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ABSTRACT 

The Anthropocene as a potential new unit of the International Chronostratigraphic Chart 

(which serves as the basis of the Geological Time Scale) is assessed in terms of the 

stratigraphic markers and approximate boundary levels available to define the base of the 

unit. The task of assessing and selecting potential Global Boundary Stratotype Section and 

Point (GSSP) candidate sections, a required part of the process in seeking formalisation of 

the term, is now being actively pursued. Here, we review the suitability of different stratified 

palaeoenvironmental settings and facies as potential hosts for a candidate GSSP and 

auxiliary sections, and the relevant stratigraphical markers for correlation. Published 

examples are evaluated for their strengths and weaknesses in this respect. A marked upturn 

in abundance of radioisotopes of 239Pu or 14C, approximately in 1952 and 1954 CE 

respectively, broadly coincident with a downturn in δ13C values, is applicable across most 

environments. Principal palaeoenvironments examined include: settings associated with 

accumulations of anthropogenic material, marine anoxic basins, coral reefs, estuaries and 

deltas, lakes at various latitudes, peat bogs, snow/ice layers, speleothems and trees. 

Together, many of these geographically diverse palaeoenvironments offer annual/subannual 

laminae that can be counted and independently dated radiometrically (e.g. by 210Pb). 

Examples of possible sections offer the possibility of correlation with annual/seasonal 

resolution. From among such examples, a small number of potentially representative sites 

require the acquisition of more systematic and comprehensive datasets, with correlation 

established between sections, to allow selection of a candidate GSSP and auxiliary 

stratotypes. The assessments in this paper will help find the optimal locations for these 

sections.  
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Figures 

Figure 1. [B&W] Primary and some secondary markers for the 65 GSSPs that have been ratified 

currently by IUGS. The four in the Cenozoic that deal with stable isotope events (base Eocene, 

Quaternary, Calabrian and Holocene) and the iridium anomaly (base Paleocene) provide models for 

choosing markers for the base of the Anthropocene. 

Figure 2. [B&W] Cores through the Gorrondatxe-Tunelboca beachrock, Spain. A natural high-energy 

open beach sand deposit, pre-dating the discharges of iron slag, is overlain by cemented sandy and 

coarse beach deposits that are commonly conglomeratic with abundant slag clasts and incorporating 

littoral foraminifera. Three distinct foraminiferal assemblages are recognised (ranges for assemblages 

1. 2 and 3 marked by arrows) Modified from Martínez-García et al. (2013).  

Figure 3. [Colour] Location of marine dead zones (from NASA Earth Observatory 

https://earthobservatory.nasa.gov/IOTD/view.php?id=44677; Aquatic Dead Zones generated 17th 

July 2010). Red circles show the location and size of the dead zones. Black dots show where dead 

zones of unknown size have been observed. The distribution commonly occurs adjacent to populous 

land areas (shown by the brown scale), but not to upwelling zones (shown by concentration of 

particulate organic carbon, in blue scale).  

Figure 4. [B&W] Key signals in marine cores from the Santa Barbara Basin, with a) Pu signal (Koide et 

al. 1975), b) variations in sedimentation rates (Krishnaswami et al. 1973), c) selected heavy metals 

(Schmidt and Reimers 1991) and d) planktonic foraminifera (Field et al. 2006).  

Figure 5. [Colour] a) Distribution of shallow-water framework-building coral reefs (from NOAA: 

Where Are Reef Building Corals Found 

http://oceanservice.noaa.gov/education/tutorial_corals/coral05_distribution.html ) and cold-water 

corals (from Freiwald et al. 2017) and b) the inventory of anthropogenic CO2 (μmol CO2/kg) in surface 

waters (from Swart et al. 2010).  
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Figure 6. [Colour] a) Changes in δ13C with respect to age for corals from the Atlantic and the 

Pacific/Indian oceans compared to published data from sclerosponges, averaged after removing the 

mean δ13C value of the coral skeleton from 1900 CE to the present day and shown as a five-year 

running mean (Swart et al. 2010). This is compared with δ13C data from Law Dome ice core (Rubino 

et al. 2013) which show a ~1955 CE inflection; b) 240+239Pu concentrations in annual growth bands 

from Porites lobata in Guam (Lindahl et al. 2011) and Orbicella (Montastrea) annularis in the U.S. 

Virgin Islands (Benninger and Dodge 1986); dpm kg-1 = decays per minute per kilogram; mBq kg-1 = 

millibecquerel per kilogram. 

Figure 7. [Colour] a) Plot of Δ14C vs age for 7 different colonies of the deep-sea gorgonian coral 

Primnoa resedaeformis with spline fit through the data (Sherwood et al. 2005a), and for the bivalve 

Arctica islandica (Weidman and Jones 1993); b) δ15N-AA depletion in deep-sea gorgonian corals in 

the NW Atlantic (Sherwood et al. 2011) © (2011) National Academy of Sciences; c) Pb concentration; 

and d) 206Pb/207Pb in Bermuda corals (Kelly et al. 2009). 

Figure 8. [Colour] Distribution of deltas and estuaries (from Tessler et al. 2015), major mud deposits 

(from Hanebuth et al. 2015) and areas where neobiota amenable to fossilization have recognizably 

altered coastal ecosystems (from: Major pathways and origins of invasive species infestations in the 

marine environment In UNEP/GRID-Arendal Maps and Graphics Library http://www.international-

marine.com/invasivespecies/PublishingImages/invasive_vectors_001.png). 

Figure 9. [B&W] Example of data from a single core from the Clyde Estuary showing a) Pb 

concentrations and 207/206Pb isotope ratios, and b) PAH, TPH and PCB organic chemical signatures 

(Vane et al. 2011). 

Figure 10. [Colour] Metal concentrations (Cu, Ni, Pb, Zn) versus foraminiferal density in the Urola 

estuary (northern Spain).  FA1–FA3 represent three distinct foraminiferal assemblages referred to in 

the text. Modified from Goffard (2016). 

Figure 11. [B&W] Chronology of selected invasive mollusc species into San Francisco Bay (for dates of 

invasion see: Carlton et al. 1990; Cohen 2004, 2011; Committee on Non-native Oysters in the 

Chesapeake Bay, Fofonoff et al. 2017, National Research Council 2004), and terrestrial invasive 
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species in the Maha’ulepu sinkhole succession of Kauai, Hawaii (Burney et al. 2001). In both 

successions, cultural human changes are indicated by the lefthand column, and neobiota in the 

righthand column. Although the two successions developed nearly 4000 km apart, and in tropical and 

warm temperate zones respectively, by the mid-19th century some taxa present on the California 

coast (e.g. the bivalve Crassostrea virginica, see DeFelice et al. 2001) were also present in Hawaii, 

suggesting the possibility of correlation between remote successions. 

Figure 12. [Colour] Location of the 365 sites recording lake hypoxia (Jenny et al. 2016). Recent 

hypoxia records onset of varves after 1700 CE, whereas naturally hypoxic lakes were taken to be 

those in which laminations persisted for at least 300 years. 

Figure 13. [B&W] Radiogenic signature from Lake Victoria, Australia (Hancock et al. 2011). Profiles of 

137Cs (closed squares), 239+240Pu (open circles) and 238Pu/239+240Pu (triangles). 

Figure 14. [Colour] Sediment δ15N profiles from Northern Hemisphere lakes (from Holtgrieve et al. 

2011). Lake ecotypes include: temperate/boreal (green circles), alpine (blue circles), and arctic (red 

circles), and the Greenland Summit ice core is indicated with a yellow circle. The solid lines are the 

median posterior fits to the observed data using the most parsimonious model, and the dotted lines 

are the 2.5 and 97.5% credible limits. 

Figure 15. [B&W] Replacement of Holocene diatom assemblages by Asterionella formosa and/or 

Fragilaria crotonensis mainly in lake cores from US high-altitude sites, since ~1950 CE (Saros et al. 

2005). Location of lakes shown on Figure 14. 

Figure 16. [Colour] Stratigraphic signals of the last millennium in Crawford Lake, Canada. The 

horizontal red line near the top is the ~1950 CE level, marked by both lithological and 

biostratigraphic changes in available data. From Zalasiewicz et al. (2017a), modified after Ekdahl et 

al. (2004). DAR is diatom accumulation rate. 

Figure 17. [Colour] Contamination record in Lochnagar sediments (Scotland) demonstrating 

appearances as post-mid-20th century markers: (a) Spheroidal carbonaceous particles (SCPs) (from 

Yang et al. 2002a); (b) Hg and Pb (from Yang et al. 2002a); (c) δ15N (from Curtis and Simpson 2011); 

(d) the chlorinated pesticides DDT and toxaphene from core collected in 1997 CE related to emission 
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data (from Muir and Rose 2007); (e) chlorobenzenes (from Muir and Rose 2007); (f) total PCBs 

related to global emissions (from Muir and Rose 2007); and (g) PDBEs related to UK emissions (from 

Muir and Rose 2007). 

Figure 18. [B&W] Physical, chemical and biological trends from Lilla Öresjön (SW Sweden), a high-

sulphate deposition area (from Renberg and Battarbee 1990). 

Figure 19. [Colour] Historical variations of concentrations and mass accumulation rates (MARs) of 

black carbon (BC), char, and soot, parent-PAHs, oxygenated PAHs (OPAHs), and azaarenes (AZAs) in 

the Huguangyan Maar Lake (from Han et al. 2016).  

Figure 20. [Colour] Global map of peatland regions with basal peat ages (black <8 ka, red 8‐12 ka, and 

blue >12 ka) (from Yu et al. 2010). 

Figure 21. [B&W] Core from Etang de la Gruère, Switzerland collected in 1991 CE: A) Pb Enrichment 

Factor (EF) calculated as the ratio of Pb/Sc in the peats, normalized to the background value (from 

Shotyk et al. 1998); B) Pb isotopic values (from Shotyk et al. 1998); C) ΣPCBs (from Berset et al. 2001); 

D) ΣPAHs (from Berset et al. 2001); E) 137Cs (from Appleby et al. 1997). Succession dated using 210Pb 

to 35 cm depth (Appleby et al. 1997) and 14C yr BP from 35 cm to base (Shotyk et al. 1998). 

Figure 22. [B&W] Spheroidal carbonaceous (fly ash) particles (SCPs), lead and iron concentrations 

from Malham Tarn Moss, England (from Swindles et al. 2015). 

Figure 23. [Colour] Distribution of ice caps and glaciers (blue) and ice sheets (white) from NASA Earth 

Observatory Randall Glacier Inventory in 2014 CE http://earthobservatory.nasa.gov/IOTD/ 

view.php?id=83918 (acquired 7th May 2014; produced by Jesse Allen and Robert Simmon). Inset 

maps showing the main polar drilling sites in Antarctica and Greenland mentioned in the text. 

Figure 24. [Colour] δ18O, δD and accumulation rates for the North Greenland Eemian Ice Drilling site 

(NEEM) (Masson-Delmotte et al. 2015).  

Figure 25. [Colour] Ice core signals since 1700 CE (from Wolff 2014). CH4 and CO2 ice-core data (blue 

dots) are from Law Dome, Antarctica (MacFarling Meure et al. 2006), and recent atmospheric data 

(red lines) from Mauna Loa (CO2) and Cape Grim (CH4) observatories. The horizontal dashed lines are 

the highest values observed in ice cores of the last 800,000 years prior to the period shown. Beta 
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radioactivity is from Coats Land, Antarctica (Wolff et al. 1999). Sulphate and nitrate are shown for 

two cores from Greenland: B16 (dashed red) and B21 (solid blue) (Fischer et al. 1998). The 18th- and 

19th-century spikes in sulphate are signals of volcanic eruptions. 

Figure 26. [B&W] Concentrations (5-year running means) in Greenland ACT2 ice core from 1772 to 

2003 CE of sulphur (NssS), thallium (TI), cadmium (Cd) and lead (Pb), compared to black carbon (BC), 

from McConnell and Edwards (2008).  Sulphur peaks in 1817 and 1883 CE relate to the Tambora and 

Krakatoa volcanic eruptions, respectively. © (2008) National Academy of Sciences, U.S.A. 

Figure 27. [Colour] a) Law Dome ice core and firn records for CO2 concentration and δ13C for 

atmospheric CO2 for the past 1000 years (from Rubino et al. 2013); b) Law Dome ice core and firn 

records for CH4 concentration and δ13C for atmospheric CH4 for the past 1000 years (from Ferretti et 

al. 2005); c) N2O concentrations in the Law Dome ice core over the past 2000 years and 200 years 

(Wolff 2013). 

Figure 28. [Colour] Extent of carbonate outcrops present across global landmass by Ulrichstill 

https://commons.wikimedia.org/w/index.php?curid=9412430 Created 6th February 2010. Karst 

landscapes and speleothems occur within these regions, and locations mentioned in the text are 

indicated. 

Figure 29. [Colour] Ernesto Cave, Italy: a) Age model based on lamina counting related to local mean 

air temperature (Frisia et al. 2003); b) 18O and 13C profiles (Scholz et al. 2012); c) Radiocarbon 

profile and comparable European atmospheric emissions (Fohlmeister et al. 2011); d) S 

concentration and δ34S (Frisia et al. 2005, Wynn et al. 2010). 

Figure 30. [Colour] Forest map of the world with key locations mentioned in the text. © (2006) FAO.  

Figure 31. [Colour] a) The 20-year smoothed Northern Hemisphere extratropics reconstruction of 

radial stem productivity in high elevation and high latitude forest environments since 800 CE (black) 

and two-tailed 95% bootstrap confidence intervals (blue) (from Esper et al. 2002); b) δ13C variability 

from Loader et al. (2013) for the period 1500-2008 CE measured in tree-ring cellulose for a 

composite tree-ring stable isotope chronology developed using Pinus sylvestris trees from northern 

Fennoscandia. Fine line represents annually-resolved δ13C variability, thick solid line presents the 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 

11 
 

annual data smoothed with a centrally-weighted 51-year moving average. Dashed line represents the 

mean δ13C value for the “pre-industrial” period 1500-1799 CE. Mean annual replication for the record 

is >13 trees. Analytical precision σn-1 = 0.12 per mille n=951 which compares favourably with the 

analytical precision of the method typically reported (σn-1 = 0.10 n=10) (Boettger et al. 2007, 

McCarroll and Loader 2004, Loader et al. 2013a). 

Figure 32. [Colour] a) Tree rings (Pinus sylvestris) samples from 1960 to 2003 CE at Niepołomice 

(Poland) showing changes of radiocarbon concentration (from Rakowski et al. 2013) compared with 

Northern Hemisphere (Zone 1) atmospheric values (from Hua and Barbetti 2004); b) European S 

emissions; c) S concentrations; and d) δ34S in Abies alba from NE Italy compared with European S 

emissions (Wynn et al. 2014). 

Tables 

Table 1. Requirements for establishing a Global Boundary Stratotype Section and Point (GSSP). Table 

modified from Gradstein et al. (2012, Table 2.1, p. 36), revised from Remane et al. (1996) according 

to current procedures and recommendations of the ICS.  

Table 2. Potential palaeoenvironmental archives and facies and their stratigraphic markers for a 

candidate GSSP. ? – uncertain suitability of the specified signal. 

Table 3. Reasons for and against using an anthropogenic deposit as a potential host for a GSSP. 

Table 4. Reasons for and against using a marine anoxic basin deposit as a potential host for a GSSP. 

Table 5. Reasons for and against using a coral or bivalve shell as a potential host for a GSSP. 

Table 6. Reasons for and against using an estuarine or deltaic deposit as a potential host for a GSSP. 

Table 7. Reasons for and against using a lake deposit as a potential host for a GSSP. 

Table 8. Selected examples of the use of proxies for various types of atmospherically sourced 

environmental change. 

Table 9. Reasons for and against using a peat deposit as a potential host for a GSSP. 
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Table 10. Reasons for and against using an ice core as a potential host for a GSSP. 

Table 11. Reasons for and against using a speleothem as a potential host for a GSSP. 

Table 12. Reasons for and against using a tree ring as a potential host for a GSSP. 

Table 13. Summary of key mid-20th century proxy signals and potential palaeoenvironments for a 

GSSP. The initial date represents the marked onset of the signal; the peak signal is shown in brackets. 

Reference numbers relate to main geographical locations mentioned in the text: (1) Santa Barbara, 

USA; (2) Caribbean; (3) Nova Scotia, Canada; (4) Clyde Estuary, Scotland; (5) Urola Estuary, Spain; (6) 

Lake Victoria, Australia; (7) North America; (8) China; (9) Lochnagar, Scotland; (10) Lilla Öresjön, 

Sweden; (11) Northern England; (12) Switzerland; (13) Antarctica; (14) Greenland; (15) Ernesto Cave, 

Italy; (16) Fenno-Scandinavia; (17) Poland; (18) Ontario, Canada.
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1. INTRODUCTION 

The Anthropocene Working Group (AWG), a working group of the Subcommission on 

Quaternary Stratigraphy (SQS) of the International Commission on Stratigraphy (ICS), is 

facilitating the process that will lead to the submission of formal proposals to define the 

Anthropocene as a chronostratigraphic unit. Such a unit comprises a body of strata formed 

during a specific interval of geological time. Units of the International Chronostratigraphic 

Chart (upon which the Geological Time Scale is based) are chronostratigraphic units, and 

each is defined by a synchronous base. The AWG is working towards a definition of the 

geological Anthropocene based on “the first appearance of a clear synchronous signal of the 

transformative influence of humans on key physical, chemical, and biological processes at 

the planetary scale. As such, it stands in contrast to various local or diachronous inscriptions 

of human influences on the Holocene stratigraphic record” (Zalasiewicz et al. 2017c). This 

working definition most closely aligns with the mid-20th century “Great Acceleration” in 

human population, resource consumption, global trade and technological evolution, proxy 

signals from which produce a distinctive stratigraphical boundary (Steffen et al. 2016). There 

are alternative interpretations of the definition of the Anthropocene, but these are generally 

grounded on a non-stratigraphical basis (e.g. the discussion on various geomorphological 

considerations of the start of the Anthropocene by Brown et al. 2017).  

 

Within the Phanerozoic, the current internationally agreed method for defining 

chronostratigraphic boundaries is via selection of a Global Boundary Stratotype Section and 

Point (GSSP) as a physical reference level for a particular, and optimally correlatable, 

geological time boundary. The process of deciding on a GSSP, outlined by Remane et al. 
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(1996) and Remane (1997, 2003) and summarised by Smith et al. (2014) is a complex process 

that normally requires: 1) an initial selection of a boundary level characterized by a marker 

event (the primary marker event) of optimal global correlation potential; 2) selection of a 

stratotype section from a number of potential sections, with the chosen stratotype section 

containing the best possible record of the primary marker event as well as other marker 

events that support global correlation, 3) ideally the selection of some auxiliary stratotypes 

in which the same level is represented by similar or other proxy signals in different parts of 

the world (Walker et al. 2009, in defining the Holocene Series, provided five auxiliary 

stratotypes as well as the GSSP); and, 4) definition of the precise point within stratified rock 

or sediment (or glacial ice in the case of the Holocene) that fixes the chronostratigraphic 

boundary with a precise moment of time. Formalisation of a GSSP is a careful procedure as, 

once ratified, it normally cannot be subsequently revised for at least ten years (Remane et 

al. 1996).  

 

Table 1 provides a formal and comprehensive listing of the reasonable requirements for 

establishment of a GSSP, most of which will pertain also to a formal basis for the 

Anthropocene. It includes the requirement for stratigraphical completeness across the GSSP 

level, with adequate thickness of strata both above and below the boundary in order to 

demonstrate the transition. Therefore, the presence of an unconformity, marking a 

discontinuous succession, at or near the proposed boundary, would render it unsuitable. The 

selected section should also be accessible for subsequent investigations, ideally with 

provision for conservation and protection of the site.  

 

The rank currently preferred by the AWG for the Anthropocene is that of series/epoch 

(Zalasiewicz et al. 2017c). The procedure leading to official acceptance of a GSSP for the 
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Anthropocene Series/Epoch and its corresponding Age/Stage would require: 1) the selection 

by the AWG of a single GSSP candidate from one or more potential candidates, based on 

proposals submitted to it; 2) the recommendation of that proposal by the SQS; 3) its 

approval by the voting membership of the ICS; and 4) ratification by the Executive 

Committee of the International Union of Geological Sciences (IUGS). All voting within the ICS, 

and its constituent subcommissions and their working groups, requires a supermajority of 

60% or more for a proposal to be approved. 

1.  Name and stratigraphic rank of the boundary 

     Including concise statement of GSSP definition 

2.  GSSP geographic and physical geology 

 Geographic location, including map coordinates 

 Geological setting (lithostratigraphy, sedimentology, palaeobathymetry, 
post-depositional tectonics, etc.) 

 Precise location and stratigraphic position of GSSP level and specific point 

 Stratigraphic completeness across the GSSP level 

 Adequate thickness and stratigraphic extent of section above and below 

 Accessibility, including logistics, national politics and property rights 

 Provisions for conservation and protection 

3.  Primary and secondary markers 

 Primary correlation marker (event) at GSSP level 

 Secondary markers – biostratigraphy, magnetostratigraphy, chemical 
stratigraphy, sequence stratigraphy, cycle stratigraphy, other event stratigraphy, 
marine–land correlation potential 

 Potential age dating from volcanic ash and/or orbital tuning 

 Demonstration of regional and global correlation 

4.  Summary of selection process 

 Relation of the GSSP to historical usage  

 References to historical background and adjacent (stage) units 

 Selected publications 

 Other candidates and reasons for rejection 

 Summary of votes and received comments 

 Other useful reference sections 

5.  Official publication  

 Summary for official documentation in IUGS journal Episodes  

 Digital stratigraphy (litho-, palaeo-, magneto-, and chemo-stratigraphic) images 
and graphic files submitted to ICS for public archive 

 Full publication in an appropriate journal 
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Table 1. Requirements for establishing a Global Boundary Stratotype Section and Point (GSSP). Table 

modified from Gradstein et al. (2012, Table 2.1, p. 36), revised from Remane et al. (1996) according 

to current procedures and recommendations of the ICS.  

 

Here we offer a preliminary assessment of palaeoenvironments and their depositional facies 

where potential GSSP candidate sections for defining the lower boundary of the 

Anthropocene may be located, based on the published literature. Few of these example 

sections were chosen with the specific purpose of defining the Anthropocene as a 

chronostratigraphic unit. Rather they show a range of proxy signals, analysed in published 

studies for varied (non-ICS) purposes. The palaeoenvironmental research illustrated in this 

review demonstrates the timing and processes through which these signals have been 

imprinted in strata, and the extent to which they allow stratigraphic correlation worldwide. 

Even with this considerable caveat, the possibilities of correlation are clearly demonstrated, 

and help constrain the range of potential targets for Anthropocene-specific ICS studies.  

 

2. KEY STRATIGRAPHIC MARKERS 

The aim – not always achieved – is for GSSPs to have many guiding criteria to support the 

primary marker (Remane et al. 1996, Smith et al. 2014) to permit both regional and global 

correlation. This has been the early focus of the AWG, with the description of potentially 

suitable markers summarised by Waters et al. (2016), whose recommendations this study 

follows, and as reported by Zalasiewicz et al. (2017c), concludes that the primary marker for 

the Holocene–Anthropocene boundary should be selected and identified in strata with a 

mid-20th century age. Such a definition makes the Anthropocene so recent that there are 

more potential archives available to it than for most, if not all, earlier GSSPs. 
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2.1 Key markers  

The lower boundary of a chronostratigraphic unit, at the rank of Stage/Age and above, is 

defined by a GSSP and is recognized globally by a primary marker within the stratotype 

section that should be close to or coincident with the GSSP itself. Historically, most 

chronostratigraphic units use biotic signals, namely the highest or (preferably) lowest 

occurrence of a single fossil species, as the primary marker (Figure 1). More recent 

approaches incorporate physico-chemical markers such as magnetic reversals, isotope 

excursions and cyclostratigraphy, especially for the Cenozoic (Miller and Wright 2017). 

Although not a requirement, the means for numerically dating the succession is considered a 

strong site advantage.  

 

Of the 65 GSSPs presently ratified by IUGS, all occur within strata deposited in marine 

sedimentary environments, with the exception of the Holocene GSSP that is placed within a 

Greenland ice core (Walker et al. 2009). This reflects the fact that marine fossils have proven 

better for long-distance correlation than non-marine ones; and more generally that proxy 

signals are readily preserved and continuously recorded in marine environments. However, a 

primary marker ideally is traceable globally in marine and non-marine stratigraphic settings, 

thereby allowing secondary markers to be chosen that will assist correlation in either setting, 

especially when the primary marker is not detected. These secondary markers should 

approximate closely to that the stratigraphic position of the primary marker. In an 

Anthropocene context, the choice of markers should not be to provide an indication of the 

start of anthropogenically driven effects, but to provide the most pragmatic marker that will 

allow global correlation of the chosen boundary, being geographically extensive, temporally 

abrupt and providing a permanent record. Such primary and secondary markers do not need 

to be symptomatic of the environmental changes across the Holocene–Anthropocene 
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boundary, rather they need to be amenable to widespread correlation in deposits 

representing different palaeoenvironments. Key signals considered here are mainly 

anthropogenic in origin, either being entirely novel, such as the production of novel 

anthropogenic mineral-like compounds, artificial radionuclides, organic and inorganic 

chemical species, or through perturbations of natural signals associated with, for example, 

the carbon and nitrogen cycles, and changes to climate proxies or biotic assemblages (Table 

2). However, markers of any kind, including ones with little or no human influence (e.g. 

palaeomagnetic signals or volcanic ash layers) may serve just as well to help correlation. 

These markers are discussed by Waters et al. (2016), and are summarised below in the 

context of their likely presence in potential candidate palaeoenvironments. 
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Figure 1. Primary and some secondary markers for the 65 GSSPs that have been ratified currently by 

IUGS. The four in the Cenozoic that deal with stable isotope events (base Eocene, Quaternary, 

Calabrian and Holocene) and the iridium anomaly (base Paleocene) provide models for choosing 

markers for the base of the Anthropocene.  

2.1.1 Novel materials 

Synthetic solids such as metal alloys, glass, carbide abrasives, gemstones, laser crystals, 

piezoelectric compounds, semiconductors and cement have proliferated in the environment 

in recent decades (Hazen et al. 2017), being present in novel “metamorphic rocks” such as 

porcelain, brick and concrete, the latter being the most abundant novel rock on the planet, 

with over 90% of the ~500 Gt (gigatonnes or 1015 grams) produced since the mid-20th 

century. Complex additives to cement help to chemically and petrographically fingerprint 

modern concrete (Waters and Zalasiewicz, 2017). These novel anthropogenic mineral-like 

compounds and rocks often accumulate directly within terrestrial anthropogenic deposits 

such as landfill sites and road networks. Through subsequent erosion of the widespread 

human-built landscape, these materials may be reworked and deposited in fluvial, lacustrine, 

coastal and marine sediments, with a variable time lag between formation and 

accumulation.  

 

Synthetic organic compounds have become abundant, including plastics that are 

exceptionally mobile and durable within river and ocean currents. Plastics have, since ~1950 

CE, become increasingly widely dispersed, including as abundant microfibres and 

microbeads, forming signals found extensively in lake, estuarine and marine sediments, even 

within remote abyssal environments (Zalasiewicz et al. 2016a). Most are the effluents from 

waste water treatment works and transported through river systems to accumulate in lakes 

or oceans. The recent recognition of synthetic microfibre fallout accumulations in urban 
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Paris (Dris et al. 2016) raises the possibility of rapid and widespread airborne dispersal across 

environments.  

