively, W s(0) rolls

around Γ± infinitely many times. Notice that the unstable manifold W u(0) ‘crosses

behind’ W u(0), so that its left branch accumulates on the attractor p+ and its right

branch on p−. Figure 5(b) shows the situation (approximately) at the homoclinic

explosion for ̺ = 13.9265. The two branches of W u(0) no longer accumulate on p±, but

come back to the origin to form two (symmetrically related) homoclinic orbits, being

entirely contained in W s(0); see panel (b2). The Lorenz manifold W s(0) was computed

up to the geodesic distance 64.175 when it comes back to the origin along the homoclinic

orbit. Indeed W s(0) cannot be parametrized by smooth geodesic level sets for larger

geodesic distances. Rather, this two-dimensional manifold aligns with and ‘closes up’,

much like a zipper, along W ss(0). Figure 5(c) shows the situation for ̺ = 13.0. The

equilibria p± are now the only attractors and W s(0) separates their respective basins of

attraction. Now the left branch of W u(0) spirals directly into p− and the right branch

directly into p+. The Lorenz manifold W s(0) folds around p± once, comes very close

to the origin, or more precisely close to W ss(0), and then, rather than making another

revolution around p±, folds away downwards (towards negative values of z) and back

along itself; see panel (c1) and compare with Figure 4(c) and (d). In particular, all

trajectories on W s(0) go to infinity in backward time.
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2.2. The unstable manifolds W u(p±) and W u(Γ±)

For ρ = 28.0 the unstable manifolds W u(p±), which are each other’s image under the

symmetry, both accumulate on the Lorenz butterfly attractor. The local manifolds

near p± are approximate nice disks but, as they grow and accumulate on the Lorenz

attractor, they each pass back and forth infinitely many times between the two wings

of the attractor. In other word, W u(p±) has infinitely many sheets, which are actually

extremely close together due to the contraction rates involved. Collapsing these sheets

leads to the well-known template of the Lorenz system in the form of a branched surface

[12, 13].

When ̺ is decreased below the Hopf bifurcation at ̺H ≈ 24.7368 then W u(p±)

transforms into W u(Γ±). Locally near Γ± this manifold now has two parts, one inside

and one outside W s(Γ±). The inside branch is a topological disk that has the attractor

p± as its closure, while the outside branch is as complicated as W u(p±) for ̺ > 24.7368.

When ̺ is decreased further, the periodic orbits Γ± grow until they finally disappear in

the explosion point at ̺r ≈ 13.9265. The manifolds W s(Γ±) also cease to exist in this

bifurcation.

Computing a good representation of W u(p±) and W u(Γ±) is quite a challenge. Due

to extreme folding of the manifolds the GLS or other growth methods quickly run into

difficulties. As an alternative we find and continue suitable orbit segments with a BVP

approach [22, Sec. 3]. Specifically, we compute two families of orbit segments as shown

in figure 6 for ̺ = 28.0 with the package AUTO [4]. Both families start along a vector

in the linear unstable eigenspace of p+; in fact the end points of the orbit segments

hardly change and are marked by a diamond. The orbit segments in figure 6(a) spiral

around p+ a number of times, then make one revolution around p− and end in the

section Σ̺ = {z = ̺ − 1} (on the far side of p+). Similarly, the orbit segments in

figure 6(b) spiral around p+ a number of times, then make one and a half revolutions

around p− and end in Σ̺ (on the far side of p−). Starting from an orbit segment found

by continuation in the integration time T , the respective families are then continued as

two-point boundary value problems with AUTO.

The two families (represented by black curves) are bounded by the purple and

red orbits in figure 6, which are concatenations of a heteroclinic orbit from p+ to the

origin 0 with a piece of W u(0). The heteroclinic part of the two purple orbits makes

infinitely many revolutions around p+ before ending up at 0 (symbolized by R), while the

heteroclinic part of the two red orbits also makes a single revolution around p− before

ending up at 0 (symbolized by Rl). These heteroclinic orbits are intersection curves (of

codimension zero) of W u(p+) with W s(0). As we discuss in detail in section 4, infinitely

many such heteroclinic orbits with a well-defined symbolic description organize the

intersections between W s(0) and W u(p±) and W u(Γ±), respectively.

The families of orbit segments in figure 6 were used to render the manifolds W u(p+)

and W u(p−) (by symmetry) as surfaces. Taken together, they constitute a numerical

version of the template of the Lorenz system. In fact, we chose the families of orbit
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Figure 6. Two families of orbit segments were used to compute (a part of) Wu(p+) or

Wu(Γ+); the example shown is for ̺ = 28.0. The orbits segments start in the unstable

eigenspace (near ⋄) of Wu(p+) and end in the section {z = ̺ − 1}, either near p+

(a1) or near p− (b1). Both families limit on the two singular orbit segments in panels

(a2)/(a3) and (b2)/(b3), which are composed of a heteroclinic orbit (of type R and Rl,

respectively) composed with an initial piece of Wu(0).
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Figure 7. The manifolds Wu(p±) for ̺ = 28.0 (a), and Wu(Γ±) for ̺ = 23.0 (b),

̺ = 19.0 (c), and ̺ = 14.0 (d), respectively, as rendered from the families of orbit

segments in figure 6; see also the accompanying animation 2.

segments such that they encode the ‘switching from right to left’ that is the hallmark

of this template. We remark that we used the same families also to compute W u(Γ±)

(for lower values of ̺).

Figure 7 and the accompanying animation 2 show how W u(p±) and W u(Γ±)

change with ̺. Note that the holes around the secondary equilibria p± in figure 7

could be filled with simple disks. However, we felt that it is better to show only the

computed orbit families, as this also emphasizes the dynamics on W u(p±) and W u(Γ±).

In figure 7(a) for the classical value of ̺ = 28.0 one can recognise the computed part

of W u(p±) as forming the template of the Lorenz system. In effect, each family of

orbit segments transports (backward in time) the respective one-dimensional intersection
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Figure 8. A transparent rendering of W s(0) (blue surface) as it intersects the unstable

manifolds (red surfaces) Wu(p±) for ̺ = 28.0 (a), and Wu(Γ±) for ̺ = 23.0 (b),

̺ = 19.0 (c), and ̺ = 15.0 (d), respectively; see also the accompanying animation.

curve W u(p±)∪Σ̺. In this sense, our method of computing W u(p±) is similar to Perelló’s

method of ‘saturating’ a line segment; compare figure 7(a) with figure 3(c). In particular,

the computed part of W u(p±) is bounded by W u(0). Figure 7(b) shows the computed

part of W u(Γ±) for ̺ = 23.0, which is still bounded by W u(0). As ̺ is decreased

further to ̺ = 19.0 in figure 7(c), the holes around p± grow, which indicates that the

orbit families we considered cover less and less of W u(Γ±). In fact, as is illustrated in

figure 7(c) for ̺ = 14.0 very near the homoclinic bifurcation, the computed families of

orbit segments have the homoclinic orbits as their limit.

Figure 8 and the accompanying animation 3 show W s(0) together with W u(p±)

and W u(Γ±), respectively, as ̺ is changed. Here W s(0) is rendered transparent and
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all panels show the same part of the phase space. Notice how W u(Γ±) become smaller

and then disappear for decreasing ̺. The two sets of manifolds intersect in infinitely

many codimension-one heteroclinic orbits; the purple and red orbits in figure 6 are two

concrete examples.

3. Generic heteroclinic orbits for ̺ = 28.0

While figure 8 gives a good impression of the overall geometric arrangment of the

manifolds, it is practically impossible to resolve from this figure the heteroclinic orbits

that form the intersection set. Therefore, we now adopt the approach of identifying the

generic heteroclinic orbits for ̺ = 28.0 directly with a continuation method. In the next

section we then follow these heteroclinic orbits in the parameter ̺.

Specifically, we fix ̺ = 28.0 and systematically find the heteroclinic orbits from

the secondary equilibrium p+ to the origin as follows. First we perform a continuation

with AUTO [4] in integration time (parameter T ) where we start from an initial condition

along a particular direction in the unstable eigenspace Eu(p+) at distance r0 from p+.

We then fix the integration time T at a suitable value and continue the initial orbit

segment in the parameter r0. During this continuation the orbit segment sweeps over

W u(p+) and, hence, also over the heteroclinic orbits we are seeking. Importantly, the

heteroclinic orbits stand out as local minima of the arclength, as well as the L2 or

integral norm, because most of the integration time T is spent near the origin. Since the

orbit spirals near p+, the result of the continuation effectively repeats itself after r0 has

covered a fundamental domain. In our procedure a fundamental domain can be defined

conveniently as the r0-range between successive detections of the basic heteroclinic orbit

that spirals around p± and then connects directly to the origin, which has the overall

smallest norm of any orbit.

Figure 9 shows the norm of the resulting family of orbit segments for fixed T over

a fundamental domain in r0. The (approximate) heteroclinic orbits from p+ to 0 are

clearly identified as very distinct local minima. What is more, figure 9 brings out the

tree structure of the heteroclinic orbits, which is directly related to their description by

symbol sequences.

We introduce a symbolic coding for heteroclinic orbits that is very similar to what

has been used for periodic orbits; see [33] and also [36]. We refer to p− and p+ as the left

(l) and right (r) equilibria and use R as an abbreviation for infinitely many revolutions

around p+. The basic heteroclinic orbit connects p+ directly with 0 and has the symbol

sequence R.

For any other heteroclinic orbit infinitely many revolutions around p+ are followed

by an initial (0th) revolution around p−. Then follow finitely many revolutions in some

order around p+ or p− before the heteroclinic orbit ends at 0. Therefore, its symbol

sequence is defined as

Rls1 · · · sN , where

{

sj = l if the jth revolution is around p−,

sj = r if the jth revolution is around p+.
(2)



Global bifurcations of the Lorenz manifold 16

Figure 9. Family for ̺ = 28.0 of orbit segments of fixed time T = 30.1473 that

start at distance r0 along a vector in Eu(p+). Local minima of the integral norm ||.||

correspond to (approximate) heteroclinic orbits from p+ to 0; their symbol sequences

for levels 0 to 3 are shown. The continuation in r0 covers one fundamental domain,

starting and ending at the basic heteroclinic orbit R.

