Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions

Lluis Gomez-Gener, Gerard Rocher-Ros, Tom Battin, Matthew J. Cohen, Higo J. Dalmagro, Kerry J. Dinsmore, Travis W. Drake, Clement Duvert, Alex Enrich Prast, Asa Horgby, Mark S. Johnson, Lily Kirk, Fausto Machado-Silva, Nicholas S. Marzolf, Mollie J. McDowell, William H. McDowell, Heli Miettinen, Anne K. Ojala, Hannes Peter, Jukka Pumpanen, Lishan Ran, Diego A. Riveros-Iregui, Isaac R. Santos, Johan Six, Emily H. Stanley, Marcus B. Wallin, Shane A. White and Ryan A. Sponseller

The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175412

N.B.: When citing this work, cite the original publication.

Gomez-Gener, L., Rocher-Ros, G., Battin, T., Cohen, M. J., Dalmagro, H. J., Dinsmore, K. J., Drake, T. W., Duvert, C., Enrich Prast, A., Horgby, A., Johnson, M. S., Kirk, L., Machado-Silva, F., Marzolf, N. S., McDowell, M. J., McDowell, W. H., Miettinen, H., Ojala, A. K., Peter, H., Pumpanen, J., Ran, L., Riveros-Iregui, D. A., Santos, I. R., Six, J., Stanley, E. H., Wallin, M. B., White, S. A., Sponseller, R. A., (2021), Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions, *Nature Geoscience*. https://doi.org/10.1038/s41561-021-00722-3

Original publication available at: https://doi.org/10.1038/s41561-021-00722-3

Copyright: Nature Research http://www.nature.com/

🔿 Tweet

Enhanced nocturnal emissions of carbon dioxide amplify

the role of streams in the global carbon cycle

Lluís Gómez-Gener^{1, *,*}, Gerard Rocher-Ros² *,*, Tom Battin¹, Matthew J. Cohen³, Higo Dalmagro⁴, Kerry J. Dinsmore⁵, Travis Drake⁶, Clément Duvert⁷, Alex E. Prast⁸, Åsa Horgby¹, Mark Johnson⁹, Lily Kirk¹⁰, Fausto Machado-Silva¹¹, Nicholas Marzolf¹², Mollie J. McDowell⁹, William H. McDowell¹³, Heli Miettinen¹⁴, Anne K. Ojala¹⁴, Hannes Peter¹, Jukka Pumpanen¹⁵, Diego Riveros-Iregui¹⁶, Isaac Santos¹⁷, Johan Six⁶, Emily H. Stanley¹⁷, Marcus B. Wallin¹⁸, Shane White¹⁹, Ryan A. Sponseller²

¹ Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

² Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
 ³ School of Forest Resources and Conservation, University of Florida, USA

4

⁵ Centre for Ecology and Hydrology, Bush Estate, Penicuik, UK.

6

⁷ Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia

8

⁹ Institute for Resources, Environment and Sustainability and Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada

¹⁰ School of Natural Resources and Environment, University of Florida, USA

11

¹² Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA

¹³ Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH USA

¹⁴ University of Helsinki, Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, Helsinki, Finland

¹⁵ University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland

<mark>16</mark>

¹⁷ Center for Limnology and Department of Integrative Biology, University of Wisconsin-Madison

¹⁸ Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden

<mark>19</mark>

* Authors contributed equally to the development of the manuscript.

* Corresponding authors: Lluís Gómez-Gener (<u>luis.gomezgener@epfl.ch</u>) Gerard Rocher-Ros (<u>gerard.rocher@umu.se</u>)

