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Abstract

A long history of research has pointed to the importance of fractal fluctuations in physiology, but so far,

the physiological evidence of fractal fluctuations has been piecemeal and without clues to bodywide

integration. What remains unknown is how fractal fluctuations might interact across the body and how

those interactions might support the coordination of goal-directed behaviors. We demonstrate that a

complex interplay of fractality in mechanical fluctuations across the body supports a more accurate

perception of heaviness and length of occluded handheld objects via effortful touch in blindfolded

individuals. For a given participant, the flow of fractal fluctuation through the body indexes the flow of

perceptual information used to derive perceptual judgments. These patterns in the waxing and waning

of  fluctuations  across  disparate  anatomical  locations  provide  novel  insights  into  how  the  high-

dimensional flux of mechanotransduction is compressed into low-dimensional perceptual information

specifying properties of hefted occluded objects.

Keywords: biotensegrity, center of pressure, dynamic touch,  effortful touch, multifractality, postural

sway, proprioception, psychophysics, tensegrity
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INTRODUCTION

Our smooth perceptuomotor functioning rests on the hardly noticed and rarely studied capability of

effortful  touch.  Our  eyes  can  only  face  one  way,  and  effortful  touch  picks  up  the  remaining

surroundings. Effortful touch includes perceiving the body, attachments to the body, and the surfaces

and substances adjacent to the body. Effortful touch serves as the chief perceptual faculty to the blind

when using a cane, or to the sighted when extending a foot forward without looking down or exploring

objects just  out of view.  Effortful touch allows perceiving an intended property of an object (e.g.,

heaviness, length, width, and shape, orientation in hand) by using various anatomical components (1–

9), or in coordination with each other (e.g., hefting an object using the right vs. left hand, hand vs. foot)

(10–16). In fact, despite the apparent separability of all the disparate anatomical components that can

touch,  the  emerging  truth  is  that  no  particular  anatomical  component  supports  effortful  touch  in

isolation—the arm supports the hand, the torso supports the arm, and the legs support the torso. In this

study,  we show using  causal  network  modeling  that  length  and heaviness  perception  of  handheld

objects  via  effortful  touch  in  blindfolded  humans  depends  on  a  complex  interplay  of  mechanical

fluctuations across the body.

The  neurophysiology  subserving  effortful  touch  spans  a  vast  and  complex  network  of

connective tissues and extracellular matrix (ECM) that orchestrates the coordination of sensorimotor

activity  (17, 18). Connective tissues distribute tensions and compressions across a wide range of scales

and  around  all  parts  of  the  body;  this  distribution  of  tension  and  compression  translates  local

mechanical disturbances into the global realignment of forces (19–23). Perception via effortful touch

emerges  from  the  complex  interactions  across  scales.  Specifically,  movements  during  effortful

exploration shape the patterns  of stimulation available to  the body,  and the multi-scaled aspect  of

movement  supports  a  multi-scaled  capacity  for  the  body  to  pick  up  a  wide  range  of  stimulus
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information, from coarse to fine  (24,  25). If perception via effortful touch rests on a foundation of

action, then it should emerge from the cross-scale interactions of the movement system.

Modeling  this  connective-tissue  support  for  effortful  touch  requires  a  suitable  analytical

framework. This capacity of the movement system to exhibit across-scale interactions suggests that the

bodywide haptic perceptual system may at least exhibit, and at most, depend on, coordination dynamics

with the fractal organization  (17,  26,  27).  Indeed,  recent  work suggests that  fractal  fluctuations of

exploratory  movements  may  have  a  role  in  predicting  perception  via  effortful  touch.  Initial  work

focused on manual exploration of grasped objects: fractal fluctuations in hand movements improved

modeled predictions of perceptual judgments of object properties (heaviness and length) derived by

manual hefting (28–30). Later work investigated the role of postural sway in exploing properties of

objects passively supported by the shoulders: just as fractal fluctuations in hand movements had helped

predicting perceived properties of manually wielded objects, fractal fluctuations in postural sway also

helped predicting perceived properties of objects passively supported by the shoulders (31, 32). Besides

appearing at multiple contact points between body and perceived object, the predictive role of fractal

fluctuations appears to extend across the body: when people are asked to manually heft  a grasped

object, the relatively distant measure of postural sway, measured as the center of pressure (CoP), has a

fractal signature that helps predict the perceptual judgment following hefting (33, 34). This cross-body

predictive role for CoP fractality increases across trials, indicating progressive implication of fractal

fluctuations in perception. Hence, fractal fluctuations provide a window into how specific patterns of

movements support specific perceptual goals.

This fractal-shaped window may reveal a coordination of these patterns across the body. It is, of

course, possible that CoP fractality is a downstream echo of exploratory patterns at the hand. But an

intriguing  possibility  is  that  CoP  fractality  might  somehow  rise  to  meet  the  hand.  Specifically,

examining how fractality spreads from one distinct anatomical component to another may predict how
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well these components integrate information supporting the perceptual responses. Indeed, charting out

such a relationship has already bore predictive fruit: the effect of visual feedback on judgments via

effortful touch depends on fractal fluctuations in head sway as people actively look out on the visible

scene, and increases in fractal fluctuations in head sway boost the degree of fractality at the hand (35).

The present work aims to tackle the relationship that COP fractality shows with the rest of the

body.  It  specifically  answers  the  following  questions:  How  does  the  global  broadcasting  of  CoP

fractality in a bodywide haptic perceptual system support perception of object properties via effortful

touch? For instance, does COP fractality spread upward to the arm? Or is COP fractality spread just the

downstream consequence of hefting by the arm? Do the bodywide relationships supporting bodywide

flow of fractal fluctuations support more accurate perceptual judgments? 

In this  study, we investigated how the bodywide dispersal and global broadcasting of local

fractal  fluctuations  across  various  anatomical  locations  supports  the  effortful  perception  of  object

properties  by  manual  hefting.  We used  causal  network  modeling  via  vector  autoregressive  (VAR)

analysis  (36) to  capture linear  interdependencies  among the time series  of mechanical  fluctuations

across multiple anatomical locations to identify the causal network structure of the bodywide haptic

perceptual system of effortful touch. So, specifically, we included a set of 13 locations on the body and

hefted object during manual exploration to derive perception of heaviness and length, and we tested all

possible pairwise relationships between these locations  for an exchange of fractal  fluctuations.  We

expected that the waxing and waning of fluctuations across various anatomical locations would provide

insights into how bodywide coordinations supported effortful touch. Specifically, we predicted both

that CoP fractality would promote fractal patterning in the arm and that the strength of statistically

significant  pairwise exchanges  of fractal  fluctuations would serve to predict  greater  accuracy (i.e.,

lower absolute errors).
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RESULTS

Hefting objects to perceive heaviness and length

Fifteen  blindfolded healthy adults  hefted with their  right  hand six specially-designed experimental

objects that  systematically differed in their their mass,  m (Object 1 > Object 2, Object 3 > Object 4,

Object 5 > Object 6), the static moment, M (Object 1 = Object 2 = MS < Object 3 = Object 4 = MM <

Object 5 = Object 6 = ML), and the moment of inertia, I1 and I3, reflecting the resistance of the object to

rotation about the longitudinal axis  (I1 values: Object 1 , Object 2, Object 3 < Object 4, Object 5 <

Object  6) (Table  1  and  Fig.  1A).  To  introduce  variability  in  manual  exploration,  we  introduced

anatomical and kinematic constraints on manual exploration. The participants hefted each object as

their wrist was constrained to move about 10o radial deviation (Fig. 1C, top panels), the neutral position

(Fig. 1C, middle panels), or 10o radial deviation (Fig. 1C, bottom panels). In a static condition, the

participant lifted and held each object static (Fig. 1C, left panels). In two separate dynamic conditions,

the participant lifted and wielded each object synchronously with metronome beats at 2 Hz or 3 Hz

(Fig.  1C,  center  and  right  panels,  respectively).  The  participant  assigned  heaviness  values

proportionally higher and lower than 100 to an object perceived heavier and lighter, respectively, than

the reference object (e.g., 200 to an object perceived twice as heavy and 50 to an object perceived half

as heavy). They reported perceived length of the object by adjusting the position of a marker along a

custom string-pulley assembly.