 

The first development (in effect first occurrence) and annual production figures of novel 

anthropogenic mineral-like compounds and organic polymers are known from historical 

records. However, few studies have investigated them in their stratigraphic context, in order 

to determine the pattern of their accumulation in sedimentary environments. Matsugama et 

al. (2017) record the first influx of microplastics into canal sediments in Tokyo in the 1950s, 

whereas in the Gulf of Thailand a significant increase in abundance occurs in the 1990s; in all 

cases there is an upward increase in microplastic abundance and polymer types. Because of 

their novelty, little is known of the longevity and potential fragmentation of plastics in 

buried sediments. Also of significance in lakes and marine settings is the settling rate within 

the water column. In the case of microplastic organic polymers (<5 mm diameter) sinking 

velocities have been estimated as 6−91 mm s-1, which is more rapid than the settling of clay 

minerals and organic-rich aggregates (Kowalski et al. 2016). Particle density (variable 

between distinct polymers) and shape, fluid density (with slower settling in saline water), 

temperature and ingestion by microplankton all can influence settling rates, and these 

parameters have different effects on different polymers (Kowalski et al. 2016).  

 

Fly ash, the unburned particulates sourced from fossil fuel combustion, includes inorganic 

ash spheres (IAS), mainly residues from coal burning, and spheroidal carbonaceous particles 

(SCPs) principally from both coal burning and oil combustion. These particulates are 

disseminated aerially, and typically show a marked upturn in abundance from about 1950 CE 

(Oldfield 2014, Rose 2015, Swindles et al. 2015). The upturn in abundance of SCPs should 

serve as a likely permanent stratigraphic marker for the Anthropocene in lake sediments 
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across all continents. Work is ongoing to assess their likely presence in other environments, 

such as glacial ice, peat sequences, marine basin sediment and terrestrial anthropogenic 

deposits such as industrial dumps and landfills. Black carbon (BC), present as char or soot, is 

generated from both anthropogenic combustion and natural biomass burning (Bond et al. 

2007, Han et al. 2017). BC is commonly identified in soil, lacustrine and marine sediments, 

and glacial ice (Xu et al. 2009). 

2.1.2 Geochemical markers 

Oxygen and hydrogen isotopes and dust signals are important climate change proxies and 

hence tools for Quaternary correlation. All three proxies are recognised in glacial ice, within 

the ice fraction, and complement the air bubble record. Deuterium (2H or D) is an important 

isotopic tracer for precipitation, and the relationship between δD and δ18O signatures 

defines a “deuterium excess” marker that is a proxy for sea surface temperature. The 

deuterium excess ratio is used as the primary marker for the base of the Holocene Series in 

an ice core GSSP (Walker et al. 2009), where a 2−3‰ decrease in the ratio is associated with 

a rapid ocean surface temperature decline of 2−4oC. An abrupt dip in δD and deuterium 

excess reflecting cooling is also seen in a Greenland ice core at 8.2 ka (Walker et al. 2012), 

and suggested to mark the base of the proposed Middle Holocene Subseries and 

Northgrippian Stage. Cold stages are commonly associated with increased aeolian dust 

deposition in ice cores. Decreases in δ18O mark cooling events, and in Greenland ice the 

overall trend since the Middle to Late Holocene has been of gradual cooling culminating in 

the Little Ice Age from about 1200 to 1850 CE. The shift to warming induced by increased 

anthropogenic greenhouse gases emissions is first indicated by a slight change to less 

negative δ18O values in Greenland ice from ~1850 through to the 1870s CE and again from 

1979 to 2007 CE (Masson-Delmotte et al. 2015; see Figure 24 below), although the 
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magnitude of enrichment is small compared with variations across the Pleistocene–

Holocene boundary. Warming is also apparent in the Antarctic Peninsula from about 1950 

CE, e.g. on James Ross Island (Abram et al. 2013), with lakes on Signy Island from the South 

Orkney Islands having experienced some of the most rapid air temperature increases of 2oC 

since the mid-20th century, with concomitant marked responses by lake biota and increased 

nutrient levels, linked to deglaciation and reductions in lake snow and ice cover (Quayle et 

al. 2002). Variations in δ18O are observable in carbonate and phosphate minerals in 

speleothems, shells, corals, teeth, and bones and also in tree rings. They can be used as a 

palaeotemperature proxy in marine settings or within terrestrial environments, primarily as 

a proxy for δ18O composition in atmospheric precipitation. 

 

About 50% of anthropogenic carbon dioxide emissions, the major product of fossil-fuel 

combustion, have accumulated in the atmosphere, with the lifetime of much of the 

atmospheric fossil-fuel-derived CO2 being ~200 to 2000 years (Archer et al. 2009). The 

remainder is absorbed approximately equally by land and ocean sinks (Le Quéré et al. 2016). 

The atmospheric CO2 record from ~7 ka shows a very slow rise to ~280 ppm by ~1850 CE. 

Subsequently, the CO2 concentration shows a marked rate increase (Etheridge et al. 1996, 

MacFarling-Meure et al. 2006, Rubino et al. 2013), attaining ~310 ppm by 1950 CE and with a 

further sharp acceleration to its current mean value of >400 ppm, reached in 2015 CE. The 

rate of increase between 1950 and 2015 CE is ~100 times greater than that of the Late 

Pleistocene to Early Holocene rise, itself considered rapid in geological terms (Wolff 2014). 

 

Anthropogenic methane emissions arise primarily from agriculture (wet rice cultivation and 

ruminants), with a smaller fraction from biomass burning and fossil fuel combustion. Some 

large terrestrial anthropogenic deposits in the form of landfills also emit significant amounts 
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of methane. Unlike CO2, methane is chemically reactive in the atmosphere, with the 

dominant sink being oxidation by OH radicals. This process removes about 90% of all 

emissions of CH4 each year, or about 9% of the total burden of CH4 − the atmospheric 

lifetime is 7–11 years (Ciais et al. 2013). Throughout the Quaternary Period, CH4 

concentrations range from ~400 to 800 ppb, with the higher values marking interglacials. In 

marked contrast, from 1875 CE there has been a sharp climb to the current levels of ~1800 

ppb (Nisbet et al. 2016). 

 

Both CO2 and CH4 provide a direct stratigraphic marker where they are preserved within air 

bubbles in glacial ice, and an indirect record via carbon isotope variations. δ13C values in CO2 

from ice cores varied by less than 0.4‰ over the duration of the pre-industrial Holocene, 

with the principal change being a slow enrichment in 13C during the Early Holocene. The 

subsequent combustion of hydrocarbons, which are depleted in the 13C isotope, has resulted 

in a sharp reduction in δ13C values in atmospheric CO2 of about 2‰ since the late 18th 

century, with a pronounced inflection at about 1960 CE (Rubino et al. 2013). This Suess 

effect is recorded in diverse materials, including plants (tree rings), shells, bones, limestones, 

corals, and in the atmospheric composition of air bubbles trapped in ice, although 

speleothems are comparatively insensitive to this signal. An abrupt shift towards less 

negative δ13C values in atmospheric CH4 of ~2.5‰ since ~1875 CE in response to these 

pyrogenic emissions (Ferretti et al. 2005) has been succeeded over the last 12 years by a 

shift of −0.17‰ of δ13C in the increasing volume of atmospheric CH4, attributed to an 

expansion of tropical wetlands (Nisbet et al. 2016).  

 

Nitrate concentrations have been perturbed mainly through the production of agricultural 

fertilizers, initially through mined nitrate deposits in the 19th century, but most notably 
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through the industrial production of ammonia from atmospheric nitrogen by the Haber-

Bosch process, which started in 1913 CE (Fowler et al. 2013). The nitrate associated with 

artificial fertilizers shows global airborne distribution. δ15N values have been acquired from 

sediment organic matter, commonly from lake deposits, although determinations from 

anthropogenic deposits, marine anoxic basins, estuaries, deltas, tree rings, and amino acids 

in corals are also available. Nitrogen compounds and isotopes are not typically recorded in 

carbonates, including speleothems. Nitrate, total nitrogen oxides (NOx) and δ15N values are 

determined from solid ice in ice cores, providing data at the time of snow accumulation. 

Both Northern Hemisphere lake sediments (Holtgrieve et al. 2011, Wolfe et al. 2013) and 

glacial ice (Hastings et al. 2009) show elevated nitrate concentrations and a fall in δ15N, 

which start towards the end of the 19th century but become appreciably more pronounced 

during the mid-20th century. A marked increase in NOx sourced from elevated combustion of 

hydrocarbons, particularly automobiles and power stations, is also evident in Greenland ice 

sheets from the mid-20th century (Erisman et al. 2013). 

 

Natural sources of sulphate include volcanic eruptions that produce high-magnitude, short-

duration spikes evident in glacial ice over past millennia. There has been an overall trend of 

increased sulphate content in glacial ice, trees and speleothems since the start of the 

Industrial Revolution, peaking in the mid- to late-20th century, reflecting patterns of coal 

consumption; sulphate has widely declined over recent decades, most likely due to 

legislation requiring the fitting of sulphur scrubbers to power station chimneys to combat 

acid rain. The signals tend to be associated with local-to-regional industrial changes rather 

than representing global signals. Stable sulphur isotopes show lower δ34S ratios in tree rings 

(e.g. Fairchild et al. 2009, Wynn et al. 2014) and speleothems (e.g. Frisia et al. 2005, Wynn et 

al. 2010) during the second half of the 20th century. 
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Pure metals such as gold, silver, lead, copper and iron have a long history of extraction (and 

blending to obtain alloys) to produce tools or ornaments. The early historical mining of these 

metals provides local and highly diachronous signals evident in lakes, estuaries, peats, sea-

floor sediments, and carbonates including corals and speleothems, and they are also present 

in glacial ice records. The heavy metals are either air-borne as aerosols, dissolved in water, 

or carried as water-transported particulates. Mercury (Hg) is also transported in gaseous 

form (RGM – reactive gaseous Hg; GEM – gaseous elemental Hg) (Yang et al. 2010). Within 

sediments, metal compounds are commonly stabilized by being adsorbed to clay mineral 

surfaces or organic matter; locally they may be diagenetically mobilized as conditions 

become reducing with burial, and redeposited in overlying oxidizing environments, thus 

decreasing their effectiveness as stratigraphic markers. Elevated heavy metal concentrations 

in tree rings have been suggested as unsuitable for temporal studies of pollution events 

(Bindler et al. 2004). For most metals and their compounds, the 20th century environmental 

signals continue to be localised, related to production from local industries. Some metals, 

such as elemental aluminium and many trace elements, have seen marked upturns in 

production in the second half of the 20th century as new uses are found for them, and these 

may be expected to leave signals in sediments. For at least two millennia prior to the 

Industrial Revolution, Pb concentration in sediments increased and Pb isotope ratios 

declined as a result of European metallurgy (Renberg et al. 2000). Perhaps the most 

widespread and abrupt signal is that associated with Pb isotope ratios related to the use of 

tetraethyl-lead in gasoline from the 1920s, although the isotopic fingerprint reflects the 

sources of lead used to manufacture this additive, which differ between countries (Reuer 

and Weiss 2002). Current global atmospheric concentrations of Hg are about two to four 

times higher than pre-industrial levels as a result of refining ore and burning coal and waste 
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(Lindberg et al. 2007, Yang et al. 2010). Hg has an atmospheric lifetime of 0.75 years so can 

be dispersed globally before deposition, whereas the larger and more slowly cycling marine 

reservoir can produce a lagged response of 1 to 2 centuries (Lindberg et al. 2007).  

 

A huge variety of novel organic compounds have been generated and used in industrial 

processes. Persistent organic pollutants (POPs), those recalcitrant to decomposition, which 

readily adsorb onto clay and organic particles and are poorly soluble, provide potentially 

suitable signals. Key potential POP signals include those from organochlorine pesticides 

(OCPs) such as DDT, aldrin and dieldrin, and various polychlorinated biphenyls (PCBs), along 

with brominated flame retardants (e.g. polybrominated diphenyl ethers, PBDEs). Most of 

these have only been generated on industrial scales and released into the environment in 

notable quantities since the mid-20th century, particularly concentrating in sediments in 

lakes (Muir and Rose 2005, 2007), estuaries (Vane et al. 2011) and canyons on continental 

shelf margins (Paull et al. 2006). 

 

Large amounts of anthropogenically-sourced radionuclides have been released by 543 

atmospheric nuclear weapons tests, with a total yield of about 440 Mt (i.e. energy released 

in TNT equivalent), and subsequent fallout (UNSCEAR 2000). Although atmospheric tests and 

military use began in 1945 CE, it was only with the testing of the large thermonuclear 

(hydrogen) devices from 1952 CE that fallout was dispersed globally and became recorded in 

most environments. The signal is almost instantaneous in geological terms, with residence 

times in the stratosphere of some 15 to 18 months following thermonuclear detonations. 

Typically, the Pu signal shows an abrupt rise in 1952 CE, a peak in 1963−1964 CE and rapid 

decline since 1963 CE in response to a Partial Test Ban Treaty, which resulted in most testing 

moving underground (Waters et al. 2015). Radionuclides that are absent or rare in nature, 
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such as plutonium-239 (239Pu), americium-241 (241Am), caesium-137 (137Cs) and strontium-90 

(90Sr) show clear signals in soils, peats, lake and sea-bed deposits, coral and tree rings, and 

glacial ice. However, the caesium and strontium isotopes have half-lives of about 30 years, 

so their sedimentary signal is short-lived, while caesium and plutonium may be mobile in 

anoxic conditions (Jeandel 1981). Additional brief spikes of certain isotopes can be used to 

aid correlation. For instance, an artificial satellite re-entry in 1964 CE provided a distinctive 

global 238Pu signal, and, more regionally, the Chernobyl and Fukushima reactor accidents 

produced spikes in 1986 and 2011 CE, respectively. The common natural radioisotope 14C 

shows greatly elevated values associated with nuclear tests and provides a further clear and 

long-lasting signal in most growing organic matter such as wood, bone and carbonates 

including corals, speleothems and also in glacial ice. 239Pu, because of its longevity (half-life 

of 24,110 years), is a strong candidate as a primary marker of radionuclide deposition as it 

will remain detectable for ~100 000 years (Hancock et al. 2014) and beyond as the decay 

product 235U. Alpha-spectrometry carried out during early studies does not differentiate 

between 239Pu and 240Pu (itself not an issue, as the combined signal is clearly expressed), but 

is only applicable where Pu concentrations are high – the detection limit is approximately 

0.05 mBq of 239+240Pu (Hancock et al. 2014). Modern ICP-MS techniques can discriminate 

between these isotopes, although it is necessary to remove interferences from 238UH+ and 

other species, and can be used at low Pu concentrations – the absolute limit of 

quantification is 0.2 μBq and 0.9 μBq for 239Pu and 240Pu respectively (Lindahl et al. 2011). 

Other mass spectrometric methods, such as Accelerator Mass Spectrometry (AMS) and 

Thermal Ionisation Mass Spectrometry (TIMS) also allow the simultaneous determination of 

239Pu and 240Pu. 
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2.1.3 Biotic markers 

Changes in fossil assemblages are used to demarcate most chronostratigraphic boundaries in 

the Phanerozoic, mainly through recognition of the lowest stratigraphic occurrence of a 

fossil taxon, which may approximate to its evolutionary origin, although within any individual 

stratal section the stratigraphic appearance of a taxon more specifically reflects its local 

immigration to that place. Such stratigraphic appearances (and commonly disappearances 

too) provide a widely effective tool for correlation. In the Quaternary Period (and especially 

for the Anthropocene) the time scales involved are generally too short for many 

evolutionary appearances and disappearances to have taken place, and so 

immigration/emigration patterns are widely used for biostratigraphic correlation. Prominent 

Anthropocene biostratigraphic signals are expressed in recently forming sedimentary 

deposits by the appearance of unique terrestrial and marine species associations of the 

neobiota (‘invasive species’), the result of human transport of tens of thousands of species 

around the globe. Recent neobiota include examples among common microplankton such as 

foraminifera, coccoliths, dinoflagellates and radiolarians in the marine realm, of the kind 

commonly used as microfossils to recognise stage boundaries in pre-Anthropocene deposits 

of the Cenozoic (Figure 1). These organisms, as well as macroinvertebrates, such as molluscs, 

vertebrates and plants (both macroplant remains and pollen) can form useful 

biostratigraphic tools for correlation because of their geologically preservable hard parts 

such as skeletons, frustules, shells, or phytoliths.  

 

Human-driven extinctions and local extirpations have become increasingly common over the 

last 500 years, particularly in island faunas (Ceballos et al. 2015). So far, island floras have 

been more resilient to extinction than island faunas in spite of the high abundance of 

introduced plant species in many environments (Ellis et al. 2012), but an accumulating 
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extinction debt is likely (Sax and Gaines 2008). Their provincial nature and low abundances 

mean that island floras provide regional rather than global stratigraphic markers. Selective 

breeding of domesticated floras and faunas tends to be associated with rapid changes to 

morphology, in effect forming distinct morphospecies that can be preserved in sedimentary 

successions. Moreover, species beneficial to humans, such as domestic maize or chickens, 

tend to be abundant and geographically widespread. The development of factory farming 

led to massive increases in amounts of faunal remains of domesticated species being 

deposited in landfills and other terrestrial stratigraphic contexts from the mid-20th century 

on. 

 

Another extensive stratigraphic signature over recent centuries, but especially since the mid-

20th century, reflects neobiota reaching far beyond their original geographical ranges, 

through deliberate or accidental human actions. Local arrival of these neobiota is well 

documented through observation, and is often linked with the extinction or extirpation of 

local fauna and flora, as observed on Kauai, Hawaii (see section 3.5.5), or among benthic 

foraminifera preserved in the coastal sedimentary record (McGann et al. 2000, Calvo-

Marcilese and Langer 2010). 

 

Biostratigraphic signals may also relate to ecological degradation (Willis et al. 2010, Dearing 

et al. 2012). In marine environments, a long lead-in of low-level and provincialized ecological 

degradation gave way to accelerating global change in the early 1950s (Wilkinson et al. 

2014). The driver was expansion of industrial pollution, expanding human populations 

associated with increased raw sewage dispersal offshore, and increased use of fertilisers 

during agricultural intensification. In Northern Hemisphere lakes, an increase in reactive 

nitrogen from artificial fertilisers has been well-documented (Holtgrieve et al. 2011, Wolfe et 
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al. 2013), giving rise to increases in primary productivity and marked changes to diatom 

populations and species assemblages, with surface water acidification as an additional 

factor. The stratigraphic records collated by Smol (2008) commonly show clear mid-20th 

century inflections in such lacustrine proxies. Runoff contaminated with these fertilisers has 

also resulted in seasonally oxygen-starved ‘dead zones’ in lakes and coastal seas, causing – 

to take just one example - increases in hypoxia-tolerant benthic foraminifera (Wilkinson et 

al. 2014). Environmental legislation has locally led to a phase of recovery from pollution 

stressors in the late-20th and early-21st centuries, but increasingly climate change is imposing 

pole-ward shifts in species distributions and confounding recovery from acidification (e.g. 

Battarbee et al. 2014). 

2.2 Independent dating techniques 

Direct numerical dating of a GSSP is not a prerequisite in the selection of a site, but is 

beneficial. For the Anthropocene, annual resolution for any proposed boundary section is 

highly desirable, giving a level of precision not available for any other boundary within the 

Geological Time Scale. The best time resolution for previous GSSPs is for that of the 

Holocene, with a 2σ uncertainty of ±99 years (Walker et al. 2009). 

 

Counting annual sedimentary laminae in presently accumulating successions, or annual 

growth layers in living organisms (that are demonstrably complete), is one means of 

establishing the numerical age, expressed in years, of an Anthropocene base. The age so 

determined may be additionally constrained by 210Pb, sourced from the atmosphere or 

directly from sediments (Noller 2000). This isotope is rapidly scavenged from sea and 

freshwater onto organic detritus, but is not mobile in the sediment. It has a useful dating 

range of up to 150 years (the half-life is 22.3 years) with a measurement error of about 10%, 
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and is typically used to determine accumulation rates in organic lake, coastal or marine 

sediments, peats or glacial ice; it is fixed in living plants and corals, too, and so can determine 

their growth rates. 

 

Other short-lived radioisotopes include 234Th, with a half-life of 24 days, which can be used to 

date changes in speleothems and corals over periods as short as 3 months, but it has little 

value for laminae straddling the Holocene–Anthropocene boundary. Radiocarbon (14C) has a 

half-life of ~5600 years and has limited use as a chronometer from the mid-20th century, but 

along with 137Cs (half-life 30 years) and 90Sr (half-life ~28 years), it can help to identify 

specific episodes, such as the 1963–1964 CE peak in atmospheric nuclear tests (the ‘bomb-

spike’) and the 1986 CE Chernobyl accident recorded in sediments, ice, tree rings and corals. 

 

Anthropogenic materials present possibilities for absolute and relative dating not available in 

earlier geological successions. For example, the date of manufacture of artefacts 

(technofossils) found as inclusions in strata can often be ascertained with high resolution 

through the use of type series, and sometimes the precise date is even stamped, moulded, 

cast, or indelibly imprinted on objects. Such evidence could be immensely valuable in 

supplementing more traditional dating methods. More generally, the value of using 

archaeological techniques for relative dating of stratigraphic sequences of terrestrial 

anthropogenic ground, in conjunction with geological methods, should be considered. 
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Coral bioherms & 

marine bivalve shells 
  ?  

    
    

 

Estuarine & deltaic 

deposits     
    

     

Lake depositss     
    

     

Peat & peatlands 

(mires) 

   
  

        

Ice  
 ?          

 

Speleothems  
   

        
 

Tree   
    

     
  

 

 

Table 2. Potential palaeoenvironmental archives and facies and their stratigraphic markers for a candidate GSSP. ? – uncertain suitability of the specified signal. 
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3. SUITABILITY OF PALAEOENVIRONMENTAL ARCHIVES FOR HOSTING 

POTENTIAL GSSP CANDIDATES 

There is a wide range of sedimentary and biological records within which a GSSP is feasible. 

For any candidate section, high-precision dating is needed, if only to provide confidence that 

there are no missing surfaces in successions that are merely decades to centuries long. Such 

high-precision dating, potentially to annual resolution, can be achieved in seasonally layered 

sediments in anoxic marine basins and hypoxic lakes, in glacially influenced or hypersaline 

lakes and sinking marine deltas, in seasonally layered ice and annual growth layers in corals, 

bivalves, and in speleothems and trees. Non-layered strata, including anthropogenic 

deposits and peats provide additional environments in which the Holocene–Anthropocene 

transition may be observed. In this section these key potential archives are discussed in turn, 

describing their global extent and continuity, and the arguments for or against their 

potential for hosting a candidate GSSP. Examples are provided to show how key signals are 

recorded.  

3.1 Anthropogenic deposits  

This category includes sedimentary successions that have accumulated through direct 

human deposition (artificial ground) or by human influence on natural systems (Ford et al. 

2014). Artificial ground can show a continuum from entirely natural through to entirely 

anthropogenic materials, but with the key requirement that they have been deposited 

through human action. Conversely, few “natural” systems are these days free from human 

modification (Barnosky et al. 2017), whether via construction of dams influencing sediment 

flux in fluvial systems (Syvitski and Kettner 2011), or trawler fishing disturbing the upper 

decimetres of sediments on the continental shelf and slope (Martin et al. 2015).  
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Zalasiewicz et al. (2017b) estimated the spatial extent of human modification of the 

landscape at about 82 x 106 km2, or about 16% of the total Earth’s surface or 55% of the 

terrestrial land surface, providing many sections that could be investigated as potential 

GSSPs. Road surfaces alone, with a mass estimated at 1.3% of the physical technosphere 

(sensu Zalasiewicz et al. 2017b), comprise an extensive boundary layer in temperate and 

tropical climates. Anthropogenic deposits may show remarkably high accumulation rates, 

locally in excess of one metre per year, and rapidly incorporate novel anthropogenic 

signatures, which may be lithological, geochemical or biotic. This provides a highly resolvable 

succession in which artefacts and novel materials can be constrained to decadal resolution 

(Zalasiewicz et al. 2014a).  

 

A potential Anthropocene Series, which would be defined in a unit of strata, and would 

represent an equivalent Epoch of geological time, is not synonymous with anthropogenic 

impact. The lower boundary of anthropogenically-modified deposits (or archaeosphere in an 

archaeological context) may commonly be a marked unconformity, with the overlying first 

expression of the archaeosphere often being markedly diachronous over millennia 

(Edgeworth et al. 2015). Such deposits represent a lithostratigraphic – and when one 

considers technofossils – also a biostratigraphic unit, but not a chronostratigraphic 

subdivision with a necessarily isochronous basal boundary. The Anthropocene, if it is to be 

distinguished within these deposits, requires continuous stratiform accumulation of 

sediments within which a clear signal can be recognised that can distinguish Anthropocene 

anthropogenic deposits from underlying Holocene anthropogenic deposits. Although such 

distinguishing signals can be readily found within these deposits, e.g. novel minerals, 

aluminium, concrete, plastics, organic compounds (Waters et al. 2016, Zalasiewicz et al. 

2016a and references therein), the successions overall are typically marked by numerous 
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internal erosion/hiatus surfaces; anthropogenic deposits are mainly formed by intermittent 

depositional events, lack simple vertical accretionary patterns, and are commonly disturbed 

by ‘anthroturbation’. The pattern of such complex erosional/non-depositional surfaces is of 

great value for local correlation, and also for correlation over wider areas where exact 

synchronicity is not required, but hinders precise regional to global correlation (Edgeworth 

et al. 2015). The typical stratigraphic incompleteness of these deposits also makes them 

generally unsuitable for hosting a GSSP. Furthermore, they are also mostly terrestrial 

(although increasingly they are also becoming a feature of the marine realm), making some 

of them prone to erosion. However, artificial deposits have potential for direct preservation 

over geological time scales when located on subsiding environments such as major deltas 

(see section 3.4) and within subsurface excavations (Zalasiewicz et al. 2014b). 

 

Table 3 summarises the key advantages and disadvantages of using anthropogenic deposits 

and examples of these extraordinarily diverse successions are provided: the Fresh Kills 

Landfill (New York), Teufelsberg (Berlin) and in Vienna, all of which are examples of artificial 

ground; and the Gorrondatxe-Tunelboca beachrock (northern Spain), a naturally formed 

succession comprising mainly artificial materials (Figure 2). 

For: Against: 

• Abundant, mainly terrestrial and notably in 
urban settings 

• Comparatively thick; rapid accumulation 

• Independent dating using 210Pb and 14C and 
historical and archaeological context 

• Highly resolvable technofossil stratigraphy 

• Rapid incorporation of novel materials and 
geochemical signals 

• No annual lamination 

• Limited extent in oceans 

• Limited lateral continuity 

• Highly variable deposition rates 

• Numerous omission surfaces 

• Prone to erosion and organic degradation 

• No guarantee of principle of superposition 

 

Table 3. Reasons for and against using an anthropogenic deposit as a potential host for a GSSP. 
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3.1.1 Fresh Kills Landfill, New York 

Fresh Kills Landfill on Staten Island (USA) is a former repository for New York City refuse. 

Covering some 8.9 million m2, up to 70 m high, and containing ~150 million tons of municipal 

waste, it may be the largest human-engineered formation in the world (Melosi 2016). It was 

opened in 1948 CE (Melosi 2016), with a peak influx of garbage reaching 29,000 tons per day 

(Nagle 2008) and closed in 2002 CE, the last debris being from the 9/11 event in 2001 CE. 

The deposit rests upon Holocene estuarine marsh deposits, with few intervening pre-mid-

20th century anthropogenic deposits, has complex internal patterns, having accreted laterally 

as the site expanded, and may even have been overturned in places. Its internal complexity 

precludes it from hosting a functional GSSP. 

3.1.2 Teufelsberg, Berlin 

Rubble generated in Berlin during World War II was later redistributed in mounds within the 

city boundary, the largest being the Teufelsberg. The rubble, including concrete, brick, 

clinker, rock, fly ash, slag and solid chemical waste, was deposited between 1950 and 1972 

CE and is up to 80 m thick, with an area of 1.1 million m2, and an original rubble volume of 

26.2 million m3 (Mielke 2011, Cocroft and Schofield 2012). The Teufelsberg deposit mainly 

rests unconformably upon Upper Pleistocene sand and till, and these areas would be 

unsuitable for hosting a GSSP for that reason. But locally, thin Holocene deposits occur 

between the two units, and here the placing of a GSSP might be considered. The Teufelsberg 

comprises a distinct, mappable lithostratigraphic unit with a base approximating to that of 

the Anthropocene, which also extends lens-like across other rubble heaps of the Berlin area 

(cf. Zalasiewicz et al. 2016a), and these can be correlated through technofossil and novel 

material inclusions with other such deposits elsewhere. Similar lens-like post-World War II 
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rubble heaps in Germany occur also at Cologne, Dresden, Frankfurt am Main, Hannover, 

Leipzig, Stuttgart and Munich, and in England in heavily bombed cities such as Coventry. 