Abstract

Carbon dioxide (CO₂) emissions to the atmosphere from running waters are estimated to be four times larger than the total carbon (C) flux to the oceans. However, these fluxes remain poorly constrained because of substantial temporal variability in dissolved CO₂ concentrations. Using a global compilation of high frequency CO₂ measurements, we demonstrate that nocturnal CO₂ emissions are consistently larger, by an average of 27% (0.9 g C m⁻² d⁻¹), than those estimated from diurnal concentrations alone. Canopy shading is the principal control on observed diel (24 hr) variation, suggesting this nocturnal increase arises from daytime fixation of dissolved inorganic C by photosynthesis. Because contemporary global estimates of CO₂ emissions to the atmosphere from running waters (0.65 – 1.8 Pg C yr⁻¹) rely primarily on discrete measurements of dissolved CO₂ obtained during the day, they substantially underpredict the magnitude of this important flux. Accounting for night-time CO₂ elevates global estimates of emissions from running waters to the atmosphere by 0.20-0.55 Pg C yr⁻¹. Carbon dioxide (CO₂) emission from inland waters to the atmosphere is a major flux in the global carbon (C) cycle, and four-fold larger than the lateral C export to oceans¹. Streams and rivers are hotspots for this flux, accounting for ~85% of inland water CO₂ emissions despite covering <20% of the freshwater surface area². Despite this importance, the magnitude of global CO₂ emissions from streams and rivers remains highly uncertain with estimates revised upwards over the past decade from 0.6 to 3.48 Pg C yr^{-1 (3,4)}. Changes to this estimate follow improvements in the spatial resolution for upscaling emissions^{2,5}, as well as new studies from previously underrepresented areas such as the Congo⁶, Amazon⁷, and global mountains⁸. Further refinements have emerged from considering temporal variability in CO₂ emission rates⁹. However, despite recent studies showing dramatic day-night changes in stream and river water CO₂ concentrations^{10–14} the significance of systematic sub-daily variation on overall CO₂ emissions remains unexplored.

Diurnal cycles in solar radiation impose a well-known periodicity on stream biogeochemical processes, creating diel (i.e., 24-hr period lengths) patterns for many solutes and gases, including nutrients, dissolved organic matter, and dissolved oxygen (O₂)¹⁵. Indeed, diel variation in O₂ arising from photosynthetic activity is the signal from which whole-system metabolic fluxes are estimated¹⁶. Photosynthetic production of O₂ is stoichiometrically linked to the day-time assimilation of dissolved inorganic carbon (principally bicarbonate and dissolved CO₂), lowering CO₂ concentrations during the day. The resulting diel variation, with higher night-time CO₂ concentrations when respiration reactions dominate, implies increased emissions at night. Despite the obvious connection between photosynthesis and CO₂ consumption, the implications for total aquatic CO₂ in water¹⁷. Notably, other processes can also vary at sub-daily time scales and could thus similarly drive diel change in CO₂ emissions from streams, including interactions with the carbonate system¹⁸, photo-chemical oxidation of

organic matter¹⁹, and diel changes in discharge and subsequently lateral CO₂ inputs from terrestrial environments²⁰. Regardless, the overall magnitude and direction of diel changes in CO₂ concentrations and the associated consequences for emissions are largely unknown.

Current global estimates of CO₂ emissions from running waters rely almost exclusively on manually collected samples that fail to incorporate sub-daily variability. Here, we assess whether reliance on these samples creates a strong temporal sampling bias by using the most widely used global river chemistry database (GLORICH²¹). Next, we leverage recent technological advances in continuous, sensor-based dissolved CO₂ monitoring¹⁷ to ask if this sampling bias is concurrent with consistent day-night differences in CO₂ emission rates from streams. To do this, we compiled high-resolution CO₂ time series representing a total of 52 years of continuous data (Table S1) from 66 streams that span a wide range of climate, land cover, and stream physicochemical properties (Table S2). We evaluated the generality of diurnal stream CO₂ variation, quantified the significance of these signals for CO₂ emissions, and identified the main landscape factors that control diurnal variation. Finally, we estimated the potential bias in global CO₂ stream emission estimates that arise from neglecting nocturnal emissions.

Results and Discussion

Magnitude and bias of diel changes in CO2 emissions

Water samples compiled in the GLORICH database²¹ are primarily taken during the day, with 90% of samples collected between 08:10 and 15:55 and a median sampling hour of 11:25 (Figure 1a). Comparing this time window of manual sampling with sensor data synthesized in this study, we found that only 10% of days had maximum CO₂ emissions within these hours, and there was a consistent pattern of higher emission rates during night than day (Figure 1b).