Each anatomical location showed fractal fluctuations

We measured the center of pressure (CoP) and 3D motion of twelve reflective markers attached

to the hefted object (N = 3) and the participant’s body (n = 9; Supplementary Table S1 and Fig. 2A).

Next,  we  computed  a  planar  Euclidean  displacement  (PED)  series  describing  fluctuations  in  CoP

between each consecutive sample (Fig. 2B). We also computed a spatial Euclidean displacement (SED)

series for each reflective marker describing fluctuations at the respective anatomical location (Fig. 2B). 
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To  test  for  fractality  in  CoP  PED  and  each  marker  SED  series,  we  obtained  detrended

fluctuation analysis (DFA) estimates of  HfGn for  the original version (i.e., unshuffled) and a shuffled

version of each series (Fig. 2C). The random shuffling of a series destroys the temporal structure of a

signal, and consequently, any existing temporal correlations characterizing its fractality also disappears.

A truly fractal signal yields the fractal scaling exponent  HfGn > 0.5 as well as  HfGn greater than the

scaling exponent calculated for shuffled series of the same numbers (37, 38).

DFA estimates of HfGn for CoP PED series (Mean = 0.57, SEM = 0.0018) fell in the fractal range

(i.e., 0.5 <  HfGn < 1), and significantly exceeded HfGn for the shuffled versions of the series (Mean =

0.51,  SE = 0.0013), paired-samples  t-test:  t1619 = 25.57,  P < 0.001. The same was also true for each

marker SED series (all Ps < 0.001; Supplementary Table S2). Data exploration at the level of individual

trials  indicated  inflection  points  in  fluctuation  functions,  specifically  at  larger  timescales.  We thus

tested whether such inflection points may have artificially amplified the values of HfGn. DFA estimates

of HfGn for the original version and a shuffled version of the PED series for a shorter, half of the scaling

region also  yielded  similar  results  (all  Ps  <  0.001;  Supplementary  Table  S3),  confirming that  the

inflection points did not artificially amplify the values of HfGn. Collectively, these results strongly show

that fluctuations in CoP and different anatomical locations display fractality.

Fractality spreads across the body

We used the vector autoregressive (VAR) analysis to model the diffusion of fractal fluctuations among

the  distinct  anatomical  components  (Fig.  2D).  VAR  modeling  yielded  forecasts  of  the  effects  of

fractality at each anatomical location on fractality at each other anatomical location, as well as at that

location  itself,  in  the  subsequent  ten  trials.  The  dynamic  interaction  within  each  possible  pair  of

endogenous variables (i.e.,  variables that constitute the system itself) were represented by impulse-

response functions (IRF) that describes the reaction of one endogenous variable to an impulse in the

other variable in the subsequent trials (Fig. 3).
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An increase in OBTP fractality showed an immediate positive effect on the subsequent values

of itself, but this trend diminished fast. The object is a simple rigid body without internal degrees of

freedom,  but  the  short-range  propagation  of  fractality  is  an  expectable  consequence  of  simple

properties like inertia, even for simple systems (39).  An increase in OBTP fractality also showed an

immediate  negative  effect  on  subsequent  fractality  of  RFIN and RWRA fractality,  suggesting  that

OBTP fractality’s increases came at the direct expense of finger and wrist fractality. These results make

good sense, especially because the object is a passive recipient of fluctuations from the hand, and any

fluctuations in the object should be directly the consequence of fluctuations flowing from the arm.

The most distinctive of these IRF relationships suggest that the wrist and elbow facilitated the

propagation of fractality through the arm (Fig. 3). An increase in RWRA and RELB fractality promoted

subsequent increases in RFIN, RWRB, RFRM fractality, as well as subsequent increases in RWRA and

RELB fractality themselves. However, whereas the wrist and elbow were the broadcasters of fractality,

it appeared that fractality at the upper arm served to draw fractality away from the arm, as RUPA

fractality increased at the expense of RELB fractality.

RUPA fractality appeared to support subsequent increases in COP fractality; and reciprocally,

COP fractality appeared to promote subsequent increases in RUPA fractality as well. Our regression

modeling confirmed that the individual mean differences from zero, as indicated by the solid red circles

in Fig. 3, are, in fact, significant even after controlling for multiple comparisons across all 165 IRF

relationships  considered  (Supplementary  Table  S4). Hence,  fractality  from  CoP  does  have

consequences for the arm during hefting, but rather than promoting fractality through the rest of the

arm, CoP actively drew fractality away. COP fractality promoted later RUPA fractality. However, rather

than spreading fractality all the way from RUPA to the rest of the arm, this upwards influence of CoP

fractality actually drew down the fractality of the rest  of the arm. COP fractality promoted RUPA

fractality, leading RUPA to draw fractality from the lower parts of the arm and pass it on towards COP.
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In  short,  the  wrist  and  elbow spread  fractality  to  their  neighbors.  As  fractality  in  the  upper  arm

increased, it brought down fractality among these neighbors (as well as the wrist). Finally, the upper

arm and CoP fed upon each other’s fractality.  Here we have a potential  explanation of how COP

fractality in previous work bore the imprint of fractal patterning by manual hefting (33, 34).

Thus,  hefting  an  object  to  perceive  the  heaviness  and  length  of  that  object  results  in  a

multifarious cascade of effects, spanning across the whole body. The haptic perceptual system benefits

from the spreading of fractal  fluctuations,  thus  bearing a close resemblance to  complex stochastic

networks  that  exhibit  continuous  exchange  of  flows (40–42).  When  perturbed,  a  mechanically

organized stochastic network of the kind of the bodywide haptic perceptual system is bound to act to

disperse  the  forces  applied  to  one  part  of  the  system to  the  neighboring  parts  through  ultra-fast

diffusion of forces.  One corollary of this  treatment  of the perceptual  system is  that the perceptual

process is not limited to the brain or neurons, and thus clear distinctions between the roles of neural

dynamics and bodily mechanics in effortful touch may not be possible. Relinquishing such arbitrary

distinctions between neural dynamics and bodily mechanics provides an avenue for novel insights into

the functioning of the perceptual system, to which the present findings testify.