3.1.3 Vienna, Austria 

In the 19th century, Eduard Suess (1862, 1897) mapped urban strata in Vienna as a geological 

unit (Schuttdecke), which comprised anthropogenic strata formed during development of 

the Ringstrasse. The deposits typically range from 4 to 5 m in thickness, locally reaching 10–

12 m where infilling the former 17th century city moat, and include brick fragments, broken 

glass, coins, clay jars, and bones of humans and domestic animals. Subsequently, these 

artificial deposits extended laterally and aggraded vertically, with the newer Anthropocene 

materials being of distinctively different composition to those described by Suess. The 

succession of anthropogenic strata below Vienna dates back to the Neolithic, and has been 

more or less continuous since Roman times, but many unconformities and much reworking 

make them typically unsuitable for hosting a GSSP. 

3.1.4 Gorrondatxe-Tunelboca beachrock, Spain 

The Gorrondatxe-Tunelboca beachrock (Figure 2) comprises 1 million tonnes of sediments 

accumulated since the 1940s. Its source is the 30 million tonnes of blast furnace waste that 

was tipped offshore between 1902 and 1995 CE (Irabien et al. 2015). Wave activity 

transported the waste and it re-sedimented as a beachrock deposit about 1.8 km long and 

50 to 100 m wide. The succession comprises up to 7 m of deposits of anthropogenic origin, 

resting on up to 2.5 m of bioclastic beach sands (Martínez-García et al. 2013). The lowermost 

high-energy open beach deposit pre-dates the discharges of iron slag and has a distinct 

foraminiferal assemblage (Figure 2). This is overlain by sands with an anthropogenic 

component, where the foraminifera decrease upwards in abundance (assemblage 2 of Fig. 

2), and then decrease in diversity to become largely monospecific (assemblage 3). The 
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decrease in foraminiferal abundance and diversity coincides with the dumping of the iron 

foundry deposits offshore. The upper deposits comprise a foreshore succession of cemented 

conglomerate of furnace bricks, foundry slag with an upper sandy deposit that includes 

plastics (Zalasiewicz et al. 2016a). Internal erosion surfaces are present throughout, as in any 

beach deposit. Access to the section is good, the site coinciding with the existing GSSP for 

the Lutetian Stage (Middle Eocene), while the beachrock deposits are recognised as Geosite 

96 of the Basque Region. The supply of anthropogenic materials to the shelf ceased in the 

1990s, and the beach deposits have started to be eroded by waves, and so have limited 

potential for long-term preservation. The presence of internal erosion surfaces, the lack of 

clear lateral continuity, absence of annually laminated deposition, and poor preservation 

potential of the site make it unsuitable for hosting a candidate GSSP. 
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Figure 2. Cores through the Gorrondatxe-Tunelboca beachrock, Spain. A natural high-energy open 

beach sand deposit, pre-dating the discharges of iron slag, is overlain by cemented sandy and coarse 

beach deposits that are commonly conglomeratic with abundant slag clasts and incorporating littoral 

foraminifera. Three distinct foraminiferal assemblages are recognised (ranges for assemblages 1, 2 

and 3 marked by arrows). Modified from Martínez-García et al. 2013.  

 

3.2  Marine anoxic basin deposits  

The oceans where water is >200 m deep comprise about 66% of the Earth’s surface, and the 

sediments that accumulate there might be expected to preserve relatively complete and less 

disturbed successions compared with those on land or on the continental shelf. However, for 

deep-ocean deposits to form outcrops on land, rapid rates of uplift are needed and the 

prospects of such outcrops diminish with increasingly young deposits. Deep marine deposits 

of the Anthropocene, therefore, almost invariably need to be cored in situ. Cores are not 

ordinarily used for GSSPs because of their limited material and access, although exceptions 

were made for the base of the Holocene (Walker et al. 2009), and the proposed base of the 

Middle Holocene (Walker et al. 2012), both in ice cores. A case might therefore be made for 

an Anthropocene GSSP in a deep-ocean core. However, deep-ocean deposits often have low 

sedimentation rates limiting time-stratigraphic resolution, possess few terrestrial fossils, 

commonly show reduced preservation of calcareous microfossils, and are generally 

bioturbated, blurring the stratigraphic record in detail. Nevertheless, GSSPs have been 

located in relatively deep-water facies now preserved in terrestrial cliff sections, as in the 

Gelasian and Calabrian GSSPs of the Quaternary (Head and Gibbard 2015). Zalasiewicz et al. 

(2014c) recognised two distinct deep marine systems, the clastic wedges of turbidite fans 

and contourites that occur adjacent to the continents, and the slowly accumulating deep-sea 

oozes that lie beyond. In the modern deep ocean, both of these environments may be 
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affected by human activity, directly or indirectly. Anthropogenic modification of river 

systems, notably through dam construction on major rivers (e.g. Syvitski and Kettner 2011), 

and trawling on the upper continental slope (e.g. Martin et al. 2015), directly affect sediment 

supply, as does, indirectly, global warming and resultant rising sea-level. In the abyssal 

depths the main impacts are: litter, especially plastics (Ivar do Sul and Costa 2014, 

Zalasiewicz et al. 2016a); organic and inorganic chemical contamination, including radiogenic 

fallout signals; effects associated with atmospheric CO2 increase and warming such as 

variations in pH, dissolved oxygen content and δ13C; and resultant biological changes 

(Zalasiewicz et al. 2014c, Table 2). Sediment accumulation rates in the deep oceans are 

typically on the scale of 1−4 mm kyr-1 (Tyson and Pearson 1991), with the lowest rates at 

abyssal depths farther from shore. In such distal settings, the Anthropocene would be sub-

millimetric in thickness, with the Holocene represented by just ~10−50 mm.  

 

A suitable marine environment for a GSSP would include rhythmic varves associated with 

seasonal variation in sediment input that provides exceptionally high temporal resolution 

(Schimmelmann et al. 2016). For GSSP consideration, such varved successions would need to 

show little or no disturbance through storm or current activity, bioturbation or trawler 

fishing, but at the same time be characterised by sufficiently high rates of sedimentation to 

accumulate an adequate thickness of strata to represent the Anthropocene. Marine anoxic 

basins appear to be potentially suitable environments, where varve preservation is favoured 

by oxygen-deficient bottom waters, associated with thermal/or chemical density 

stratification and enhanced organic accumulation at depth through increased primary 

productivity in the photic zone, either through coastal upwelling or eutrophication 

(Schimmelmann et al. 2016).  
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Varved marine anoxic basin successions can be correlated laterally over tens to thousands of 

kilometres and can record changes to large-scale ocean and atmospheric circulation patterns 

(Schimmelmann et al. 2016). Marine varved successions are logistically difficult to collect and 

as a consequence few modern records have received detailed multi-proxy studies including 

varve counting in coordination with radiometric dating (Schimmelmann et al. 2016). 

 

Marine anoxic/dysoxic basins are mainly semi-enclosed basins where the water mass is 

isolated from the main shelf, typically below ~100 m and the reach of storm mixing of shelf 

waters. This can occur in depressions on the continental shelf (e.g. the Santa Barbara and 

Cariaco basins), in fjords, (e.g. Saanich Inlet and Saguenay Fjord) or in enclosed seas, (e.g. the 

Black and Baltic seas), but areas with periodic anoxia can also occur on an open shelf (e.g. 

Middle Atlantic Bight, northern Gulf of Mexico, Namibia, Peru) (Tyson and Pearson 1991, 

Figure 3), or on a continental slope on which impinges a well-developed anoxic oxygen-

minimum zone (southeastern Pacific off Peru, northwestern Arabian Sea).  

 

De-oxygenated dead zones currently occur over ~245,000 km2 of the coastal oceans (Diaz 

and Rosenberg 2008), or about 0.7% of the sea floor. The number of these dead zones has 

approximately doubled each decade since the 1960s (Diaz and Rosenberg 2008). About half 

of them are the consequence of eutrophication through runoff of fertilisers into the sea, 

increased primary productivity and enhanced organic flux to the sea bed (Diaz and 

Rosenberg 2008), and so they tend to occur offshore or downriver from populated areas 

(Figure 3). Most dead zones are currently seasonal, tending to occur in the summer after 

spring blooms, when the water is warmest and stratification is strongest (Diaz and 

Rosenberg 2008). Autumn storms bring a temporary return of benthos, disrupting seabed 

stratification. Only ~8% of dead zones are persistent (Diaz and Rosenberg 2008), these areas 
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experiencing the least sediment bioturbation, though in open oceans these seem not yet to 

have developed varves. Sediments of modern dead zones are a local expression of 

Anthropocene-related conditions, and identifiable by changes in geochemical character and 

fauna (Diaz and Rosenberg 2008), but they seem unlikely to provide good potential for 

candidate GSSPs, as they typically rest on the bioturbated deposits of the earlier more 

consistently oxygenated sea floor.  

 

 

Figure 3. Location of marine dead zones (from NASA Earth Observatory 

https://earthobservatory.nasa.gov/IOTD/view.php?id=44677; Aquatic Dead Zones generated 17th 

July 2010). Red circles show the location and size of the dead zones. Black dots show where dead 

zones of unknown size have been observed. The distribution commonly occurs adjacent to populous 

land areas (shown by the brown scale), but not to upwelling zones (shown by concentration of 

particulate organic carbon, in blue scale).  

 

Litter from ships is now seen in most sea floor surveys (Ramirez-Llodra et al. 2011). Clinker, 

from coal burnt to power steam-ships, was extensively dumped on the sea floor from ~1800 
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to ~1950 CE (Ramirez-Llodra et al. 2011), and may form a useful signal for latest Holocene 

strata. Much power station fly-ash and clinker has also been dumped at sea, e.g. Blyth power 

station ash into the North Sea, UK (Bamber 1980). Plastics and aluminium largely date from 

after 1950 CE, with land-derived microplastic beads and plastic fibres now a near-universal 

component of low-energy modern marine sediments (Ivar do Sul and Costa 2014, 

Zalasiewicz et al. 2016a). With about 4.9 billion tons discarded (which is 60% of all plastics 

produced since 1950) in geologically unstable waste dumps to uncontrolled deposition in 

terrestrial, aquatic and marine environments (Geyer et al. 2017), the quantity of plastic 

debris entering the oceans was estimated at 4.8−12.7 million tonnes in 2010 CE (Jambeck et 

al. 2015) and might strongly increase in the future. However, little work has been done to 

profile its stratigraphic distribution in marine sediment cores. 

 

Table 4 summarises the key advantages and disadvantages of marine anoxic basin deposits 

for hosting a potential GSSP. Well-studied examples (explored below) include the Santa 

Barbara Basin (California), Black Sea, Saanich Inlet (Canada), Saguenay Fjord (Canada) and 

Cariaco Basin (Venezuela).  

For: Against: 

• Undisturbed laterally extensive varves (below 
storm base) correlatable within basins 

• Independent 210Pb and 14C dating  

• Anoxic/dysoxic/hypoxic, no/little benthic bio 
/anthroturbation 

• Modification of fluvial input to oceanic basins 

• Clinker ash from steam-powered ships ~1850-
1950 CE; microplastics signal post-1950 CE 

• Coastal eutrophication since mid-20th century  

• High organic and clay components scavenge 
contaminants from water column e.g. metals, 
radionuclides and POPs  

• Global radionuclide signal (e.g. 239Pu, 14C) 

• Restricted extent (~0.7% of oceans)  

• Possibility of missing/additional laminae in 
near-coastal settings due to turbidite events  

• Thin strata, e.g. last 75 years <20 cm for the 
for Santa Barbara Basin and 75 cm for 
Saanich Inlet 

• Potential decadal time delay for Pu/metal 
contaminants to reach sea-bed (but settling 
velocity of ~2000 m yr-1 if present as grains, 
see Kowalski et al. 2016) 

• Difficult and costly environment to collect 
samples without disturbance of youngest 
laminae  
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• Planktonic foraminifera and diatoms as 
bio/geochemical signals 

Table 4. Reasons for and against using a marine anoxic basin deposit as a potential host for a GSSP. 

3.2.1 Santa Barbara Basin, California 

The Santa Barbara Basin lies 100 km west of Los Angeles, USA (Figure 3), at depths of up to 

590 m. Varves comprise dark terrigenous laminae derived from greater winter river runoff 

alternating with paler summer bloom laminae with diatoms (mainly Chaetoceros), planktonic 

foraminifera, radiolaria and silicoflagellates (Koide et al. 1975, Field et al. 2006, Barron et al. 

2015), reflecting seasonal NW winds that cause upwelling and increase biogenic productivity 

(Barron et al. 2015). Varves have been dated using 210Pb (Krishnaswami et al. 1973, Koide et 

al. 1975) and radiocarbon AMS (Schimmelmann et al. 2013). Before 1700 CE some drought 

years did not produce varves, with intermittent oxygenation events causing bioturbation, but 

from the 18th century to the present the lamina have been shown to be consistently annual 

and without gaps (Hendy et al. 2013, Schimmelmann et al. 2013). Strata below the upper ~1 

cm are highly anaerobic so there is little bioturbation of the laminae or leaching of Pu (Koide 

et al. 1975). A distinct 1841 CE bioturbated layer is associated with a flood and turbidite 

event (Hendy et al. 2013). There are no flood event deposits younger than 1930 CE 

(Krishnaswami et al. 1973), as dam construction along rivers feeding into the basin began in 

1912 CE, limiting sediment supply. Despite this, there has been substantial sediment flux 

since 1928 CE (Krishnaswami et al. 1973, Figure 4b), with a post-compactional thickness of 

~0.5–3 mm per lamina, the diatom ooze lamina component being up to 2 mm thick 

(Schimmelmann et al. 2016). 

 

The high organic carbon (3–5%) and clay fractions of the sediments scavenge heavy metals, 

including Pu, from seawater. The 239+240Pu concentrations initially rise in 1945–1949 CE 
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varves, exceeding background values in the 1950–1954 CE varves (Figure 4a), and continuing 

to rise into the 1970s (latest data available), with no sign of a distinct 1963−1964 CE bomb 

spike (Koide et al. 1975), perhaps reflecting the slow settling of Pu in deep water. Radiogenic 

particles settle only slowly through the water column, at 12.5 m yr-1 in the western Pacific 

(Livingston et al. 2001). But when such particles are bound within marine snow/faecal pellet 

aggregates they sink more quickly, at an estimated 74−39 m day-1 in the Santa Barbara Basin 

(Alldredge and Gotschalk 1988), allowing rapid transmission to the sea-floor. The continued 

rise of the Pu signal after the 1963−1964 CE bomb spike likely reflects reworking of 

terrigenous fallout into the basin (Koide et al. 1975), suggesting the first 239+240Pu signal 

above background, rather than a peak value, as a possible primary marker for the 

Anthropocene (Zalasiewicz et al. 2015). An ancillary radiogenic signal of 238Pu, sourced from 

the Snap 9A satellite burnup in 1964 CE, does show a 1964 CE peak (Koide et al. 1975, Figure 

4a), suggesting both little mobility of Pu within the sediment and little reworking of that 

radioisotope. 

 

Heavy metal signals in the basin are complex. A rise in Pb concentrations from 1931 CE 

(Figure 4c) is due to airborne particulates from leaded gasoline, derived from increased 

automobile use in Los Angeles, with levelling off from the 1970s representing introduction of 

unleaded gasoline (Schmidt and Reimers 1991). Cu values increase notably from about 1960 

CE, probably industrially sourced via sewage outfalls (Schmidt and Reimers 1991). Reduced 

anthropogenic input, in the case of Cd since the 1970s, may reflect improved sewage 

treatment (Schmidt and Reimers 1991).  

 

Among organic geochemical signals, a significant oil spill from a production well in 1969 CE 

increased Total Organic Carbon (TOC) values, generating a distinctive hydrocarbon signature 
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(Hendy et al. 2015). Polychlorinated biphenyls (PCBs) appeared in the basin sediments about 

1945 CE, the DDT pesticide breakdown product DDE [1,1-dichloro-2-2-bis(p-chlorophenyl) 

ethylene] first appearing ~1952 CE. Concentrations of both show a progressive increase 

through to 1967 CE (Hom et al. 1974); they may be sourced from sewage outfalls and surface 

runoff, while DDE can also arrive via atmospheric fallout (Hom et al. 1974). 
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Figure 4. Key signals in marine cores from the Santa Barbara Basin, with a) Pu signal (Koide et al. 

1975), b) variations in sedimentation rates (Krishnaswami et al. 1973), c) selected heavy metals 

(Schmidt and Reimers 1991) and d) planktonic foraminifera (Field et al. 2006).  
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The basin is located close to the boundary between the subarctic and subtropical gyres, the 

planktonic foraminiferal assemblages reflecting the dominance of one or other of these 

gyres (Barron et al. 2015). In a 1400-year dataset, decadal-scale fluctuations (the Pacific 

Decadal Oscillation) dominate, the two assemblages co-varying until 1959 CE (Figure 4d), 

after which there is increasing abundance of tropical/subtropical species, especially after the 

mid-1970s (Field et al. 2006). A complementary decrease in temperate/polar species in the 

late-20th century indicates the penetration of deep warm waters (Field et al. 2006). Evidence 

of such pronounced warming is not seen earlier in the record, not even during the Medieval 

Climate Anomaly (Barron et al. 2015). This warming is thought to reflect widespread change 

in the Northern Pacific in the mid-1970s, with greater cyclonic activity of the Aleutian Low 

Pressure System and warming in the eastern North Pacific (Field et al. 2006). Observed 

decreases in algae, zooplankton (which show 80% decline between 1951 and 1993 CE), fish 

and seabird abundance have also been related to this temperature increase (Roemmich and 

McGowan 1995).  

3.2.2 Black Sea 

The Black Sea is an enclosed silled basin with an area of 422,000 km2 and a maximum depth 

of 2212 m (Florea et al. 2011). The water column is stratified, with the pycnocline and 

halocline both occurring at about 75 m depth in the centre of the basin and 200 m at the 

margins, and marking the boundary between oxygenated water above and euxinic, H2S-

saturated and saline deeper waters below (Arthur et al. 1994, Florea et al. 2011). At the 

seafloor, there is a topmost gelatinous flocculent surface layer about 2 cm thick overlying a 

further 2 cm of unlaminated grey/white carbonate-rich sediment (Pilskaln and Pike 2001). 

The underlying unit (Unit I) is 25−45 cm thick and represents 1633 ± 100 years of 

sedimentation, based upon varve chronology (Arthur et al. 1994). This unit, present in the 
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deeper parts of the basin, contains varves averaging 0.2 mm thick, consisting of thicker 

white carbonate-rich summer/autumn laminae with abundant Emiliania huxleyi coccoliths 

alternating with thinner grey clastic-rich laminae deposited from spring and winter river 

runoff (Arthur et al. 1994, Pilskaln and Pike 2001, Schimmelmann et al. 2016). Black organic-

rich laminae with biogenic metal sulphides occur between the carbonate and terrigenous 

laminae (Pilskaln and Pike 2001, Schimmelmann et al. 2016). The top flocculent layer is 

thought to be a permanent transition zone that hydraulically sorts particles by density 

(Pilskaln and Pike 2001). 

 

The varves have been independently dated using 210Pb, 137Cs and 14C AMS, although the 

latter commonly gives older ages due either to the presence of “dead” carbon in Black Sea 

sediments or missing varves (Arthur et al. 1994, Pilskaln and Pike 2001, Florea et al. 2011). 

Although the highest countable varves beneath the flocculent layer date to about 1918 CE 

(Arthur et al. 1994), Florea et al. (2011) discerned the 1986 CE Chernobyl 137Cs signal at 

between 5 and 10 mm depth (in samples collected in 2004 CE), which agrees with a 210Pb-

dated accumulation rate of 0.49 ± 0.03 mm yr-1. Groups of varves in Unit I have been 

correlated across the entire deeper basin (Arthur et al. 1994), with no sign of erosion by 

interbedded cm- to dm-scale fine-grained turbidite layers (Arthur et al. 1994).  

3.2.3 Saanich Inlet, Canada  

Saanich Inlet is a 24 km long, up to a ~240 m deep, silled fjord in Vancouver Island, Canada, 

in which the water column shows stratification by density, salinity and temperature, with 

deep anoxic water containing hydrogen sulphide (Schimmelmann et al. 2016). Bottom water 

renewal is restricted to brief episodes of coastal upwelling during late summer, with H2S 

otherwise present in water as little as 120 m deep (Anderson et al. 1989). Maximum river 
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discharge and minimum salinity occur during summer months (McQuoid and Hobson 1997). 

Modern sediments include varves in which pale diatomaceous laminae (1.5–17 mm thick), 

with distinct seasonal assemblages, alternate with terrigenous silty clay laminae (0.5–6 mm 

thick) deposited in winter (Dean et al. 2001, Dean and Kemp 2004). The varves have been 

independently dated using 210Pb, 137Cs and 14C (Matsumoto and Wong 1977, McQuoid and 

Hobson 1997). Laminated intervals during the Holocene are punctuated by massive debris 

flow event beds (Dean et al. 2001). Laminae dated from 1950 CE have been recognised at a 

depth of about 75 cm (McQuoid and Hobson 1997). 

 

Biostratigraphic indicators include the invasive diatom Rhizosolenia setigera, abundant in 

autumn blooms (Dean et al. 2001), and introduced in the early 1940s through the arrival of 

aquaculture species and/or from ship ballast waters, both potential sources increasing in the 

1930s and 1940s (McQuoid and Hobson 1997). This invader partly supplanted the species 

Thalassiosira gravida and Chaetoceros diadema, which were more abundant prior to the 

1930s to 1940s, the assemblages also reflecting increased logging, farming and urbanization, 

especially from the 1930s (McQuoid and Hobson 1997). Sinking rates of these organisms, 

when present in aggregates, may reach 50 to 100 m day-1 (McQuoid and Hobson 1997 and 

references therein) meaning that the biotic signal in varves is highly responsive to seasonal 

changes in abundance in the surface waters. The stratigraphic record shows an abrupt 

regional climate shift in 1976/1977 CE, with the modern Pacific Decadal Oscillation changing 

to 22-year periodicity, in contrast to ~15-year periodicity recorded over the previous 2100 

years (Dean and Kemp 2004). 

 

Heavy metal residence times in the water column of the inlet are an estimated 0.08 years for 

210Pb, 0.07 years for stable Pb, 0.3 years for Cu, 3 years for Cd, and 2 years for Hg 
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(Matsumoto and Wong 1977). This indicates a near-synchronicity of the influx of Pb into the 

inlet and its subsequent accumulation in the sediments. 

3.2.4 Saguenay Fjord, Canada 

The Saguenay Fjord, Quebec, Canada, is a submarine valley, 93 km long and 1–6 km wide 

which links to the St. Lawrence Seaway via a shallow, 20 m deep sill (Gagnon et al. 1997). 

The fjord comprises two distinct basins with a deeper and larger landward basin up to 275 m 

deep and a seaward basin up to 250 m deep (Gagnon et al. 1997). The succession is dated 

with 210Pb and 137Cs (Loring et al. 1983, Smith and Levy 1990). Sediment accumulation rates 

in the landward basin are 0.2–0.4 cm yr-1 (Smith and Walton 1980). The deeper waters are 

generally saline, well-mixed and oxygenated with the redox boundary present a few 

centimetres below the sediment surface (Gagnon et al. 1997), but organic-rich effluent from 

pulp and paper mills produces anoxic, unbioturbated sediments at the head of the fjord 

(Smith and Levy 1990), making that location more suitable as a potential GSSP target locality. 

 

The Saguenay Fjord has been affected by industrial and municipal waste discharges since the 

1930s (Loring et al. 1983, Smith and Levy 1990). Very high Hg concentrations, and significant 

Zn, Pb, V and Cd contamination are evident in fjord sediments dating from 1948 CE, with 

peak values in the early 1960s and early 1970s (Loring et al. 1983, Gagnon et al. 1997). Most 

of the Hg is bound to organic matter (Loring et al. 1983), limiting Hg diffusion through the 

sediment (Gagnon et al. 1997). The oxidized surface sediments inhibit transfer of Hg to the 

overlying bottom waters, although surface bioturbation may reduce the efficiency of this 

barrier (Gagnon et al. 1997). Sustained high Hg values suggest resuspension of the Hg by 

spring runoff or frequent submarine mass flow events (Gagnon et al. 1997). A time lag of a 
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few months at the head of the fjord and 10–15 years at the seaward end (Loring et al. 1983) 

makes the Hg signal markedly diachronous. 

 

Polycyclic aromatic hydrocarbon (PAH) concentrations gradually increase in 1926 CE above 

pre-industrial levels, with dramatic increases in the 1940s after major expansion of 

aluminium production (Smith and Levy 1990). The PAHs in sediments are mainly scavenged 

from the water column by organic matter (Smith and Levy 1990). 

3.2.5 Cariaco Basin, Venezuela 

The Cariaco Basin off Venezuela comprises two euxinic sub-basins of >1400 m depth 

separated by a 900 m-deep saddle. It contains a stratified water column, with a thermocline 

and a chemocline between 250 and 375 m deep separating oxic waters above from anoxic 

waters below (Schimmelmann et al. 2016). The basin has been anoxic since about 12.6 ka BP 

(Hughen et al. 1996). Euxinic bottom waters are associated with sediments including varves 

(~0.9–3 mm thick, average 1.3 mm) of pale, biogenic (mainly diatoms) winter/spring laminae 

rich in planktonic opal, carbonate and organic matter accumulated during arid conditions 

when upwelling develops, and dark, siliciclastic summer/autumn laminae deposited during 

times of increased runoff, when there is enhanced input of Saharan dust and reduced 

upwelling (Hughen et al. 1996, Schimmelmann et al. 2016). Microbioturbation is ubiquitous, 

but generally only slightly disrupts the laminae (Hughen et al. 1996). The varves have been 

independently dated using 210Pb, 137Cs and 14C AMS (Hughen et al. 1996). Microturbidites a 

few mm thick occur throughout, with two distinct turbidites dated to 1897 ± 5 and 1932 ± 4 

CE, likely earthquake-triggered, with the older turbidite possibly having eroded a few 

centimetres of underlying varves (Hughen et al. 1996, Schimmelmann et al. 2016).  

 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 

53 
 

3.3 Coral bioherms, calcified sponges and marine bivalve shells 

Shallow-water coral reefs extend over only about 0.1–0.2% of the oceans, and are limited to 

the tropics, but they contain a large proportion of marine biotic diversity (Figure 5a). They 

were first impacted by humans via decreasing diversity of large marine animals beginning 

around 3.5 ka BP, a trend which accelerated during the Industrial Revolution and especially 

since 1950 CE (Pandolfi et al. 2003, Hoegh-Guldberg 2014). Widespread bleaching of tropical 

coral reefs in response to rising sea temperatures started in 1979 CE and has subsequently 

increased in frequency and severity (Hoegh-Guldberg 2014, Hughes et al. 2017). Other 

significant stressors, including increased turbidity of marine waters due to increased runoff, 

rises in pollutants, eutrophication and acidification, and severe overfishing, including the 

dynamiting of reefs by fishermen, have contributed to a 50% reduction in the abundance of 

reef-building corals over the past 40–50 years. Over the next several decades, this may lead 

to the collapse of whole reef systems, as happened during mass extinction events of the 

geological past (Hoegh-Guldberg 2014). 
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Figure 5. a) Distribution of shallow-water framework-building coral reefs (from NOAA: Where Are 

Reef Building Corals Found http://oceanservice.noaa.gov/education/tutorial_corals/ 

coral05_distribution.html and cold-water corals (from Freiwald et al. 2017) and b) the inventory of 

anthropogenic CO2 (μmol CO2/kg) in surface waters (from Swart et al. 2010).  