On average, nocturnal emission rates were 27.2% greater than daytime rates across all sites, with differences ranging from -11.8 to 192.5% (Table S3). While this overall pattern was geographically consistent, with 56 of 66 (85%) of sites showing higher average nocturnal CO₂ emission rates (Figure 2a and Table S3), the observed ranges in diel change varied among biomes (Figure 2b). Specifically, streams with the largest diel change in emissions drained temperate forests, followed by montane grasslands; however, these biomes also had the largest internal variation. By comparison, we observed generally smaller diel changes, and less internal variability, for boreal and tropical/sub-tropical systems. Despite such differences, the large variation observed within most biomes suggests that controls over these patterns operate at finer spatial scales¹³. Further, because the GLORICH database – the foundation of current global estimates of CO₂ emissions from inland waters² – relies primarily on manual samples with a strong daytime sampling bias, the geographically widespread diel variation in CO₂ emissions introduces a systematic and potentially large error in estimates of aggregate flux rates.

Drivers of diel changes in CO₂ emissions

Diel patterns in stream CO₂ emissions are the result of a dynamic interplay between biogeochemical and hydrological processes that adjust stream CO₂ concentrations at the daily scale – theses include aquatic primary production^{11,13}, biological²² and photolytic oxidation of organic C¹⁹, and terrestrial import of CO₂ from soil respiration and mineral weathering²⁰. Additionally, diel changes in water temperature can affect CO₂ emissions through its effect on the physical exchange rate between air and water (kCO₂)²³. An initial exploration of our continuous data suggest that aquatic processes generate considerable temporal variation in the magnitude of diel variation in emissions (Figure 3). Specifically, the largest diel amplitudes were consistently observed during summer, and in open canopy reaches (median = $0.76 \text{ g C} \text{ m}^{-2} \text{ d}^{-1}$). Markedly reduced amplitudes were observed in streams with closed canopies (median = $0.09 \text{ g C} \text{ m}^{-2} \text{ d}^{-1}$), while intermediate amplitudes were evident at partially covered sites (median= $0.37 \text{ g C} \text{ m}^{-2} \text{ d}^{-1}$). Overall, these observations are consistent with greater levels of daytime CO₂ uptake in open canopy streams during summer, when warm temperatures and greater incident light ^{24,25} support elevated rates of photosynthesis¹¹. By contrast, wintertime diel changes in stream CO₂ emissions are more similar across canopy cover categories, suggesting reduced aquatic photosynthesis.

We used structural equation modeling (SEM) to further resolve factors and causal combinations that underpin variation in summertime diel emissions, the time-period for which have the most complete data set (Table S1). Our structural model consisted of two levels of factor interaction, or metamodels (see method section for a more detailed description of the SEM). First, we considered whether diel CO₂ emission patterns arise from parallel variation in kCO_2 and stream water pCO_2 , the two main factors determining aquatic CO_2 emissions²⁶. The results from the SEM for at this first level ($r^2=0.43$; Figure S4 and Table S4) suggest that diel variation in CO₂ emissions was mostly driven by variation in pCO₂ (β =0.65), whereas kCO_2 exerted a minor influence (β =0.02). Second, we used SEM to identify significant relationships between a set of environmental variables and the diel changes in pCO_2 . This second SEM model ($r^2=0.46$; Figure 3 and Table S4) indicated that stream canopy cover $(\beta = -0.58)$ was the primary driver of diel variation of pCO₂, with channel slope ($\beta = -0.18$), stream NO₃⁻ concentration (β =0.25) and diel temperature variation (β =0.13) as secondary drivers. Together with the observed seasonal patterns (Figure 3), SEM results support the hypothesis that riparian canopy cover drives diel pCO_2 variation by regulating the light reaching the stream surface and, in turn, daytime rates of stream autotrophic CO2 uptake during^{16,27,28}.

Diel patterns in CO₂ emissions in running waters not only varied seasonally but also spatially, increasing with drainage size (Figure 4a). In larger river systems, terrestrial shading of the channel is reduced, increasing the light available for primary producers²⁴, which ultimately explains the general increase in GPP with channel size 29,30 . Still, we observed larger rivers with open canopies that do not sustain significant diel change in CO₂ evasion (Figure 4b). This dampening of diel amplitude likely results from light-attenuation in the water column, for example linked to high concentrations of dissolved organic matter (DOM) that inhibit GPP³¹ (Figure 4c; Figure S6). Thus, light attenuation, whether caused by canopy cover along small streams, or by water colour, turbidity, or depth for larger river systems³², dictates the overall magnitude of diel changes in CO₂ emissions along river continua. We explored the potential influences of water colour more deeply at the sub-tropical Florida sites, where we have continuous CO₂ and fDOM in five rivers spanning a large range in DOC (0.96-43.4 ppm) and ecosystem size (9.0-66.7 median daily discharge). High frequency data from these sites confirm that diel changes in CO₂ emissions are supressed above ca.70 ppb of fDOM (corresponding to ca. 20 mg L^{-1} DOC), despite relatively high incident light (Figure 4d). Overall, given that aquatic photosynthesis tends to increase with drainage size, because lowland systems are less shaded and more often subject to nutrient enrichment via human activities³⁰, it is reasonable to predict that the importance of diel variation in CO_2 emissions found in this study for smaller systems would persist for large rivers, as long as light attenuation in the water column permits. =