Greater diffusion results in more accurate perception

We  hypothesized  that  if  the  propagation  of  fractality  across  various  anatomical  locations  aids

perception,  then  the  individuals  who  show  stronger  IRF  impulse-responses  would  show  greater

accuracy in perceptual judgments. To model the effects of the strength of the propagation of fractality

on the accuracy of perception at the individual level, we determined absolute errors in perception of

heaviness  and length. Because perceived heaviness  followed a proportion  relative to  the reference

object  of  109-gm,  we  calculated  this  judgment  as  the  percentage  of  the  [theoretically]  accurate

percentage value based on each object’s actual mass. For instance, if a participant attributes to Object 2

(mass = 236 g) a heaviness value of 120 relative to 100 of the referenced object, then they showed an
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absolute error in perceived heaviness, Herror = 100 – 100×((120×109)/100)/236 = 44.66. We calculated

the absolute error in perceived length, Lerror, simply as the absolute values of the difference between the

actual length (75 cm) and perceived length.

A generalized linear model (GLM) of Poisson regression revealed that above and beyond that

known effects of experimental manipulations, object parameters, and trial order (Table 2)  (33),  the

subsequent increase in RFIN fractality due to RELB fractality reduced Herror (z = –1.99, p = 0.047; Fig.

4), suggesting that absolute error in perceived heaviness decreased significantly as RELB fractality

prompted an increase in RFIN fractality. A linear mixed-effects (LME) model revealed that, above and

beyond that known effects of experimental manipulations, object parameters, and trial order (Table 2)

(33), the subsequent increase in CoP fractality due to RUPA fractality (t = –4.00, P = 0.007), RWRB

fractality due to RFRA fractality (t = –3.82, P = 0.009), and RWRA fractality due to RELB fractality (t

=  –8.15,  P < 0.001) reduced  Lerror (Fig. 4). At the same time, the flow of fractality from RELB to

RWRB increased Lerror (t = 4.59, P = 0.004; Fig. 4). Hence, most exchanges of fractality across the body

supported greater accuracy, except the flow of fractality from the elbow to the wrist.

The flow of information through bodywide haptic perceptual system of effortful touch is bound

up in each participant’s profile of dispersion of fractal fluctuations. Fig. 4 shows causal network maps

showing the diffusion of fractal fluctuations — as revealed by significant IRF relationships — for the

two participants who reported the least and the most accurate perceptions of length. Participants may

vary in how they respond to the flux of mechanotransduction, as well as in how they coordinate a set of

anatomical  components  to  meet  the  task  demands  over  time  (35).  These  findings  show  that

spatiotemporal  patterns  in  the  flow of  fractality  provide  a  snapshot  into  individual  differences  in

bodywide coordination patterns underpinning perception.
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DISCUSSION

We used a network-based nonlinear approach to investigate how the bodywide dispersal and global

broadcasting  of  local  disturbances  across  disparate  anatomical  locations  supports  the  effortful

perception  of  object  properties  by  manual  hefting.  Fluctuations  in  CoP and  different  anatomical

locations showed fractality. VAR modeling revealed that the wrist and elbow spread fractality to their

neighbors; as fractality in the upper arm increased, it brought down fractality among these neighbors

(and the wrist); upper arm and CoP fed upon each other’s fractality. Finally, and most interestingly, the

flow of perceptual information — as reflected by the accuracy of perceived heaviness and length —

bound up in each participant’s profile of dispersion of fractal fluctuation. These patterns in the waxing

and waning of fluctuations across disparate anatomical locations provide novel insights into how the

high-dimensional  flux  of  mechanotransduction  is  compressed  into  low-dimensional  perceptual

information specifying properties of hefted occluded objects.

The present results generally confirm our expectation that manually hefting an occluded object

to perceive its heaviness and length should exhibit a distributed exchange of fractal fluctuations across

the body. We found that CoP does have effects on the hefting arm upwards and is not just absorbing

downstream fractality from the arm. Also, the sharing of fractal fluctuations across the body appears to

support  a  greater  accuracy  in  perceptual  judgments.  The  role  that  fractal  fluctuations  have  for

predicting  perceptual  outcomes  suggests  that  the  participant,  in  effect,  wears  their  perceptual

processing on their anatomical sleeves. Quite literally, we can take fractal indicators as a way to make

public the private consideration a participant makes as they come to their judgment.

More specifically, we can see three major points: one point about the lower arm, a second point

about the relationship between upper arm and CoP, and a third point about the general flow of fractality

that appears to support accurate perceptual judgments.  First,  during hefting,  the lower arm (finger,

wrist,  and  elbow)  is  predominantly  a  network  of  anatomical  components  that  promotes  fractality:
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generally, increases in fractality in any one part of the lower arm contributed to increases in fractality in

other parts of the lower arm. Second, beyond this positive spread of fractality among the various parts

of the lower arm, a sort of pipeline —  through which fractality could flow —  formed between the

upper arm and CoP. Through a reciprocal relationship between the upper arm and CoP, each promoted

the other’s fractality in subsequent trails, and this relationship of the upper arm with CoP promoted the

ability of the upper arm to draw fractality away from the lower arm. So, our earlier results (33) follow

from the fact that CoP fluctuations do inherit the fractality from the lower arm, but they only do so by

promoting an increase in fractality at the upper arm. 

The third point addressed explicitly the patterns of flows of fractal fluctuation across the body

that supported greater accuracy in perceptual judgments. Regression modeling of the absolute errors in

judgments suggest that the flow of fractality from the upper arm to CoP, from the wrist to the elbow,

and within  the  wrist  supported  more  accurate  hefting  by the  arm,  but  it  appears  that  the  flow of

fractality from the elbow to the wrist increased the absolute errors in perception.  Hence,  the most

accurate judgments followed from fractal fluctuations spreading from the object through the relatively

distal to proximal parts of the arm and from the upper arm to CoP.

The present findings show that fractality does not explicitly contribute to perception but instead,

how fractality contributes to perception depends on where it occurs and how it flows during exploration

to  place  the  perceiving-acting  participant  in  a  heightened state  of  poise  in  which  he/she  becomes

sufficiently open to potentiially new information. Fractality is not limited to a given point of contact

between the organism and its task environment (in the present task of hefting, between the hand and the

handheld  object).  Instead,  the  bodywide  haptic  perceptual  system  exhibits  fractal  fluctuations  at

apparently distinct anatomical locations, and specific patterns of flow of this fractality mediate the flow

of perceptual information under the anatomical constraints of motor connectivities. While the patterns

of afferent activity due to the organism-environment interaction may be ultimately integrated within the
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central nervous system, the perception-action system bears indicators of this process of integration.

This  perspective  has  now been successfully  embraced for  a  few decades  by the  perception-action

perspective of ecological psychology that views cognition as concretely embodied in performance (43–

47). The present study provides glimmers of this embodied sort of cognition by showing the flow of

information in the waxing and waning of fractal fluctuations across disparate anatomical locations of

the body.