 

Although reef systems as a whole are undergoing significant change, indicating their 

importance for recognising anthropogenic impacts, individual reefs are complex and non-

stratiform. Consequently, it is not a reef as a whole that should be considered as hosting a 
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potential GSSP, but one of the long-lived coral bioherms within it that shows annual growth 

bands. In the Great Barrier Reef, fluorescent banding reflects seasonal-interannual variations 

in fluvial discharge of organic compounds (Isdale 1984). The annual laminae can be 

independently dated using 210Pb and 14C. Key correlatory signals include Pu radionuclide 

fallout, the 13C Suess effect and uptake of pollutants, in particular heavy metals (Figure 6a). 

 

Cold-water growths of aragonitic scleractinian corals and proteinaceous corals are smaller 

than the tropical reefs, and occupy a range of latitudes and of water depths – from a few 

metres to abyssal depths (Figure 5a). Such corals also imprint the Suess effect, radiocarbon 

and heavy metal signals, and individual cold-water corals can be long-lived. But, those from 

deep waters contain banding that is not necessarily annual, and ages can only be reliably 

provided through radiometric dating (Lee et al. 2017). Long-lived bivalves, which also occur 

in cold waters, also record proxy environmental signals including water temperature and the 

radiocarbon fallout bomb-spike, though they occupy a smaller depth range (up to ~300 m 

depth, exceptionally up to 500 m) than cold-water corals. 

 

Calcified sponges (or sclerosponges), found living in water depths up to 145 m, are known to 

provide good proxy records of water temperature and salinity, secreting their skeletons 

without some of the vital effects seen in corals and clearly showing the Suess effect on 

carbon isotopes (Figure 6a). They provide records stretching up to 1000 years, much further 

back in time than many corals (Swart et al. 1998). However, they are very slow growing 

(~0.22–0.27 mm yr-1) with living tissue accounting for 3 to 4 years of growth; consequently 

despite some species showing growth banding, evidence that this is annual is equivocal and 

14C- and 210Pb-dating are required to determine ages (Swart et al. 1998). As such, they seem 
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to provide a lower resolution and hence less suitable host for a GSSP than corals or bivalves 

(see section 3.3.6).  

 

Table 5 summarises the key advantages and disadvantages of using coral laminae in tropical 

reef bioherms and cold-water corals and bivalve shells for hosting a potential GSSP. Up to 

now, research on corals has rarely provided multi-proxy signals, so the examples provided 

below focus on the specific signatures where research has been done. 

 

For: Against: 

• Seasonal growth bands, with large growth 
rates in shallow-water corals 

• Independent dating using 210Pb and 14C 

• Microplastic ingestion in corals, e.g. Great 
Barrier Reef 

• Temperature recording (δ18O and Sr/Ca) in 
corals and bivalves; bleaching events in corals 
beginning 1979 CE 

• δ13C Suess effect mirrors anthropogenic CO2 
ocean inventory 

• Shallow water corals with rapid uptake of 
radionuclides and contaminants 

• Heavy metal enrichment is coral-species 
specific and more sensitive than adjacent 
sediments 

• Shallow, warm-water corals limited to 
tropics; deep-water corals and bivalves 
provide greater geographical spread 

• Reefs are complex structures; signal defined 
on individual coral or bivalve 

• Deep-water corals are affected by a ~25 year 
lag in Δ14C and Pb records compared with 
shallow-water corals 

• No GSSP precedent of using living/deceased 
coral or bivalve 

Table 5. Reasons for and against using a coral or bivalve shell as a potential host for a GSSP. 

3.3.1 Caribbean 13C Suess effect and heavy metal concentrations  

Scleractinian corals mirror changes in the anthropogenic CO2 inventory of surface oceans 

(Figure 6a). In a global comparison of rates of change of δ13C in coral skeletons between 

1800 and 2000 CE (Swart et al. 2010), 64% showed a marked decrease from the mid-20th 

century, attributed to the addition of anthropogenically derived CO2 (the 13C Suess effect). 

The decrease was greatest in areas of largest input of anthropogenic CO2 (Figure 5b) and, in 
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Florida and elsewhere in the Caribbean, from 1960 to 1990 CE, was comparable to the 

carbon isotopic decrease in atmospheric CO2 (Swart et al. 2010, Figure 6a). A marked 

inflection of δ13C values is seen at about 1955 CE in Atlantic corals and sclerosponges, 

comparable to the δ13C inflection seen in Law Dome ice core from the Antarctic (Figure 6a). 

The rate of change is more variable and less pronounced in the Indian and Pacific oceans 

(Swart et al. 2010). There is an average air–sea equilibration time of about 1 year for the 

anthropogenically derived CO2 (Key et al. 2004), resulting in a minimal signal lag in surface 

waters. However, anthropogenic CO2 concentrations decrease with depth, and at about 1000 

m water depth the signal is only discernible in the North Atlantic (Key et al. 2004), suggesting 

either a significant lag or lack of transport to these depths. Shallow-water corals thus 

provide a more effectively correlatable stable carbon isotope signal than do records from 

deep marine environments such as deep anoxic basins.  
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Figure 6. a) Changes in δ13C with respect to age for corals from the Atlantic and the Pacific/Indian 

oceans compared to published data from Atlantic calcified sponges, averaged after removing the 

mean δ13C value of the coral skeleton from 1900 CE to the present day and shown as a five-year 

running mean (Swart et al. 2010). This is compared with δ13C data from Law Dome ice core (Rubino 

et al. 2013) which show a ~1955 CE inflection; b) 240+239Pu concentrations in annual growth bands 

from Porites lobata in Guam (Lindahl et al. 2011) and Orbicella (Montastrea) annularis in the U.S. 

Virgin Islands (Benninger and Dodge 1986); dpm kg-1 = decays per minute per kilogram; mBq kg-1 = 

millibecquerel per kilogram. 

 

Heavy metal concentrations in Panama tend to be higher in nearshore coral reefs and also in 

certain species such as Porites furcata, and show greater concentrations than in nearby 
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sediments (Berry et al. 2013). Humans have increased the flux of Pb by at least a factor of 10, 

with rapid and widespread dispersal of Pb into the atmosphere as aerosol particles, and a 

short residence time of two years within ocean waters (Boyle et al. 2014), which makes Pb 

potentially suitable as a stratigraphic marker. Of the oceans, the North Atlantic Ocean is 

most affected by Pb emissions from the Industrial Revolution and subsequently it is this 

region that has seen most research (Boyle et al. 2014). Corals in Bermuda (Kelly et al. 2009, 

Figure 7c) show an initial rise of Pb following exploitation of the Upper Mississippi Valley 

lead-zinc ore in the USA, with an initial peak in lead mining in 1840–1848 CE, followed by a 

clear increase that began in the late-1940s due to greater consumption of leaded gasoline, 

peaking in the 1970s following US environmental legislation (the US Clean Air Act of 1970, 

Boyle et al. 2014). Pb in gasoline from the USA typically has 206Pb/207Pb ratios >1.17 as 

compared to European Pb with ratios <1.15 (Boyle et al. 2014). This is expressed in the 

Bermuda corals, although the signal is complex, reflecting the different histories of leaded 

gasoline consumption and legislation in the USA and Europe (Bollhöfer and Rosman 2001). 

Higher 206Pb/207Pb ratios seen in Bermuda until the late-1970s (Figure 7d) are considered 

sourced from US gasoline, while the markedly lower ratios in the 1980s and 1990s reflect a 

European source (Kelly et al. 2009). Pb settles only slowly into deep oceanic waters, as seen 

off Bermuda (Boyle et al. 2014), but this is not a significant factor in contamination of corals 

at shallow water depths.  

 

The Pb signal shows global heterogeneity. In the Indian Ocean, significant Pb contamination 

started in the western Sumatra region around the mid-1970s, with increasing Pb/Ca ratios 

and decreasing 206/207Pb and 208/207Pb ratios around that time, trends that continue into the 

21st century (Lee et al. 2014). Pb emissions from China and SE Asia continue to increase (in 
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contrast to the pattern in areas fringing the North Atlantic), sourced from coal consumption 

(Boyle et al. 2014). 

 

 

Figure 7. a) Plot of Δ14C vs age for 7 different colonies of the deep-sea gorgonian coral Primnoa 

resedaeformis with spline fit through the data (Sherwood et al. 2005a), and for the bivalve Arctica 

islandica (Weidman and Jones 1993); b) δ15N-AA depletion in deep-sea gorgonian corals in the NW 

Atlantic (Sherwood et al. 2011) © (2011) National Academy of Sciences; c) Pb concentration; and d) 

206Pb/207Pb in Bermuda corals (Kelly et al. 2009). 

 

3.3.2 Guam (Pacific Ocean) .v. Caribbean Pu radionuclide signals  

A natural coral archive in Porites lobata from Guam Island (NW Pacific Ocean), dated 

independently using δ18O cycles to produce a biweekly to monthly chronology between 1787 

and 2000 CE, was retrieved in a 273 cm core (Lindahl et al. 2011). Between 1943 and 2000 
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CE the average growth rate was ~15 mm yr-1 (Lindahl et al. 2011), significantly higher than 

most natural accumulation rates in marine and lacustrine basins. From 1943 to 1945 CE, 

239Pu (but not 240Pu) was detected in small concentrations (average of 1.96 ± 0.11 mBq kg-1, 

Figure 6b), though at levels higher than would be expected from an entirely natural source 

at that time (Lindahl et al. 2011). This suggests some minor mobility of anthropogenic (post-

1945 CE) Pu after incorporation into the coral. In 1946 CE, 239+240Pu activity concentrations 

increased by an order of magnitude (11.3 ± 2.4 mBq kg-1, Figure 6b) and continued at low 

levels until 1951 CE, reflecting fallout from locally tested, low-yield, nuclear devices (Lindahl 

et al. 2011). A marked bomb-nuclide peak is evident from 1952 to 1960 CE, with an apex in 

1954 CE (4540 ± 70 mBq kg-1, Figure 6b), the pattern being closely linked to that of large 

detonations in the local Pacific Proving Grounds (Lindahl et al. 2011). From 1961 to 1980 CE, 

there was an exponential decrease of 239+240Pu activity, but despite Nuclear Test Ban treaties, 

residual Pu remains in the sea water and continues to be incorporated into coral growth 

laminae, such that by 2000 CE levels were comparable to those in 1946 CE (Figure 6b).  

 

The Pu signals seen in a short (30-year) duration record from the coral Orbicella 

(Montastrea) annularis in the U.S. Virgin Islands (Benninger and Dodge 1986), reflect a 

location that is distant from atmospheric nuclear detonations. That study did not analyse 

coral bands from 1950 CE or earlier, so it is not possible to determine if a pre-1952 CE global 

fallout signal is present. But it did show clear 1959 and 1964 CE peaks in 239+240Pu that closely 

correspond to global fallout maxima (Benninger and Dodge 1986; Figure 6b herein). 

 

These data illustrate the very high-resolution Pu signal present in coral laminae, with only 

limited evidence of post-growth mobility of Pu. The example in Guam shows an initial rise in 

Pu between 1946 and 1951 CE and a peak signal in 1954 CE. Such a signal contrasts with 
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areas distant from testing grounds which show a global Pu fallout pattern (e.g. Waters et al. 

2015), with an initial 1959 CE peak and a subsequent higher 1964 CE peak (e.g. Benninger 

and Dodge 1986). This variability in peak signals suggest the initial rise in global Pu levels 

would better mark the basal boundary of the Anthropocene than any of the various peak 

signals (cf. Zalasiewicz et al. 2015). For hosting a potential GSSP, choosing a coral that was 

distant from nuclear testing grounds would mean that the global atmospheric signal is 

resolved without local perturbations. 

 

3.3.3 14C, Pb and δ15N signals in deep-water Atlantic gorgonian corals 

Corals show a 14C bomb-spike that has potential as a marker (Sherwood et al. 2005a; Figure 

7a herein). Compared to coral Δ14C records from Florida in the North Atlantic, the inception 

of the Brazil (Abrolhos Archipelago) record is delayed by ~1 year during the late 1950s with 

peak Δ14C values reached from 1970 to 1972 CE in Florida and at 1974 CE at Abrolhos 

(Druffel 1996), suggesting an appreciable lag for the bomb 14C to transfer from the main 

source latitudes in the Northern Hemisphere. There is also a Δ14C atmosphere–surface ocean 

equilibration time of approximately 10 years, with some resultant time lag in the signal (Key 

et al. 2004). However, analysis of growth rings in the deep-water gorgonian coral Primnoa 

resedaeformis at depths of 250–475 m off Nova Scotia (Canada) shows a Δ14C peak around 

1972 CE (Sherwood et al. 2005a; Figure 7a herein), similar to that in shallow water corals in 

Florida (USA), suggesting rapid transfer of the radiocarbon to such moderate depths via 

plankton. Overall, a mid-1950s inception of the signal is evident in gorgonian corals from 

these environments, providing a reasonable proxy for the beginning of the Anthropocene. 
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At much greater depths, Δ14C records from the coral Enallopsammia rostrata from 1410 m 

depth off Bermuda first show bomb radiocarbon at ~1980 CE (Lee et al. 2017), a delay of 

some 25 years compared with the atmospheric signal (Lee et al. 2017). In this record, the 

introduction of anthropogenic lead, evident as an increased Pb/Ca ratio and decreased 

206Pb/207Pb and 208Pb/207Pb ratios, occurs in the 1990s and hence shows a similar 25-year 

delay, and the signal is significantly smaller compared with that from nearby shallow-water 

corals (Lee et al. 2017). Given the decade-scale lags for Δ14C in shallow-water corals, with 

even greater lags in deep-water corals, Pu is here considered the preferred fallout signal in 

corals. 

 

Primnoa resedaeformis from Nova Scotia (Canada) to Virginia (USA) records the Suess effect, 

with δ13C values decreasing by at least 2‰ since around 1960 CE (Sherwood et al. 2005b). 

Primnoa resedaeformis off Nova Scotia also records a δ15N signal, considered a proxy for 

nitrogen source, which is correlated with increasing subtropical versus subpolar slope waters 

over the 20th century (Sherwood et al. 2011); δ15N decreased by about 1‰ over this interval, 

with most of the decline occurring after 1970 CE, coincident with a rise in nitrates (Sherwood 

et al. 2011). Such coral studies show that the persistence of a warm, nutrient-rich regime 

since the early 1970s is exceptional in the context of the last ~1800 years (Sherwood et al. 

2011, Figure 7b). Coral cores from Dongsha Atoll, western Pacific, show markedly lowered 

δ15N values since ~2000 CE in coral skeleton-bound organic matter, probably associated with 

increased deposition of anthropogenic atmospheric nitrogen (Ren et al. 2017). By contrast, 

coral studies from some Indo-Pacific reefs affected by untreated sewage outfalls show high 

δ15N (and δ13C) signals (Heikoop et al. 2000), indicating the complex behaviour of the 

nitrogen stratigraphic proxy. 
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3.3.4 Global temperature and pH proxies from corals in the Great Barrier Reef 

In the Great Barrier Reef, Australia, annual band thicknesses in corals equate to growth rate, 

which can be correlated with sea surface temperatures (SSTs) on a time scale of years to 

centuries (Lough and Barnes 2000). During the bleaching events associated with elevated 

SSTs of the late 20th century, Porites colonies from the Great Barrier Reef showed a decline 

in linear growth of 13.3% between 1990 and 2005 CE (De’ath et al. 2009), with calcification 

rates falling by 14.2%. Such changes are unprecedented over at least the last 400 years 

(De’ath et al. 2009). 

 

Corals in the tropical Pacific region have shown a general decrease of δ18O values from the 

late 20th century to the present (Cole 1996). This reflects large-scale warming in the upper 

layers of the ocean, or a general freshening of these waters, or a combination of both. δ18O 

signals in scleractinian coral skeletons have been used as SST proxies in other areas, some as 

long records (e.g. Colonna et al. 1996), or at very high resolution (e.g. Ahmad et al. 2011). 

However, δ18O signals reflect evaporation rates as well as SST, which is why they are 

frequently used together with other proxies, especially Sr/Ca (e.g. Tierney et al. 2015, Zinke 

et al. 2016). While some locations show a pronounced temperature increase around 1950 CE 

(e.g. Hetzinger et al. 2010), coral proxies have also shown that tropical seas might have 

started to warm as early as the mid-19th century, as an effect of both natural and possibly 

anthropogenic drivers predating the widely recognized global warming typical of the mid-

20th century (Abram et al. 2016). Although temperature reconstructions can be highly 

refined (DeLong et al. 2016), temperature records from coral skeletons are a mix of local and 

global factors, and hence better as an ancillary rather than primary marker for defining any 

potential coral-based GSSP. 
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δ11B isotopic records in carbonates can provide a proxy for seawater pH. Data from a Porites 

coral in the Great Barrier Reef covering an interval from 1800 to 2004 CE show a recent 

trend of acidification correlating positively with the δ13C Suess effect, and negatively with 

Mg/Ca ratios (a further proxy for SSTs) from 1940 to 2004 CE, indicating a coincident 

warming (Wei et al. 2009). Pre-industrial boron isotope signals in the coral show 22- and 10-

year cycles strongly controlled by the Pacific Decadal Oscillation (Wei et al. 2009). From 1940 

to 2004 CE the δ11B signal indicates a decrease in pH of about 0.2–0.3 U, but with marked 

annual oscillations of 0.5 U around 1940 and 1998 CE (Wei et al. 2009).  

3.3.5 Plastics in the Great Barrier Reef  

Macroplastics have become noticeable in coral reefs, through the snagging of fishing nets 

and as plastic debris generally washed into the oceans. Microplastics are increasingly found 

both within marine waters and in underlying sediments (Zalasiewicz et al. 2016a). These 

plastics adsorb heavy metals and organic compounds from water, which can bioaccumulate 

in worms, fish and seabirds (Ivar do Sul and Costa 2014), and zooplankton (Cole et al. 2013). 

Microplastic ingestion into scleractinian coral polyps has been recognised recently in the 

Great Barrier Reef (Hall et al. 2015). Ingestion probably occurs both via microplastic-

containing zooplankton and directly from the water. It remains uncertain whether any 

ingested plastic is transferred into the coral skeleton, as a potentially recognizable feature of 

future coral growth bands. 

3.3.6 North Atlantic marine bivalves 

A Δ14C bomb signal comparable to that in cold-water corals (Figure 7a) was recorded in a 

long-lived bivalve, the ocean quahog (Arctica islandica) collected at a depth of 75 m on 

Georges Bank off New England, USA (Weidman and Jones 1993), with similar records in 

haddock otoliths (Melanogrammus aeglefinus) from the Grand Banks (Campana 1997). The 
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Δ14C values measured in these and in the gorgonian coral P. resedaeformis (see above) (~ -80 

to ~ +80‰) are low compared to those in reef corals from Florida (~ -60 to ~ +160‰) where 

the stratified subtropical waters have a less diluted bomb signal (Sherwood et al. 2005a). 

Arctica islandica from water depths of 3−80 m across the temperate North Atlantic shows a 

gradient of increasing amplitude of the radiocarbon bomb-spike from Iceland southwards 

towards the North Sea (Scourse et al. 2012). All localities show a rapid response to the 

increase in atmospheric Δ14C excess, with a lag within the bivalves of as little as 1−2 years, 

despite the equilibration time between atmosphere and ocean of 7−10 years (Scourse et al. 

2012). However, the bivalve data shows a slow response to the decline in the radiocarbon 

signal, with a diachronous peak that occurs earlier in the south (Scourse et al. 2012).  

 

Annually resolved δ18O signals recorded in A. islandica collected at a water depth of 80 m 

north of Iceland show gradually increasing values over the period 953–1891 CE (±18 years), 

after which there is a rapid transition to lower values, with the 20th century represented by 

values that are significantly lower than at any other time in the last 1000 years (Reynolds et 

al. 2016).  

 

 3.4 Estuarine and deltaic deposits 

River estuaries and deltas are present on all continents except Antarctica, forming the 

transition between the fluvial and marine realms (Figure 8) and representing the zone 

through which most terrestrial sediments (including those associated with human signals) 

are transported to the oceans. Estuaries occupy about 10 million km2 and major deltas 1 

million km2 (Syvitski and Saito 2007). Most modern estuaries and deltas developed during 

the Early Holocene sea-level rise, with the flooding of river or glacial valleys. Sea level during 
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the Middle and Late Holocene was essentially stable, allowing estuaries to silt up and deltas 

to build seawards (Zalasiewicz et al. 2014c). In addition, early deforestation and new 

agricultural practices commonly resulted in increased sediment flux to estuaries and deltas 

(Syvitski and Kettner 2011). Current and projected absolute sea-level rises are expected to 

flood both estuarine and deltaic deposits as warming continues to expand ocean water and 

melt land ice (Giosan et al. 2014). The trapping of sediment behind major dams, constructed 

on nearly all major rivers in recent decades (Syvitski and Kettner 2011), has greatly reduced 

sediment flux to the coast since the 1950s (Walling and Fang 2003). This change will leave a 

clear response as a transgressive, diachronous sequence-stratigraphic system with excellent 

preservation potential (Poirier et al. 2011). One consequence of decreasing fluvial profiles 

during sea-level rise is lower rates of erosion in the proximal headwaters, resulting in rivers 

with slower flow regimes, transporting relatively finer sediments to estuaries and deltas and 

therefore to coastlines. Where rivers have been dammed, even these sediment loads will 

not reach the coastal ocean. Many urban centres are located on or close to deltas or 

estuaries, which may therefore experience substantial anthropogenic influence. Deltas and 

coastal deposits continue to subside under their own weight, the subsidence now being 

accentuated by the compaction associated with urban development and with the extraction 

of groundwater and hydrocarbons (Syvitski and Kettner 2011), while locally drainage has led 

to the wholesale removal of surface peat layers, further lowering the surface (e.g. Smith et 

al. 2010) and increasing flooding risk. Twenty four out of the world’s 33 major deltas are 

subsiding, levels of subsidence having reached several metres, as on parts of the Rhine, Nile, 

Pearl and Yangtze River deltas (Syvitski et al. 2009).  
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Figure 8. Distribution of deltas and estuaries (from Tessler et al. 2015), major mud depocentres (from 

Hanebuth et al. 2015) and areas where neobiota amenable to fossilization have recognizably altered 

coastal ecosystems (from: Major pathways and origins of invasive species infestations in the marine 

environment In UNEP/GRID-Arendal Maps and Graphics Library http://www.international-

marine.com/invasivespecies/PublishingImages/invasive_vectors_001.png). 

 

Mud deposition occurs on the continental shelves in front of major estuarine and deltaic 

areas (pro-deltas) around the world (Figure 8). They can also form subaqueous deltas 

disconnected from the source delta, or as scattered mud patches and widespread mud 

blankets, with a moderate sedimentation rate of 1–5 mm yr-1 (Hanebuth et al. 2015). They 

represent well-resolved palaeoenvironmental accumulations, commonly initiated during 

early flooding of continental shelves following deglaciation ~14 ky ago (Hanebuth et al. 

2015). One example now forming a sink of anthropogenic pollution, including heavy metals 

and hydrocarbons, lies off the coast of São Paolo State, SE Brazil (Mahiques et al. 2016). 

Here, the mud deposits originate from many small river inputs and are mixed with coastal 

sediments. These deposits form a laterally extensive sedimentary succession, where the 

mid-shelf section at 50−100 m depth is prone to reworking through bioturbation, storms and 
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anthropogenic disturbance, including trawler fishing and sea-bed dredging (Mahiques et al. 

2016). Similar shelf mud deposits occur in the Bay of Biscay, in front of the Gironde estuary, 

SW France (Lesueur et al. 1996), where three mud-patches, totalling 630 km2, occupy 

palaeo-valleys at depths of 30−75 m. The rhythmically laminated deposits there, which 

broadly represent storm layers, accumulated to a thickness of 1.8 m over the last 2000 years 

and the upper 0.2 m accumulated in <30 years, as shown by 14C and pollen analyses. A 

marked increase in pollen from Pinus pinaster over the last century reflects extensive 

afforestation (Lesueur et al. 1996). 

 

Estuaries and deltas are particular foci for neobiota (Wilkinson et al. 2014), often associated 

with marked declines in indigenous species. Widespread translocation of invasive species 

took place during the 19th and 20th centuries through the establishment of global shipping 

routes, and resultant transfer of species in ballast water and from hull fouling (Figure 8). 

Organisms such as diatoms, dinoflagellates, foraminifera and ostracods, are particularly 

susceptible to transportation in ballast water and hence are likely to produce novel signals 

within coastal sediments, especially close to major ports (McGann et al. 2000, Calvo-

Marcilese and Langer 2010). The International Convention for the Control and Management 

of Ships' Ballast Water and Sediments, which came into force in September 2017, is aimed at 

reducing the rate of such biotic transfer.  

 

Aquaculture of fish, shellfish and shrimps has become a growing feature of estuarine settings 

in the late 20th and early 21st century (Martinez-Porchas and Martinez-Cordova 2012). This 

has resulted in diverse biotic changes including the displacement of native species, 

competition for space and food, and the spread of pathogens and parasites, and impacts like 

these are likely to increase as this kind of fishery develops. In addition, destruction of natural 
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ecosystems, most notably of mangroves along equatorial coastlines, which have seen a 25% 

decrease in 20 years to 150,000 km2 in 2000 CE (Martinez-Porchas and Martinez-Cordova 

2012), has changed species presence/absence and abundance patterns. Aquaculture can 

also lead to eutrophication causing phytoplankton blooms, including red tides, the resultant 

anoxia and increased pathogens killing off benthic organisms (Martinez-Porchas and 

Martinez-Cordova 2012). The first arrival of many invasive species to local areas is commonly 

historically documented, but the fossil record of these changes as successive assemblages in 

recent well-dated sedimentary successions remains poorly studied. 

 

‘Bomb spike’ calibration and AMS 14C dating have been used to derive a detailed age-depth 

model for a 1-m long sediment column collected from a salt marsh in Poole Harbour, 

southern England (Marshall et al. 2007), enabling comparison with chronologies obtained 

from CRS 210Pb analysis, 137Cs age markers, pollen and spheroidal carbonaceous particles 

(SCPs). Little or no agreement was found between the 14C ‘bomb spike’ dates, the 210Pb 

chronology, and the 137Cs data, the last of these being affected by local (non-fallout) 

discharges (Marshall et al. 2007). The study showed an acceleration in sedimentation rates 

during the last 100 years, and indicated that ‘bomb spike’ 14C calibration dating may often 

better constrain salt-marsh sedimentation rates than 210Pb dating (Marshall et al. 2007).  

 

Table 6 summarises key advantages and disadvantages of hosting a potential GSSP within 

estuarine or deltaic deposits, where research has focused on impacts of anthropogenic 

pollution through geochemical signatures, especially heavy metals and POPs, and on 

microbiotic content such as foraminifera, diatoms and palynomorphs (Wilkinson et al. 2014). 

The examples provided below, for the Clyde Estuary (Scotland), Urola Estuary (northern 
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Spain) and Indus Delta (Pakistan), demonstrate a range of signals. For a variety of reasons 

(Table 6) these types of environment seem unsuitable for hosting a GSSP. 

 

For: Against: 

• May be varved through seasonal variations in 
sediment flux 

• Independent dating using 210Pb; 14C more 
challenging 

• Radionuclides, no settling delay in water 
column; clear bomb spike  

• Micro- and macro-organisms reflect 
environmental change and commonly 
preserve as fossils (e.g. foraminifera, diatoms, 
palynomorphs, molluscs, fish)  

• Microplastics, direct source from effluents 

• Heavy metals, close to industrial sources 

• Persistent organic pollutants signal e.g. 
chlorinated pesticides, polychlorinated 
biphenyls 

• Modification of fluvial input to estuaries 
related to catchment modification 

• Samples relatively easy to procure 

• Potential of bioturbation  

• Numerous omission surfaces (natural erosion 
and anthropogenic dredging) 

• Limited lateral continuity, but distinct 
systems may undergo similar histories 

• Strong modulation of signals by local 
processes 

• No GSSP precedent 

 

 

Table 6. Reasons for and against using an estuarine or deltaic deposit as a potential host for a GSSP. 