The controls on potential diel change in CO₂ emissions exerted by either canopy cover or water color are highly variable in space, and do not follow strict geographical patterns (Fig. 2). Yet, the probability that one or both of these constraints operates is likely biome-specific and this may aid in understanding which regions of Earth are more prone to strong bias in upscaling. For example, boreal and tropical regions are typically characterized by forests with dense canopies and can support aquatic systems with dark, DOC-rich waters (refs; Fig S3). Indeed, for these biomes we observed, on average, a lower diel change in CO₂ emissions (Fig. 2b). In this context, observations from the sub-tropical Florida sites likely provide insight into the dynamics that would be expected for dark water systems elsewhere, particularly tropical rivers, which are otherwise poorly represented in our analysis. For some biomes (e.g., montane grasslands and tundra), vegetation structure and edaphic properties make light constraints on aquatic GPP and diel CO₂ evasion less likely, while in other settings (e.g., the temperate zone) the influences of land cover change and/or anthropogenic nutrient enrichment may play particularly important roles³⁰. Overall, we suggest that future efforts to the resolve the fine-scale spatial patterns of canopy cover and DOM in flowing waters could be used for a more refined understanding of aquatic GPP and its implications for CO₂ emissions.

Implications for global CO₂ emissions from stream networks

Our analysis reveals three facts with important consequences for global estimates of CO₂ emissions from running waters: (1) current estimates based on manual samples are heavily biased towards day-time, (2) CO₂ emission rates are consistently higher at night-time due to variations in aquatic pCO₂, and (3) this pattern is primarily driven by light availability and is widespread across biomes and along river continua. To further quantify this underestimation of CO₂ emissions we compare the measured total emissions for each site with the emissions estimated considering only the CO₂ concentrations observed between 10:00 and 14:00 (the interquartile sampling time in the GLORICH database (Figure 1a). Across all sites, CO₂ emissions integrated over a full day were 34.7% higher than those based on samples taken at midday (range: -6.6 - 369 %; bootstrapped 95% confidence interval: 14.0 - 46.7 %). Based on the two current global estimates of stream CO₂ emissions of 0.6-1.8 Pg C yr^{-1 (2.33)}, this

proportional bias results in an additional 0.20 - 0.55 Pg C yr⁻¹ of CO₂ evaded from streams globally (bootstrapped 95% confidence interval: 0.09 - 0.30; 0.25 - 0.84, respectively). However, given that the current global estimates of C emissions from running waters are still highly uncertain and conflict global C budgets³⁴ this additional flux of CO₂ should be taken with caution until future global estimates are refined.

We also emphasize that there are other important sources of uncertainty embedded in the global estimates of emissions from streams, upon which our estimate is based. For example, current estimates^{4,33} are still derived from indirect determinations of surface water CO₂ from alkalinity and pH, which can be highly uncertain^{35,36}. Further, the notoriously variable nature of hydrodynamic factors that influence CO₂ emissions cannot easily be aggregated at large spatial scales^{11,37}. It is also problematic that current estimates remain biased towards observations from mid-to-high latitudes, while unrepresented areas such as the Tropics are thought to be key contributors to the global CO₂ emissions from streams^{6,38}. Our study, despite covering most biomes and spanning large gradients in canopy cover and water colour, also suffers from this bias. Despite this, our assessment represents the first compilation of direct, high-temporal resolution measurements of CO₂ in flowing waters from across the globe, which will be a key piece in refining global estimates of CO₂ emissions from inland waters. While the magnitude of this global estimate can be further refined, the broad consistency and strength of the patterns observed here suggest that nocturnal emissions of CO₂ from streams and rivers is a major unaccounted flux in the global C cycle.