The standard  depiction  of  perception  is  traditionally,  and not  surprisingly,  restricted  to  the

neural  network.  Mechanoreceptor  activity —  specifying  the  states  of  individual  joint(s),  muscles,

tendons,  and ligaments —  flow to  spinal  neurons  and then  to  the  brain  by  non-interacting  linear

pathways. Unfortunately, such depictions fail to address the challenge of implementing afferent activity

at the level of coordination and identifying when and how spatially and temporally distinct signals

organize so as to inform about the states of the whole body, segments of the body, states of objects

attached to the body,  and how these may be engaged.  Fortunately,  the “ultrafast”  propagations  of

mechanical perturbations across vast distances within biological systems have prompted physiologists

and movement scientists to coin the term “preflex” to indicate a rapid, apparently motoric response that

is based on mechanical tensions rather than on neural transmissions  (48,  49). By capitalizing on the

self-similar and scale-free, fractal organization of the biophysical substrate of the bodywide tensegrity

(17, 18), preflexes constitute a means of simplifying the degrees of freedom problem which haunts the

spatiotemporal organization of afferent activity.

Fractality in fluctuations at a given anatomical location implies that regardless of its size, any

given event (i.e.,  a postural wobble) in the recorded time series influences, even if the influence is

infinitesimally small in magnitude, on all subsequent events and, in like fashion, is influenced by all

past events. And the specific dependence of this long-term memory on the frequency of measurement

defines the fractal scaling exponent. The long-term memory in the fluctuations of the process of hefting
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and the scaling relation common to these fluctuations provide a window into the concinnity of afferent

activity at the level of coordination. The changes in the biophysical substrate of effortful touch brought

about by the changes in mechanical flux would allow an ultra-fast propagation of information, which

can, in principle, support both the regulation and coordination of exploratory dynamics when engaged

with an object. As opposed to the regulation and coordination by electrochemical transduction, which is

slow, localized, and context-independent, the regulation and coordination brought about by the rapid

propagation of mechanical flux in the bodywide, vast and complex network of connective tissues and

extracellular  matrix  would  be  faster,  entail  local-to-global  and  global-to-local  interactions,  and  be

context-sensitive (24).

The  proposal  that  the  flow  of  fractality  facilitates  exploration  is  founded  in  the  statistical

relationship of fractality to diffusion. Fractal fluctuations reflect a perfect compromise between overly

constrained exploration (i.e., uncorrelated fluctuations) and overly ballistic exploration (i.e., persistent

fluctuations). Even in the brain, fractality is greatest in networks of integrate-and-fire stochastic spiking

neurons with a mid-range of neuronal plasticity, versus extremely high or low levels of plasticity (50,

51).  Whereas  overly  constrained  exploration  would  reflect  an  absence  of  impulse-response

relationships, overly ballistic exploration would reflect excessive impulse-response constrained within

a narrow range of directions. The rather heterogeneous flow of fractality observed in the present study

shows that during effortful touch, the body is fully poised to allow the flow of perceptual information

in specific directions, reflecting how disparate anatomical components may compensate for each other

based on task constraints.

The present findings, specifically the effects of IRF values on the accuracy of perceived object

properties, run the risk of seeming to imply that “the stronger the fractality, or the flow of fractality, the

better the perception.” We would caution against the temptation to draw any such conclusion. Instead,

we would propose that stronger fractality, or the flow of fractality, places the body in a heightened state
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of poise, thus enabling greater access to novel information. Fractality, or more generally, long-term

memory of variability, can be plainly at odds with accurately perceiving, as, for instance, the flow of

fractality from the elbow to the wrist reduced the accuracy of perception of length.  Previously, it has

been reported that experimentally providing feedback to participants freely tapping a finger at regular,

1-s intervals increases performance at the expense of fractality in fluctuations in intertap-interval series

(52, 53).

Perceiving an intended property of an occluded object entails a certain level of uncertainty, as

each  attempt  at  hefting  an  object  requires  a  novel  search.  In  the  present  experiment,  even  if  the

participants  may  have  developed  over  several  trials  some  heuristic  for  arriving  at  judgments  of

heaviness and length, it cannot be denied that the perceptual system must still be flexibly poised to be

responsive  to  the  randomized  presentation  of  experimental  objects.  Fractal  fluctuations  appear  to

provide a common currency for the flow of information, which is not surprising as fractals provide the

most  efficient  known way of  compressing  high-dimensional  flux  of  physiological  activity.  Fractal

fluctuations have already been shown to provide for the flexibility in neuronal activity needed by the

CNS to anticipate novel structures in perceptual learning (54), and the present work extends the role of

fractality and the flow of fractality across disparate anatomical locations of the body. Future work could

investigate the general principles governing the flow of fractality and its relationship to specific goal-

directed tasks (i.e.,  perception of heaviness versus length versus shape), as fractal fluctuations, and

more generally, patterns of exploratory procedures, are strongly linked with the perceptual intent of the

perceiver (32).

In summary, the present findings  support the ecological perspective that the  bodywide haptic

perceptual  system  of  effortful  touch  shows  four  defining  characteristics:  (1)  Functionality:  the

components self-organize for stabilizing the task performance. (2) Flexibility: perception is not strictly

dependent  on  specific  aspects  of  anatomy.  (3)  Compensatory;  disparate  components  reciprocally
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compensate for fluctuations in the environment and within the components themselves. (4) Context-

sensitivity: the role  of the coordinative structure as a whole or any individual  component changes

depending on task constraints (55).

CONCLUSIONS

Despite a long history of research pointing to the importance of fractal fluctuations in physiology (56,

57),  questions about how to link specific fractal  evidence in different observables across the body

remain unanswered. Specifically, it has remained unclear how fractal fluctuations might interact across

the body and how those interactions might support the coordination of goal-directed behaviors.  The

present  study  was  motivated  by  the  idea  that  identifying  the  causal  network  structure  of  fractal

fluctuations in the bodywide coordination may be a fruitful way of understanding the haptic perceptual

capabilities  of  effortful  touch at  the  level  of  the underlying coordination.  It  provides  a  compeling

evidence  that  a  complex  interplay  of  fractality  in  mechanical  fluctuations  at  disparate  anatomical

locations of the body support perception via effortful touch. The present study is  a significant step

towards the solution of a fundamental problem in human perception: how is afferent activity diffused

throughout the body unified as an instance of conscious perceptual experience? Fractal fluctuations are

a promising candidate for engaging disparate components of the bodywide tensegrity into a coherent

activity and provide a strategy for the local-to-global and global-to-local exchange of information, thus

ensuring the completeness of a transformation from diffused afferent activity into conscious perceptual

experience. The flow of fractality in perception-action tasks could be studied using causal network

analysis as a common framework, potentially providing novel insights and interventions into conditions

such as developmental coordination disorder (DCD) and attention-deficit hyper disorder (ADHD) that

narrow the spectrum of individuals’ psychomotor complexity (28, 58).
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MATERIALS AND METHODS

Participants

Eight adult men and seven adult women [Mean (±1SD) = 23.4 (3.4) years, all right-handed] without

any self-reported neurological or sensorimotor disorder voluntarily participated in the present study.

Each participant provided verbal and written consent after being informed about the purposes of the

study, the procedures,  and the potential  risks and benefits  of participation,  in  compliance with the

Declaration of Helsinki. The Institutional Review Board (IRB) at the University of Georgia (Athens,

GA) approved the present study.