Here, N is the number of subsequent revolutions around p− and p+, to which we refer as

the level of the symbol sequence or heteroclinic orbit. Symbol sequences for heteroclinic

orbits from p− to the origin are defined in complete analogy, where we use L as an

abbreviation of the initial infinitely many revolutions around p−. Due to the symmetry

of the Lorenz equations, for every heteroclinic orbit with sequence Rls1 · · · sN there exists

the symmetrically related heteroclinic orbit with sequence Lrs1 · · · sN , where r = l and

l = r .

The notion of a revolution around the points p+ or p− can be made precise: each

such revolution corresponds to a unique intersection point of the heteroclinic orbit with

the section Σρ (located at the height of the secondary equilibria) where the flow is

pointing upwards (in the direction of increasing z). Note that this definition agrees

with the symbol sequences as used for the approximation of the return map of (1) on

the section Σ̺ by a one-dimensional discontinuous map (see [16] and [33, Chapter 3.4]),

where l corresponds to the left branch and r to the right branch of the map.

One key aspect of definition (2) is that the symbol sequence of a heteroclinic orbit

can be extracted automatically from the approximating orbit segment. Figure 10 shows

as examples the heteroclinic orbits Rl (row a) and Rrlrlllr (row b) in phase space and

as a time series of the x-value. Notice how the symbolic code can be determined easily
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Figure 10. The heteroclinic orbits from p+ to 0 of (1) for ̺ = 28.0 with symbolic

sequences Rl (a) and Rlrlllr (b), shown in phase space (left) and as time series of

the x-value (right).

from the plot of the x-coordinate versus rescaled time t/T .

In figure 9 the basic heteroclinic orbit R and all non-basic heteroclinic orbits of levels

0 to 3 are labelled. The family of orbit segments shown in figure 9 actually allowed us to

extract automatically all heteroclinic orbits and symbolic sequences up to level 8. We

found 2i in all levels for i ≤ 8, a total of 512 heteroclinic orbits. Figure 9 also constitutes

clear numerical evidence that, as a function of the parameter r0, the heteroclinic orbits

on W u(p+) actually occur in the recursive ordering on a full binary tree, which can be

defined formally as follows.

Definition Given two symbol sequences Rs0 · · · sN and Rt0 · · · tM where sj, tj ∈ {r, l}

let 0 ≤ k ≤ min(N, M) be the largest integer such that sj = tj for 0 ≤ j ≤ k. Then

Rs0 · · · sN < Rt0 · · · tM if











sk+1 = l, tk+1 = r and k < min(N, M),

sk+1 = l and k = M,

tk+1 = r and k = N.

(3)

The ordering can be described locally as

Rs0 · · · sNl < Rs0 · · · sN < Rs0 · · · sNr.
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Figure 11. All computed curves of heteroclinic orbits R* up to level 8, shown as

the maximum of |x| over the heteroclicic orbit versus ̺; the curves up to level 4

are highlighted in black. All curves emanate from the homoclinic explosion point at

̺r ≈ 13.9265. With the exception of curve R, all curves have folds and end at co-

dimension-one homoclinic orbits of the origin. For example, curve Rl ends at the

homoclinic orbits rl, while curve Rlr ends at lr, which is the co-existing symmetric

counterpart for the same ̺-value. For level 4 the limiting homoclinic orbit with the

lowest ̺-value is rlllll; see also figure 15 and figure 16.

In other words, the ordering (3) can be obtained by projecting all nodes of the binary

tree onto a line, which corresponds in figure 9 to projection onto the r0 axis. Due to

symmetry, we have that Ls0 · · · sN has the same place in the ordering as its symmetric

counterpart Rs0 · · · sN .

4. Continuation of heteroclinic orbits in ̺

It is an immediate question what happens to the binary tree of heteroclinic orbits when

one varies the parameter ̺. The discussion in section 1 and figure 8 suggest that all

heteroclinic orbits we found for ̺ = 28.0 are created in the homoclinic explosion at

̺r ≈ 13.9265. Hence, one would expect that the heteroclinic orbits can be followed for

decreasing ̺ to this value. On the other hand, it is not so clear what happens to the

structure of heteroclinic orbits when one increases ̺.

To address these questions we started continuations from all 512 heteroclinic orbits
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for ̺ = 28.0 for decreasing and increasing ̺. This process was implemented by level,

so that all 2i heteroclinic branches of level i are computed by starting a single script.

To start the continuation of a given heteroclinic orbit a Newton step was applied to the

approximate orbit corresponding to the respective minimum in figure 9. This ensures

that the projection boundary conditions near the origin are satisfied within a high

numerical accuracy, that is, the orbit segment ends in Es(0) near 0. This orbit segment

was then continued in ̺, where the total integration time T is a free parameter.

The computation is performed in two runs, one for initially decreasing ̺ and one for

initially increasing ̺. In the former case we pass the Hopf bifurcation at ̺H = 470
19

. From

then on the heteroclinic orbit is between the saddle periodic orbit Γ+ and the origin. In

the computation we continue the eigendirection and appropriate distance from p+. For

̺ < ̺H we approximate a direction in Eu(Γ+) by a direction in Eu(p+). We checked that

this approximation is acceptable; due to the ‘flat’ nature of Γ+ and Eu(Γ+) any small

initial distance from W u(Γ+) decays after at most two revolutions around Γ+ to below

the accuracy of the computation. Therefore, simply by following the same boundary

value setup through the Hopf bifurcation we obtain a smooth continuation process that

then follows the homoclinic orbit from Γ+ to 0. This procedure is numerically stable

and stops (at the basic homoclinic explosion point ̺r) when the total integration time

T reaches a prespecified bound. Due to the required high accuracy, with a necessarily

fine mesh of up to 4801 mesh points (AUTO constants NTST=1200 and NCOL=4),

the overall amount of data thus created to represent the 512 solution branches is over

400Mb (before compression), while not even including all computed orbits.

Figure 11 shows all 512 branches of heteroclinic orbits up to level 8 in a plot of

the maximum of |x| over the heteroclinic orbit versus the parameter ̺. To highlight

the structure of this set the branches up to level 4 are shown in black, while those of

higher levels are in gray. The overall result is that indeed all 512 branches emanate

from the homoclinic explosion at ̺r ≈ 13.9265. As we have seen in figure 5, the periodic

orbits Γ± approach the homoclinic orbits r and l, respectively, and this implies that all

heteroclinic orbits in W u(Γ±)∪W s(0) must do the same. This is illustrated in figure 12

for the examples of the heteroclinic orbits from figure 10 with symbolic sequences rl

and rlllr.

When continued from the basic heteroclinic explosion point for increasing ̺ the

heteroclinic orbit R continues on to infinity. All other branches of heteroclinic orbits

have folds (LP points of AUTO) and then continue back to smaller values of ̺. Each fold

in Figure 11 represents a heteroclinic tangency between W u(p+) and W s(0), where two

intersection curves (with the same symbol sequence) come together and disappear as ̺

increases. As is apparent from figure 11, the intersection curves are lost in pairs one-by-

one in heteroclinic tangencies until, for ̺ larger than about 194.6 the two-dimensional

manifolds W u(p+) and W s(0) intersect only in the curve R, which cannot be removed

and remains as an intersection curve for all ̺ > ̺r. Notice also that the folds accumulate

at distinct ̺-values and, in fact, many folds agree up to the first four digits of ̺; see

the full data in Appendix A. This is due to the fact that W u(p+) contains many sheets
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Figure 12. All branches of heteroclinic orbits emanate from the basic homoclinic

explosion point at ̺r ≈ 13.9265. Shown is how the heteroclinic orbits from figure 10

with symbolic sequences rl (a) and rlllr (b), respectively, accumulate on the basic

homoclinic orbit r; the limits are shown in phase space (left) and as time series of the

x-value (right).

close to each other, which one-by-one have a tangency with W s(0) in a very small ̺-

interval. Indeed, this agrees with the notion that heteroclinic or homoclinic tangencies

are typically accumulated by other tangencies [29].

Each branch of heteroclinic orbits, when continued from the basic homoclinic

explosion at ̺r past its fold ends at a well-defined value of ̺. For example, as is shown

in figure 11, the heteroclinic orbits Rl and Rlr both end at ̺rl ≈ 54.6460. Note that

all computed end points have ̺-values larger than ̺ = 28.0. The left-most end point of

any branch in level 4 is at ̺rlllll ≈ 39.1157.

The obvious question is what characterizes the end points of the branches of

heteroclinic orbits. In fact, each such end point is also a homoclinic explosion, that

is, a homoclinic bifurcation of the origin just like that at ̺r ≈ 13.9265 but involving a

more complicated pair of homoclinic orbits (and bifurcating periodic orbits). To define

symbol sequences of these homoclinic orbits, note that the right branch of W u(0) at

̺r ≈ 13.9265 returns directly to 0 and we describe it with the symbol sequence r

(hence, the naming of ̺r). For ̺ > ̺r the right branch of the unstable manifold W u(0)
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Figure 13. When followed in ̺ past the fold, the heteroclinic orbits from figure 10 limit

on the homoclinic orbits with symbolic sequences rl (a) and rlllr (b), respectively;

the limits are shown in phase space (left) and as time series of the x-value (right).

immediately crosses over to make at least one revolution around the left equilibrium p−;

see, for example, figure 5(a) and figure 2. Therefore, for all other homoclinic explosions

the next symbol of its right homoclinic orbit is defined as h0 = l. The symbol sequence

of the right homoclinic orbits is then defined as

rlh1 · · ·hN , where

{

hj = l if the jth revolution is around p−,

hj = r if the jth revolution is around p+.

Again, we refer to N as the level of the homoclinic orbit. By symmetry the left

homoclinic orbit of the pair has the symbol sequence lrh1 · · ·hN .