 

3.4.1 Clyde Estuary, Scotland (Pb and organic compounds) 

Lead concentrations in the Clyde Estuary were initially elevated early in industrial activity, 

peaking by about 1915 CE, with a prominent decline to historically low concentrations post-

1980 CE (Vane et al. 2011, Figure 9a), as heavy industry declined and Pb use in gasoline was 

phased out. 207/206Pb isotope ratios of Sphagnum moss collected in Scotland from 1838 CE to 

the present record variation of atmospheric Pb aerosols (Farmer et al. 2002): a constant 

pattern during the 19th century until ~1915 CE reflects use of British lead coal-ore and coal-

burning (Figure 9a); increased ratios from 1920 CE due to overseas Broken Hill-type Pb 
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additives in gasoline and industrial lead, peaking in the 1980s; and then declining ratios 

following the banning of lead in gasoline (Vane et al. 2011).  

 

Increased industrialization of the Clyde Estuary in west Scotland has led to elevated levels of 

sediment-hosted anthropogenic organic chemicals (Vane et al. 2011), including total 

petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated 

biphenyls (PCBs) and brominated flame-retardants (polybrominated diphenyl ethers, PBDEs) 

(Figure 9b). The PAHs are largely sourced from combustion of coal, petroleum or wood with 

peak concentrations in 1954 CE (Vane et al. 2011, Figure 9b). Increasing petroleum pollution 

mainly from shipping and petroleum refineries was recorded from about the 1950s by 

increasing TPH concentrations and a decline in PAHs that reflects decreasing coal use (Vane 

et al. 2011). This was followed by more modern pollution from the PCBs, which show a 

prominent onset (1950s), peak (1965–1977 CE) and decline (post-1980s). 

 

The complexity of signals provides a very fine resolution chronometer of pollution in the 

Clyde Estuary. Although the Pb, TPHs and PAHs provide a local signal, the Pb isotopes and 

PCBs provide a more widespread and consistent, although not precisely coincident, global 

signal. 
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Figure 9. Example of data from a single core from the Clyde Estuary showing a) Pb concentrations 

and 207/206Pb isotope ratios, and b) PAH, TPH and PCB organic chemical signatures (Vane et al. 2011). 

Dates are interpreted. 

 

3.4.2 Urola Estuary, Spain 

The lower intertidal part of the Urola estuary (Basque coast, Spain) was studied in a 50 cm 

core and dated using 210Pb, the basal parts dated using 210Pb to ~1850 CE (Goffard 2016). 

From the 1960s to the 1980s the rate of sedimentation increased by >60% in response to 

growing industrial activity, with further increase from the mid-1990s coinciding with nearby 

dredging. Micropalaeontological analysis of benthic foraminiferal assemblages (FAs) (Goffard 

2016) identified three assemblages (Fig. 10) that reflect a local cycle of biological 

deterioration and reduced diversity followed by recovery. This biostratigraphic succession 

has been correlated with changes in levels of industrially-derived metals in the sediment, 

showing that chemical deterioration preceded biological deterioration. Longer-range 

correlation is provided by: spheroidal carbonaceous particles, which occur mainly in the 
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lower levels; iron spheroids, showing enrichment from the 1960s; and plastic microbeads, 

which increase from the 1980s (Goffard 2016).  

 

 

Figure 10. Metal concentrations (Cu, Ni, Pb, Zn) versus foraminiferal density in the Urola estuary 

(northern Spain). FA1–FA3 represent three distinct foraminiferal assemblages referred to in the text. 

Modified from Goffard (2016). 

 

3.4.3 San Francisco Bay, USA 

San Francisco Bay, with a well-documented history of invasive species (neobiota), is typical 

of the many coastal ecosystems around the world that are near shipping ports (Figure 8). In 

a seminal study by Cohen and Carlton (1998), some 234 neobiotic species were recognised, 

ranging from sponges to mammals. They noted an accelerating trend over 145 years, with 

about half the invasions occurring since 1960 CE. More recently, studies of shallow sub-tidal 
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sediments in the bay have identified soft-sediment communities dominated by invasive 

species (Jimenez and Ruiz 2016). The presence of so many neobiotic species in San Francisco 

Bay suggests the potential for a high-resolution biostratigraphy using species invasions 

(Figure 11). Building such a stratigraphy would need to resolve the myriad complexities of a 

sedimentary succession heavily disturbed since the 19th century. Nevertheless, sediment 

cores with Pleistocene and Holocene micropalaeontology are well known (e.g. Sloan 1992, 

McGann et al. 2002), providing a pre-human influenced baseline for local coastal 

assemblages.  

 

Figure 11. Chronology of selected invasive mollusc species into San Francisco Bay (for dates of 

invasion see: Carlton et al. 1990; Cohen 2004, 2011; Committee on Nonnative Oysters in the 

Chesapeake Bay, Fofonoff et al. 2017, National Research Council 2004), and terrestrial invasive 

species in the Maha’ulepu sinkhole succession of Kauai, Hawaii (Burney et al. 2001). In both 

successions, cultural human changes are indicated by the left-hand column, and neobiota in the 
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right-hand column. Although the two successions developed nearly 4000 km apart, and in warm 

temperate and tropical zones respectively, by the mid-19th century some taxa present on the 

California coast (e.g. the bivalve Crassostrea virginica, see DeFelice et al. 2001) were also present in 

Hawaii, suggesting the possibility of correlation between remote successions. 

 

A focus of such analysis could be bivalves, which are commonly fossilized, widespread and 

readily recognisable neobiotic species. A biostratigraphic subdivision could begin with a pre-

neobiotic interval that is characterised only by indigenous bivalve species, these persisting 

into the mid-19th century. A subsequent early neobiotic stage (see also Cohen and Carlton 

1998) might be characterised by the first appearance of the oyster Crassostrea virginica, 

which entered the Bay in 1869 CE. A native to the Atlantic coast of North America, this 

species was introduced with the development of oyster fisheries. Crassostrea virginica was 

also introduced into the estuaries of the Hawaiian islands at about the same time (1866 CE), 

providing a potential biostratigraphic tie with a distant island succession (Figure 11).  

 

The early phase of invasions into San Francisco Bay is followed by increasing indicators of 

pan-Pacific connections between North America and East Asia, signalled by, for example, the 

introduction of the East Asian bivalve Venerupis philippinarum, first recognised in San 

Francisco Bay in 1946 CE (Cohen 2011, Figure 11), although there are earlier records 

elsewhere on the Pacific coast of North America. Locally, this species occurs in abundances 

of 2000 individuals per m2, and it has good preservation potential. It has also been widely 

introduced, from Hawaii (introduced in the 1880s, established by 1918 CE) to Europe. A later 

colonisation from East Asia was by the Amur Clam Potamocorbula amurensis, native to the 

waters of China, Siberia, Korea and Japan. It was introduced into San Francisco Bay in 1986 

CE, likely through ships’ ballast water (Figure 11) and then spread widely and rapidly. It now 
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occurs in huge numbers in muddy substrates within the Bay: up to 48,000 individuals have 

been recorded per m2 sediment (Cohen 2011).  

3.4.4 Indus Delta 

The Indus Delta, Pakistan, and its associated river system, is highly managed, with artificial 

levees, barrages, irrigation canals, upstream reservoir construction and inter-basin water 

diversions. It has also been affected by watershed deforestation. As a consequence, the river 

has changed radically, with a current sediment flux of ~13 Mt yr-1 to the tidal-dominated 

delta and its single active distributary, in contrast to the much larger flux >270 Mt yr-1 of 

mainly silt that was transported to the fluvial-dominated delta before these management 

schemes were implemented. The original delta system comprised 17 channels (which still 

avulsed naturally) in 1861 CE (Syvitski et al. 2014). Modifications started as early as 1762 CE, 

although constructed dams were all washed away in a flood in 1826 CE. The modern barrage 

system was initiated in 1859 CE (Syvitski et al. 2014). With rising sea-levels accompanied by 

tectonic subsidence, the abandoned distributary channels are being tidally reworked since 

1944 CE and the delta has lost 12.7 km2 yr-1 of land and ~69 Mt yr-1 of sediment by erosion. 

The system is highly dynamic due to monsoon-driven floods, storm surges, tsunamis and 

earthquakes (Syvitski et al. 2014), and hence stratigraphic successions are beginning to 

emerge as complex backstepping packages of sediment with omission surfaces related to 

erosive events, in contrast to the pre-1869 CE delta, which was prograding at about 200 m 

yr-1. 

 

3.5 Lake sediments 

The planet has about 117 million lakes greater than 2000 m2, covering about 3.7% of the ice-

free land surface, with the highest concentration and area of lakes at boreal and arctic 
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latitudes between 45°N and 75°N (Verpoorter et al. 2014). The most suitable lake 

environment for hosting a potential GSSP is one where varves are present. Varves tend to 

occur in lakes in which a flat bottom profile limits sediment flow, and, ideally, where there is 

little or no bioturbation, water movement, or gas emission from buried organic material to 

disturb the laminae (Zolitschka et al. 2015). Many such features are common in glacial lakes, 

characterized by graded summer silt laminae alternating with winter clays, e.g. Holtgrieve et 

al. (2011) and Wolfe et al. (2013). Varves can also develop in hypoxic lakes (Figure 12), 

typically meromictic lakes with stratified water columns in which sediment is introduced 

through seasonal input of clastic or biogenic material. Saline lakes can develop varves in 

response to seasonal precipitation of evaporite minerals, within an environment commonly 

too hostile for benthic life, allowing preservation of the varves; however, these lakes are 

more likely to periodically dry out, thus tending to miss annual laminae. Lakes are already 

recognized as suitable locations for hosting a GSSP, having been used as the ancillary GSSP 

locations for the base of the Holocene (Walker et al. 2009). 

 

Hypoxia has been recorded in sediments of 365 lakes worldwide (Figure 12). Of these, 71 

(~20%) show hypoxia developed since the mid-19th century CE, much earlier than the 

widespread development of hypoxia in coastal zones during the mid-20th century (Jenny et 

al. 2016). This reflects the sensitivity of lakes to environmental change, where increasing 

human activities and nutrient release commonly lead to the onset of hypoxia. No 

correlations were found with changes in precipitation or temperature. There is no evidence 

for a post-1980s return to well-oxygenated lacustrine conditions in industrialized countries, 

despite the implementation of restoration programmes (Jenny et al. 2016). Hypoxia notably 

can change the behaviour of trace elements and radionuclides, by either increasing or 

reducing their mobility (e.g. Pavin Lake, France; Jeandel 1981). 
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Figure 12. Location of the 365 sites recording lake hypoxia (Jenny et al. 2016). Recent hypoxia 

records onset of varves after 1700 CE, whereas naturally hypoxic lakes were taken to be those in 

which laminations persisted for at least 300 years. 

 

The radiogenic fallout signature is commonly well expressed in unbioturbated lake 

sediments, especially as the mid-latitude Northern Hemisphere peak fallout distributions 

(Hancock et al. 2014, Waters et al. 2015) coincide with the greatest abundance of hypoxic 

lakes. Shallow lakes are advantageous in that they show little of the settling delay evident in 

the anoxic marine basins (see section 3.2). However, they may still be prone to reworking of 

fallout signals from catchment areas, such that the onset of the signal will probably be 

unaffected, but the bomb-peak may be broadened although still centred at ~1964 CE. Lake 

Victoria in Australia is an example of a lake with a large catchment. Despite showing the 

expected peak of the 239+240Pu and 137Cs signals in 1964 CE (Figure 13), the Cs peak is broader 

and the post-1964 CE Pu decline is prolonged because of sedimentation associated with 

erosion within that catchment.  
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Abundant organic and clay components in lake sediments enable sorption of the main long-

lived radiogenic elements (plutonium and radiocarbon). Where plutonium concentrations 

are relatively high, α-spectroscopy effectively measures the combined activity of 239Pu + 

240Pu and also measures 238Pu activity (Figure 13), whereas mass spectrometric (MS) 

techniques are required where concentrations are low and to measure distinct 239Pu 

concentrations (Hancock et al. 2014). However, plutonium (and caesium) can be mobilized 

under anoxic conditions in meromictic lakes, e.g. Pavin Lake, France (Jeandel 1981). 

 

Figure 13. Radiogenic signature from Lake Victoria, Australia (Hancock et al. 2011). Profiles of 137Cs 

(closed squares), 239+240Pu (open circles) and 238Pu/239+240Pu (triangles).  

 

The atmospheric transfer of reactive nitrogen (Nr) results in the deposition of NH4
+, HNO3, 

and NO3
– even in remote lakes, as demonstrated in North America and the Arctic regions 

(Holtgrieve et al. 2011, Wolfe et al. 2013). Stable nitrogen isotope values from lake 

sediments of those regions show a consistent perturbation of δ15N commencing after 1850 
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CE, typically at 1895 CE ± 10 years (Holtgrieve et al. 2011, Figure 14), but with a faster rate of 

depletion from 1950 to 1970 CE and after 1980 CE (Wolfe et al. 2013). This depletion is 

attributed to fossil fuel combustion and the production and use of fertilizers, both with 

depleted isotopic ratios compared with catchment and preindustrial atmospheric sources 

(Holtgrieve et al. 2011). 

 

 

Figure 14. Sediment δ15N profiles from Northern Hemisphere lakes (from Holtgrieve et al. 2011). 

Lake ecotypes include: temperate/boreal (green circles), alpine (blue circles), and arctic (red circles), 

and the Greenland Summit ice core is indicated with a yellow circle. The solid lines are the median 

posterior fits to the observed data using the most parsimonious model, and the dotted lines are the 

2.5 and 97.5% credible limits.  
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Although spheroidal carbonaceous particles (SCPs) are first recorded from strata dating to 

about 1830 CE, they show a near-synchronous global mid-20th century increase in 

abundance. This increase was driven by the introduction of fuel-oil combustion, in addition 

to coal, and coincided with increased abundance of large-scale power plants, with peak 

abundance in the 1970s to 1990s (Rose 2015). Black carbon, produced from the incomplete 

combustion of fossil fuels and vegetation, can accumulate in lakes from both atmospheric 

aerosols and riverine input, and is inert and resistant to degradation (Han et al. 2016). The 

atmospheric component, generally seen as a smaller size fraction (soot), is more widely 

transported and hence provides a more regional signal than coarser riverine char (Han et al. 

2016). Biomass burning typically produces higher char/soot ratios than fossil fuel 

combustion, especially motor vehicle emissions (Han et al. 2016). Polycyclic aromatic 

compounds (PACs) tend to be co-produced with black carbon during hydrocarbon 

combustion. These can include polycyclic aromatic hydrocarbons (PAHs) and derivatives such 

as oxygenated PAHs (OPAHs) and azaarenes (nitrogen heterocyclic PAHs, AZAs) (Han et al. 

2016). The relationship is demonstrated for Huguangyan Lake, eastern China (section 3.5.4). 

 

Metal concentrations in lake sediments can be affected by variable factors such as the timing 

of local industrialisation, distinct sources of sediment supplied by river fluxes into the lake, 

and varying degrees of weathering of the source catchment areas. Anthropogenic Pb 

deposition in lakes typically shows elevated concentrations in modern sediments in response 

not only to local industrial sources, but also to regional to global scale Pb atmospheric 

release. In remote lakes, the supply of anthropogenic Pb is sourced via the atmosphere (e.g. 

Lake Qinghai, China; Jin et al. 2010), providing a wider and more consistent signal than Pb 

supplied via river-water influx from nearby industrial sources. In Lake Qinghai, elevated 

anthropogenic Pb concentrations from the 1960s to at least 2000 CE are considered 
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consistent with other remote Northern Hemisphere lakes (Jin et al. 2010). The lakes of the 

Rwenzori Mountains of Uganda are distant from direct sources of Pb, and therefore the lake 

sediments potentially contain reliable archives of long-range atmospheric pollution (Yang et 

al. 2010). Hg concentrations in these high-altitude lakes show increased Hg burdens from the 

1860s, with significantly elevated levels from 1930 ± 6 CE (Yang et al. 2010). 

 

The Great Lakes of North America show widespread microplastic contamination, mainly in 

surface waters and beach sediments, while plastic pellets have been recorded in bottom 

sediments of Lake Ontario (Corcoran et al. 2015). Notably, high-density microplastics, 

including mineral-polyethylene and mineral-polypropylene mixtures, sink to the lake bottom 

rapidly and have been accumulating since at least 1977 CE (Corcoran et al. 2015). 

Microplastics tend to concentrate in nearshore sediments, within low-energy environments 

close to urban and industrial areas at concentrations of up to ~28,000 particles kg-1 dry 

sediment and sediment depths of up to 15 cm (Ballent et al. 2016). Where microplastics are 

deposited at water depths of <40 m, they are prone to reworking by storm events (Ballent et 

al. 2016).  

 

Persistent organic pollutants (POPs) are characterised by slow rates of environmental 

degradation (years to decades), low solubility, high absorption to suspended particles and 

efficient atmospheric transport. Chlorinated pesticides (e.g. DDT and its degradation 

products), show a consistent worldwide rise from the 1950s (Muir and Rose 2007), and 

subsequent decline in the youngest sediments reflecting the US banning of DDT in 1972 CE. 

Temporal trends of input fluxes of polychlorinated biphenyls (PCBs), and the fire retardants 

hexabromocyclododecanes (HBCD) and polybrominated diphenyl ethers (PBDEs) in sediment 

cores from English lakes in urban settings show generally slow rises from ~1960 CE, which 
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are less clearly developed in rural settings. In the case of HBCD, the rise may be delayed by 

some 35 years (Yang et al. 2016).  

 

Invasive zebra mussels (Dreissena polymorpha) and quagga mussels (Dreissena rostriformis 

bugensis) represent novel species introduced into the North American Great Lakes in 1988 

and 1989 CE respectively (https://nas.er.usgs.gov/taxgroup/mollusks/ zebramussel/), both 

originating from southern Russia/Ukraine. As well as providing a novel biogenic signal, they 

also greatly modify the biotic content of the lakes. The trillions of quagga mussels in Lake 

Michigan (USA) can filter the equivalent of the entire lake volume in about 1 or 2 days. This 

has resulted in a shift in diatom composition, with significant reduction in the larger diatom 

genera, e.g. Stephanodiscus and Aulacoseira, leaving an impoverished algal community with 

mainly smaller genera, e.g. Cyclotella (Evans et al. 2011). Diatom assemblages in remote 

Northern Hemisphere lakes commonly show a consistent pattern. Typical Late Holocene 

benthic diatoms, such as Staurosira and Achnanthidium show declines concurrent with the 

rise of planktonic diatoms, first associated with an initially time-transgressive appearance of 

Discostella stelligera, attributed to climate warming (Wolfe et al. 2013). After 1950 CE, the 

planktonic diatoms Asterionella formosa and Fragilaria crotonensis became dominant (Saros 

et al. 2005, Figure 15; Wolfe et al. 2013 suggest 1980 CE). This later change may reflect 

elevated Nr availability (Wolfe et al. 2013, Figure 14) as well as rising temperatures. A 

comparable biotic change in the remote oligotrophic Scottish lake of Loch Coire Fionnaraich 

began in the 19th century following several hundred years of ecological stability (Pla et al. 

2009). Changes to diatom (mainly benthic) assemblages were strongly coincident with 

changes in spheroidal carbonaceous particle concentrations, and may result from 

atmospheric contamination, possibly Nr enrichment (Pla et al. 2009). Chrysophyte diatom 
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cyst (mainly planktonic) assemblages changed in response to a combination of atmospheric 

pollution and regional climate warming (Pla et al. 2009).  

 

 

Figure 15. Replacement of Holocene diatom assemblages by Asterionella formosa and/or Fragilaria 

crotonensis mainly in lake cores from US high-altitude sites, since ~1950 CE (Saros et al. 2005).  

Location of lakes shown on Figure 14. 

 

Table 7 summarises the key advantages and disadvantages of having a potential GSSP within 

lacustrine environments. Varved lake sediments can be strongly influenced by local 
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variations in the geology, hydrology and land use present within catchments, and may be 

associated with distinct geochemical signals related to input from local industries. 

Correlation of varved successions within individual lakes may be limited to the extent of the 

water body, but widespread airborne contaminants, e.g. radiogenic fallout, nitrates, fly ash 

(Table 2), can show remarkably consistent patterns in lakes across diverse latitudes and be 

associated across continents. Crawford Lake (Ontario, Canada), Lochnagar (Scotland), Lilla 

Öresjön (Sweden), Huguangyan Lake (Guangdong, China) and Maha’ulepu Sinkhole (Kauai, 

Hawaii) are described as examples of potential trans-continental reference sections. 

 

For: Against: 

• May be varved; relatively few omission 
surfaces  

• Spatially extensive with regional–global 
coherent signals 

• Independent dating using 210Pb and 14C 

• May be correlatable with tephra stratigraphy  

• Microplastics and metals with direct source 
from effluents 

• Spheroidal carbonaceous particles show 
global upturn  

• δ15N marked depletion from mid-20th century 

• Persistent organic pollutants, e.g. chlorinated 
pesticides 

• Radionuclides, no settling delay in water 
column; clear bomb spike  

• Microfossils responsive to environmental 
change e.g. diatoms, ostracods, 
palynomorphs  

• Cores relatively easy to procure 

• Commonly low sediment accumulation rates 
(though typically greater than for marine 
anoxic basins)  

• Strong modulation of signals by local 
processes, except for upland or remote lakes 

• Pu and Cs are mobile under anoxic conditions 
at the bottom of meromictic lakes  

• No precedent as GSSP candidate; although 4 
of 5 auxiliary stratotypes for the Holocene 
GSSP are lacustrine 

 

Table 7. Reasons for and against using a lake deposit as a potential host for a GSSP. 
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3.5.1 Crawford Lake, Canada 

Crawford Lake (Ontario, Canada) is a small (surface area 2.5 ha), deep (24 m), meromictic 

lake located close to industrial pollution sources, although it lacks any significant urban 

development within the lake catchment area. It has a sediment record spanning eight 

centuries, with a varve chronology dating to 1867 CE and 14C dating for older lamina (Ekdahl 

et al. 2004). Maize (Zea mays) pollen and corn smut spores (Ustilago maydis) are irregularly 

distributed through an interval greater than 200 years, termed the Iroquoian, reflecting 

sporadic occupation by pre-European indigenous peoples (Ekdahl et al. 2004, 2007, Figure 

16). This occupation is associated with increased numbers of the planktonic diatoms 

Asterionella formosa, Fragilaria crotonensis and Synedra nana, depleted numbers of 

Cyclotella michiganiana, and the loss of Cyclotella bodanica. These changes are attributed to 

increased nutrient input, which raised lake productivity, causing bottom-water anoxia and 

altering diatom assemblages (Ekdahl et al. 2004, 2007). Additional stratigraphic proxies 

record marked changes in the late-19th century (starting 1867 CE) due to introduction of a 

new agricultural regime by European settlers, and again in the mid- and late-20th century, 

driven by regional land-use changes of comparable magnitude to the earlier changes by 

indigenous peoples. 
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Figure 16. Stratigraphic signals of the last millennium in Crawford Lake, Canada. The horizontal red 

line near the top is the ~1950 CE level, marked by both lithological and biostratigraphic changes in 

available data. From Zalasiewicz et al. (2017a), modified after Ekdahl et al. (2004). DAR is diatom 

accumulation rate. 

 

3.5.2 Lochnagar, Scotland 

Lochnagar is a small (surface area 9.8 ha), deep (26.4 m), high altitude (788 m a.s.l) corrie 

lake in the Grampian Mountains of Scotland. As with many upland and mountain lakes, there 

are no direct sources of contamination in the catchment so all pollutants are originally from 

atmospheric deposition. However, the legacy of centuries of atmospheric inputs from 

industrial sources has resulted in a considerable store in the sparse peat soils which are now 

being remobilised to constitute a major pollution source to the loch (Yang et al. 2002a). 

 

Lochnagar exhibits a full Holocene record contained within a sedimentary succession <2 m 

thick. These deposits, neither laminated nor varved but dated by 14C (Dalton et al. 2005), 

show catchment-driven changes due to the development and degradation of soils (e.g. post-

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 

89 
 

Little Ice Age soil erosion) and human interference on terrestrial vegetation via ‘fire 

management’ over the last ~1000 years. Due to the steep morphology of the loch basin, 

accumulation of sediments varies across the loch with recent accumulations (Rose 2007) 

being higher than earlier sedimentation rates, as is the case with many European lakes (Rose 

et al. 2011). Recent sediments are readily dated by 210Pb, independently supported by 1963 

CE nuclear weapons testing signals of 137Cs and 241Am and the Chernobyl 137Cs peak in 1986 

CE.  

 

The diatom-inferred pH reconstruction for the last 9500 years shows a stable pH of 6.0–6.5 

until the 19th century (Monteith et al. 2007) when pH started to decline with the resultant 

loss of acid-sensitive diatom taxa (Achnanthes minutissima, Achnanthes scotica and 

Fragilaria virescens var. exigua) and an increase in those which are more acid-tolerant 

(Achnanthes marginulata and Aulacoseira distans var. nivalis) (Battarbee et al. 2014). The pH 

eventually reached a low of 5.5 in the 1970s before starting to recover in the 1980s, 

although the trajectory for diatom recovery is not a straightforward reversal (Battarbee et al. 

2014). Alongside the 19th century decline in pH were: a) the start of spheroidal carbonaceous 

particle deposition, which elevated markedly in the mid-20th century (Rose and Yang 2007, 

Figure 17a); b) increases in the concentrations of trace metals (Figure 17b) such as Pb (from 

1860s) and Hg (from the early-20th century), becoming elevated over long-term base-lines 

(Yang et al. 2002a), and also an increase in Cd, Cu and Zn concentrations (Yang et al. 2002b); 

and c) a decline in δ15N starting in the late-19th century (Curtis and Simpson 2011, Figure 

17c). All of these signals indicate contamination via atmospheric deposition of long-range 

industrial pollutants. 
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Figure 17. Contamination record in Lochnagar sediments (Scotland) demonstrating appearances as 

post-mid-20th century markers: (a) Spheroidal carbonaceous particles (SCPs) (from Yang et al. 2002a); 

(b) Hg and Pb (from Yang et al. 2002a); (c) δ15N (from Curtis and Simpson 2011); (d) the chlorinated 

pesticides DDT and toxaphene from core collected in 1997 CE related to emission data (from Muir 

and Rose 2007); (e) chlorobenzenes (from Muir and Rose 2007); (f) total PCBs related to global 

emissions (from Muir and Rose 2007); and (g) PDBEs related to UK emissions (from Muir and Rose 

2007).  

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 

91 
 

 

Mercury, Pb and SCPs show a further and more significant increase in concentration in the 

mid-20th century (Figure 17a and b), primarily from fossil-fuel combustion. This period is also 

accompanied by significant increases in a range of POPs such as organochlorine pesticides, 

including DDT, although the accumulation in Lochnagar sediments lags about a decade 

behind emission figures (Muir and Rose 2007, Figure 17d). The organochlorine pesticide 

toxaphene was never used or produced in the UK (Muir and Rose 2007, Rose et al. 2001), 

but global emission was greatest in the 1970s with high accumulation rates in Lochnagar 

sediments in the 1980s and 1990s (Figure 17d). Industrial chemicals including 

chlorobenzenes and PCBs show elevated values from ~1960 CE and, later, brominated flame 

retardants such as PBDEs show elevated concentrations from ~1980 CE (Muir and Rose 

2007) (Figure 17e–g). The lake sediment records of trace metals and SCPs are matched by 

records of these same contaminants in the catchment peats of Lochnagar (Yang et al. 2001) 

with both mid-19th and mid-20th century increases observable.  

 

While the sediment and peat cores of Lochnagar faithfully reflect the temporal trends in 

contaminant deposition through most of the industrial period, there is evidence that this is 

not now the case. Temporally-resolved full-basin inventories of Hg and Pb (Yang et al. 2002a) 

show no decline in inputs to lake sediments in recent decades (Figure 17b) even though 

emissions of these metals to the atmosphere have declined by 80–90% since the 1970s 

(NAEI 2017). This ‘additional’ input of metals can only come from the store of legacy 

contaminants in catchment soils as a result of increased soil erosion, possibly in part a result 

of a changing climate. This hypothesis is supported by work at other upland lakes in Scotland 

for a suite of trace metals and also for SCPs (Rose et al. 2012). The implication of this is that 

even while upland lake sediments are no longer reliably recording changes in atmospheric 
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deposition (Yang and Smyntek 2014), by being a sink for reworked anthropogenic deposition 

on land, they are concentrating and temporally extending an anthropogenic signal. This 

would not affect a mid-20th century GSSP from among such sites.  