Methods

Study sites and data acquisition

We compiled high-frequency dissolved CO₂ time-series (median temporal resolution = 39 min; range 5 to 180 min) over at least eight days (median time series duration = 317 days; range 8 to 1553 days) from 66 headwater streams worldwide (Figure 2a; Table S1). We used median annual discharge (which covaried with catchment surface area; Figure S5) as a criterion to select streams (i.e., median annual discharge < $1.5 \text{ m}^3 \text{ s}^{-1}$, catchment area < 246 km²; orders 1 to 3³⁹). Selected streams span biomes, including tropical forests and savanna, temperate forests, boreal forest and taiga, arctic tundra, high-mountain forests and grasslands and, accordingly, a wide range of climatic and biogeographic conditions (Table S2). They also encompass a variety of catchment features (e.g., land cover, altitude, and surface area) and reach-scale hydrological, morphometric, and physicochemical properties (Table S2).

High-frequency CO₂ measurements were obtained from a variety of sources, including unpublished time-series, monitoring network platforms (e.g., StreamPulse, https://data.streampulse.org/), and literature datasets (Table S2). In all the cases, CO₂ was measured using *in-situ* automated sensors connected to data loggers (Table S2). The measurement accuracy of the CO₂ sensors ranged from $\pm 1\%$ to $\pm 3\%$. In addition, water temperature (in all streams) and discharge (in 57 of 66 streams) were also measured at the same frequency as CO₂ using *in-situ* automated sensors.

Time-series processing

We standardized each time-series to an hourly time step by resampling higher frequency measurements and interpolating lower frequency measurements. We also normalized CO_2 concentrations to CO_2 partial pressures (pCO_2 , ppm), corrected for temperature and pressure

variation, and removed obvious measurement errors ($pCO_2 < 0$ ppm). Continuous discharge was calculated from stage-discharge rating curves developed from existing discharge measurements. In total, the high-frequency dataset used for analysis included 457,637 hourly CO₂, temperature and discharge observations. 32 time series covered at least one complete year, 7 covered more than 200 days while the remaining 27 covered between 8 and 198 days, mostly during the summer (Figure S1).

Compilation of ancillary variables

Stream reach canopy cover was determined by visually inspecting orthophotos of the study sites. High-resolution orthophotos from Google Earth imagery were downloaded at the highest resolution possible using the "ggmap" package in R (version 3.0.0), and classified in three categories of "no cover" (0), "partly covered" (1), or "fully covered" (2). The "no cover" category was selected when it was possible to see the full extent of the stream channel, "partly covered" when some parts of the stream were visible, and "fully covered" when it was not possible to detect the presence of a stream based on an orthophoto (Figure S3).

Stream channel slope was determined by measuring the difference in elevation between the sampling location and 300 meters upstream following the channel. To do this, we downloaded digital elevation models (DEM) at resolutions ranging between 1.9 - 14 m (depending on the location) using the "elevatr" package in R (version 0.2.0). Then, for each site a raster of the flow-accumulation was produced using the "whitebox" package in R (version 0.5.0), after initially breaching depressions for hydrological correctness. By combining the flow-accumulation raster with the DEM, we extracted the stream path and the elevation at the site and 300 m upstream (in ArcGIS 10.5).

Land cover was determined using the Global Land Cover Maps (100m resolution; Copernicus Global Land Service) and the catchment boundaries delineated using a high resolution DEMs (2x2m) in QGIS 3.2.1. Mean annual concentrations (not flow-weighted) of dissolved organic carbon (DOC), nitrate (NO_3^{-}), ammonium (NH_4^{+}), pH and conductivity for the study streams were obtained from unpublished sources or extracted from the literature. Mean annual stream discharge, as well as water temperature, were computed from hourly time series.