Figure 13 shows the limits of the heteroclinic orbits Rl and Rlrlllr of Figure 10

when continued in ̺ to their respective explosion points where they disappear. As the

explosion point is approached, the heteroclinic orbit passes closer and closer near the

origin. In the limit we obtain a heteroclinic orbit from p+ to 0 folowed by a homoclinic

orbit from 0 back to itself. How this homoclinic orbits ‘splits off’ can be seen in the

time plots in the right column of figure 13. Notice that the heteroclinic orbit Rl ends at

the homoclinic explosion rl, while Rlrlllr ends at the homoclinic explosion rlllr. In

other words, in the former case an extra r is split off from the infinitely many revolutions
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Figure 14. All computed curves of heteroclinic orbits (levels 0 to 8) in the plane

of time T of the approximating orbit segment versus ̺. Values of ̺ where T goes to

infinity correspond to limiting co-dimension-one homoclinic orbits of the origin. For

the heteroclinic orbits up to level 4 (black curves) the symbol sequences of the limiting

homoclinic orbits (starting with r) are shown. Note that the symmetric counterparts

of these homoclinic orbits co-exist for the same ̺-values, and are the limits of some

heteroclinic orbits; see also figure 15 and figure 16.

represented by R, while in the latter case the limiting homoclinic orbit consists of only

a subpart of the symbolic sequence of the heteroclinic orbit Rlrlllr. Notice also that

in figure 11, both Rl and Rlr end up at the same homoclinic explosion point labeled

rl. However, Rlr has the symmetric counterpart lr as its limit.

5. Combinatorics of limiting homoclinic explosions

To determine which heteroclinic orbits end up at which homoclinic explosion points we

extract automatically for each of the 512 branches of heteroclinic orbits the location of

the fold, as well as the ̺-value and symbol sequence of the limiting homoclinic orbit.

This information is presented level by level in Appendix A and constitutes a major

result of this paper. The key is that symbolic information is derived reliably on a

large scale from numerical continuations of suitable orbit segments. We show now that

this approach indeed allows for insight into the structure of how W s(0) interacts with

W u(p±) and W u(Γ±) and, more generally, it reveals new aspects of how the dynamics
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of the Lorenz system depends on ̺.

In figure 14 we show all computed branches of heteroclinic orbits up to level 8 in

the range ̺ ∈ [35.0, 60.0]. In contrast to figure 11, we now plot the integration time T

of the approximating orbit segment. In this way, limiting codimension-one homoclinic

orbits of the origin are made visible as points where T goes to infinity. All symbol

sequences of the limiting homoclinic orbits for the black branches of heteroclinic orbits

up to level 4 are shown at the top of figure 14. Note that we only show the symbol

sequences starting with r, while some of the branches actually end up at the symmetric

counterparts of these homoclinic orbits. Figure 14 clearly shows that many different

branches of heteroclinic orbits end up at the same homoclinic explosion. Furthermore,

not all possible symbol sequences of the binary tree up to level 4 (and up to level 8; see

the data in Appendix A) appear as homoclinic orbits of explosion points.

To describe which homoclinic explosion points do occur we consider the recursive

ordering of the the associated homoclinic orbits, which is defined exactly as in (3) where

R is replaced by an initial r. Again, lh0 · · ·hN has the same place in the ordering as

rh0 · · ·hN .

Main results

(R1) For the heteroclinic orbit with symbol Rs0 · · · sN (recall that s0 = l) consider the

smallest (with respect to the recursive ordering) of the N +2 subsequences sj · · · sN

for 0 ≤ j ≤ N together with rs0 · · · sN . The corresponding branch of heteroclinic

orbits ends at the homoclinic explosion point associated with the homoclinic orbit

with this smallest symbol sequence; see figure 15.

(R2) As a consequence we find only those homoclinic explosion points as limits of

heteroclinic orbits whose symbol rh0 · · ·hK (recall that h0 = l) (of the right

homoclinic orbit) does not have a smaller subsequence, that is,

rh0 · · ·hK < hj · · ·hK for all 0 ≤ j ≤ K (4)

We call these the homoclinic explosion points and associated homoclinic orbits

admissible. The recursive ordering of the admissible homoclinic explosion points

agrees with their ordering in terms of ̺-values; see figure 16.

(R3) All branches of heteroclinic orbits that end up at the same homoclinic explosion

point (that is, those that have a given symbol sequences rh0 · · ·hK or the

symmetric counterpart lh0 · · ·hK as their smallest subsequence) have their folds

at approximately the same value of ̺; see figure 11.

Figure 15 illustrates (R1) with the binary tree of all heteroclinic orbits from p+ to 0 up

to level 5. The limiting homoclinic orbits are shown in boldface where colour indicates

whether the first excursion is to the right or left, respectively. The reader may wish to

check that the data in figure 15 indeed supports the criterion in (R1). Effectively, this

tree illustates the many-to-one map from the full tree of heteroclinic orbits to the set of

admissible homoclinic orbits.
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Figure 15. (Colour online) Tree up to level 5 of heteroclinic orbits from p+ to 0

for ̺ = 28.0 (all symbols), and their limiting homoclinic orbits (boldface symbols) at

the respective homoclinic explosion point. The colour/grayscale of boldface symbols

distinguishes between homoclinic orbits that initially go to the left or to the right,

respectively; the symmetric counterpart of any boldface symbol is the limit of the

symmetrically related heteroclinic orbits from p− to 0.

The admissible homoclinic orbits up to level 6 are shown boldface in the binary

tree in figure 16 together with their ̺-values as found in the continuation. Again, it

can be checked that the admissible symbols satisfy the criterion given in (R2). Note

that subtrees that do not contain any admissible homoclinic orbits have been left out of

figure 16. For example, the entire subtree with root rlr does not contain any admissible

homoclinic orbits.

Results (R1)-(R3) have been derived from and checked against the entire data in

Appendix A. While this does not constitute a proof, this approach is similar to that of

previous work on the symbolic dynamics of the Lorenz system — most notably that in
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Figure 16. Tree of all admissible homoclinic explosion orbits (bold) up to level 6 and

the ̺-values of the respective homoclinic explosion points.

[33]. Note also that (R1)-(R3) are entirely in line with what one might expect from the

knowledge of similar results for periodic orbits; see also section 6.

We remark that the admissible symbol sequences that we find as limits of

heteroclinic orbits are exactly those that uniquely represent the homoclinic orbits in
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which periodic orbits bifurcate in one-dimensional maps; see [33] and [17, Appendix A.1].

For example, the symbols symbol rll, lrl and llr describe the same periodic orbit

when interpreted as an infinitely repeating itinerary. However, only rll is admissible

as a homoclinic orbit, and also represents the itinerary of the bifurcating periodic orbit.

Furthermore, admissible symbol sequences correspond to bifurcating periodic orbits of

minimal period, which means that multiples of smaller periods are excluded as symbols.

All heteroclinic orbits that end in the same homoclinic explosion points are created

in folds in a very narrow interval of ̺-values. As was discussed in section 4, this is

actually what one might expect in light of the multi-sheeted nature of W u(p+): there

are infinitely many tangencies with W s(0) with the different infinitely many sheets

arbitrarily close together in ̺; see also figure 3(c2). Indeed (R3) states that the final part

of the symbol sequence is necessarily the same for all these orbits. In other words, these

heteroclinic orbits only differ in their transient behaviour (of a well-defined symbolic

type). In fact, these transients are very close together in the phase space of the Lorenz

system. Nevertheless, our boundary value approach is perfectly able to distinguish them.

6. Discussion and open problems

We considered how the Lorenz manifold W s(0) and the unstable manifolds W u(p±)

and W u(Γ±) of the secondary equilibria and bifurcating periodic orbits depend on

the parameter ̺. We computed these manifolds directly and also found and followed

numerically their intersection curves, which are generic heteroclinic orbits between the

origin and p± or Γ±, respectively. Each homoclinic orbit is born in the basic well-known

homoclinic explosion point at ̺r ≈ 13.9265 and was followed in ̺ past a fold to another

homoclinic explosion point. We gave a self-consistent description of this scenario in

terms of symbolic sequences of heteroclinic orbits and their limiting homoclinic explosion

points. The basis for our results is the data set in Appendix A of automatically extracted

symbolic information from continuations of the first 512 branches of heteroclinic orbits.

The symbolic dynamics of the generic heteroclinic and limiting homoclinic explosion

points that we found is, by its nature, closely connected to the symbolic dynamics

of periodic orbits that bifurcate in the homoclinic explosions. Indeed Sparrow [33,

Chapter 5] presents a self-consistent scenario of how periodic orbits in the Lorenz

attractor are created and destroyed as a function of ̺ in a combination of homoclinic

explosions, period-doublings and T-point bifurcations. This is summarized in the

bifurcation diagram [33, Fig. 5.12] and a list of homoclinic explosion points in [33,

Appendix I]. While we computed many more homoclinic explosion points than Sparrow,

we only find a subset of the explosion points for periodic orbits, namely the admissible

ones as defined in result (R2). We do not find homoclinic explosion points (such as

rlrl) that are due to period-doubled or symmetric periodic orbits, but the numerical

̺-values in [33, Appendix I] of admissible explosion points agree with those in Appendix

A. Also note that the admissible homoclinic explosion points we find all appear to be of

‘type (a)’ in the notation of Sparrow, which effectively means that the chaotic dynamics
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i hom-min ρmin(i) |ρmin(i) − ρmin(i − 1)|
|ρmin(i−1)−ρmin(i−2)|
|ρmin(i)−ρmin(i−1)|

0 rl 5.4645952E+01

1 rll 4.7053443E+01 7.592509

2 rlll 4.3198042E+01 3.855401 1.96932

3 rllll 4.0788829E+01 2.409213 1.60027

4 rlllll 3.9115749E+01 1.673080 1.43999

5 rllllll 3.7875935E+01 1.239814 1.34946

6 rlllllll 3.6915667E+01 0.960268 1.29111

7 rllllllll 3.6147675E+01 0.767992 1.25036

8 rlllllllll 3.5518339E+01 0.629336 1.22032

Table 1. Convergence behaviour of ρmin(i), the minimal ρ-value of any homoclinic

orbit in level i.

they produce occurs for ̺-values larger than that of the respective homoclinic explosion

point.