3.5.3 Lilla Öresjön, Sweden 

A lake core from Lilla Öresjön (SW Sweden), a high-sulphate deposition area, records marked 

physical, chemical and biological trends since 1800 CE (Renberg and Battarbee 1990). Areas 

of acute lake acidification tend to be associated with atmospheric pollutants including heavy 

metals, sulphur, fly-ash (spheroidal carbonaceous particles) and PAH, related to fossil-fuel 

combustion. However, anthropogenic Pb signals have a much longer record in lake 

sediments in Sweden, initiating 3500 to 4000 years ago, with a small, but clear Roman Pb 

peak at about 1 CE, a major and unreversed increase at ~1000 CE, markedly elevated levels 

during the Industrial Revolution, but most prominently after World War II, with peak 

concentrations at ~1970 CE (Renberg et al. 2000). The record of increased Pb concentration 

is associated with concomitant declines in the Pb isotope ratio (Renberg et al. 2000). 

 

At Lilla Öresjön atmospheric pollution is evident with an increase in Pb, Zn, and 

benzo(a)pyrene at about 1900 CE (dated by 210Pb) and a more pronounced increase of these 

signals along with sulphur and SCPs during the 1960s (Renberg and Battarbee 1990, Figure 

18). Heavy metal and sulphur signals peaked in the 1960s and 1970s, and SCPs and PAH in 

the 1970s. Analysis of diatoms, chrysophytes, cladocerans and pollen show a succession of 

changes reflecting decreasing lake pH, with a distinct post-mid 20th interval discernable 

(Figure 18 herein; Renberg and Battarbee 1990). 
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Figure 18. Physical, chemical and biological trends from Lilla Öresjön (SW Sweden), a high-sulphate 

deposition area (from Renberg and Battarbee 1990).  

3.5.4 Huguangyan Maar Lake, Guangdong, China 

Huguangyan Lake, eastern China, receives little sediment input from rivers or from soil 

erosion, hence its records of black carbon (BC) and polycyclic aromatic compounds (PACs) 

reflect atmospheric deposition (Han et al. 2016). The sediment record covers the past 350 

years and has been dated reliably for the last 150 years using 210Pb and 137Cs activities (Han 

et al. 2016). Concentrations of BC, PAH, oxygenated PAHs (OPAH) and azaarenes (AZAs) 

increased sharply during the late-1940s to early-1950s, and again in the late-1970s (Han et 

al. 2016, Figure 19). The BC record peaks from 2004 to 2006 CE, with subsequent rapid 

decrease, whereas the PAC record has continued to rise (Han et al. 2016). 
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Figure 19. Historical variations of concentrations and mass accumulation rates (MARs) of black 

carbon (BC), char, and soot, parent-PAHs, oxygenated PAHs (OPAHs), and azaarenes (AZAs) in the 

Huguangyan Maar Lake (from Han et al. 2016).  

 

The sedimentary record of char, soot, and PACs in this lake reflects the start of the rapid 

industrialization in China after the 1950s, associated with a change in dominant energy 

sources from mainly wood burning in the pre-1950s to fossil fuels in the post-1950s (Han et 

al. 2016). 

3.5.5 Maha’ulepu Lake of Kauai, Hawaii 

The sedimentary successions of the Maha’ulepu Sinkhole and caves of Kauai, Hawaii (Burney 

et al. 2001) show a record of extirpation of geographically local taxa and biotic invasions of 

rats and other fauna. The sinkhole succession extends over the past 9500 years that 

accumulated in a freshwater to brackish lake, with periodic marine incursions, and which 

includes diatoms, land snails and bivalves. The diatoms, coupled with 14C dates, provide a 
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detailed stratigraphy for the sinkhole and cave succession, which records step changes in 

anthropogenic influence through Polynesian and European colonisation of the island.  

 

Human impact in the Maha’ulepu Sinkhole (Figure 11) is first seen as an introduced Pacific 

rat dated to between 1039 and 1241 CE (Burney et al. 2001). Changes in land snail species 

indicate the impact firstly of Polynesian and latterly European colonisers and their associated 

neobiota. Declines in several species coincide with Polynesian activity, whilst all indigenous 

snail taxa, with the exception of Cookeconcha cf. psaucicostrata, became extinct during the 

19th and early-20th centuries. In the 20th century, Lissachatina fulica (in 1936 CE) – the Giant 

African Snail - and Euglandina rosea (in 1957 CE) – the Cannibal Snail of Central America - 

were introduced (Figure 11). Anecdotal evidence suggests a 20th century extinction for the 

last indigenous snail population of C. cf. psaucicostrata. These changes provide a detailed 

and unfolding biostratigraphical record of human impact on the local biota that is supported 

by diatom, bird, pollen, and other fossil data (Burney et al. 2001). Furthermore, in the 

marine succession, neobiotic marine bivalves such as C. virginica on Oahu, offer potential for 

inter-regional correlation (Figure 11). 

 

3.6 Peat and peatlands (mires) 

Peatlands (mires) may be defined as wetlands in which at least 40 cm of peat has 

accumulated; peat is partially‐decomposed, sub‐fossil plant material containing less than 

25% by weight mineral matter (Shotyk 1992). Swamps and fens are “minerotrophic” 

wetlands, that is, plants growing there receive mineral nutrients primarily from surface 

waters and groundwaters. Fens are almost always peatlands, but swamps may be either 

mineral wetlands or peatlands, depending on the thickness of peat accumulation (Shotyk 
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1992). In contrast, the surface layers in bogs are beyond the influence of these waters, and 

the plants growing there receive their nutrients solely from atmospheric inputs (termed 

“ombrotrophic”). Because bog plants are fed exclusively by rain and dust, the peats which 

accumulate in bogs have naturally low concentrations of mineral matter and trace metals, 

providing low background values against which anthropogenic inputs may be compared. 

Note that wetlands are not necessarily peatlands, and that most peatlands are not 

ombrotrophic bogs. 

 

Northern (boreal and subarctic) peatlands are by far the most extensive development of 

peat, covering some 4 million km2, whereas the equivalent southern peatlands, mainly in 

Patagonia, South America cover only 45,000 km2 (Yu et al. 2010, Figure 20). Tropical 

peatlands cover an area of ~370,000 km2 (Yu et al. 2010), the most extensive area being the 

~145,000 km2 of the Congo Basin (Dargie et al. 2017). In the case of the Congo Basin, 

however, peat was defined as having <35 % mineral matter, and a thickness of >30 cm 

(Dargie et al. 2017), this differing from the conventional definition cited earlier. Tropical 

peats mainly occur along major river systems, and in SE Asia are associated with mangrove 

development along coastal zones (Yu et al. 2010). Peak accumulation rates for these peats 

are in the Middle Holocene for the tropical peats, Early Holocene for the northern peatlands, 

and Late Pleistocene for the southern peats (Yu et al. 2010). 
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Figure 20. Global map of peatland regions with basal peat ages (black <8 ka, red 8–12 ka, and blue 

>12 ka) (from Yu et al. 2010).  

 

Surface waters and groundwaters contain carbonate alkalinity from the chemical weathering 

of carbonate and silicate minerals, so the waters in fens and swamps tend to be neutral to 

alkaline in pH. Rainwater, on the other hand, contains very little alkalinity. In consequence, 

the organic acids generated during the decay of organic matter quickly render bog surface 

waters acidic (pH 4). Bog surface waters are also oligotrophic, so only specialized plant 

communities are able to thrive. Finally, the depth to water table in bogs will vary seasonally, 

resulting in redox conditions varying from oxic to anoxic. Seen from this perspective, the 

peat and corresponding porewaters in bogs represent a complex chemical milieu for the 

compounds that are continually being supplied by the atmosphere. 

 

As peat accumulates over time, fens and swamps can evolve into bogs, as the surface layers 

become increasingly removed from the basal mineral sediments and plants gradually 
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become deprived of nutrients. Thus, it is very common to find ombrotrophic bog peats 

overlying minerotrophic fen and swamp peats (Shotyk 1988). To use peat cores from bogs as 

archives of atmospheric deposition, it is crucial to clearly distinguish between the 

ombrotrophic versus minerotrophic sections: this can be done using a broad array of 

chemical indicators in either the solid or aqueous phases, such as ash or Ca content of the 

peat, or pH and Ca content of the porewaters (Shotyk 1996). 

 

Peat cores from bogs have been used to study atmospheric change over time using the 

broad range of parameters listed in Table 8. This list of proxies of environmental change 

does not imply their fidelity in the peat bog archive. Rather, it should be viewed as an 

illustration of the broad potential and number of opportunities represented by bogs to study 

environmental change. While most of these proxies have been impacted by human 

activities, few provide truly global signals, mainly because of the varying chronology and 

intensity of anthropogenic emissions throughout the industrial world (mineral dusts, 

spheroidal particles), biogeochemical transformations within the peatland (N and S 

compounds) and the size of the host aerosol which is crucial for long‐range atmospheric 

transport (metals and organic contaminants). Radionuclides from nuclear weapons testing 

are exceptional in that they reached the stratosphere, are found in the sub‐micrometre 

aerosol fraction, and therefore their fallout was dispersed globally (Junge 1963). 
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Proxy Type of environmental change Example 

Plant macrofossils Climate change, human-induced changes in 
vegetation caused by impacts to watershed 
hydrology 

Magnan et al. (2014) 

 

Pollen Landscape evolution in response to climate 
change, forest clearing and agriculture 

Markgraf and Huber 
(2010) 

Soil‐derived mineral 
dusts 

Wind erosion of soils due to climate 
change, or caused by forest clearing for 
agriculture and soil tillage 

Chapman (1964); 
Vuorela (1983) 

Volcanic ash Natural, episodic inputs that may mask 
anthropogenic inputs of other inorganic 
constituents 

Zoltai (1989) 

 

Trace elements (Ag, As, 
Cd, Cr, Cu, Ni, Pb, Sb, 
Se, Sn, V, Tl, Zn) 

Derived mainly from mining, smelting and 
refining of base metals as well as ferrous 
metallurgical processing and coal 
combustion. The chlor‐alkali industry was a 
significant source of atmospheric Hg in the 
past, and artisanal gold mining is an 
important source of Hg today 

As, Cu, Zn: Küttner et al. 
(2014); Cr, V; Allan et al. 
(2014); Hg: Enrico et al. 
(2016); Pb: Veron et al. 
(2014); Sb: Rothwell et 
al. (2010); Sn: Meharg et 
al. (2012) 

Lithophile elements (Al, 
Sc, Th, Ti, Y and the 
REE) 

Wind erosion of soils due to climate 
change, or caused by forest clearing for 
agriculture and soil tillage 

Vanneste et al. (2015); 
Kylander et al. (2016); 
Pratte et al. (2017) 

Platinum group 
elements (PGE) 

From automobile catalytic converters Rauch et al. (2004, 2010) 

Fallout radionuclides 
(including 137Cs, 241Am; 
also isotopes of U and 
Pu) 

From atmospheric nuclear weapons 
testing, plus accidental releases from 
nuclear reactors 

Quinto et al. (2013a, b) 

 

Organic contaminants Polycyclic aromatic hydrocarbons (PAHs) 
from both natural (prairie and forest fires) 
and anthropogenic (fossil fuel combustion, 
petroleum refining) sources 

Zhang et al. (2016) 

 

Organometallic 
compounds 

Tetraethyl-lead and tetramethyl lead, from 
leaded gasoline 

Shotyk et al. (2002) 

Nitrogen and sulphur 
(including stable 
isotopes) 

Atmospheric emissions of nitrogen oxides 
from fossil fuel combustion; sulphur oxides 
from this plus sulphide mineral roasting 

Wieder et al. (2016a, b) 

 

Spheroidal 
carbonaceous particles 

From fossil fuel combustion Rose (2015);  Swindles et 
al. (2015) 

Inorganic ash spheres  From fossil fuel combustion and nuclear 
explosions 

Fialkiewicz‐Kozieł et al. 
(2016) 
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Table 8. Selected examples of the use of proxies for various types of atmospherically 

sourced environmental change. 

 

The preservation over time of some of the constituents supplied by the atmosphere may be 

constrained by the low pH, abundance of complex‐forming organic acids, range in redox 

potentials, and advective flow in response to water table drawdown. The extent of 

preservation ranges from near-perfect (plant macrofossils are extremely well preserved in 

anoxic water) to very poor (137Cs is very mobile in ombrotrophic peat, simply because 

monovalent cations are poorly retained; it is far better retained in minerotrophic peat 

because of the abundance of phyllosilicates which fix Cs within their siloxane cavities). Some 

trace metals are very well preserved (e.g. Ti and Zr because of the stability of their host 

minerals in acidic waters), others not at all (e.g. Mn and Fe which form soluble, mobile 

cations under anoxic conditions). While there may be hundreds of publications employing 

bogs as environmental archives, there are remarkably few studies of chemical diagenesis of 

atmospheric contaminants, and the possible importance of post‐depositional migration. 

Diagenesis of organic contaminants in peat is discussed at length by Thuens et al. (2013), 

using the example of PAHs, fallout radionuclides using the examples of U and Pu by Quinto 

et al. (2013a, b), and trace metals using the example of Pb by Shotyk et al. (2016). 

 

Age-dating of peat profiles presents many challenges; peat bogs are not varved, but can 

have high (annual) growth rates, although these can be very variable. In Switzerland, 1 m 

peat cores ranged from ~ 1000 to 7000 years of peat accumulation (Shotyk et al. 2000). The 

most robust age‐depth models use a combination of approaches, including 14C (which is 

physically incorporated within the organic molecules making up the peat) and 210Pb (which is 
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supplied to the peatland surface by the sub‐micrometre aerosol fraction and, apparently, 

becomes adsorbed to the peat).  

 

Table 9 summarises the key advantages and disadvantages of hosting a potential GSSP 

within peatlands. Examples of geochemical records from peat bogs are provided from the 

Jura Mountains of Switzerland and Malham Tarn in England.  

For: Against: 

• Widely distributed and studied in northern 
and southern latitudes; extensive deposits 
in the tropics are beginning to receive 
attention 

• Relatively rapid rates of accumulation of 
organic matter provide reasonable 
temporal resolution of atmospheric 
change  

• Readily amenable to 14C age dating 
(including the post‐1950 CE atmospheric 
bomb pulse) 

• Dating of recent peat accumulation (past 
~150 years) possible using 210Pb  

• Ombrotrophic bogs receive inputs directly 
and exclusively from the atmosphere with 
no settling delay  

• Wide variety of indicators of industrial 
activities are easily measured: soil-derived 
dust particles, N and S compounds, fallout 
radionuclides, heavy metals, organic 
contaminants, spheroidal carbonaceous 
particles (SCP) and inorganic ash spheres 
(IAS) 

• In many industrialized regions most bogs have 
been damaged, altered or destroyed due to 
drainage for agriculture, development, forestry, 
or exploited for fuel or horticultural peat 

• Peat accumulation rates vary over time 
depending on climate, hydrology, fire and inputs 
of mineral matter from wind erosion of soils, or 
volcanic ash; they are not varved  

• 210Pb age dating requires independent 
confirmation using chronostratigraphic markers 
including: other fallout radionuclides (such as 
241Am), pollen, tephrochronology, or 
contaminants of known emission history (e.g. 
DDT) 

• Pb is immobile in undisturbed peat profiles but 
can be mobilized by bog water acidification 
(from acid rain) or peatland drainage (which 
promotes leaching) 

• Minerotrophic peatlands are influenced and 
commonly dominated by aquatic inputs (surface 
and groundwater). Atmospheric signals may be 
discernible in minerotrophic systems provided 
that aquatic inputs are insignificant (e.g. fallout 
radionuclides) 

• With acidic bog waters and seasonal variations 
in water table depth (and therefore varying 
thickness of the oxic surface layer), each proxy 
may be subjected to chemical diagenesis; the 
possible importance of post‐depositional 
migration (or chemical transformation) of each 
proxy must be evaluated 

Table 9. Reasons for and against using a peat deposit as a potential host for a GSSP. 
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3.6.1 Pb, organic contaminants and radionuclide fallout deposition at Etang de la 

Gruère, Jura Mountains, Switzerland 

The protected ombrotrophic Sphagnum bog of Etang de la Gruère has the longest record of 

peat accumulation (6.5 m accumulated in ~15,000 years) in the Northern Hemisphere 

(Shotyk et al. 1998). Traces of atmospheric lead appear in this Swiss peat bog from 12,370 

14C yr BP (Shotyk et al. 1998). Climate-controlled enhanced Pb fluxes derived from soil dust 

are recorded with maxima at 10,590 and 8230 14C yr BP, the latter coinciding with the start 

of the Middle Holocene (Shotyk et al. 1998). The first anthropogenically-controlled increase 

in Pb deposition starting at 5320 14C yr BP is thought to be due to forest clearing and the 

introduction of agriculture (Shotyk et al. 1998). The first influence of Pb pollution from 

mining and smelting started at 3000 14C yr BP and occurs at a depth of 1.4−1.5 m, seen as 

increased Pb enrichment and decreased 206Pb/207Pb ratios (Shotyk et al. 1998). However, by 

far the greatest Pb flux occurred in the late 20th century (Figure 21a), reaching 1570 times 

the background value by 1979 CE (Shotyk et al. 1998), associated with greatly decreased 

206Pb/207Pb ratios (Figure 21b). Subsequently, reduced Pb contents and increasing Pb isotope 

ratios in the later decades of the 20th century appear to record the introduction of unleaded 

gasoline and a reduction in industrial sources of Pb in the region (Shotyk et al. 1998). The Pb 

signals in peat at this locality are consistent with Pb levels in the Greenland GRIP ice core 

over the past 3000 years (Shotyk et al. 1998) and can be compared with the Greenland ACT2 

core (Figure 26).  
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Figure 21. Core from Etang de la Gruère, Switzerland, collected in 1991 CE: a) Pb Enrichment Factor 

(EF) calculated as the ratio of Pb/Sc in the peats, normalized to the background value (from Shotyk et 

al. 1998); b) Pb isotopic values (from Shotyk et al. 1998); c) ΣPCBs (from Berset et al. 2001); d) ΣPAHs 

(from Berset et al. 2001); e) 137Cs (from Appleby et al. 1997). Succession dated using 210Pb to 35 cm 

depth (Appleby et al. 1997) and 14C yr BP from 35 cm to base (Shotyk et al. 1998). 

The highest concentrations of PCBs occurred at a depth of 10–15 cm (dating from 1976 to 

1960 CE; Figure 21c) while PAHs reached a maximum at a depth of 20–25 cm (1951 to 1930 

CE; Figure 21d), with post-depositional downward migration of these compounds unlikely 

(Berset et al. 2001). The maximum PAH values coincide with greatest use of coal in 

Switzerland, after which fuel oil dominated (Berset et al. 2001). 

The same core has records of 241Am activity limited to 12–15 cm depth (Appleby et al. 1997), 

marking the early 1950s to early 1960s bomb-spike. 137Cs activity is at a maximum in the 

living part of the profile in the upper 3 cm (Appleby et al. 1997; Figure 21e), inferred to be 

sourced by the Chernobyl disaster of 1986 CE. 137Cs is also recorded below the level of the 

241Am signal, probably because it has been remobilized downwards. 
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3.6.2 Spheroidal carbonaceous particles and Pb in Malham Tarn Moss, England 

Spheroidal carbonaceous particles (SCPs) first appear in the peat succession adjacent to an 

upland lake at Malham, England, at a level deposited in the 1850s, but there is a marked 

increase in their abundance in the 1950s (represented by less than 10 cm of peat), with a 

peak in the 1970s (Figure 22, Swindles et al. 2015). Atmospheric lead pollution from local 

industrial activity and additives in petrol, and increased soil erosion (reflected in the Fe and 

loss-on-ignition data), show comparable upturns in the mid-20th century. 

 

Figure 22. Spheroidal carbonaceous particles (SCPs), lead and iron concentrations from Malham Tarn 

Moss, England (from Swindles et al. 2015).  
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3.7 Ice 

Continental ice sheets including those of Antarctica, covering about 13 million km2, and 

Greenland, covering about 1.7 million km2 (UNEP 2007), are together equivalent to about 

9.4% of the total land surface area (Figure 23). Ice from glaciers occurring both marginal to 

the ice sheets and in high-altitude regions makes up a further ~0.5% of the Earth’s land 

surface, a coverage of 726,800 ± 34,000 km2 (Pfeffer et al. 2014) (Davies, B. Mapping the 

World’s Glaciers http://www.antarcticglaciers.org/glaciers-and-climate/mapping-worlds-

glaciers/ Last updated 22/06/2017). Sea ice fluctuates in extent seasonally and does not 

form a permanent ice record for consideration as a potential GSSP site. Although ice sheets 

and glaciers have significant extents, what little permanent ice remains in Africa and 

Australasia (Figure 23) is rapidly being lost. Alpine glaciers from high altitudes may be 

suitable as potential GSSPs, but those from lower elevations are prone to significant 

seasonal melting and potential loss of laminae. Land glaciers in tropical regions are now 

melting from the top down and losing their younger layers (e.g. in Peru). Within alpine 

glaciers, unlike on polar ice sheets, meltwater processes can mobilize or remove solutes, 

attenuating or complicating the environmental signal (Schuster et al. 2002). In contrast, 

polar land ice is a more permanent record. The Greenland ice sheet shows the effects of 

greater local contamination from Northern Hemisphere industrial activities, while Antarctic 

land ice is more pristine.  
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Figure 23. Distribution of ice caps and glaciers (blue) and ice sheets (white) from NASA Earth 

Observatory Randall Glacier Inventory in 2014 CE http://earthobservatory.nasa.gov/IOTD/ 

view.php?id=83918 (acquired 7th May 2014; produced by Jesse Allen and Robert Simmon). Inset 

maps showing the main polar drilling sites in Antarctica and Greenland mentioned in the text.  

 

Quaternary stratigraphy is closely linked to climatic variations during the ~2.6 million years 

of bipolar glaciation. Ice cores provide the best record of climate-related data for up to 800 

ka, including isotopic ratios for δ18O and δD, variations in CO2 and CH4 concentrations and 

dust, and S concentrations related to distinct volcanic events. The use of a Greenland ice 

core for the Holocene GSSP (Walker et al. 2009) provides a precedent that may be 

considered for the Anthropocene. Atmospheric CO2 and CH4 concentrations and novel 

compounds such as sulphur hexafluoride SF6 can be detected in ice-core air bubbles (Wolff 

2014). The ice record also captures anthropogenic signals derived from aerosols, including 

radionuclide signals from nuclear bomb testing (e.g. 239Pu, 14C), unprecedented increases in 

black carbon (BC) and metals such as Pb from industrial activity and automobile emissions, 

sulphate especially from coal combustion, and nitrate from fertilisers. These signals occur 
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within annually resolvable laminae, the ages of which are typically determined by counting 

or from seasonal cycles in δ18O, and then verified using known volcanic eruption signals, 

which can be identified from electrical conductivity measurements in Greenland (e.g. 

Masson-Delmotte et al. 2015), and at Law Dome, Antarctica (Etheridge et al. 1996). Silicate 

dust concentrations in polar snow are exceedingly small, a mean of 2 ppb in Antarctica and 

35 ppb in Greenland, with the latter showing no systematic trends over two centuries from 

1750 CE (Murozumi et al. 1969). 

 

The upper part of an ice sheet or glacier, which includes the succession that covers the mid-

20th century interval, comprises firn (partially compacted snow that is not yet fully ice), 

where bubbles are not yet closed from connection to the atmosphere. For most signals that 

are trapped directly in the solid ice this does not represent a problem, but CO2, CH4 and N2O 

are contained in trapped air bubbles. These air bubbles and their environmental signals are 

therefore always younger than the enclosing ice, and this effect is significant over the short 

timescales considered for the Anthropocene. However, recent work shows that the nitrogen 

isotopes in air bubbles can be used to estimate their ages correctly, enabling direct 

comparison with ice of the same age (Parrenin et al. 2013). The depth and hence timing of 

the firn-to-ice transition is dependent upon the accumulation rate, and so sites with rapid 

accumulation rates are preferable. At the South Pole, where the accumulation rate is only 8 

cm yr-1 the firn-to-ice transition depth is at about 123 m (Rubino et al. 2013).  

 

Over the past 350 years in East Antarctica, δD proxy values show a long-term warming trend 

of about 1 ± 0.2 °C, with a marked colder period from 1750 to 1860 CE corresponding to the 

end of the “Little Ice Age (LIA)” (Ekaykin et al. 2017). This is consistent with James Ross Island 

and other parts of the Antarctic Peninsula, these areas warming significantly from about 
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1950 CE onwards (Quayle et al. 2002, Abram et al. 2013). In north Greenland, δ18O shows 

multi-decadal increasing trends in the late-19th century and since the 1980s, whereas the 

early-19th century had the lowest signals, associated with the Little Ice Age. Overall, 

Greenland δD and (laterally variable) δ18O show no significant variation across the mid-20th 

century, with the most prominent climatically linked changes occurring about 1850 CE 

(Masson-Delmotte et al. 2015, Ekaykin et al. 2017, Figure 24 herein). 

 

Figure 24. δ18O, δD and accumulation rates for the North Greenland Eemian Ice Drilling site (NEEM) 

(Masson-Delmotte et al. 2015).  
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One of the main climate-related signals evident in ice sheets is the increase in CO2 

concentration (Figure 25), now 30% above the highest level of the last 800 ka (Wolff 2014), 

and the δ13C change to more depleted values, both occurring at about 1960 CE in Law Dome 

ice core (Rubino et al. 2013) and discussed below. This may reflect the divergence of fossil 

fuel use (which has accelerated) and land use as independent sources of atmospheric CO2 

and hence of the δ13C signal (Rubino et al. 2013). CH4 is now at ~1800 ppb (Figure 25), 

double the highest level of the last 800 ka (Wolff 2014). 
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Figure 25. Ice core signals since 1700 CE (from Wolff 2014). CH4 and CO2 ice-core data (blue dots) are 

from Law Dome, Antarctica (MacFarling Meure et al. 2006), and recent atmospheric data (red lines) 

from Mauna Loa (CO2) and Cape Grim (CH4) observatories. The horizontal dashed lines are the 

highest values observed in ice cores of the last 800,000 years prior to the period shown. Beta 

radioactivity is from Coats Land, Antarctica (Wolff et al. 1999). Sulphate and nitrate are shown for 

two cores from Greenland: B16 (dashed red) and B21 (solid blue) (Fischer et al. 1998). The 18th- and 

19th-century spikes in sulphate are signals of volcanic eruptions.  

 

The most abrupt anthropogenic signal in ice is radioactive fallout from the atmospheric 

testing of nuclear devices. This is clearly evident in ice core as a marked increase in beta 

radioactivity initially in 1954 CE and subsequently in 1964 CE to form a bomb-spike peak in 

1966 CE (Figure 25), followed by slow decay towards natural background levels (Wolff et al. 

1999, Wolff 2014) after testing went underground following the Partial Test Ban Treaty in 

1963 CE and essentially ceased following the Comprehensive Test Ban Treaty in 1996 CE (see 

Waters et al. 2015). The beta radiation is from several radioactive isotopes, some with short 

half-lives, e.g. 90Sr and tritium. The long-lived radionuclide 239Pu in polar ice has been 

transferred primarily via the stratosphere, with atmospheric residence times of up to 5 years 

and with seasonal transfer to the troposphere occurring in late winter and spring in the 

Northern Hemisphere (Arienzo et al. 2016). The accumulation rate of 239Pu is typically 

greater in ice, and shows less post-depositional alteration or mixing, than in corals and lake 

sediments (Arienzo et al. 2016). Analysis for 239Pu using traditional accelerator mass 

spectrometry (AMS) requires large sample size, typically reducing the resolution to about 3 

years (Arienzo et al. 2016). A high-resolution (0.5–1.5 years) 239Pu profile from Monte Rosa 

on the Italian-Swiss border, using ICP-SFMS, shows an initial peak from 1954–1955 to 1958 

CE (Gabrieli et al. 2011). Following a temporary halt of testing in 1959–1960 CE, in which the 

Pu concentration decreased by half with respect to the 1958 CE peak, in 1961–1962 CE Pu 
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concentrations increased rapidly to a peak in 1963 CE (Gabrieli et al. 2011). Following the 

Partial Test Ban Treaty, Pu deposition decreased sharply to a minimum in 1967 CE (Gabrieli 

et al. 2011). The interval 1967–1975 CE is characterized by small irregular Pu smaller peaks 

likely due to the deposition of Saharan dust contaminated by French nuclear tests of the 

1960s, this effect diminishing after 1975 CE (Gabrieli et al. 2011). Arctic ice typically has a 

higher 239Pu activity (differing by about a factor of three) than Antarctic ice (Arienzo et al. 