Experimental objects

Each participant hefted six experimental objects, each consisting of an oak, hollow aluminum, or solid

aluminum dowel (diameter = 1.2 cm, length = 75.0 cm; mass = 68 g, 109 g, and 266 g, respectively)

weighted by either 4 or 12 stacked steel rings attached at 20.0 or 60.0 cm, respectively (inner diameter

= 1.4 cm, outer diameter = 3.4 cm, thickness = 0.8 cm and 2.4 cm, respectively; mass = 56 g and 168 g,

respectively) (Table 1 and Fig.  1A).  The dowels were weighted such that the resulting six objects

systematically differed in their mass, m (Object 1 > Object 2, Object 3 > Object 4, Object 5 > Object 6),

the static moment, M (Object 1 = Object 2 = MS < Object 3 = Object 4 = MM < Object 5 = Object 6 =

ML), and the moment of inertia,  I1 and I3,  reflecting the resistance of the object to rotation about the

longitudinal axis (I1 values: Object 1 , Object 2, Object 3 < Object 4, Object 5 < Object 6). A cotton

tape  of  negligible  mass  was  enfolded  on  each  dowel  to  prevent  the  cutaneous  perception  of  its

composition.

Experimental setup and procedure

After being blindfolded, each participant stood with each foot on separate force plates (60×40 cm;

Bertec Inc., Columbus, OH), hefted each object, and reported judgments of heaviness and length (Fig.
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1B). The participant was asked to constrain his/her wrist motion about 10o ulnar deviation, the neutral

position, or 10o radial deviation (Fig. 1C). A custom setup consisting of two tripods supported the

object such that the object was aligned parallel to the participant’s wrist. The inclusion of the different

wrist angles allowed us to investigate the effects the postural constraints on hefting and wielding on

perceptual judgments of heaviness and length. In a static condition, the participant lifted and held each

object  static.  In  two dynamic  conditions,  instead  of  freely  hefting  the  objects  — which  has  been

traditionally done in dynamic or effortful touch tasks — in the dynamic condition, the participant lifted

and wielded each object synchronously with metronome beats at 2 Hz or 3 Hz, which added additional

constraints on perceptual exploration. The  participant was instructed to minimize the motion of the

torso and upper hand, and the amplitude of wielding movements.

Experimental setup and procedure

To track the motion of the hefted object and that of the participant’s body in 3D, we attached using

double-sided adhesive tape three reflective markers (diameter = 9.5 mm) on each experimental object

at 30, 45, and 60 cm from the object’s proximal end and nine reflective markers on the participant’s

body (Supplementary Table S1 and Fig. 2A). We tracked the 3D motion of of each reflective marker at

100 Hz using an eight-camera Qualisys motion tracking system (Qualisys Inc.,  Boston,  MA) as  a

participant hefted an object.

Each participant completed a total of 108 trials (3 Wrist angles × 3 Wrist angular kinematics × 6

Objects × 2 Trials/Object) in a 90–105-min session.  A nested, pseudo-randomized block design was

used, the factors of Wrist angular kinematics (Static, 2 Hz dynamic, and 3 Hz dynamic) being nested

within the factors of Wrist angle (Radial, Neutral, and Ulnar). The order of the 12 trials (6 Objects × 2

Trials/Object) was pseudo-randomized for each block.

Before the first and after every six trials, each participant hefted a  reference object  that was

arbitrarily  attributed  to  a  heaviness  value  of  100  units.  Each  participant  was  instructed  to  assign
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heaviness values proportionally higher and lower than 100 to an object perceived heavier and lighter,

respectively, than the reference object (e.g., 200 to an object perceived twice as heavy and 50 to an

object perceived half as heavy).  In each trial, after a ‘lift’ signal, the participant lifted the object by

about 5 cm and held it static or wielded it at 2 Hz or 3 Hz.  After 5 s, following a ‘stop’ signal, the

participant placed the object back and reported (a) perceived heaviness (no units) and (b) perceived

length by adjusting the position of a marker on a string-pulley assembly. The experimenter noted the

perceived  length  (cm)  from a  meter-scale  attached  to  the  base  of  the  string-pulley  assembly  and

occluded from the participant.

Data processing

CoP planar Euclidean displacement (PED) series

The output of force plates was downsampled by 1/20 (i.e., from 2000 Hz to 100 Hz) to match the

sampling  rates  of  kinematic  trajectories  of  reflective  markers  and the  ground reaction  forces.  The

ground reaction forces recorded on each trial yielded a two-dimensional center of pressure (CoP) time

series, with each dimension describing the position of the CoP along the participant’s medial: lateral

and anterior: posterior axes. Recording on each trial over 5 s yielded a two-dimensional CoP time series

of 500 samples and thus the corresponding CoP displacement time series consisting of 499 samples.

Finally,  a one-dimensional CoP planar Euclidean displacement (PED) series was obtained for each

downsampled CoP time series, describing CoP displacement along the transverse plane of the body

(Fig. 2B).

Body sway displacement series

Motion tracking of each reflective marker attached to the body and the experimental objects (N = 12)

yielded a three-dimensional kinematic time series, with each dimension describing the position of the

marker along the participant’s medial: lateral, anterior: posterior, and superior: inferior axes. Recording

on each trial  over  5  s  yielded a  three-dimensional  sway time series  of  500 samples  and thus  the

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2019. ; https://doi.org/10.1101/2019.12.15.876961doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.15.876961


corresponding  time  series  of  marker  displacement  consisting  of  499  samples.  Finally,  a  one-

dimensional spatial Euclidean displacement (SED) series was obtained for each marker describing the

displacement of that marker in 3D (Fig. 2B).

Detrended fluctuation analysis

We used detrended fluctuation analysis (DFA) to compute the Hurst exponent,  H , describing  the

strength of temporal correlations in the PED series. DFA was first developed to estimate the strength of

temporal correlations in a given time series  (37,  38).  The DFA proceeds by finding the first-order

integration of a time series x (t )  with N  samples to compute the cumulative sums of difference

scores to produce the new time series:

y (t)=∑
i=1

N

x (t)−x (t) ,

where  x (t)  is  the  grand  mean  of  the  time  series.  Next,  a  linear  trend  yn(t )  is  fit  to

nonoverlapping n-length bin of y (t)  and the root mean square (RMS; i.e., averaging the residuals)

over each fit is computed. RMS over each bin size constitutes a fluctuation function f (N) : 

f (N)=√(1/ N )∑
i=1

N

(x (t)−x (t ))2
,

for n<N / 4 . On standard scales, f (N)  is a power law:

f (N)∼n
H

,

where H  is the scaling exponent. The closer H  is to 1, the stronger the temporal correlations are.

H  is estimated by logarithmically scaling the previous equation:

log f (N)=H log(n) .

Hence, the slope of fluctuation functions in log-log plots represents  H . It is important to

note that temporal correlations can be present in both a time series and its first-order derivative. The
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original time series are often classified as fractional Brownian motions ( fBm ), wherein the first-

order derivative of fBm  is fractional Gaussian noise ( fGn ). Accordingly, the scaling exponents of

a trajectory and its first-order derivative are denoted H fBm  and H fGn , respectively.

We obtained DFA estimates for the original version (i.e., unshuffled) and a shuffled version

(i.e., a version with the temporal information destroyed) of each CoP PED series, as well as of each

marker SED series, over each of the following bin sizes: 4, 8, 12,… 128 (Fig. 2C). Exploration at the

level  of  individual  trials  indicated  inflection  points  in  fluctuation  functions,  specifically  at  larger

timescales. To test for this possibility, we also obtained DFA estimates for the original version and a

shuffled version of each CoP PED series, as well as of each marker SED series, over half of the scaling

region: 4, 8, 12,… 64.