The countable set of admissible homoclinic explosion points, which are due to the

intersections of the underlying two-dimensional manifolds, can be interpreted as the

backbone of the structure of all homoclinic explosion points. In order to bring out some

general properties of this set we show in table 1 the admissible homoclinic explosion

points rl
i. According to result (R2), these have the smallest ̺-value, denoted ̺min(i),

of all homoclinic explosion points of level i. Notice that ̺min(i) decreases with i, so

that the question arises what its limit is for i → ∞. This limit cannot be derived

from the data in table 1; the approximate convergence rate (last column) is far from

constant. However, we can determine the limit of ̺min(i) with a topological argument.

As ̺ is decreased towards the codimension-one heteroclinic bifurcation point ̺het, the

right branch of the one-dimensional unstable manifold W u(0) initially makes more and

more turns around p− and then (for ̺ < ̺H ≈ 24.7368) around Γ−; see also figure 2.

Indeed, in the limit at ̺het it has the itinerary rL. In other words, the limit of ̺min(i)

for i → ∞ is actually the codimension-one heteroclinic bifurcation point ̺het ≈ 24.0579.

We conjecture that also the (accumulation points of) folds of the respective branches of

generic heteroclinic orbits in result (R3) accumulate on ̺het; see also figure 11.

The emerging self-consistent scenario is that W s(0) ∩ W u(Γ±) contains the entire

binary tree of possible heteroclinic orbits for ̺ ∈ (̺r, ̺het). In other words, there are no

topological changes of W s(0)∩W u(Γ±) in this interval of ‘pre-turbulence’. In contrast,

for any fixed ̺ > ̺het already infinitely many topological changes have taken place.

Namely, infinitely many extra heteroclinic orbits were created in admissible homoclinic

explosion points and then lost in folds with the respective heteroclinic orbits born at

̺r. One can determine which orbits are no longer present by considering the itinerary

of the right branch of W u(0). As is shown in figure 17, for the classic value of ̺ = 28.0

it has the itinerary rl
25
r· · ·, that is, it initially makes exactly 25 revolutions around

p− before returning back to near p+. It is important to realize that the right branch of
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Figure 17. The itinerary of right branch of Wu(0) for ̺ = 28.0 starts with rl25r· · ·,

which shows that the homoclinic explosion rl26 occurs for ̺ < 28.0.

W u(0), which forms the boundary of W u(p+), constitutes the re-injection closest to p−;

see also figure 7(a). Therefore, after the initial infinitely many revolutions around p+,

any orbit on W u(p+) may have at most this maximal number of 25 revolutions around

p− before the transition back to near p+. By taking into account the symmetry, we

can conclude that the limiting homoclinic explosion points of any branch of heteroclinic

orbits with symbol sequences containing l
26 or r26 as a subsequence occur for ̺ < 28.0.

As was already noted in [33, Chapter 3.3], this has consequences for the periodic orbits

in the Lorenz attractor: any periodic orbit for ̺ = 28.0 has at most 25 consecutive

revolutions around p− or p+. (This corresponds to the fact that the orbit of (−1) under

the associated one-dimensional map determines the topological equivalence class of the

attractor [15, Chapter 6.4].) In particular, the longest periodic orbit of the form rl
i

is that for i = 25. Note that, with his method, Viswanath [36] could only find these

periodic orbits up to rl
23; a reason for this may be that these periodic orbits pass closer

and closer near the origing at i increases.

There are many avenues for future work. First of all, it is possible to consider

the dependence of the Lorenz manifold W s(0) in relation to the unstable manifolds

W u(p±) and W u(Γ±) with respect to the other parameters β and σ. Indeed the

start data in figure 9 for the first 512 heteroclinic orbits can be used to follow the

respective branches in β or σ. Furthermore, it would be an interesting and challenging

project to start continuations of periodic orbits from (all of) the homoclinic explosion

points in Appendix A. In this way, the sketched bifurcation diagram [33, Fig. 5.12]

could be computed directly and expanded upon. What is more, the codimension-

one bifurcations, namely the homoclinic explosion points and the folds of heteroclinic

branches (that is, heteroclinic tangency bifurcations), as well as period-doubling and

saddle-node bifurcations of periodic orbits, can be continued in two parameters. It is also

possible to use homoclinic branch switching as implemented in [26] to find homoclinic

bifurcations that are not part of our set of admissible homoclinic explosion points. The

combination of these techniques would allow one to compute and check the conjectural

bifurcation diagrams in the (β, ̺)-plane in [33, Chapter 9], as well as the bifurcation
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diagrams in the (̺, σ)-plane in [7].

Another interesting direction of research is to find and follow suitable orbit segments

(see also [9]) that allow one to compute directly the intersection curves of relevant two-

dimensional manifolds with a Poincaré section such as Σ̺. This approach is much

more stable than single shooting methods, and it enables one to consider changes of

the manifold structure directly in the Poincaré section. This might provide useful

information on the associated foliations, which in turn are relevant for the reduction

of the Poincaré map to a one-dimensional map.

More generally, we hope that the results and methods presented here will stimulate

the analysis of the invariant manifold structure in other systems, whether they are

chaotic or not.
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Appendix A. Table of heteroclinic orbit data

lev-# Het Hom rho-limit LP

-----------------------------------------------------------

0-000 Rl rl 5.4645952E+01 1.937E+02

-----------------------------------------------------------

1-000 Rlr lr 5.4645952E+01 1.946E+02

1-001 Rll rll 4.7053443E+01 9.648E+01

-----------------------------------------------------------

2-000 Rlrr lrr 4.7053443E+01 9.650E+01

2-001 Rlrl rl 5.4645952E+01 1.946E+02

2-002 Rllr rllr 5.0590467E+01 1.395E+02

2-003 Rlll rlll 4.3198042E+01 7.064E+01

-----------------------------------------------------------

3-000 Rlrrr lrrr 4.3198042E+01 7.064E+01

3-001 Rlrrl lrrl 5.0590467E+01 1.397E+02

3-002 Rlrlr lr 5.4645952E+01 1.946E+02

3-003 Rlrll rll 4.7053443E+01 9.650E+01

3-004 Rllrr lrr 4.7053443E+01 9.648E+01

3-005 Rllrl rllrl 4.8900976E+01 1.123E+02

3-006 Rlllr rlllr 4.5128887E+01 8.272E+01

3-007 Rllll rllll 4.0788829E+01 5.898E+01

lev-# Het Hom rho-limit LP

-----------------------------------------------------------

4-000 Rlrrrr lrrrr 4.0788829E+01 5.898E+01

4-001 Rlrrrl lrrrl 4.5128887E+01 8.273E+01

4-002 Rlrrlr lrrlr 4.8900976E+01 1.123E+02

4-003 Rlrrll rll 4.7053443E+01 9.648E+01

4-004 Rlrlrr lrr 4.7053443E+01 9.650E+01

4-005 Rlrlrl rl 5.4645952E+01 1.946E+02

4-006 Rlrllr rllr 5.0590467E+01 1.397E+02

4-007 Rlrlll rlll 4.3198042E+01 7.064E+01

4-008 Rllrrr lrrr 4.3198042E+01 7.064E+01

4-009 Rllrrl lrrl 5.0590467E+01 1.395E+02

4-010 Rllrlr rllrlr 4.9703500E+01 1.249E+02

4-011 Rllrll rll 4.7053443E+01 9.650E+01

4-012 Rlllrr rlllrr 4.6005196E+01 9.095E+01

4-013 Rlllrl rlllrl 4.4240808E+01 7.656E+01

4-014 Rllllr rllllr 4.2034581E+01 6.473E+01

4-015 Rlllll rlllll 3.9115749E+01 5.235E+01
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lev-# Het Hom rho-limit LP