2016) and, despite the first significant atmospheric thermonuclear detonations occurring in 

1952 CE, the first detection of 239Pu in polar ice was in 1953 CE (Arienzo et al. 2016). The 

post-moratorium 239Pu bomb-spike (peak signal) occurs in the 1962 CE ice laminae in the 

Arctic, but is not strongly resolved in the Antarctic, mainly because the principal testing 

occurred in Novaya Zemlya (northern Russia), and little of this fallout crossed into the 

Southern Hemisphere (Arienzo et al. 2016). 

 

Ice cores provide the most straightforward archives of sulphur, both as a record of global 

volcanic events (Schuster et al. 2002), but also in documenting the long-range effects of 

pollution unaffected by the local pollution seen in tree rings and speleothems (Fairchild et al. 

2009). In Greenland ice, sulphate (SO4
2-) concentrations increased markedly from 1900 to 

1920 CE and 1940 to 1980 CE (Figures 24 and 25), and by 1980 CE concentrations were a 

factor of 2–5 above pre-industrial peak values (Fischer et al. 1998), but did not exceed 

concentrations linked to large volcanic eruptions or during the Last Glacial Maximum (Wolff 

2014). In central Asia, in ice on Mount Muztagata (China), the steep rise in sulphate 

concentrations that started after the mid-1970s and decreased in the 1990s is associated 

with changes in industrial activity (Zhao et al. 2011). No equivalent signature is recorded in 

Antarctic ice, which is more remote from the main sources of sulphate pollution (Wolff 

2014). 
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N2O, a greenhouse gas, has an atmospheric lifetime of about 120 years, so any changes 

recorded in ice cores reflect global changes, thought to mainly reflect increased application 

of agricultural fertilizers (Wolff 2013). N2O concentrations recorded in air bubbles within the 

ice have risen by about 20% in the last 200 years (see Law Dome example below) and are at 

levels higher than recorded for the last 800 ka (Wolff 2013). In contrast, ammonium (NH4
+), 

mainly deposited as aerosol, and nitrate (NO3
-), deposited as an aerosol or as nitric acid, 

have much shorter atmospheric residence times, and changes in their concentrations reflect 

local changes in source areas (Wolff 2013). Mid-latitude glaciers, such as Mount Muztagata 

in China, show an approximately three-fold increase in ammonium concentrations between 

1960 and 1990 CE, probably as a consequence of agricultural emissions (Zhao et al. 2011). 

However, there is no significant recent trend at either pole (Wolff 2013). Whereas 

ammonium is permanently fixed in the snow, nitrate can be re-emitted back to the 

atmosphere (Fischer et al. 1998, Wolff 2013). Increased nitrate concentrations evident in the 

Northern Hemisphere (Figure 25) are mainly due to NOx emissions from fossil fuel 

combustion (Wolff 2013, 2014), including automobiles and coal-fired power stations. In 

Greenland ice the main phase of nitrate increase, which has risen by a factor of 2–3, 

occurred from 1950 to 1980 CE (Fischer et al. 1998, Wolff 2013); by 1980 CE levels were 

higher than over the past 100 kyr (Wolff 2014). In the French Alps, at the Col du Dôme, high 

snow accumulation rates allow distinction between summer and winter snow, with higher 

summer nitrate values showing a fivefold increase during the 20th century, most markedly 

between 1960 and 1980 CE and sourced by emissions within 1000 km of the glacier 

(Preunkert et al. 2003). However, nitrate does not provide a consistent global signal. In 

central Asia, at Mount Muztagata, the steep rise in nitrate concentrations, which increased 
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by a factor of two, started after the late-1970s and had already peaked by 2000 CE (Zhao et 

al. 2011), whereas no significant increase occurs then in Antarctic ice (Wolff 2013).  

 

A shallow (100 m) GISP2 ice core from Summit (Greenland), ranging in age from 1718 to 

2006 CE, shows a clear decreasing δ15N trend in atmospheric nitrate, from pre-industrial 

values around 11 to -1‰ in the early 21st century (Hastings et al. 2009). The δ15N trend 

began about 1850 CE, whereas the increase in nitrate from the same core rises in about 

1890 CE (Hastings et al. 2009). The greatest rate of change in δ15N occurred from 1950 to 

1980 CE, coincident with a rapid rise in fossil fuel emissions (Hastings et al. 2009). 

 

During pre-industrial times, about half the lead in the troposphere was associated with soil 

dust and half with volcanic gases (Patterson and Settle 1987). Pb, As, Sb, Bi, Cu, and Zn 

enrichments in Arctic ice cores started at around 3300–3000 yr BP, with an additional 

significant Roman phase (Hong et al. 1994, Krachler et al. 2008, 2009). Further increases of 

Pb, TI, and Cd in response to the Industrial Revolution are more significant, with elevated 

concentrations from the 1860s, accelerated concentrations from 1887 to 1889 CE and peaks 

in the early 20th century (TI in 1911–1915 CE, Cd in 1906 CE, Pb in 1915 CE) (McConnell and 

Edwards 2008, Figure 26). This early peak is considered to reflect increased coal burning in 

North America and Europe (McConnell and Edwards 2008). However, the greatest rises in Pb 

concentrations are from the 1950s, peaking in the 1960s, associated with emissions of Pb 

used in alkyl-leaded gasoline (Murozumi et al. 1969, Boutron et al. 1991, McConnell and 

Edwards 2008). TI shows no equivalent mid-20th century peak, whereas Cd has a 1946 CE 

peak concentration (Figure 26). At its peak, Pb levels in Greenland ice were above Holocene 

background levels by a factor of 200 and exceeded concentrations seen during the last 

glacial maximum (Murozumi et al. 1969); in Antarctic ice they were a factor of five above 
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pre-Industrial levels (Patterson and Settle 1987, Wolff and Suttie 1994). Use of lead additives 

in gasoline became limited in the USA and other Northern Hemisphere countries from about 

1970 CE, and concentrations decreased in Greenland by a factor of 7.5 between 1970 and 

1990 CE, with Cd (Figure 26) and Zn sourced from industrial processes showing a decrease by 

a factor of 2.5 over the same interval (Boutron et al. 1991, McConnell and Edwards 2008). In 

Antarctica, by 1920 CE anthropogenic Pb (mainly from metal processing) dominated 

concentrations that were 2 to 4 times higher than pre-Industrial levels (Wolff and Suttie 

1994). Lower concentrations in the 1930s to mid-1940s are followed by a marked upturn in 

concentrations by a factor of >2 from 1950 to 1980 CE, with subsequent decline (Wolff and 

Suttie 1994). The first use of unleaded gasoline in many Southern Hemisphere countries 

started as late as the 1980s and 1990s (Wolff and Suttie 1994). Because most combustion of 

gasoline occurred in the Northern Hemisphere, it is in Greenland that the rise and 

subsequent fall of Pb signals is greatest. Lead aerosols have a 10-day residence time in the 

atmosphere resulting in little inter-hemispheric interchange (Patterson and Settle 1987). 
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Figure 26. Concentrations (5-year running means) in Greenland ACT2 ice core from 1772 to 2003 CE 

of sulphur (NssS), thallium (TI), cadmium (Cd) and lead (Pb), compared to black carbon (BC), from 

McConnell and Edwards (2008). Sulphur peaks in 1817 and 1883 CE relate to the Tambora and 

Krakatoa volcanic eruptions, respectively. © (2008) National Academy of Sciences, U.S.A. 

 

Atmospheric Hg contamination in a glacier in Wyoming (USA) from ~1720 to 1993 CE shows 

a twenty-fold increase from pre-1840 CE levels to a ~1984 CE peak (Schuster et al. 2002). 

Early spikes include both volcanic sources from Tambora (1815 CE) and Krakatoa (1883 CE), 

showing cross-hemispheric transfer of Hg, and an anthropogenic source with a double peak 

and elevated values from ~1850 to 1884 CE associated with the California Gold Rush in 

western USA (Schuster et al. 2002). 

 

In Greenland, black carbon is attributed by McConnell and Edwards (2008) as: Preindustrial 

(1772–1860 CE), coal-dominated industrial (1860–1940 CE), and oil-dominated industrial 

(1940–2003 CE), with peak concentrations in the first decade of the 20th century (Figure 26). 

However, peak combustion of coal is later in Asia. Black carbon and organic carbon 

concentrations in Tibetan ice cores show a marked high during the 1950s and 1960s, 

attributed to the inflows of industrial emissions, mainly from Europe, with a decline during 

the 1970s and 1980s (Xu et al. 2009). Glaciers in the southern part of the plateau show black 

and organic carbon increases after the 1990s, from a southern source (Xu et al. 2009). 

Increased black carbon on glacial ice reduces surface reflectivity and increases melting (Xu et 

al. 2009), potentially causing significant hiatuses in modern laminae. 

 

Microplastics have been reported in Arctic sea-ice (Obbard et al. 2014) from contaminated 

surface sea-water that has been frozen. However, there is no record of microplastics in polar 
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continental ice sheets or glaciers. The potential for airborne transfer of microfibres (Dris et 

al. 2016) suggests that microplastic fallout in glacial ice might occur, especially where 

glaciers are close to urban areas. 

 

Table 10 summarises the key advantages and disadvantages of having a potential GSSP 

within glacial ice, as is the case for the base of the Holocene. The Law Dome ice core from 

Antarctica has a high-resolution multi-proxy record for the last 1000–2000 years and shows 

many characteristics that make it suitable for hosting a potential GSSP. Other similarly 

suitable ice cores are available elsewhere in both Antarctica and Greenland (Figure 23), 

although many of the sites are unsuitable because the rate of accumulation is too low (e.g. 

Dome C, Antarctica).  

 

For: Against: 

• Annual layers, high resolution  

• Extensive distribution, but only Greenland 
and Antarctic ice sheets likely to persist 

• Independent dating using 210Pb, but not 14C  

• Major volcanic eruption events provide clear 
S spikes 

• SO4
2- clear spike starts mid-20th century, but 

diachronous  

• NO3
- increase and δ15N depletion from ~1950 

CE 

• Increased lead accumulation from 1950s, 
especially from gasoline source 

• Increased Zn, Cd, and Cu concentrations 

• Radionuclides, clearly resolved bomb spike 

• Holocene GSSP precedent in Greenland 

• Surficial laminae (recent decades) are more 
prone to melting by global warming than 
deeper laminae (Holocene), especially in 
alpine glaciers and coastal ice sheets 

• Alpine glaciers melting at rapid rate 

• Lag between age of ice and younger age of air 
bubbles (100 years in Greenland, possibly up 
to 1000 years in Antarctica) 

• δD and δ18O no significant variation across 
mid-20th century 

• Increased dust flux not consistently evident 

• Mid-20th century increased CO2 and CH4 
concentrations and δ13C depletion signal not 
fixed in air bubbles  

• Core difficult/expensive to procure and to 
store safely 

Table 10. Reasons for and against using an ice core as a potential host for a GSSP. 
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3.7.1 Law Dome Ice Core, East Antarctica 

A high-precision 1000−2000 year history of CO2, CH4, N2O and δ13C has been acquired from 

the Law Dome site in East Antarctica (Etheridge et al. 1996, Francey et al. 1999, Ferretti et al. 

2005, MacFarling Meure et al. 2006, Rubino et al. 2013). As regards hosting a potential GSSP 

site, the high snow accumulation rates, low temperatures, and small quantities of impurities 

at Law Dome make this record particularly suitable, especially for recognising a high-

resolution δ13C signal (Rubino et al. 2013). The Law Dome site comprises three cores drilled 

between 1987 and 1993 CE, (Etheridge et al. 1996, Rubino et al. 2013), dated by counting 

annual layers in oxygen isotope ratios (δ180), ice electroconductivity measurements and 

hydrogen peroxide (H202) concentrations (Etheridge et al. 1996), with a gas-age/ice-age 

difference of between ~31 and ~55 years for CO2 (Rubino et al. 2013).  

 

Between 1000 and 1600 CE, the CO2 concentration varies between 278 and 284 ppm (Figure 

27a), and between 1000 and 1500 CE, the δ13C values remained constant at about -6.55‰ 

(Rubino et al. 2013). The brief decrease in concentration of CO2 in the Law Dome ice core 

around 1600 CE (Etheridge et al. 1996, MacFarling Meure et al. 2006) was used by Lewis and 

Maslin (2015) as their “Orbis Event” which they regarded as sufficiently important to be a 

candidate for defining the beginning of the Anthropocene. Analysis of changes in 

atmospheric carbonyl sulphide concentration, which is linked to changes in gross primary 

production of terrestrial ecosystems, shows that temperature change, rather than 

vegetation re-growth, was the main cause of the increased terrestrial storage and hence 

drop in atmospheric CO2 around 1600 CE (Rubino et al. 2016). After a recovery, CO2 

maintained comparatively low concentrations and elevated δ13C through to 1750 CE (Rubino 

et al. 2013). Over the past 200 years, atmospheric CO2 concentrations at Law Dome have 

increased by 29% (MacFarling Meure et al. 2006). Following the Industrial Revolution, 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 

118 
 

Rubino et al. (2013) show two inflexion points in the 20th century δ13C signal: from 1915 CE, 

and from 1955 CE. There is stabilization of atmospheric CO2 concentrations at 310−312 ppm 

from ~1940 to 1955 CE (Figure 25) (MacFarling Meure et al. 2006). The subsequent increase 

appears to coincide with increase in fossil fuel use at about 1950 CE (Rubino et al. 2013). The 

Francey et al. (1999) high-precision record of atmospheric δ13C based on Antarctic ice cores 

shows two straight segments: one between 1850 and 1961 CE, and a steeper segment 

between 1962 and 1980 CE.  
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Figure 27. a) Law Dome ice core and firn records for CO2 concentration and δ13C for atmospheric CO2 

for the past 1000 years (from Rubino et al. 2013); b) Law Dome ice core and firn records for CH4 

concentration and δ13C for atmospheric CH4 for the past 1000 years (from Ferretti et al. 2005); c) N2O 

concentrations in the Law Dome ice core over the past 2000 years and 200 years (Wolff 2013).  

 

The Law Dome ice core records also show atmospheric methane (CH4) concentrations 

ranging from 590 to 760 parts per billion (ppb) through much of the Holocene, up to 1700 

CE, with as little as ~55 ppb difference from 1000 to 1700 CE (Ferretti et al. 2005). This is 

followed by an unprecedented increase to 1700 ppb by 2004 CE (Ferretti et al. 2005, Figure 

27a), an increase of 150% over 200 years (MacFarling Meure et al. 2006). Growth rates in 

CH4 decreased during ~1940−1955 CE (MacFarling Meure et al. 2006). The δ13C curve for CH4 

shows a marked decrease of ~2‰ from ~1000 to 1700 CE, perhaps in response to reduced 

biomass burning, and a subsequent abrupt rise from ~1875 CE to the present value of ~-

47‰, reflecting increasing pyrogenic emissions (Ferretti et al. 2005, Figure 27a). 
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Over the past 200 years, atmospheric N2O concentrations at Law Dome increased by 21% 

(MacFarling Meure et al. 2006). N2O concentrations ranged from 260 to 270 ppb between 1 

and 1850 CE, followed by a steady rise to 290 ppb by 1950 CE, from when there was a rapid 

rise to 320 ppb by 2000 CE (Wolff 2013, Figure 27b). The δ15N signal in firn ice at Law Dome 

is more scattered than would be expected, most probably due to random analytical noise 

(Rubino et al. 2013). 

 

3.8 Speleothems 

Annually laminated calcareous speleothems (typically stalagmites) occur within natural cave 

systems, typical of karst environments, or within artificial tunnels where either the adjacent 

bedrock or the degradation of mortar in concrete linings of the tunnel contributes the 

calcium carbonate. Karst landscapes occur across extensive parts of Eurasia, Australasia and 

the Americas, in total about 10% of the Earth’s land mass (Figure 28). There is precedent in 

using speleothems for the location of a GSSP, as Walker et al. (2012) used a stalagmite from 

Mawmluh Cave, India, as the proposed GSSP for the Upper Holocene Subseries (= proposed 

Meghalayan Stage) at 4.2 ka.  

 

In addition to lamina counting, the age of older speleothems is typically determined by 234U-

230Th dating, although this is unsuitable for carbonates precipitated over the past century. 

Independent dating using 210Pb–226Ra has been undertaken at a few locations (e.g. by 

Condomines and Rihs 2006 at St. Nectaire, France, and Bonotto et al. 2012 at Santana Cave 

in Brazil). Radiocarbon has quite commonly been used to confirm an age model from annual 

laminae, but does not provide annually resolved dates. If Pu is chosen as a primary tool for 
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correlation, the lack of Pu isotope determination would rule out a speleothem as GSSP for 

the Anthropocene (Fairchild 2017), but one could be chosen as an auxiliary site. 

 

 

Figure 28. Extent of carbonate outcrops present across global land mass by Ulrichstill 

https://commons.wikimedia.org/w/index.php?curid=9412430 Created 6th February 2010. Karst 

landscapes and speleothems occur within these regions, and locations mentioned in the text are 

indicated.  

 

Natural speleothem growth is typically slow, on the order of tens to hundreds of 

micrometres per year. In contrast, speleothems related to hyperalkaline groundwaters, 

commonly from anthropogenic sources, can grow at a rate of 10 mm per year (Baker et al. 

1998), hence potentially permitting fine-scale resolution of environmental changes, although 

the chemistry will be strongly kinetically modified (Hartland et al. 2014, Newton et al. 2015). 

210Pb dating of stalactites in Santana Cave (Brazil) shows a longitudinal growth rate of 1.3 

mm yr-1 and lateral rate of 0.01 mm yr-1 (Bonotto et al. 2012). A study of hydrothermal 
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stalagmites at St Nectaire (France) using 210Pb/226Ra ratios showed growth rates varying from 

5.3 ± 0.5 mm to 2.6 ± 0.2 mm yr-1 (Condomines and Rihs 2006).  

 

Speleothems record changing environmental conditions in the atmosphere, soil and 

ecosystem through geochemical signals transmitted from the ground surface, through rock, 

to the subterranean void. The processes of speleothem formation and their chemistry are 

detailed by Fairchild and Baker (2012), and their relevance to recognition of Anthropocene 

signals is given in Fairchild and Frisia (2014) and Fairchild (2017). Principal signals that may 

be used to recognise a potential Holocene–Anthropocene boundary (Table 2) include shifts 

in atmospheric 14C and sulphur (sulphate concentration and δ34S), which relate to global-

scale changes to atmospheric chemistry (Fairchild and Frisia 2014, Figure 29). Local signals 

include: 1) variations in growth rates of laminae and 18O which relate to air temperature 

and humidity, 2) 13C as an indicator of deforestation and/or introduction of C4 plants, 3) 

development of biomarkers such as a reduction in the ratio of C27/C31 n-alkanes and increase 

in n-alkanols as observed at Mechara (Ethiopia) reflecting the local introduction of 

agriculture about 1935 CE (Blyth et al. 2016), and 4) shifts in trace elements and isotope 

ratios (Fairchild 2017). Although of local source and probably diachronous in nature, such 

signals may link to global patterns of environmental change and so contribute to 

characterising a potential GSSP site. For example, Pb anomalies have been recorded in 

speleothems in Somerset, UK near mines active in pre-Roman, Roman and mediaeval times 

(McFarlane et al. 2013). Sulphur pollution from coal combustion increased during the 

Industrial Revolution and culminated in peak S concentrations and depleted 34S values in 

the mid- to late-20th century in developed countries (Wynn et al. 2010, Figure 29d). 

However, speleothems are insensitive to the significant increases in atmospheric CO2 

concentrations and depletion in 13C over the past century (Fairchild and Frisia 2014). 
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Changes in the nitrogen cycle via N abundance or isotopic fractionation related to fertiliser 

use have not been investigated in speleothems (Fairchild 2017). Phosphorus is strongly 

modulated by seasonal vegetational die-back and changed infiltration rates (Fairchild and 

Frisia 2014) rather than by fertiliser application. 

 

Transport of solutes via plants, soil and rock commonly results in signals being variably 

attenuated and delayed (Fairchild and Frisia 2014, Fairchild 2017). For example, speleothems 

in SW France and Gibraltar show 14C concentrations with differing degrees of attenuation 

and delay of the peak signal, but the initial rise was consistent at 1958 CE and coincides with 

changes in atmospheric concentrations (Fairchild and Frisia 2014). The timing of onset of the 

14C rise in speleothems is typically within 1–2 years of the atmospheric change (Genty and 

Massault 1999). 

 

Table 11 summarises the key advantages and disadvantages of such a potential GSSP for the 

Anthropocene. As examples, the Ernesto Cave in Italy has multi-proxy studies of speleothem 

laminae within a natural cave system, but urban speleothems may show greater tuning to 

modified anthropogenic signals. 

For: Against: 

• Annual lamination 

• Undisturbed locations 

• Independent 14C markers  

• S, δ34S, 14C reflect atmospheric composition, 
but modified by soil-ecosystem 

• Solid samples easier to handle than 
unconsolidated sediment 

• Precedent of Mawmluh Cave, India, for the 
proposed Upper Holocene GSSP 

 

• The atmospheric Suess effect on 13C is 
smaller than fractionation effects in the soil-
ecosystem so an inflection corresponding to 
atmospheric change is not normally present 

• Although S, δ34S, 14C may show initial rise as 
atmosphere changes, the peak is delayed 
because of storage in soil/ecosystem 

• Changes in trace pollutant metals (e.g. Pb, Zn, 
REE) are strongly linked to organic matter 
from soil and increases tend to reflect soil 
disturbance/deforestation effects  

• Not able to reliably detect signals usable 
elsewhere, e.g. Pu, anthropogenic detritus 
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Table 11. Reasons for and against using a speleothem as a potential host for a GSSP. 

 

3.8.1 Ernesto Cave, Italy 

Ernesto Cave, northern Italy, closely studied for >20 years, has supplied various proxy data 

series from annually-laminated speleothems independently dated using U-Th series (Frisia et 

al. 2003). These show a strong annual signal of fluorescent laminae associated with a range 

of colloid-transported elements (Fairchild and Frisia 2014). A pronounced change is 

recognised since about 1840 CE, from open and impurity-rich crystals within relatively thin 

laminae to thicker laminae of clean calcite (Figure 29a), representing higher growth rates, 

closely correlated with temperature increases (Frisia et al. 2003, Fairchild and Frisia 2014) 

associated with the local ending of the Little Ice Age. This pattern broadly coincides with the 

initial increase in sulphate concentrations within speleothems in this cave at about 1880 CE 

(Frisia et al. 2005), associated with the initiation of atmospheric pollution in response to the 

Industrial Revolution. 

 

No appreciable change in stable isotopes has occurred across the mid-20th century (Figure 

29b), the most significant change in δ13C being a marked positive excursion at ~1840 CE 

(Scholz et al. 2012).  
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Figure 29. Ernesto Cave, Italy: a) Age model based on lamina counting related to local mean air 

temperature (Frisia et al. 2003); b) 18O and 13C profiles (Scholz et al. 2012); c) Radiocarbon profile 

and comparable European atmospheric emissions (Fohlmeister et al. 2011); d) S concentration and 

δ34S (Frisia et al. 2005, Wynn et al. 2010). 

 

The 14C bomb-spike has been recorded from the cave (Figure 29c), but with a decade lag 

compared with atmospheric signals (Fohlmeister et al. 2011). Records of sulphur loading and 

lowering of δ34S in both speleothem and tree rings show a similar lag in the speleothems of 

about 15–20 years (Figure 29c), such that in 2000 CE the speleothem was still recording peak 

atmospheric loading (Wynn et al. 2010, 2014) that was locally experienced in the 1980s 
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(Fohlmeister et al. 2011), but which is now declining (Borsato et al. 2015). Trace element 

concentrations increased greatly during the early-20th century, a time of deforestation in the 

area (Borsato et al. 2007). 

3.8.2 Urban speleothem, Paris 

Rises in several trace metals and rare earth elements are found in urban speleothems in an 

underground aqueduct beneath Paris that have grown over 300 years with a record of two 

laminae per year, independently dated using U-Th series (Pons-Branchu et al. 2015). Two 

distinct phases of heavy metal pollution are recognised: a) 18th century metal contamination 

resulting from use of urban waste (night soil) as fertilizer; and b) since 1900 CE elevated Pb, 

Mn, V, Cu, Cd and Al concentrations, attributed to urbanisation, with a more marked 

increase since 1960–1970 CE (Pons-Branchu et al. 2015). 206Pb/207Pb isotope ratios show no 

consistent pattern in these speleothems. The dominant value of 1.181 ± 0.003, is typical of 

values associated with lead from northern Europe (Pons-Branchu et al. 2015), though one 

speleothem showed a change after the mid-19th century, suggesting a new contribution 

from coal burning or from Pb from Spain. Pb ratios typical of leaded gasoline are not 

discriminated (Pons-Branchu et al. 2015).  

 

3.9 Trees 

Forest coverage in 2005 CE was about 39 million km2, or ~30% of the world’s land area (FAO 

2006) and there are an estimated 3 trillion trees (Crowther et al. 2015). Forests are extensive 

on all continents except Antarctica, and include the boreal forests of North America and 

Eurasia and tropical forests of South America, central Africa and south-east Asia (Figure 30). 

Tropical trees from aseasonal tropical regions lack reliable annual rings, so trees from 
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temperate or boreal environments would be most suitable for a GSSP as the tree rings 

themselves can provide a precise annually-resolved chronology.  

 

 

Figure 30. Forest map of the world with key locations mentioned in the text. © (2006)FAO. ] 

 

Tree rings provide a perfect annually-resolved chronology, and within this an annually 

resolved archive of environmental change, most notably palaeoclimate, at local to global 

scales. This signal can be evident in the physical properties of the tree ring (width, density, 

reflectance) or chemical indicators such as the stable isotopic ratios of carbon (sourced from 

atmospheric CO2), and hydrogen and oxygen (sourced from precipitation, soil or ground 

water) (Fritts 1976, Speer 2010, McCarroll and Loader 2004). In many species, the tree rings 

may be further divided into early wood (formed during the spring) and late wood (formed 

during the summer, primarily from photosynthates fixed during the growth year). Rings from 

living trees can provide environmental information spanning both the mid-20th century 

putative boundary for the Anthropocene and the late-18th century transition from pre-
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industrial times through the development of the Industrial Revolution. Similar records can 

also be found in preserved dead trees that accumulated in bogs or lakes, and also in building 

timbers. Where trees co-existed in time they will co-record a shared environmental signal 

that may therefore be cross-dated to assign chronology or to provide independent 

replication between trees or across study regions. 

 

Table 12 summarises the key advantages and disadvantages of having a potential GSSP 

within tree rings. Proxy signals associated with palaeoclimate, stable carbon isotopes, 

sulphur concentrations and isotopic ratios, radiocarbon fallout and heavy metal 

concentrations are discussed below. 