Vector autoregression analysis

Vector autoregression (VAR) is a technique for modeling stochastic processes to capture the linear

interdependencies among multiple time series. The evolution of each entered variable is described by

an equation based on its own lagged value and that of each other variable, along with an error term. As

compared to structural models that require prior knowledge of the factors influencing a variable, the

only prior knowledge required for VAR modeling is a list of variables that can be hypothesized to affect

each other intertemporally.

VAR can produce a system of m  regression equations predicting each variable as a function

of lagged values of themselves and of each other. In the simplest case of m=2 , with a pair of time

series  f (t)  and  g(t)  definable at each value of time  t=1  to  t=N , where  N  is the

length of the time series, a VAR model would have the following structure:

f (t)=A1⋅f t−1+B2⋅gt−1+C f⋅g+εf ,

g(t)=B1⋅g t−1+ A2⋅f t−1+Cg⋅h+εf ,
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where A j  and B j  are the coefficients quantifying the effects of the previous values of f  and

g , respectively, with j  indexing the variable to which these previous values contribute and with

error terms  εf  and  εg  (59). The above equations describe a 1-lag VAR, that is, each  f  and

g  is described in terms of values up to 1 value preceding the predicted values. VAR models can

include exogenous variables, such as the factors of experimental design, which stand outside the mutual

relationship among the variables internal to the system. In the above example, the time series h(t )

can induce changes  in  f (t)  or  g(t) ,  but  changes  in  neither  f (t)  or  g(t)  can  induce

changes in h(t ) . h  is an exogenous variable, and C f  and Cg  are coefficients indicating the

effect of h(t )  on f (t)  and g(t) , respectively. Endogenous variables are variables internal to

the system (i.e.,  f (t)  or g(t) ), which may respond to and induce changes in other endogenous

variables. For the purposes of the present analysis, the fractal scaling exponent corresponding to each

of the 13 anatomical locations (CoP and the 12 reflective markers) served as an endogenous variable

(Fig. 2D).

VAR models provide forecasts of the effects of endogenous variables into the future through

impulse-response functions  (IRFs).  Whereas  standard regression evaluates  the relationship between

f (t)  and  g(t) ,  IRFs can evaluate relationships between  f (t)  and  g(t +τ) ,  or  between

g(t)  and f (t+τ ) , where τ  is a whole number. First, orthogonalizing the regression equations

and, second, inducing an ‘impulse’ to the system of regression equations by adding 1 standard error to

any single variable, propogates responses across variables. The plot of an IRF describes the changes in

predicted later values of one time series due to the impulse from another time series (59,  60). It is

customary to fit the least number of lags that leave independently and identically distributed residuals.

VAR modeling does not require as much knowledge about the forces influencing a variable; the only

prior  knowledge  required  is  a  list  of  variables  which  can  be  hypothesized  to  affect  each  other
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intertemporally,  thus allowing us to  explore causal relationships after addressing minimal short-lag

relationships (61).

Statistical analysis

The  goal  was  to  understand  how  the  fractal  scaling  exponents  (DFAs)  for  the  13  locations

(corresponding to CoP and the 12 reflective markers attached to various body parts) differed in the

following ways: (1) the DFA at each location may differ in its average effect as an impulse variable on

the DFAs at all locations (the global impulse effect). (2) The DFA at each location may differ in its

response  to  the  DFAs at  all  locations  (the  global  response  effect).  (3)  Each  pairwise  relationship

between the DFAs at the 13 locations may show specifically different impulse-response relationships

than for the first two global cases (the specific pairwise impulse-response effect).

All impulse-response relationships indicating the subsequent effects of increases in the DFAs

were submitted to a full-factorial regression model (62) using the “nlme” package for RStudio (63). A

full-factorial regression model of Impulse  ×  Response  × Trial was used, with Impulse and Response

serving as class variables indicating the locations of the impulse variables and the responding variables,

respectively. The regression utilized orthogonal linear, quadratic, and cubic polynomials to model the

impulse-response relationships. The Impulse terms in this full-factorial design allowed estimating the

global effect of the prior increase in the DFA of each location on the intercept and the linear, quadratic,

and cubic components of all impulse-response relationships. The Response terms in this full-factorial

design allowed estimating the effect of the subsequent increase in the DFA at each location on the

intercept and the linear, quadratic, and cubic components of all impulse-response relationships. Thus,

the Impulse and Response effects  would portray the tendency for the DFA at specific locations to

influence or to be influenced according to different third-order polynomial responses over subsequent

trials.  The  Impulse  × Response  terms  would  highlight  significant  differences  of  specific  pairs  of
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impulse and response variables for which the impulse-response relationship deviated from the global

patterns.

Finally, we modeled the accuracy of perceptual judgments, encoded by the unsigned error in

judgments:  absolute(H/Lperceived -  H/Lactual).  For  calculating  the  signed  error  in  perceived length,  we

subtracted the actual length (i.e., 75 cm) from perceived length. Because perceived heaviness followed

a proportion relative to a reference object of 109-gm, we calculated this judgment as the percentage of

the [theoretically] accurate percentage value based on each object’s  actual mass. For instance,  if  a

participant perceived Object 2 to have a length of 62.5 cm and heaviness 120 relative to 100 of the

referenced object, then they would have signed error in perceived length, Lerror = 62.5 – 75.0 = – 12.5

and  signed  error  in  perceived  heaviness,  Herror =  100×((120×109)/100)/236  =  55.42.  Next,  for

calculating the unsigned error, we calculated the absolute value of error in perceived length, and the

absolute  value  of  100  less  than  the  percentage  value  corresponding  to  Hperceived.  Accordingly,  for

perceptions of the same object, the unsigned error in perceived length would be 12.5, and the unsigned

error in perceived heaviness would be the absolute value of 55.34 – 100 = 44.66. We rounded the

percentage error values to the nearest integer.

Perceived  heaviness  was  a  nonlinear  dependent  measure,  given  the  instruction  to  report

heaviness in terms of ratios to the reference object (e.g., 200 to an object perceived twice as heavy and

50 to an object perceived half as heavy). So, it is evident that the dependent measure is just as skewed

as that multiplicative definition should indicate. Thus, rather than submitting the data to two steps of 1)

a log transformation, and 2) linear regression (i.e., use logistic regression), to accommodate this skew,

we used  the  generalized  linear  model  (GLM) of  Poisson  regression,  which  is  much  like  logistic

regression  but  uses  a  log  link  instead  of  a  logit  link  function.  By contrast,  perceived  length  was

explicitly linear as we defined it. Accordingly, we used the GLM of Poisson regression using “lme4”

package for Rstudio  (64) to examine variation in unsigned error in perceived heaviness; and  linear
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mixed-effect  (LME)  models  using  the  “nlme”  package  for  RStudio  (63),  to  examine  variation  in

unsigned error in perceived length.