-----------------------------------------------------------

5-000 Rlrrrrr lrrrrr 3.9115749E+01 5.235E+01

5-001 Rlrrrrl lrrrrl 4.2034581E+01 6.473E+01

5-002 Rlrrrlr lrrrlr 4.4240808E+01 7.657E+01

5-003 Rlrrrll lrrrll 4.6005196E+01 9.097E+01

5-004 Rlrrlrr lrr 4.7053443E+01 9.650E+01

5-005 Rlrrlrl lrrlrl 4.9703500E+01 1.250E+02

5-006 Rlrrllr rllr 5.0590467E+01 1.395E+02

5-007 Rlrrlll rlll 4.3198042E+01 7.064E+01

5-008 Rlrlrrr lrrr 4.3198042E+01 7.064E+01

5-009 Rlrlrrl lrrl 5.0590467E+01 1.397E+02

5-010 Rlrlrlr lr 5.4645952E+01 1.946E+02

5-011 Rlrlrll rll 4.7053443E+01 9.650E+01

5-012 Rlrllrr lrr 4.7053443E+01 9.648E+01

5-013 Rlrllrl rllrl 4.8900976E+01 1.123E+02

5-014 Rlrlllr rlllr 4.5128887E+01 8.273E+01

5-015 Rlrllll rllll 4.0788829E+01 5.898E+01

5-016 Rllrrrr lrrrr 4.0788829E+01 5.898E+01

5-017 Rllrrrl lrrrl 4.5128887E+01 8.272E+01

5-018 Rllrrlr lrrlr 4.8900976E+01 1.123E+02

5-019 Rllrrll rll 4.7053443E+01 9.648E+01

5-020 Rllrlrr lrr 4.7053443E+01 9.650E+01

5-021 Rllrlrl rllrlrl 4.9320171E+01 1.175E+02

5-022 Rllrllr rllrllr 4.8476611E+01 1.072E+02

5-023 Rllrlll rlll 4.3198042E+01 7.064E+01

5-024 Rlllrrr lrrr 4.3198042E+01 7.064E+01

5-025 Rlllrrl rlllrrl 4.5585034E+01 8.619E+01

5-026 Rlllrlr rlllrlr 4.4668849E+01 7.953E+01

5-027 Rlllrll rlllrll 4.3786551E+01 7.358E+01

5-028 Rllllrr rllllrr 4.2573041E+01 6.758E+01

5-029 Rllllrl rllllrl 4.1472638E+01 6.200E+01

5-030 Rlllllr rlllllr 3.9996627E+01 5.573E+01

5-031 Rllllll rllllll 3.7875935E+01 4.807E+01

lev-# Het Hom rho-limit LP

-----------------------------------------------------------

6-000 Rlrrrrrr lrrrrrr 3.7875935E+01 4.807E+01

6-001 Rlrrrrrl lrrrrrl 3.9996627E+01 5.573E+01

6-002 Rlrrrrlr lrrrrlr 4.1472638E+01 6.200E+01

6-003 Rlrrrrll lrrrrll 4.2573041E+01 6.758E+01

6-004 Rlrrrlrr lrrrlrr 4.3786551E+01 7.359E+01



Global bifurcations of the Lorenz manifold 34

6-005 Rlrrrlrl lrrrlrl 4.4668849E+01 7.954E+01

6-006 Rlrrrllr lrrrllr 4.5585034E+01 8.620E+01

6-007 Rlrrrlll rlll 4.3198042E+01 7.064E+01

6-008 Rlrrlrrr lrrr 4.3198042E+01 7.063E+01

6-009 Rlrrlrrl lrrlrrl 4.8476611E+01 1.072E+02

6-010 Rlrrlrlr lrrlrlr 4.9320171E+01 1.176E+02

6-011 Rlrrlrll rll 4.7053443E+01 9.650E+01

6-012 Rlrrllrr lrr 4.7053443E+01 9.648E+01

6-013 Rlrrllrl rllrl 4.8900976E+01 1.123E+02

6-014 Rlrrlllr rlllr 4.5128887E+01 8.272E+01

6-015 Rlrrllll rllll 4.0788829E+01 5.898E+01

6-016 Rlrlrrrr lrrrr 4.0788829E+01 5.898E+01

6-017 Rlrlrrrl lrrrl 4.5128887E+01 8.273E+01

6-018 Rlrlrrlr lrrlr 4.8900976E+01 1.123E+02

6-019 Rlrlrrll rll 4.7053443E+01 9.648E+01

6-020 Rlrlrlrr lrr 4.7053443E+01 9.650E+01

6-021 Rlrlrlrl rl 5.4645952E+01 1.946E+02

6-022 Rlrlrllr rllr 5.0590467E+01 1.397E+02

6-023 Rlrlrlll rlll 4.3198042E+01 7.064E+01

6-024 Rlrllrrr lrrr 4.3198042E+01 7.064E+01

6-025 Rlrllrrl lrrl 5.0590467E+01 1.395E+02

6-026 Rlrllrrl rllrlr 4.9703500E+01 1.250E+02

6-027 Rlrllrll rll 4.7053443E+01 9.650E+01

6-028 Rlrlllrr rlllrr 4.6005196E+01 9.097E+01

6-029 Rlrlllrl rlllrl 4.4240808E+01 7.657E+01

6-030 Rlrllllr rllllr 4.2034581E+01 6.473E+01

6-031 Rlrlllll rlllll 3.9115749E+01 5.235E+01

6-032 Rllrrrrr lrrrrr 3.9115749E+01 5.235E+01

6-033 Rllrrrrl lrrrrl 4.2034581E+01 6.473E+01

6-034 Rllrrrlr lrrrlr 4.4240808E+01 7.656E+01

6-035 Rllrrrll lrrrll 4.6005196E+01 9.095E+01

6-036 Rllrrlrr lrr 4.7053443E+01 9.650E+01

6-037 Rllrrlrl lrrlrl 4.9703500E+01 1.249E+02

6-038 Rllrrllr rllr 5.0590467E+01 1.395E+02

6-039 Rllrrlll rlll 4.3198042E+01 7.064E+01

6-040 Rllrlrrr lrrr 4.3198042E+01 7.064E+01

6-041 Rllrlrrl rllrlrrl 4.9907384E+01 1.302E+02

6-042 Rllrlrlr rllrlrlr 4.9502803E+01 1.213E+02

6-043 Rllrlrll rll 4.7053443E+01 9.650E+01

6-044 Rllrllrr lrr 4.7053443E+01 9.648E+01

6-045 Rllrllrl rllrllrl 4.8288164E+01 1.039E+02

6-046 Rllrlllr rlllr 4.5128887E+01 8.273E+01
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6-047 Rllrllll rllll 4.0788829E+01 5.898E+01

6-048 Rlllrrrr lrrrr 4.0788829E+01 5.898E+01

6-049 Rlllrrrl lrrrl 4.5128887E+01 8.272E+01

6-050 Rlllrrlr rlllrrlr 4.5783995E+01 8.824E+01

6-051 Rlllrrll rlllrrll 4.5381239E+01 8.421E+01

6-052 Rlllrlrr rlllrlrr 4.4875194E+01 8.122E+01

6-053 Rlllrlrl rlllrlrl 4.4466583E+01 7.805E+01

6-054 Rlllrllr rlllrllr 4.4008209E+01 7.508E+01

6-055 Rlllrlll rlll 4.3198042E+01 7.064E+01

6-056 Rllllrrr rllllrrr 4.2840715E+01 6.950E+01

6-057 Rllllrrl rllllrrl 4.2317190E+01 6.616E+01

6-058 Rllllrlr rllllrlr 4.1745287E+01 6.332E+01

6-059 Rllllrll rllllrll 4.1178183E+01 6.062E+01

6-060 Rlllllrr rlllllrr 4.0366729E+01 5.726E+01

6-061 Rlllllrl rlllllrl 3.9604078E+01 5.418E+01

6-062 Rllllllr rllllllr 3.8536284E+01 5.030E+01

6-063 Rlllllll rlllllll 3.6915667E+01 4.507E+01

lev-# Het Hom rho-limit LP

-----------------------------------------------------------

7-000 Rlrrrrrrr lrrrrrrr 3.6915667E+01 4.507E+01

7-001 Rlrrrrrrl lrrrrrrl 3.8536284E+01 5.030E+01

7-002 Rlrrrrrlr lrrrrrlr 3.9604078E+01 5.418E+01

7-003 Rlrrrrrll lrrrrrll 4.0366729E+01 5.726E+01

7-004 Rlrrrrlrr lrrrrlrr 4.1178183E+01 6.062E+01

7-005 Rlrrrrlrl lrrrrlrl 4.1745287E+01 6.332E+01

7-006 Rlrrrrllr lrrrrllr 4.2317190E+01 6.616E+01

7-007 Rlrrrrlll lrrrrlll 4.2840715E+01 6.950E+01

7-008 Rlrrrlrrr lrrr 4.3198042E+01 7.064E+01

7-009 Rlrrrlrrl lrrrlrrl 4.4008209E+01 7.508E+01

7-010 Rlrrrlrlr lrrrlrlr 4.4466583E+01 7.805E+01

7-011 Rlrrrlrll lrrrlrll 4.4875194E+01 8.122E+01

7-012 Rlrrrllrr lrrrllrr 4.5381239E+01 8.422E+01

7-013 Rlrrrllrl lrrrllrl 4.5783995E+01 8.825E+01

7-014 Rlrrrlllr rlllr 4.5128887E+01 8.272E+01

7-015 Rlrrrllll rllll 4.0788829E+01 5.898E+01

7-016 Rlrrlrrrr lrrrr 4.0788829E+01 5.898E+01

7-017 Rlrrlrrrl lrrrl 4.5128887E+01 8.273E+01

7-018 Rlrrlrrlr lrrlrrlr 4.8288164E+01 1.039E+02

7-019 Rlrrlrrll rll 4.7053443E+01 9.648E+01

7-020 Rlrrlrlrr lrr 4.7053443E+01 9.650E+01

7-021 Rlrrlrlrl lrrlrlrl 4.9502803E+01 1.214E+02
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7-022 Rlrrlrllr lrrlrllr 4.9907384E+01 1.303E+02