 

For: Against: 

• Global expression and distribution; 
widespread terrestrial extent 

• Bi-annual layers  

• Precise dating through dendrochronology 

• Independent 14C dating possible 

• Environmental signals preserved in deadwood  

• δ18O and δD: record source water, which 
contains a climate signal  

• δ13C is highly sensitive to the Suess effect on 
atmospheric CO2  

• Sulphur and δ34S signal commencing mid-20th 
century 

• 14C bomb spike clearly defined 

• High potential for independent replication 

• Tangible, stable and archivable 

• Growth ring width may not be suitable for 
picking mid-20th century climate signal (due 
to local effects or ‘divergence’) 

• Complex record of local signals in physical 
and chemical proxies 

• δ13C can be affected by local modifications 

• Heavy metal concentrations may be 
unsuitable proxy for pollution events due to 
radial mobility 

• No precedent of using a living/deceased 
organism for GSSP 

Table 12. Reasons for and against using a tree as a potential host for a GSSP. 
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3.9.1 Tree rings and palaeoclimate signals 

Dendrochronology relies upon the counting and statistical synchronisation of annual 

changes in tree ring widths, and their assignment to a calendrical or relative timescale. This 

is possible because the variability in tree growth driving this signal is related to regional 

climatic changes. Trees growing at the same time in history, and experiencing a similar 

climate history, will in the absence of external disturbances yield similar patterns of wide 

and narrow growth rings that may be cross-dated by dendrochronology to develop a precise 

timescale. Due to the physical increase in the diameter of a tree as it grows, tree-rings show 

a characteristic decline in width with increasing tree age (size). Where a climatic signal is to 

be extracted from the ring width data, statistical techniques are required to remove this 

growth or age-related trend. This statistical processing may cause climate signals of 

frequency longer or equal to the age-span of the tree to be lost, reducing the value of tree-

ring widths in recording long-term climate change (Cook et al. 1995, Esper et al. 2002). 

However, this effect can be significantly reduced/removed by using more complex 

detrending protocols and numerous multi-centennial records of temperature changes from 

800 to 1990 CE have been determined from high-elevation and high-latitude locations across 

the Northern Hemisphere using Regional Curve-based Standardization techniques (Esper et 

al. 2002, Melvin and Briffa 2008). These data contain evidence for a Northern Hemisphere 

Medieval Climatic Anomaly (MCA) between about 900 and 1200 CE, and for below average 

temperatures typical of the Little Ice Age (LIA) from 1200 to 1850 CE, and for warming since 

1850 CE comparable in scale to that of the MCA (Wilson et al. 2016, Esper et al. 2002, Figure 

31a).  

 

The suitability of using tree rings to establish the temperature profile post-1950 CE has been 

questioned due to a conspicuous increase in the statistical uncertainty in reconstructions 
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after 1975 CE, which may reflect an anomalous reduction in growth performance at some 

high northern latitude conifer sites, but is also often coincident with a decrease in the 

replication of the composite record (Esper et al. 2002). This “divergence” between growth-

based reconstructions and observed climate has been the subject of significant attention by 

dendroclimatologists and many potential causes, from unbalanced replication and signal 

processing effects to changes in seasonality and CO2 fertilisation, have been considered 

(D’Arrigo et al. 2007). Whilst this may reduce current confidence in the use of ringwidth-

based reconstructions to define climatic changes attributed to the start of the 

Anthropocene, maximum late wood density appears to be less impacted upon by such 

divergence issues and density-based reconstructions of past climate remain some of the best 

records of past climatic variability currently available to climate scientists. There are few 

palaeoclimate proxies other than tree-rings capable of providing the same precisely dated, 

annually-resolved palaeoclimate reconstructions with the same capacity for independent 

verification through replication, capable of being objectively calibrated against instrumental 

observations and independently verified. 
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Figure 31. a) The 20-year smoothed Northern Hemisphere extratropics reconstruction of radial stem 

productivity in high elevation and high latitude forest environments since 800 CE (black) and two-

tailed 95% bootstrap confidence intervals (blue) (from Esper et al. 2002); b) δ13C variability from 

Loader et al. (2013a) for the period 1500–2008 CE measured in tree-ring cellulose for a composite 

tree ring stable isotope chronology developed using Pinus sylvestris trees from northern 

Fennoscandia. Fine line represents annually-resolved δ13C variability, thick solid line presents the 
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annual data smoothed with a centrally-weighted 51-year moving average. Dashed line represents the 

mean δ13C value for the “pre-industrial” period 1500–1799 CE. Mean annual replication for the 

record is >13 trees. Analytical precision σn-1 = 0.12 per mille n=951 which compares favourably with 

the analytical precision of the method typically reported (σn-1 = 0.10 n=10) (Boettger et al. 2007, 

McCarroll and Loader 2004, Loader et al. 2013a).  

 

3.9.2 Stable carbon isotopic signal 

Stable isotope variability in tree rings appears to be less affected by non-climatic age-related 

tendencies (Young et al. 2011). Long-term trends of stable carbon isotopic data in tree rings 

may therefore mark the start of the Anthropocene in the tree ring archive. The stable carbon 

isotopes in tree rings record primarily the stable isotopic composition of the source CO2 

sampled by the tree during photosynthesis. This signal is further imprinted upon by the 

tree’s physiological response to climatic change (the balance between stomatal conductance 

and photosynthetic rate), photosynthetic and respirative processes (Farquhar et al. 1982, 

McCarroll and Loader 2004, and references therein). Inter-annually, δ13C values will vary in 

response to changes in irradiance, soil moisture, precipitation and relative humidity and this 

has allowed the tree rings to be used as a record of past climate variability. As a biological 

system, tree ring stable carbon isotopic ratios will also vary depending upon the species of 

tree (angiosperm versus gymnosperm) and their individual environmental history. In 

addition, factors such as leaf morphology, ecological amplitude, pollution, forest 

management history, disturbance and nutrient availability, can all influence the resulting 

tree ring isotopic record, but at all times, the basic physiological response of the tree will 

remain the same. This natural inter-tree variability has been characterised in resampling 

experiments (Loader et al. 2013b), and although extreme cases have been reported (Li et al. 
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2005), natural intra-site variability falls within reasonable limits defined by current analytical 

uncertainties. 

 

When viewed over a long (centennial-millennial) timescale, trees have the capacity to record 

and contextualise the unprecedented anthropogenic changes in atmospheric δ13C associated 

with global industrialisation and land-use change. By combining records from different 

geographical regions, location-specific year-to-year climatic variability and the effect of 

random disturbances may be reduced to yield a regionally relevant record of carbon isotopic 

variability in atmospheric CO2. A reduction of atmospheric δ13C values by ~2‰ has occurred 

since the start of the global Industrial Revolution ~1820 CE (the δ13C Suess effect), which is 

among the dates proposed as a start for the Anthropocene (Figure 31b). This effect is 

observed in tree rings worldwide and is also clearly observable in ringless trees from the 

aseasonal tropics (Loader et al. 2011).  

 

The δ13C Suess effect is commonly removed in tree ring carbon isotope series through 

mathematical detrending without loss of low-frequency climatic information (McCarroll and 

Loader 2004). This makes the data suitable for numerical calibration against instrumental 

climate data, but prevents its use as an arbiter of atmospheric δ13C changes. To assess the 

potential base of the Anthropocene using δ13C changes, raw carbon isotope data are 

required.  

 

A further consideration when assessing the candidature of tree ring δ13C as a marker for the 

Anthropocene is the influence of increased atmospheric CO2 concentration on 

photosynthesis. This “fertilisation” or “greening” effect has been widely reported and in the 

context of stable carbon isotopic variability is seen as a change in the intrinsic water-use 
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efficiency of the tree (Seibt et al. 2008, Saurer et al. 2014, Frank et al. 2015). Methods have 

been developed to quantify and to correct for this effect, which will vary from tree to tree 

(Treydte et al. 2009, McCarroll et al. 2009). Several studies have also identified a limit to the 

degree to which trees can adapt to higher atmospheric CO2 concentrations. This 

“fertilisation” effect does not negate the use of δ13C as a potential marker, but it should be 

taken into consideration. 

 

A large-scale/global composite of global carbon isotope time-series from tree rings could 

help locate the boundary of the Anthropocene, as individual records are affected by local 

climate, forest disturbance, or the local impact of atmospheric pollution on stomatal 

conductance and disease (McCarroll and Loader 2004 and references therein, Bukata and 

Kyser 2007, Treydte et al. 2007, 2009, Loader et al. 2013b, Boettger et al. 2014, Saurer et al. 

2014, Frank et al. 2015), all of which could potentially obscure the true expression of the 

global δ13C Suess effect in tree rings. Nevertheless, the change in tree ring carbon isotopic 

values resulting from global industrialisation is far greater than anything observed in the tree 

ring isotope record during the last 1100 years. The combination of a temporally stable proxy 

preserved within a precisely constrained chronology for the tree rings represents an 

opportunity to constrain a boundary to the Anthropocene. 

3.9.3 Sulphur concentrations and isotopic ratios 

Bulk analyses of the conifer Abies alba from near the Ernesto cave site, NE Italy, show that S 

concentrations within annual rings reflect atmospheric SO2 pollution (Figure 32b), with 

significantly higher values in the second half of the 20th century (Fairchild et al. 2009). Both 

the trees and the nearby stalagmite record the overall increasing trend in the 20th century, 

from the 1960s onwards, with the trees showing a more immediate (earlier) response to the 
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high S emissions of the 1960s and 1970s (Fairchild et al. 2009, Wynn et al. 2014). The Abies 

samples show considerable noise, including variation between individual trees (Fairchild et 

al. 2009). Furthermore, the S is mainly sourced from soil-waters rather than directly from the 

atmosphere, and the S is stored both in soil and biomass, which means that the original 

atmospheric signal is necessarily modified (Fairchild et al. 2009). These trees also show a 

trend in δ34S towards lighter isotopes in recent rings, with pre-industrial values of +7.5‰ 

and modern values of +0.7‰, with no significant signature corresponding to the mid-20th 

century (Wynn et al. 2014, Figure 32b). 

 

δ34S is potentially a useful chronological proxy for past atmospheric S pollution, particularly 

as there is limited fractionation during incorporation into the tree (Kawamura et al. 2006). 

Three conifers studied from Kyushu Island, Japan provide a significant record from 1945 CE, 

where a dominant organically-bound sulphur (OBS) fraction and a minor water-soluble 

sulphur (WSS) fraction were discriminated (Kawamura et al. 2006). These showed a general 

increase, then decrease, in the second part of the 20th century, with higher values and a 

greater range seen in urban as compared with rural areas. Increased atmospheric S 

emissions from petroleum combustion with negative δ34S values were mainly sourced from 

the Middle East since the 1950s, until legislation was introduced in 1968 CE. There is a ~5 

year delay in δ34SOBS tree ring values compared with maximum atmospheric S concentrations, 

probably reflecting the time taken for sulphur deposited in soil to mobilise to the roots, and 

for the metabolism of sulphur after absorption (Kawamura et al. 2006).  

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 

137 
 

 

Figure 32. a) Tree rings (Pinus sylvestris) samples from 1960 to 2003 CE at Niepołomice (Poland) 

showing changes of radiocarbon concentration (from Rakowski et al. 2013) compared with Northern 

Hemisphere (Zone 1) atmospheric values (from Hua and Barbetti 2004); b) European S emissions; c) S 

concentrations; and d) δ34S in Abies alba from NE Italy compared with European S emissions (Wynn 

et al. 2014). 
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3.9.4 The radiocarbon bomb spike and heavy metal concentrations 

Atmospheric Δ14C decreased by about 20.0‰ between 1890 and 1950 CE in response to the 

Suess effect of adding low-activity fossil carbon, punctuated by a marked bomb spike in 

response to nuclear weapons testing, peaking in ~1963 CE that led to a level two times 

higher than that of pre-1850 CE times (Rakowski et al. 2013). Annual rings of a pine tree 

(Pinus sylvestris) taken in the Niepołomice area, near Kraków, Poland from 1960 to 2003 CE 

show a clear Δ14C bomb-spike in 1964 CE (Rakowski et al. 2013, Figure 32a). A suitable GSSP 

candidate should have a data set of both Δ14C and δ13C extending back to pre-industrial 

times; the data in the tree analysed by Rakowski et al. (2013) began close to the peak bomb-

spike interval, so lack an adequate record of the transition across a potential Holocene–

Anthropocene boundary. 239+240Pu records in tree rings are less studied, but the distribution 

of Pu in tree rings and in lake sediment cores seems to show similar trends (Mahara and 

Kudo 1995) suggesting Pu as a potentially suitable signal.  

 

Historical changes in trace metal levels can be recognised in some tree ring records, 

although there may well be a time lag between metal deposition and the passage through 

soils and root system. Element concentrations in tree rings for a given year may differ 

markedly between trees from a single location (Watmough 1999). Studies on the sugar 

maple (Acer saccharum) suggest that there is both a rapid uptake of trace metals (e.g. Cu, Ni, 

Cr, Zn, Cd, Co and As) and a minimal lateral movement between rings (Watmough 1999), 

although radial movement of trace elements has been reported in other studies (Hietz et al. 

2014).  
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4 Summary 

Many of the signals described above are highly resolved, widespread and correlatable. 

Notably, heavy metals, δ13C and radiogenic fallout signals tend to be recorded in most 

environments that might conceivably be suitable for hosting a GSSP (Table 2). Other airborne 

signals, such as fly ash, nitrates and δ15N, and to a lesser extent sulphur and sulphates, CO2 

and CH4 concentrations and δ18O occur in many environments and provide additional means 

of correlation. Biotic assemblages have been demonstrated to respond rapidly to local 

environmental changes and can provide useful secondary and local markers, but seem on 

current evidence unlikely to provide a globally correlatable and synchronous marker that is 

as temporally well-resolved as δ13C and radiogenic fallout or other airborne signals. 

 

These more nearly synchronous and widespread signals, combined with the possibility of 

directly dating successions by such means as lamina counting, show that a well-chosen GSSP 

level might be precisely dated to the nearest year (or season) and might be correlated to 

other well-studied high-resolution sections with a resolution of a year or a few years. In less 

well-studied sections, or those lacking annual lamination, use of the very wide range of 

available proxy signals should still be able to provide correlative resolution of a few to 

several years, sufficient to widely locate a practically effective Holocene–Anthropocene 

boundary, even in apparently unpromising geological settings. For instance, Smith et al. 

(2016) identified what would be regarded as an Anthropocene succession of sub-ice shelf 

deposits at Pine Island in West Antarctica, by identifying bomb-derived plutonium within the 

deposits. 

 

The location of such a Holocene–Anthropocene boundary within relatively recent 

successions – of the last few centuries – we regard as having use beyond the formal value of 
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the establishment of chronostratigraphic divisions. An extensive, variably interconnected 

suite of physical, chemical and biological changes to the Earth System has been taking place, 

some local, some global, many of which leave stratigraphically detectable traces. These 

include phenomena such as the spread of various kinds of industrially related pollutants and 

their biotic effects, changes to the atmosphere and hence to the Earth’s radiative properties, 

a complex pattern of species extinctions, extirpations and invasions, and the emergence and 

evolution of technological systems on a planetary scale. For practical analysis of these 

changes – many of which are ongoing, or accelerating – placing them in an effective 

framework of space and time is a prerequisite. We suggest that a chronostratigraphic 

Holocene–Anthropocene boundary could make a significant contribution to this analytical 

process, not least in that this time interval is emerging as a critical transition in the geological 

history of this planet (e.g. Steffen et al. 2016). The survey we provide here suggests that such 

a boundary would be workable in practice, across the range of the environments we survey 

here and likely more widely. Table 13 surveys the range of chemostratigraphic signals 

recorded here and provides their onset and peak date for key environments. This shows the 

wide range of potential proxies that could be used to mark a mid-20th century boundary.  
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Table 13. Summary of key mid-20th century proxy signals and potential palaeoenvironments for a 

GSSP. The initial date represents the marked onset of the signal; the peak signal is shown in brackets. 

Key signals and environments are shown in boxes. Reference numbers relate to main geographical 

locations mentioned in the text: (1) Santa Barbara, USA; (2) Caribbean; (3) Nova Scotia, Canada; (4) 

Clyde Estuary, Scotland; (5) Urola Estuary, Spain; (6) Lake Victoria, Australia; (7) North America; (8) 

China; (9) Lochnagar, Scotland; (10) Lilla Öresjön, Sweden; (11) Northern England; (12) Switzerland; 

(13) Antarctica; (14) Greenland; (15) Ernesto Cave, Italy; (16) Fenno-Scandinavia; (17) Poland; (18) 

Ontario, Canada. 

 

With regard to the environments most suitable for seeking a candidate GSSP, we offer the 

following guidance: 

 

 Anthropogenic deposits are common in terrestrial environments. They may be 

relatively thick (up to tens of metres), contain signals that closely reflect human influence, 

and are readily datable, particularly using technofossils. They tend to lack lateral continuity, 

may contain omission surfaces, are not annually laminated, and may lack ‘preservability’, all 

of which are likely to discount many such deposits as hosts for primary or auxiliary GSSP 

candidates. However, much the same criticisms also apply to many Holocene deposits. 

Suitable potential GSSP candidates may well exist within anthropogenic deposits, or perhaps 

at the interface between anthropogenic and non-anthropogenic strata, although none have 

yet been identified or described. More work is required in this area of investigation. 

 

 Marine anoxic basins tend to display undisturbed annually resolved laminae that can 

be independently dated. The radionuclide fallout signal may show some smearing due to 

processes affecting the settling of radioisotopes through the water column, which can inhibit 

development of a sharp bomb spike. Even so, the early 1950s start of the signal (Table 13) is 
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typically robust. In these environments, heavy metals including Pb, organic compounds, such 

as PCBs and pesticides (Table 13), microplastics and biotic signals, including planktonic 

foraminifera and diatoms (and their stable isotope patterns), tend to be controlled by local 

environmental variations. Although they broadly display changes in the mid- to late-20th 

century, the onset of their signal can vary by decades between regions. Low sedimentation 

rates may reduce the thickness of Anthropocene strata to a few centimetres. Even so, the 

signals of change may still be clearly resolved and laterally extensive. This environment has 

potential for hosting an Anthropocene GSSP, provided that the fallout signal, especially 

239Pu, is not significantly smeared by slow settling rates or by bioturbation. 

 

 Coral growth bands can exhibit very-high resolution records, which, along with rapid 

growth rates commonly exceeding sediment accumulation rates, provide a potentially 

suitable medium for hosting a GSSP. The onset of the 239Pu signal is particularly robust as an 

early 1950s marker (Table 13), with no concerns about the influence of settling rates through 

the water column; peak signals are more variable between localities. However, reefs that are 

distal to nuclear detonation test sites might be more suitable so as to more clearly show the 

global pattern, rather than including some residues of the early, pre-1952 CE tests that only 

left a local signal. The Caribbean, Red Sea, western and northern Indian Ocean are distant 

from the main testing grounds (Waters et al. 2015) and are more likely to most clearly show 

the global atmospheric signal. Radiocarbon tends to have latitudinal diachroneity and shows 

a delayed signal in shallow-water corals of about a decade compared with atmospheric 14C 

and the 239Pu signal (Table 13), with increased lags also associated with greater water depth 

of coral growth. The decline of δ13C in corals is most marked in Atlantic corals from 1957 CE 

(Table 13), with the accumulation rate being more variable and of much smaller magnitude 

in the Indian and Pacific oceans. δ15N values are complex, related to source areas of ocean 
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currents and types of anthropogenic sources. Heavy metals can be concentrated within 

certain species of coral, but they tend to record only local contamination events. 

Temperature records are a mix of local and global factors and a single core would probably 

not be suitable as a GSSP. If corals are to be considered as a potential host for a GSSP, 

examples from the Caribbean, using 239Pu as the primary signal, may be most suitable. 

 

 Estuaries and deltas are typically responsive to anthropogenic influence, whether 

biotic change in response to environmental modifications and widespread introduction of 

neobiota, changes to sediment flux through alteration of catchment erosion rates or 

impounding sediments through dam construction, or through contamination by fly ash, 

heavy metals such as Pb, organic chemicals such as PCBs (Table 13), or microplastics. These 

environments, while offering good potential for hosting a candidate GSSP, may suffer from 

strong modulation by local influences, a lack of lateral continuity, and the common presence 

of omission surfaces. 

 

 Lakes, despite being laterally disconnected, are found across large parts of the planet 

and, although commonly strongly modulated by local processes, also display numerous 

globally coherent signals. As with estuaries and deltas, lakes tend to be responsive to 

anthropogenic influence, resulting in a spectrum of highly resolved signals, including black 

carbon, fly ash, organic compounds, δ15N, S and 239Pu which provide potential 1950s markers 

(Table 13). Despite the Anthropocene successions being typically thin, shallow perennial 

lakes are advantageous for hosting a potential GSSP given that settling rates of radiogenic 

fallout and heavy metals will be minimal and at the same time there should be few omission 

surfaces. The latter issue limits the suitability of many arid saline lakes, but numerous 

Northern Hemisphere meromictic lakes could host suitable candidate GSSP or auxiliary 
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sections. Lake sediments have been accepted as hosts for global auxiliary stratotypes for the 

base of the Holocene. 

 

 Ombrotrophic peat bogs provide widespread local archives that faithfully record 

aerosol distribution from local, regional and global sources. The range of potential suitable 

signals are diverse (Table 8), with fly ash providing the most robust 1950s marker (Table 13). 

The behaviour of trace elements may be influenced by changing redox conditions and has to 

be carefully documented. As there is no varved sedimentation, and as some signals such as 

the Pu bomb spike show redistribution effects, hosting a primary GSSP in peat bogs seems 

not appropriate, but this environment may provide a useful auxiliary GSSP section. 

 

 Glacial ice provides a broad spectrum of annually resolvable atmospheric signals 

including radionuclides, δ18O, sulphates, nitrates, δ15N, Pb and other metals, and so may 

provide a suitable mid-20th century marker (Table 13). Given the precedent of locating the 

Holocene GSSP in glacial ice, there is a strong argument for locating in an ice sheet at least 

an auxiliary stratotype GSSP section for the base of the Anthropocene, not least to show 

how its signals contrast with those at the base of the Holocene. A significant issue for the 

temporal resolution required for the Anthropocene is the significant time lag between the 

age of the ice and the included air bubbles. This lag affects CO2, CH4, δ13C and N2O values, 

which are consistently younger than the enclosing ice. This effect is most pronounced where 

snow accumulation is slowest, so is typically more of an issue in Antarctica than Greenland. 

Even so, it has been recently demonstrated that the age of air bubbles can be matched to 

that of the associated ice through the use of nitrogen isotopes (Parrenin et al. 2013), which 

may circumvent what until recently appeared to be a significant problem. Slowly 

accumulating Antarctic ice tends to show only the more global signals, whereas Greenland 
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ice can reveal many regional Northern Hemisphere influences. Nevertheless, Antarctic 

coastal ice cores do accumulate at high rates (e.g. Law Dome) and may provide an 

appropriate GSSP candidate section. Care would have to be taken to locate such a 

prospective GSSP in a region where the danger of calving of significant areas of ice from ice 

shelves and ice loss due to global climate change is less imminent, given the shallow depths 

at which the signal would be evident. Ellsworth Land, at the base of the Antarctic Peninsula 

might provide a suitable location, since the observed increase in snow accumulation there 

during the late 20th century is unprecedented in the context of the past 300 years (Thomas 

et al. 2015). 

 

 Speleothems suffer from modulation of environmental signals by the soil ecosystem, 

making the interpretation of signal variation complex. Sulphur loading, the depletion of δ34S 

and the 14C (but importantly not 239Pu) bomb-spike can be clearly resolved in speleothems, 

with an onset close to the atmospheric signal, although the peak tends to show a decadal-

scale lag (Table 13). These environments also tend to lack mid-20th century δ13C, δ18O and 

heavy metal shifts as potential environmental markers. 

 

 Tree rings, compared with speleothems, are more responsive to and provide a 

clearer archive of changing atmospheric chemistries. They benefit from a global distribution 

and are capable of precise calendrical dating through dendrochronology without reliance 

upon external dating methods. Stable carbon isotopes provide the strongest “candidate” 

measure from tree rings as they have been demonstrated to record worldwide the change in 

atmospheric δ13C since the onset of global industrialisation. Such a uniformly expressed, 

well-characterised ~1940 CE departure (Table 13) has not been observed in the older tree-

ring record, and the co-recorded chronology enables this trend to be clearly recognised. 
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Sulphur loading and depletion of δ34S is evident in developed countries, starting in the 

1960s, with enrichment of excess 14C from the early 1950s to a 1964 CE peak (Table 13), but 

this signal is a terrestrial marker only. Although certainly widespread, tree-ring signals can be 

influenced by complex local environmental processes, yet these may be resolved through a 

capacity for large-scale independent replication. There is no precedent for using a living or 

deceased organism (such as a tree) as the host for a GSSP, but as an archive containing a 

signal of atmospheric carbon isotope variability and precise timescale there are close 

parallels to the use of the North Greenland ice core (NGRIP) for establishing the base of the 

Holocene. 

 

To summarize, the information provided here is a first overall appraisal of suitable 

palaeoenvironments as regards their overall potentials for hosting an Anthropocene GSSP 

and a range of auxiliary sections. Clearly, many candidates that are geologically suitable 

exist, and are found in a range of different depositional settings. The review presented here 

is a critical prelude to help guide the necessary next steps, which involve selecting a small 

number of maximally suitable sites from the most appropriate geological facies, and 

subjecting them to multi-proxy analysis in order to assess changes in stratigraphically-

relevant proxies from pre-industrial times through to the present. 

 

5 Conclusions 

 Many widespread, correlatable, and highly resolved signals could be used as the 

primary marker and as secondary markers for the base of an Anthropocene Series. 

δ13C and radionuclide fallout signals are applicable across most environments. The 

latter provides the most abrupt signal, with a marked upturn in abundance of 
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radioisotopes of 239Pu or 14C, in 1952 and 1954 CE respectively, appearing to provide 

a consistent horizon for correlation, whereas the peak ‘bomb-signals’ appear 

diachronous.  

 Varved deposits, such as those accumulating in marine anoxic basins, meromictic 

lakes, and estuaries and deltas, along with layers in glacial ice and growth rings, such 

as developed in corals, marine bivalves, speleothems and trees, represent those 

palaeoenvironments yielding highest resolution ‘stratigraphy’ at annual or even 

seasonal scale, and are hence preferred targets for searching for a likely GSSP 

section. The use of lamina or layer counting to determine ages can be verified, 

precisely in the case of tree rings, or radiometrically via 210Pb (marine anoxic basins, 

corals and bivalves, lakes, ice) and 14C (marine anoxic basins, corals and bivalves, 

lakes, speleothems and trees) dating.  

 Ombrotrophic peat bogs and some anthropogenic deposits provide clear expression 

of numerous key stratigraphical markers and can show high stratal accumulation 

rates, but lack the annual lamination seen in other environments. 

 Preservation of continuous laminated successions without missing ‘strata’ is 

essential. Estuaries and deltas are prone to missing laminae through erosive events, 

ice laminae from high-altitude glaciers through melting events, and speleothems 

through periods of aridity. 

 Time lags between signal generation and recording within varves or laminae on 

decadal scales represents a significant correlatory problem in speleothems.  

 A lag between the age of ice and the younger age of air bubbles within the ice limits 

the potential use of atmospheric CO2 and CH4 signals from ice cores, but close 

examination of sites of rapid accumulation on the Antarctic Peninsula may be 
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suitable, as well as sites in other coastal regions (Law Dome in Antarctica), or in 

Greenland).  

 Deep marine environments can display a significant settling delay that affects 

radioisotopes and heavy metal signals, though this effect mainly delays the peak 

signal rather than onset. Except for some marine anoxic basins and perhaps cold-

water corals, the rates of sedimentation are too low and the rates of bioturbation are 

too high for the development of suitable sections for a GSSP. 

 Proximity to the source of signals can result in local discrepancies in the timing of 

their initial onset within successions. In the search for a GSSP, there is advantage in 

looking at locations that are distant from such perturbations and provide a global 

signal, e.g. Antarctica for glacial ice, or the Caribbean for corals.  

 Overall, the range of high-resolution stratigraphic proxy signals, and the varied and 

widespread nature of the palaeoenvironments where they can be systematically 

preserved in strata, suggests that there is excellent potential for locating an effective 

candidate Anthropocene GSSP together with auxiliary stratotypes. 
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