Determination of CO₂ emissions

We estimated CO₂ emissions as the product of the gas transfer velocity (k_{CO2}) and the concentration of dissolved CO₂ relative to atmospheric equilibrium²⁶. A standardized gas transfer velocity (k_{600}) was obtained based on the stream energy dissipation (eD)⁴⁰, defined as the product of channel slope (S; m m⁻¹), water velocity (V; m s⁻¹) and acceleration due to gravity (g; 9.8 m s⁻²). We then calculated k_{600} as $k_{600} = e^{(3.1 + 0.35 \times \log(eD))}$ for eD < 0.02 m⁻² s⁻³; and as $k_{600} = e^{(6.43 + 1.18 \times \log(eD))}$ for eD > 0.02 m⁻² s⁻³. Water velocity was modelled using a power-law relationship with discharge²⁶; in 4 streams discharge data were not available and we used a constant velocity of 0.2 m s⁻¹. The k_{600} was converted to a gas- and temperature-specific gas transfer velocity k_{CO2} , using the temperature-dependent Schmidt numbers for CO₂ ²⁶. Potential day-night differences in gas exchange required separate night and day k_{CO2} calculations with time-of-day specific velocity and temperature values. The CO₂ disequilibrium relative to the atmosphere was calculated as the difference in water and air pCO₂, converted to molar CO₂ concentrations using the temperature-specific Henry's constant. Atmospheric pCO₂ was assigned monthly to each site from the global average measured by the Global Monitoring Laboratory of NOAA

(https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html), which contains measurements

between 2007 to 2020, which align with our study. We assessed the importance of sub-daily changes in atmospheric concentrations by examining atmospheric measurements of pCO_2 from 14 streams and 77 ecosystem flux towers of globally. We concluded that day-night changes in atmospheric pCO_2 are small and inconsistent, and therefore poorly constrained for extrapolation to other stream sites (See Supplementary Text 1).

Finally, to assess whether a day-time sampling bias exists, we determined the distribution of sampling time in the GLORICH database²¹. From the database, we filtered all sampling occasions where both CO₂ (calculated from alkalinity and pH) and the time of sampling were available (n = 733,977, from 8,520 locations), we then extracted summary statistics such as the median, 90% range and the interquartile range to compare with sensor measurements.

Statistical analyses

We examined a variety of metrics to characterize sub-daily and between-day variation. To quantify the underestimation in CO₂ emissions due to a day-time bias, we compared total CO₂ emissions estimated using hourly measurements with total emissions estimated from the average measurements between 10:00 and 14:00, the interquartile range of the observations in the GLORICH database. Given the non-normality of results among sites, we present uncertainty as normal bootstrapped intervals using the "boot" package in R (version 1.3-24), with 10,000 replications. We quantified median CO₂ emissions (g C m⁻² d⁻¹) during the day (between 12:00 and 17:00), median CO₂ emissions during the night (between 00:00 and 05:00), the absolute difference between day and night CO₂ emissions, and the relative difference in CO₂ concentrations between day and night (in %; ((CO_{2, NIGHT} – CO_{2, DAY})/ CO_{2, DAY})×100). Also, to evaluate differences between canopy levels we used the non-parametric Kruskal–Wallis test.

We explored temporal patterns of day-night CO₂ emissions differences to test the influence of seasonality, local canopy cover, and their interaction. We used piecewise structural equation modelling (SEM) to evaluate causal and directional links between physical and biological parameters operating at the reach-scale (Table S2) and variance in daily day-night differences in CO₂ emissions. SEM is a theory-oriented multivariate statistical approach capable of testing a network of causal hypotheses by allowing evaluation of simultaneous influences rather than individual (bivariate) causes⁴¹. We first devised a metamodel (or metamodels) based on *a priori* theoretical knowledge and known mechanisms (see above and Figure 3). The metamodel was fitted and tested using the function psem() in the *piecewiseSEM* R Package (version 2.1). To evaluate the effect sizes of each interaction within metamodels, the psem() model output provides estimates of individual (standardized) path coefficients (β). The evaluation of goodness of fit and associated uncertainty is performed through the coefficient of determination (r^2) and the residual standard error (RSE), respectively. Compared with traditional variance-covariance based SEM, piecewise SEM allows for fitting of models to different distributions through a generalized linear model (GLM). SEM modelling was conducted using summer data only, which is when most of the sites are represented (see Figure S1).

Data availability

Data will be available at the open data repository Zenodo and can already be explored interactively at: <u>https://gmrocher.shinyapps.io/night_co2_emissions_streams/</u>.