7-023 Rlrrlrlll rlll 4.3198042E+01 7.064E+01

7-024 Rlrrllrrr lrrr 4.3198042E+01 7.064E+01

7-025 Rlrrllrrl lrrl 5.0590467E+01 1.395E+02

7-026 Rlrrllrlr rllrlr 4.9703500E+01 1.249E+02

7-027 Rlrrllrll rll 4.7053443E+01 9.650E+01

7-028 Rlrrlllrr rlllrr 4.6005196E+01 9.095E+01

7-029 Rlrrlllrl rlllrl 4.4240808E+01 7.656E+01

7-030 Rlrrllllr rllllr 4.2034581E+01 6.473E+01

7-031 Rlrrlllll rlllll 3.9115749E+01 5.235E+01

7-032 Rlrlrrrrr lrrrrr 3.9115749E+01 5.235E+01

7-033 Rlrlrrrrl lrrrrl 4.2034581E+01 6.473E+01

7-034 Rlrlrrrlr lrrrlr 4.4240808E+01 7.657E+01

7-035 Rlrlrrrll lrrrll 4.6005196E+01 9.097E+01

7-036 Rlrlrrlrr lrr 4.7053443E+01 9.650E+01

7-037 Rlrlrrlrl lrrlrl 4.9703500E+01 1.250E+02

7-038 Rlrlrrllr rllr 5.0590467E+01 1.395E+02

7-039 Rlrlrrlll rlll 4.3198042E+01 7.064E+01

7-040 Rlrlrlrrr lrrr 4.3198042E+01 7.064E+01

7-041 Rlrlrlrrl lrrl 5.0590467E+01 1.397E+02

7-042 Rlrlrlrlr lr 5.4645952E+01 1.946E+02

7-043 Rlrlrlrll rll 4.7053443E+01 9.650E+01

7-044 Rlrlrllrr lrr 4.7053443E+01 9.648E+01

7-045 Rlrlrllrl rllrl 4.8900976E+01 1.123E+02

7-046 Rlrlrlllr rlllr 4.5128887E+01 8.270E+01

7-047 Rlrlrllll rllll 4.0788829E+01 5.898E+01

7-048 Rlrllrrrr lrrrr 4.0788829E+01 5.898E+01

7-049 Rlrllrrrl lrrrl 4.5128887E+01 8.272E+01

7-050 Rlrllrrlr lrrlr 4.8900976E+01 1.123E+02

7-051 Rlrllrrll rll 4.7053443E+01 9.648E+01

7-052 Rlrllrrlr lrr 4.7053443E+01 9.650E+01

7-053 Rlrllrrll rllrlrl 4.9320171E+01 1.176E+02

7-054 Rlrllrllr rllrllr 4.8476611E+01 1.072E+02

7-055 Rlrllrlll rlll 4.3198042E+01 7.064E+01

7-056 Rlrlllrrr lrrr 4.3198042E+01 7.064E+01

7-057 Rlrlllrrl rlllrrl 4.5585034E+01 8.620E+01

7-058 Rlrlllrlr rlllrlr 4.4668849E+01 7.954E+01

7-059 Rlrlllrll rlllrll 4.3786551E+01 7.359E+01

7-060 Rlrllllrr rllllrr 4.2573041E+01 6.758E+01

7-061 Rlrllllrl rllllrl 4.1472638E+01 6.200E+01

7-062 Rlrlllllr rlllllr 3.9996627E+01 5.573E+01

7-063 Rlrllllll rllllll 3.7875935E+01 4.807E+01
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7-064 Rllrrrrrr lrrrrrr 3.7875935E+01 4.807E+01

7-065 Rllrrrrrl lrrrrrl 3.9996627E+01 5.573E+01

7-066 Rllrrrrlr lrrrrlr 4.1472638E+01 6.200E+01

7-067 Rllrrrrll lrrrrll 4.2573041E+01 6.758E+01

7-068 Rllrrrlrr lrrrlrr 4.3786551E+01 7.358E+01

7-069 Rllrrrlrl lrrrlrl 4.4668849E+01 7.953E+01

7-070 Rllrrrllr lrrrllr 4.5585034E+01 8.619E+01

7-071 Rllrrrlll rlll 4.3198042E+01 7.064E+01

7-072 Rllrrlrrr lrrr 4.3198042E+01 7.064E+01

7-073 Rllrrlrrl lrrlrrl 4.8476611E+01 1.072E+02

7-074 Rllrrlrlr lrrlrlr 4.9320171E+01 1.175E+02

7-075 Rllrrlrll rll 4.7053443E+01 9.650E+01

7-076 Rllrrllrr lrr 4.7053443E+01 9.648E+01

7-077 Rllrrllrl rllrl 4.8900976E+01 1.123E+02

7-078 Rllrrlllr rlllr 4.5128887E+01 8.272E+01

7-079 Rllrrllll rllll 4.0788829E+01 5.898E+01

7-080 Rllrlrrrr lrrrr 4.0788829E+01 5.898E+01

7-081 Rllrlrrlr lrrrl 4.5128887E+01 8.273E+01

7-082 Rllrlrrlr lrrlr 4.8900976E+01 1.123E+02

7-083 Rllrlrrll rll 4.7053443E+01 9.648E+01

7-084 Rllrlrlrr lrr 4.7053443E+01 9.649E+01

7-085 Rllrlrlrl rllrlrlrl 4.9415660E+01 1.192E+02

7-086 Rllrlrllr rllrlrllr 4.9223448E+01 1.157E+02

7-087 Rllrlrlll rlll 4.3198042E+01 7.064E+01

7-088 Rllrllrrr lrrr 4.3198042E+01 7.064E+01

7-089 Rllrllrrl rllrllrrl 4.8575486E+01 1.088E+02

7-090 Rllrllrlr rllrllrlr 4.8378349E+01 1.057E+02

7-091 Rllrllrll rll 4.7053443E+01 9.650E+01

7-092 Rllrlllrr rlllrr 4.6005196E+01 9.097E+01

7-093 Rllrlllrl rlllrl 4.4240808E+01 7.657E+01

7-094 Rllrllllr rllllr 4.2034581E+01 6.473E+01

7-095 Rllrlllll rlllll 3.9115749E+01 5.235E+01

7-096 Rlllrrrrr lrrrrr 3.9115749E+01 5.235E+01

7-097 Rlllrrrrl lrrrrl 4.2034581E+01 6.473E+01

7-098 Rlllrrrlr lrrrlr 4.4240808E+01 7.656E+01

7-099 Rlllrrrll lrrrll 4.6005196E+01 9.095E+01

7-100 Rlllrrlrr rlllrrlrr 4.5882296E+01 8.969E+01

7-101 Rlllrrlrl rlllrrlrl 4.5689098E+01 8.716E+01

7-102 Rlllrrllr rlllrrllr 4.5479793E+01 8.524E+01

7-103 Rlllrrlll rlll 4.3198042E+01 7.064E+01

7-104 Rlllrlrrr lrrr 4.3198042E+01 7.064E+01

7-105 Rlllrlrrl rlllrlrrl 4.4775570E+01 8.033E+01
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7-106 Rlllrlrlr rlllrlrlr 4.4563090E+01 7.877E+01

7-107 Rlllrlrll rlllrlrll 4.4366435E+01 7.728E+01

7-108 Rlllrllrr rlllrllrr 4.4113118E+01 7.584E+01

7-109 Rlllrllrl rlllrllrl 4.3904242E+01 7.435E+01

7-110 Rlllrlllr rlllrlllr 4.3663185E+01 7.273E+01

7-111 Rlllrllll rllll 4.0788829E+01 5.898E+01

7-112 Rllllrrrr lrrrr 4.0788829E+01 5.898E+01

7-113 Rllllrrrl rllllrrrl 4.2710418E+01 6.840E+01

7-114 Rllllrrlr rllllrrlr 4.2438623E+01 6.684E+01

7-115 Rllllrrll rllllrrll 4.2191696E+01 6.548E+01

7-116 Rllllrlrr rllllrlrr 4.1875364E+01 6.399E+01

7-117 Rllllrlrl rllllrlrl 4.1617139E+01 6.268E+01

7-118 Rllllrllr rllllrllr 4.1322385E+01 6.130E+01

7-119 Rllllrlll rllllrlll 4.1018158E+01 5.986E+01

7-120 Rlllllrrr rlllllrrr 4.0548574E+01 5.806E+01

7-121 Rlllllrrl rlllllrrl 4.0191753E+01 5.652E+01

7-122 Rlllllrlr rlllllrlr 3.9795226E+01 5.493E+01

7-123 Rlllllrll rlllllrll 3.9395336E+01 5.337E+01

7-124 Rllllllrr rllllllrr 3.8808602E+01 5.126E+01

7-125 Rllllllrl rllllllrl 3.8244501E+01 4.929E+01

7-126 Rlllllllr rlllllllr 3.7431219E+01 4.666E+01

7-127 Rllllllll rllllllll 3.6147675E+01 4.285E+01

lev-# Het Hom rho-limit LP

-----------------------------------------------------------

8-000 Rlrrrrrrrr lrrrrrrrr 3.6147675E+01 4.285E+01

8-001 Rlrrrrrrrl lrrrrrrrl 3.7431219E+01 4.666E+01

8-002 Rlrrrrrrlr lrrrrrrlr 3.8244501E+01 4.929E+01

8-003 Rlrrrrrrll lrrrrrrll 3.8808602E+01 5.126E+01

8-004 Rlrrrrrlrr lrrrrrlrr 3.9395336E+01 5.337E+01

8-005 Rlrrrrrlrl lrrrrrlrl 3.9795226E+01 5.493E+01

8-006 Rlrrrrrllr lrrrrrllr 4.0191753E+01 5.652E+01

8-007 Rlrrrrrlll lrrrrrlll 4.0548574E+01 5.806E+01

8-008 Rlrrrrlrrr lrrrrlrrr 4.1018158E+01 5.986E+01

8-009 Rlrrrrlrrl lrrrrlrrl 4.1322385E+01 6.130E+01

8-010 Rlrrrrlrlr lrrrrlrlr 4.1617139E+01 6.269E+01

8-011 Rlrrrrlrll lrrrrlrll 4.1875364E+01 6.399E+01

8-012 Rlrrrrllrr lrrrrllrr 4.2191696E+01 6.548E+01

8-013 Rlrrrrllrl lrrrrllrl 4.2438623E+01 6.684E+01

8-014 Rlrrrrlllr lrrrrlllr 4.2710418E+01 6.840E+01

8-015 Rlrrrrllll rllll 4.0788829E+01 5.898E+01

8-016 Rlrrrlrrrr lrrrr 4.0788829E+01 5.898E+01
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8-017 Rlrrrlrrrl lrrrlrrrl 4.3663185E+01 7.273E+01