Predictors included Trial order, Wrist angle, Wrist angular kinematics, Object’s static moment,

logarithmic of object’s moments of inertia (LogI1 and LogI3), fractal scaling exponent HfGn at CoP, and

the IRF values forcasting the response to impulse in the first subsequent trial for the following IR

relationships: CoP on RUPA, RUPA on CoP, RFRA on RFIN, RFRA on RFRB, RELB on RFIN, RELB

on RWRA, and RELB on RWRB. Wherever possible, we fit the effects of both the static moment and

the moments of inertia, respecting the fact that these different aspects of the mass distribution can play

a role in perceived heaviness and perceived length (65, 66), but this policy worked best in the model for

perceived heaviness. The ordinal encoding of the static moment (i.e.,  MS,  MM, and ML) required that

we fit orthogonal polynomials to allow for the possibility of both linear and quadratic effects of this

variable. When modeling did not support the inclusion of all object properties (mass, the static moment,

and the moment of inertia, we resorted to modeling length perception as a function of the moment of

inertia to the exclusion of other properties. Crucially, perception hinges on the relevance of interactions

between HfGn at CoP and object parameters (33), and thus we included this interaction as well.
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SUPPLEMENTARY MATERIALS

Table S1. Location of the reflective markers attached to each experimental object and the participant’s

body.

Table S2. Mean ± SEM values of HfGn yielded by DFA for the original and a shuffled version of each

CoP PED and marker SED series, and coefficients of paired samples t-tests comparing the two.

Table S3. Mean ± SEM values of HfGn yielded by DFA for the original and a shuffled version of each

CoP PED and marker SED series for a shorter, half of the scaling region, and coefficients of paired

samples t-tests comparing the two.

Table S4. Complete output of the full-factorial regression model of Impulse × Response × Trial, with

Impulse and Response serving as class variables indicating the locations of the impulse variables and

the responding variables, respectively.
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Table 1. Experimental objects

Object Dowel Attached rings Object parameters

Composition Length

[cm]

Mass

[g]

Mass

[g]

Location

[cm]

Mass,

m [g]

Static moment,

M† [g·cm2/s2]

Moment of inertia,

I1
‡ [g·cm2]

Moment of inertia,

I3
‡ [g·cm2]

1 Oak wood 75 68 56 60 156 5,791,800 (MS) 278,850 900

2 Oak wood 75 68 168 20 236 5,791,800 (MS) 153,500 3,220

3 Hollow aluminum 75 109 56 60 165 7,298,550 (MM) 321,770 660

4 Hollow aluminum 75 109 168 20 277 7,298,550 (MM) 194,720 1,190

5 Solid aluminum 75 266 56 60 332 13,068,300 (ML) 586,720 3,110

6 Solid aluminum 75 266 168 20 434 13,068,300 (ML) 459,850 5,850

†We determined the static moment for each object assuming that it was aligned horizontally (i.e., parallel to the ground) and grasped

about its proximal end.

‡We calculated the values of a 3×3 inertia tensor matrix for each object, each value corresponding to rotations about the wrist, assuming 5-

cm distance between the location of grasp and the object’s proximal end. Diagonalizing the 3×3 inertia tensor matrix using MATLAB

function “eig (A)” yielded the eigenvalues of the tensor.
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Table 2. Coefficients of generalized linear model (GLM) of Poisson regression and linear mixed-effects (LME) model examining the

strength of fractal fluctuations in PED series on the unsigned error in perceived heaviness and perceived length, respectively

Perceived heaviness Perceived length

Effects b (±1SEM) z P
‡

b (±1SEM) t P
‡

(Intercept) –51.91 (7.07) 7.34 < 0.001 –205.79 (142.12) 1.45 0.148

Hperceived 0.0025 (0.0049) 0.51 0.613

Trial order –0.0092 (0.0036) 2.60 0.009 0.029 (0.013) 2.27 0.023

Wrist angle (Radial – Neutral) 0.044 (0.010) 4.33 < 0.001 –0.26 (0.48) –0.55 0.579

Wrist angle (Ulnar – Neutral) –0.13 (0.010) –12.31 < 0.001 1.79 (0.47) 3.80 < 0.001

Wrist angular kinematics –0.00055 (0.0033) –0.17 0.868 0.0040 (0.15) 0.026 0.979

LogI1 6.27 (1.03) 6.09 < 0.001 43.81 (25.92) 1.69 0.091

LogI3 6.38 (0.70) 9.13 < 0.001

as.ordered(M).L† –3.03 (0.46) –6.53 < 0.001

as.ordered(M).Q† –4.14 (0.40) –10.36 0.564

HfGn at CoP 119.50 (12.56) 9.51 0.004 602.40 (255.11) 2.36 0.018

RFRA on RFIN –6.82 (4.28) –1.60 0.110 –221.66 (97.44) –2.28 0.063

RFRA on RWRB 3.42 (4.11) 0.83 0.406 –362.87 (94.88) –3.82 0.009

RFRA on RELB 0.95 (3.11) 0.30 0.761 117.05 (70.05) 1.67 0.146

RELB on RFIN –10.32 (5.20) –1.99 0.047 –137.82 (132.64) –1.04 0.338

RELB on RWRA 3.98 (6.05) 0.66 0.511 –1237.78 (151.94) –8.15 < 0.001

RELB on RWRB 5.87 (4.95) 1.19 0.236 582.55 (126.99) 4.59 0.004

RUPA on CoP –5.35 (7.86) –0.68 0.496 –798.77 (199.63) –4.00 0.007

CoP on RUPA –4.27 (2.41) –1.77 0.076 119.23 (54.20) 2.20 0.070

Trial order × HfGn at CoP –0.017 (0.0064) –2.66 0.008

Hperceived × Trial order –0.00010 (0.000070) –0.86 0.339

HfGn at CoP × as.ordered(M).L† 6.72 (0.83)  8.12 < 0001
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HfGn at CoP × as.ordered(M).Q† 7.66 (0.71) 10.75 < 0.001

HfGn at CoP × LogI1 –15.17 (1.83) – 8.29 < 0.001 –109.82 (46.52) – 2.36 0.018

HfGn at CoP × LogI3 –10.93 (1.25) – 8.76 < 0.001
†These listings indicate the default  treatment  of an ordinal  variable.  Because the spacing between levels  of  ordinal  variables  may not

necessarily  be  even,  the  best  statistical  practice  for  modeling  the  effect  of  an  ordinal  variable  with  k levels  is  to  fit  the  orthogonal

polynomials of order 1 to k – 1. Accordingly, we included the linear (L) and quadratic (Q) effects of the static moment (M) in the model to

control for any nonlinear effect of M and to test whether HfGn moderates the effect of M. Importantly, both the linear (L) and quadratic (Q)

effects of  M are warranted on statistical grounds to represent the effect of  M accurately, and neither effect is specifically relevant for

theoretical reasons. Our theory suggests simply that  HfGn of CoP should influence the use of  M for judgments of heaviness. It does not

suggest that HfGn should predict the use of specifically linear or specifically quadratic components of the static moment.