8-018 Rlrrrlrrlr lrrrlrrlr 4.3904242E+01 7.436E+01

8-019 Rlrrrlrrll lrrrlrrll 4.4113118E+01 7.584E+01

8-020 Rlrrrlrlrr lrrrlrlrr 4.4366435E+01 7.728E+01

8-021 Rlrrrlrlrl lrrrlrlrl 4.4563090E+01 7.878E+01

8-022 Rlrrrlrllr lrrrlrllr 4.4775570E+01 8.033E+01

8-023 Rlrrrlrlll rlll 4.3198042E+01 7.064E+01

8-024 Rlrrrllrrr lrrr 4.3198042E+01 7.064E+01

8-025 Rlrrrllrrl lrrrllrrl 4.5479793E+01 8.525E+01

8-026 Rlrrrllrlr lrrrllrlr 4.5689098E+01 8.717E+01

8-027 Rlrrrllrll lrrrllrll 4.5882296E+01 8.970E+01

8-028 Rlrrrlllrr rlllrr 4.6005196E+01 9.095E+01

8-029 Rlrrrlllrl rlllrl 4.4240808E+01 7.656E+01

8-030 Rlrrrllllr rllllr 4.2034581E+01 6.473E+01

8-031 Rlrrrlllll rlllll 3.9115749E+01 5.235E+01

8-032 Rlrrlrrrrr lrrrrr 3.9115749E+01 5.235E+01

8-033 Rlrrlrrrrl lrrrrl 4.2034581E+01 6.473E+01

8-034 Rlrrlrrrlr lrrrlr 4.4240808E+01 7.657E+01

8-035 Rlrrlrrrll lrrrll 4.6005196E+01 9.097E+01

8-036 Rlrrlrrlrr lrr 4.7053443E+01 9.650E+01

8-037 Rlrrlrrlrl lrrlrrlrl 4.8378349E+01 1.057E+02

8-038 Rlrrlrrllr lrrlrrllr 4.8575486E+01 1.088E+02

8-039 Rlrrlrrlll rlll 4.3198042E+01 7.064E+01

8-040 Rlrrlrlrrr lrrr 4.3198042E+01 7.064E+01

8-041 Rlrrlrlrrl lrrlrlrrl 4.9223448E+01 1.158E+02

8-042 Rlrrlrlrlr lrrlrlrlr 4.9415660E+01 1.192E+02

8-043 Rlrrlrlrll rll 4.7053443E+01 9.650E+01

8-044 Rlrrlrllrr lrr 4.7053443E+01 9.648E+01

8-045 Rlrrlrllrl rllrl 4.8900976E+01 1.123E+02

8-046 Rlrrlrlllr rlllr 4.5128887E+01 8.273E+01

8-047 Rlrrlrllll rllll 4.0788829E+01 5.898E+01

8-048 Rlrrllrrrr lrrrr 4.0788829E+01 5.898E+01

8-049 Rlrrllrrrl lrrrl 4.5128887E+01 8.272E+01

8-050 Rlrrllrrlr lrrlr 4.8900976E+01 1.123E+02

8-051 Rlrrllrrll rll 4.7053443E+01 9.648E+01

8-052 Rlrrllrlrr lrr 4.7053443E+01 9.650E+01

8-053 Rlrrllrlrl rllrlrl 4.9320171E+01 1.175E+02

8-054 Rlrrllrllr rllrllr 4.8476611E+01 1.072E+02

8-055 Rlrrllrlll rlll 4.3198042E+01 7.064E+01

8-056 Rlrrlllrrr lrrr 4.3198042E+01 7.064E+01

8-057 Rlrrlllrrl rlllrrl 4.5585034E+01 8.619E+01

8-058 Rlrrlllrlr rlllrlr 4.4668849E+01 7.953E+01
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8-059 Rlrrlllrll rlllrll 4.3786551E+01 7.358E+01

8-060 Rlrrllllrr rllllrr 4.2573041E+01 6.758E+01

8-061 Rlrrllllrl rllllrl 4.1472638E+01 6.200E+01

8-062 Rlrrlllllr rlllllr 3.9996627E+01 5.573E+01

8-063 Rlrrllllll rllllll 3.7875935E+01 4.807E+01

8-064 Rlrlrrrrrr lrrrrrr 3.7875935E+01 4.807E+01

8-065 Rlrlrrrrrl lrrrrrl 3.9996627E+01 5.573E+01

8-066 Rlrlrrrrlr lrrrrlr 4.1472638E+01 6.200E+01

8-067 Rlrlrrrrll lrrrrll 4.2573041E+01 6.758E+01

8-068 Rlrlrrrlrr lrrrlrr 4.3786551E+01 7.359E+01

8-069 Rlrlrrrlrl lrrrlrl 4.4668849E+01 7.954E+01

8-070 Rlrlrrrllr lrrrllr 4.5585034E+01 8.620E+01

8-071 Rlrlrrrlll rlll 4.3198042E+01 7.064E+01

8-072 Rlrlrrlrrr lrrr 4.3198042E+01 7.064E+01

8-073 Rlrlrrlrrl lrrlrrl 4.8476611E+01 1.072E+02

8-074 Rlrlrrlrlr lrrlrlr 4.9320171E+01 1.176E+02

8-075 Rlrlrrlrll rll 4.7053443E+01 9.650E+01

8-076 Rlrlrrllrr lrr 4.7053443E+01 9.648E+01

8-077 Rlrlrrllrl rllrl 4.8900976E+01 1.123E+02

8-078 Rlrlrrlllr rlllr 4.5128887E+01 8.272E+01

8-079 Rlrlrrllll rllll 4.0788829E+01 5.898E+01

8-080 Rlrlrlrrrr lrrrr 4.0788829E+01 5.898E+01

8-081 Rlrlrlrrrl lrrrl 4.5128887E+01 8.273E+01

8-082 Rlrlrlrrlr lrrlr 4.8900976E+01 1.123E+02

8-083 Rlrlrlrrll rll 4.7053443E+01 9.648E+01

8-084 Rlrlrlrlrr lrr 4.7053443E+01 9.650E+01

8-085 Rlrlrlrllr rl 5.4645952E+01 1.946E+02

8-086 Rlrlrlrllr rllr 5.0590467E+01 1.397E+02

8-087 Rlrlrlrlll rlll 4.3198042E+01 7.064E+01

8-088 Rlrlrllrrr lrrr 4.3198042E+01 7.064E+01

8-089 Rlrlrllrrl lrrl 5.0590467E+01 1.395E+02

8-090 Rlrlrllrlr rllrlr 4.9703500E+01 1.250E+02

8-091 Rlrlrllrll rll 4.7053443E+01 9.650E+01

8-092 Rlrlrlllrr rlllrr 4.6005196E+01 9.097E+01

8-093 Rlrlrlllrl rlllrl 4.4240808E+01 7.657E+01

8-094 Rlrlrllllr rllllr 4.2034581E+01 6.473E+01

8-095 Rlrlrlllll rlllll 3.9115749E+01 5.235E+01

8-096 Rlrllrrrrr lrrrrr 3.9115749E+01 5.235E+01

8-097 Rlrllrrrrl lrrrrl 4.2034581E+01 6.473E+01

8-098 Rlrllrrrlr lrrrlr 4.4240808E+01 7.656E+01

8-099 Rlrllrrrll lrrrll 4.6005196E+01 9.095E+01

8-100 Rlrllrrlrr lrr 4.7053443E+01 9.650E+01
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8-101 Rlrllrrlrl lrrlrl 4.9703500E+01 1.249E+02

8-102 Rlrllrrllr rllr 5.0590467E+01 1.395E+02

8-103 Rlrllrrlll rlll 4.3198042E+01 7.064E+01

8-104 Rlrllrrlrr lrrr 4.3198042E+01 7.064E+01

8-105 Rlrllrrlr l rllrlrrl 4.9907384E+01 1.303E+02

8-106 Rlrllrrllr rllrlrlr 4.9502803E+01 1.214E+02

8-107 Rlrllrrll l rll 4.7053443E+01 9.650E+01

8-108 Rlrllrllrr lrr 4.7053443E+01 9.648E+01

8-109 Rlrllrllrl rllrllrl 4.8288164E+01 1.039E+02

8-110 Rlrllrlllr rlllr 4.5128887E+01 8.273E+01

8-111 Rlrllrllll rllll 4.0788829E+01 5.898E+01

8-112 Rlrlllrrrr lrrrr 4.0788829E+01 5.898E+01

8-113 Rlrlllrrrl lrrrl 4.5128887E+01 8.272E+01

8-114 Rlrlllrrlr rlllrrlr 4.5783995E+01 8.825E+01

8-115 Rlrlllrrll rlllrrll 4.5381239E+01 8.422E+01

8-116 Rlrlllrlrr rlllrlrr 4.4875194E+01 8.122E+01

8-117 Rlrlllrlrl rlllrlrl 4.4466583E+01 7.805E+01

8-118 Rlrlllrllr rlllrllr 4.4008209E+01 7.508E+01

8-119 Rlrlllrlll rlll 4.3198042E+01 7.064E+01

8-120 Rlrllllrrr rllllrrr 4.2840715E+01 6.950E+01

8-121 Rlrllllrrl rllllrrl 4.2317190E+01 6.616E+01

8-122 Rlrllllrlr rllllrlr 4.1745287E+01 6.332E+01

8-123 Rlrllllrll rllllrll 4.1178183E+01 6.062E+01

8-124 Rlrlllllrr rlllllrr 4.0366729E+01 5.726E+01

8-125 Rlrlllllrl rlllllrl 3.9604078E+01 5.418E+01

8-126 Rlrllllllr rllllllr 3.8536284E+01 5.030E+01

8-127 Rlrlllllll rlllllll 3.6915667E+01 4.507E+01

8-128 Rllrrrrrrr lrrrrrrr 3.6915667E+01 4.507E+01

8-129 Rllrrrrrrl lrrrrrrl 3.8536284E+01 5.030E+01

8-130 Rllrrrrrlr lrrrrrlr 3.9604078E+01 5.418E+01

8-131 Rllrrrrrll lrrrrrll 4.0366729E+01 5.726E+01

8-132 Rllrrrrlrr lrrrrlrr 4.1178183E+01 6.062E+01

8-133 Rllrrrrlrl lrrrrlrl 4.1745287E+01 6.332E+01

8-134 Rllrrrrllr lrrrrllr 4.2317190E+01 6.616E+01

8-135 Rllrrrrlll lrrrrlll 4.2840715E+01 6.950E+01

8-136 Rllrrrlrrr lrrr 4.3198042E+01 7.064E+01

8-137 Rllrrrlrrl lrrrlrrl 4.4008209E+01 7.508E+01

8-138 Rllrrrlrlr lrrrlrlr 4.4466583E+01 7.805E+01

8-139 Rllrrrlrll lrrrlrll 4.4875194E+01 8.122E+01

8-140 Rllrrrllrr lrrrllrr 4.5381239E+01 8.421E+01

8-141 Rllrrrllrl lrrrllrl 4.5783995E+01 8.824E+01

8-142 Rllrrrlllr rlllr 4.5128887E+01 8.272E+01
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8-143 Rllrrrllll rllll 4.0788829E+01 5.898E+01