‡Boldface values indicate signifance at the alpha level of 0.05.
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Fig. 1. Schematic illustration of the experimental objects, setup, and exploratory conditions. (A)

Each participant hefted six objects with different mass, m, and the moment of inertia, I1. (B)  Each

participant stood with his/her two feet on separate force plates, hefted each object for 5 s, and reported

his/her judgments of heaviness and length of that object. (C) The participant was instructed to constrain

the wrist motion either about 10o radial deviation (top panels), the neutral position (middle panels), or

10o radial deviation (bottom panels). In a static condition (left panels), the participant lifted and held

each  object  static,  and  in  two  dynamic  conditions,  the  participant  lifted  and  wielded  each  object

synchronously with metronome beats at 2 Hz or 3 Hz (center and right panels).
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Fig. 2. Overview of data acquisition process and analysis. (A) Locations of the reflective markers

attached  to  the  experimental  object  and  the  participant’s  body.  (B)  The  time  series  of  the  planar

Euclidean displacement (PED) of CoP and spatial Euclidean displacement (SED) for each of the 12

reflective markers. (C) Log-log plots of the fluctuation function, f(N), vs. bin size reflecting the fractal

scaling exponent,  HfGn, yielded by the detrended fluctuation analysis (DFA) in a representative trial.

Solid circles and solid trend line describe f(N) for the original time series; and open circles and dashed

trend line describe f(N) for a shuffled version of the original time series. (D) The conceptual structure

of the vector autoregressive (VAR) analysis used to model the diffusion of fractal fluctuations across

different anatomical components. The contribution of each location is represented as a time series of
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trial-by-trial values of HfGn. Arrows represent weights in the model, indicating the effects of fractality in

the previous trail on fractality in the current trial.
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Fig. 3.  Mean (± 1SEM) values of impulse-response functions (IRFs) predicting the response of

each anatomical component over 10 trials afterward to an impulse in fractality of each other

anatomical component in the current trial. For each IRF curve in each panel, row labels indicate

impulses, and column labels indicate responses. Each red solid circle indicates a statistically significant

(P < 0.01) response to an impluse in  ith trial (1 through 10). Increase in OBTP fractality showed an
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immediate positive effect on the subsequent values of itself, but this trend diminished fast. Increase in

OBTP fractality  also  showed  an  immediate  negative  effect  on  subsequent  fractality  of  RFIN and

RWRA fractality. Increases in RWRA fractality showed a positive effect on subsequent values of RFIN,

RWRB, RFRM, and RELB fractality, as well as on subsequent values of itself. Increases in RELB

fractality showed a positive effect on subsequent values of RFIN, RWRA, RWRB, RFRM, and RUPA

fractality, as well as on subsequent fractality of itself. However, increases in RUPA fractality showed a

negative  effect  on  subsequent  values  of  OBTP,  RFIN,  RWRA,  RWRB,  and  RFRM  fractality,

suggesting that RUPA increases came at the expense of fractality throughout the arm. Interestingly,

RUPA and CoP fractality showed an increasingly positive effect on subsequent fractality of each other.

Each of these curves eventually approaches zero, indicating that this effect weakened over subsequent

trials and eventually diminished completely.
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Fig. 4. Comparisons of absolute errors in perceived heaviness, Herror, and perceived length, Lerror, for two

representative  participants  with  low and  high  impulse-response  (IR)  values  corresponding  to  each

significant effect in Table 2. An increase in RFIN fractality due to RELB fractality reduced Herror (p =

0.047).  An increase in CoP fractality due to RUPA fractality (P = 0.007), RWRB fractality due to

RFRA fractality  (P =  0.009),  and  RWRA fractality  due  to  RELB fractality  (P <  0.001)  resulted

decreased Lerror. By contrast, the flow of fractality from RELB to RWRB increased Lerror (P = 0.004).

Panels include judgments in the order the task was completed.
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Table S1. Location of the reflective markers attached to each experimental object and the participant’s body

Marker Location

Experimental object OBJP Tip of the object

OBJD 30 cm from the distal end

OBJP 30 cm from the proximal end

Participant’s body RFIN Just below the middle knuckle on the right hand

RWRA Extended from the thumb side using a wrist bar

RWRB Extended from the little finger side using a wrist bar

RFRM On the outside of the lower arm

RELB On the bony prominence on the outside of the elbow joint

RUPA Outside of the upper arm

RSHO On the bony prominence on top of the right shoulder

CLAV Top of the breast bone

STRN Base of the breast bone
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Table S2. Mean (±1SEM) values of HfGn yielded by DFA for the original and a shuffled version of

each CoP PED and marker SED series, and coefficients of paired samples t-tests comparing the

two

Location HfGn (unshufled) HfGn (shuffled) t2,1619 P
†

OBJT 1.14 (0.0083) 0.51 (0.0016) 73.46 < 0.000

OBJD 1.15 (0.0083) 0.51 (0.0015) 76.20 < 0.000

OBJP 1.74 (0.0078) 0.51 (0.0021) 80.24 < 0.000

RFIN 1.89 (0.0059) 0.52 (0.0018) 109.54 < 0.000

RWRA 1.19 (0.0059) 0.51 (0.0021) 112.59 < 0.000

RWRB 1.15 (0.0059) 0.51 (0.0015) 104.11 < 0.000

RFRM 1.10 (0.0048) 0.51 (0.0014) 118.06 < 0.000

RELB 1.06 (0.0044) 0.51 (0.0013) 118.08 < 0.000

RUPA 0.97 (0.0048) 0.52 (0.0024) 79.80 < 0.000

RSHO 0.97 (0.0048) 0.51 (0.0025) 83.69 < 0.000

CLAV 0.89 (0.0049) 0.51 (0.0030) 69.68 < 0.000

STRN 0.89 (0.0045) 0.51 (0.0027) 72.46 < 0.000

CoP 0.57 (0.0018) 0.51 (0.0013) 25.57 < 0.000
†Boldface values indicate signifance at the two-tailed alpha level of 0.05.
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Table S3. Mean (±1SEM) values of HfGn yielded by DFA for the original and a shuffled version of

each CoP PED and marker SED series for a shorter, half of the scaling region, and coefficients of

paired samples t-tests comparing the two

Location HfGn (unshufled) HfGn (shuffled) t2,1619 P
†

OBJP 1.24 (0.0085) 0.53 (0.0017) 81.32 < 0.000

OBJD 1.25 (0.0082) 0.53 (0.0016) 84.18 < 0.000

OBJP 1.25 (0.0073) 0.53 (0.0014) 94.56 < 0.000

RFIN 1.21 (0.0053) 0.53 (0.0013) 123.04 < 0.000

RWRA 1.21 (0.0054) 0.54 (0.0029) 109.88 < 0.000

RWRB 1.61 (0.0053) 0.53 (0.0014) 114.16 < 0.000

RFRM 1.10 (0.0042) 0.53 (0.0012) 130.91 < 0.000

RELB 1.08 (0.0039) 0.53 (0.0012) 135.41 < 0.000

RUPA 0.97 (0.0044) 0.53 (0.0039) 75.09 < 0.000

RSHO 1.00 (0.0045) 0.54 (0.0045) 72.30 < 0.000

CLAV 0.91 (0.0049) 0.53 (0.0031) 60.55 < 0.000

STRN 0.90 (0.0046) 0.54 (0.0031) 61.43 < 0.000

CoP 0.60 (0.0014) 0.53 (0.0011) 36.44 < 0.000
†Boldface values indicate signifance at the two-tailed alpha level of 0.05.
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Table S4. Complete output of the full-factorial regression model of Impulse × Response × Trial,

with Impulse and Response serving as class  variables  indicating the locations of  the impulse

variables and the responding variables, respectively
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