8-144 Rllrrlrrrr lrrrr 4.0788829E+01 5.898E+01

8-145 Rllrrlrrrl lrrrl 4.5128887E+01 8.273E+01

8-146 Rllrrlrrlr lrrlrrlr 4.8288164E+01 1.039E+02

8-147 Rllrrlrrll rll 4.7053443E+01 9.648E+01

8-148 Rllrrlrlrr lrr 4.7053443E+01 9.650E+01

8-149 Rllrrlrlrl lrrlrlrl 4.9502803E+01 1.213E+02

8-150 Rllrrlrllr lrrlrllr 4.9907384E+01 1.302E+02

8-151 Rllrrlrlll rlll 4.3198042E+01 7.064E+01

8-152 Rllrrllrrr lrrr 4.3198042E+01 7.064E+01

8-153 Rllrrllrrl lrrl 5.0590467E+01 1.395E+02

8-154 Rllrrllrlr rllrlr 4.9703500E+01 1.249E+02

8-155 Rllrrllrll rll 4.7053443E+01 9.650E+01

8-156 Rllrrlllrr rlllrr 4.6005196E+01 9.095E+01

8-157 Rllrrlllrl rlllrl 4.4240808E+01 7.656E+01

8-158 Rllrrllllr rllllr 4.2034581E+01 6.473E+01

8-159 Rllrrlllll rlllll 3.9115749E+01 5.235E+01

8-160 Rllrlrrrrr lrrrrr 3.9115749E+01 5.235E+01

8-161 Rllrlrrrrl lrrrrl 4.2034581E+01 6.473E+01

8-162 Rllrlrrlrr lrrrlr 4.4240808E+01 7.657E+01

8-163 Rllrlrrlrl lrrrll 4.6005196E+01 9.097E+01

8-164 Rllrlrrlrr lrr 4.7053443E+01 9.650E+01

8-165 Rllrlrrlrl lrrlrl 4.9703500E+01 1.250E+02

8-166 Rllrlrrllr rllrlrrllr 4.9859773E+01 1.276E+02

8-167 Rllrlrrlll rlll 4.3198042E+01 7.064E+01

8-168 Rllrlrlrrr lrrr 4.3198042E+01 7.064E+01

8-169 Rllrlrlrrl rllrlrlrrl 4.9549049E+01 1.225E+02

8-170 Rllrlrlrlr rllrlrlrlr 4.9457208E+01 1.203E+02

8-171 Rllrlrlrll rll 4.7053443E+01 9.650E+01

8-172 Rllrlrllrr lrr 4.7053443E+01 9.648E+01

8-173 Rllrlrllrl rllrl 4.8900976E+01 1.123E+02

8-174 Rllrlrlllr rlllr 4.5128887E+01 8.273E+01

8-175 Rllrlrllll rllll 4.0788829E+01 5.898E+01

8-176 Rllrllrrrr lrrrr 4.0788829E+01 5.898E+01

8-177 Rllrllrrrl lrrrl 4.5128887E+01 8.272E+01

8-178 Rllrllrrlr rllrllrrlr 4.8619199E+01 1.102E+02

8-179 Rllrllrrll rll 4.7053443E+01 9.648E+01

8-180 Rllrllrlrr lrr 4.7053443E+01 9.650E+01

8-181 Rllrllrlrl rllrllrlrl 4.8335452E+01 1.048E+02

8-182 Rllrllrllr rllrllrllr 4.8240007E+01 1.029E+02

8-183 Rllrllrlll rlll 4.3198042E+01 7.064E+01

8-184 Rllrlllrrr lrrr 4.3198042E+01 7.064E+01
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8-185 Rllrlllrrl rlllrrl 4.5585034E+01 8.620E+01

8-186 Rllrlllrlr rlllrlr 4.4668849E+01 7.954E+01

8-187 Rllrlllrll rlllrll 4.3786551E+01 7.359E+01

8-188 Rllrllllrr rllllrr 4.2573041E+01 6.758E+01

8-189 Rllrllllrl rllllrl 4.1472638E+01 6.200E+01

8-190 Rllrlllllr rlllllr 3.9996627E+01 5.573E+01

8-191 Rllrllllll rllllll 3.7875935E+01 4.807E+01

8-192 Rlllrrrrrr lrrrrrr 3.7875935E+01 4.807E+01

8-193 Rlllrrrrrl lrrrrrl 3.9996627E+01 5.573E+01

8-194 Rlllrrrrlr lrrrrlr 4.1472638E+01 6.200E+01

8-195 Rlllrrrrll lrrrrll 4.2573041E+01 6.758E+01

8-196 Rlllrrrlrr lrrrlrr 4.3786551E+01 7.358E+01

8-197 Rlllrrrlrl lrrrlrl 4.4668849E+01 7.953E+01

8-198 Rlllrrrllr lrrrllr 4.5585034E+01 8.619E+01

8-199 Rlllrrrlll rlll 4.3198042E+01 7.064E+01

8-200 Rlllrrlrrr lrrr 4.3198042E+01 7.064E+01

8-201 Rlllrrlrrl rlllrrlrrl 4.5834624E+01 8.885E+01

8-202 Rlllrrlrlr rlllrrlrlr 4.5734217E+01 8.769E+01

8-203 Rlllrrlrll rlllrrlrll 4.5642662E+01 8.660E+01

8-204 Rlllrrllrr rlllrrllrr 4.5527060E+01 8.577E+01

8-205 Rlllrrllrl rlllrrllrl 4.5433311E+01 8.474E+01

8-206 Rlllrrlllr rlllr 4.5128887E+01 8.272E+01

8-207 Rlllrrllll rllll 4.0788829E+01 5.898E+01

8-208 Rlllrlrrrr lrrrr 4.0788829E+01 5.898E+01

8-209 Rlllrlrrrl rlllrlrrrl 4.4929693E+01 8.192E+01

8-210 Rlllrlrrlr rlllrlrrlr 4.4822577E+01 8.075E+01

8-211 Rlllrlrrll rlllrlrrll 4.4727701E+01 7.990E+01

8-212 Rlllrlrlrr rlllrlrlrr 4.4610270E+01 7.917E+01

8-213 Rlllrlrlrl rlllrlrlrl 4.4517247E+01 7.841E+01

8-214 Rlllrlrllr rlllrlrllr 4.4414996E+01 7.767E+01

8-215 Rlllrlrlll rlll 4.3198042E+01 7.064E+01

8-216 Rlllrllrrr lrrr 4.3198042E+01 7.064E+01

8-217 Rlllrllrrl rlllrllrrl 4.4062616E+01 7.545E+01

8-218 Rlllrllrlr rlllrllrlr 4.3953988E+01 7.471E+01

8-219 Rlllrllrll rlllrllrll 4.3852278E+01 7.398E+01

8-220 Rlllrlllrr rlllrlllrr 4.3719110E+01 7.317E+01

8-221 Rlllrlllrl rlllrlllrl 4.3607222E+01 7.225E+01

8-222 Rlllrllllr rllllr 4.2034581E+01 6.473E+01

8-223 Rlllrlllll rlllll 3.9115749E+01 5.235E+01

8-224 Rllllrrrrr lrrrrr 3.9115749E+01 5.235E+01

8-225 Rllllrrrrl lrrrrl 4.2034581E+01 6.473E+01

8-226 Rllllrrrlr rllllrrrlr 4.2771509E+01 6.884E+01
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8-227 Rllllrrrll rllllrrrll 4.2648619E+01 6.799E+01

8-228 Rllllrrlrr rllllrrlrr 4.2498340E+01 6.719E+01

8-229 Rllllrrlrl rllllrrlrl 4.2380900E+01 6.651E+01

8-230 Rllllrrllr rllllrrllr 4.2252449E+01 6.582E+01

8-231 Rllllrrlll rllllrrlll 4.2125933E+01 6.509E+01

8-232 Rllllrlrrr rllllrlrrr 4.1942515E+01 6.437E+01

8-233 Rllllrlrrl rllllrlrrl 4.1812713E+01 6.366E+01

8-234 Rllllrlrlr rllllrlrlr 4.1678309E+01 6.299E+01

8-235 Rllllrlrll rllllrlrll 4.1553298E+01 6.237E+01

8-236 Rllllrllrr rllllrllrr 4.1390232E+01 6.163E+01

8-237 Rllllrllrl rllllrllrl 4.1254997E+01 6.098E+01

8-238 Rllllrlllr rllllrlllr 4.1097213E+01 6.024E+01

8-239 Rllllrllll rllll 4.0788829E+01 5.898E+01

8-240 Rlllllrrrr rlllllrrrr 4.0645580E+01 5.864E+01

8-241 Rlllllrrrl rlllllrrrl 4.0460316E+01 5.766E+01

8-242 Rlllllrrlr rlllllrrlr 4.0274867E+01 5.687E+01

8-243 Rlllllrrll rlllllrrll 4.0105387E+01 5.616E+01

8-244 Rlllllrlrr rlllllrlrr 3.9885911E+01 5.530E+01

8-245 Rlllllrlrl rlllllrlrl 3.9705695E+01 5.457E+01

8-246 Rlllllrllr rlllllrllr 3.9497790E+01 5.377E+01

8-247 Rlllllrlll rlllllrlll 3.9280785E+01 5.294E+01

8-248 Rllllllrrr rllllllrrr 3.8941527E+01 5.174E+01

8-249 Rllllllrrl rllllllrrl 3.8680279E+01 5.080E+01

8-250 Rllllllrlr rllllllrlr 3.8386885E+01 4.978E+01

8-251 Rllllllrll rllllllrll 3.8087790E+01 4.876E+01

8-252 Rlllllllrr rlllllllrr 3.7641023E+01 4.732E+01

8-253 Rlllllllrl rlllllllrl 3.7204862E+01 4.595E+01

8-254 Rllllllllr rllllllllr 3.6562390E+01 4.404E+01

8-255 Rlllllllll rlllllllll 3.5518339E+01 4.114E+01