References

- 1. Cole, J. J. *et al.* Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. *Ecosystems* **10**, 171–184 (2007).
- Raymond, P. A. *et al.* Global carbon dioxide emissions from inland waters. *Nature* 503, 355–9 (2013).
- Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. *Limnology and Oceanography Letters* (2017) doi:10.1002/lol2.10055.
- Raymond, P. A. *et al.* Global carbon dioxide emissions from inland waters. *Nature* 503, 355–359 (2013).
- Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P. & Regnier, P. A. G. Spatial patterns in CO2 evasion from the global river network. *Global Biogeochemical Cycles* 29, 534–554 (2015).
- Borges, A. V. *et al.* Globally significant greenhouse-gas emissions from African inland waters. *Nature Geoscience* 8, 637–642 (2015).
- Sawakuchi, H. O. *et al.* Carbon Dioxide Emissions along the Lower Amazon River. *Frontiers in Marine Science* 4, 1–12 (2017).
- 8. Horgby, Å. *et al.* Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains. *Nature Communications* **10**, (2019).
- 9. Liu, S. & Raymond, P. A. Hydrologic controls on pCO 2 and CO 2 efflux in US streams and rivers . *Limnology and Oceanography Letters* **3**, 428–435 (2018).
- 10. Peter, H. *et al.* Scales and drivers of temporal pCO2 dynamics in an Alpine stream. *Journal of Geophysical Research: Biogeosciences* **119**, 1078–1091 (2014).

- Rocher-Ros, G., Sponseller, R. A., Bergstr, A., Myrstener, M. & Giesler, R. Stream metabolism controls diel patterns and evasion of CO2 in Arctic streams. *Global Change Biology* 0–3 (2019) doi:10.1111/gcb.14895.
- Wallin, M. B., Audet, J., Peacock, M., Sahlée, E. & Winterdahl, M. Carbon dioxide dynamics in an agricultural headwater stream driven by hydrology and primary production. 1–28 (2020).
- Crawford, J. T., Stanley, E. H., Dornblaser, M. M. & Striegl, R. G. CO2 time series patterns in contrasting headwater streams of North America. *Aquat Sci* 79, 473–486 (2017).
- Reiman, J. & Xu, Y. J. Diel Variability of pCO2 and CO2 Outgassing from the Lower Mississippi River: Implications for Riverine CO2 Outgassing Estimation. *Water* 11, 43 (2018).
- Hensley, R. T. & Cohen, M. J. On the emergence of diel solute signals in flowing waters. *Water Resour. Res.* 52, 759–772 (2016).
- 16. Odum, HT. Primary Production in Flowing Waters. Limnol. Oceanogr 1, 102–117 (1955).
- 17. Johnson, M. S. *et al.* Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems-method and applications. *Ecohydrol.* **3**, 68–78 (2010).
- Stets, E. G. *et al.* Carbonate buffering and metabolic controls on carbon dioxide in rivers. *Global Biogeochemical Cycles* **31**, 663–677 (2017).
- 19. Cory, R. M., Ward, C. P., Crump, B. C. & Kling, G. W. Sunlight controls water column processing of carbon in arctic fresh waters. *Science* **345**, 925–928 (2014).
- Riml, J., Campeau, A., Bishop, K. & Wallin, M. B. Spectral decomposition reveals new perspectives on CO 2 concentration patterns and soil-stream linkages. 0–3 (2019) doi:10.1029/2018JG004981.
- 21. Hartmann, J., Lauerwald, R. & Moosdorf, N. A Brief Overview of the GLObal RIver Chemistry Database, GLORICH. *Procedia Earth and Planetary Science* **10**, 23–27 (2014).

- 22. Hotchkiss, E. R. *et al.* Sources of and processes controlling CO2 emissions change with the size of streams and rivers. *Nature Geosci* **8**, 696–699 (2015).
- 23. Demars, B. O. L. & Manson, J. R. Temperature dependence of stream aeration coefficients and the effect of water turbulence: A critical review. *Water Research* **47**, 1–15 (2013).
- 24. Koenig, L. E. *et al.* Emergent productivity regimes of river networks. *Limnol Oceanogr* **4**, 173–181 (2019).
- Bernhardt, E. S. *et al.* The metabolic regimes of flowing waters: Metabolic regimes. *Limnol. Oceanogr.* 63, S99–S118 (2018).
- 26. Raymond, P. A. *et al.* Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. *Limnology & Oceanography: Fluids & Environments* **2**, 41–53 (2012).
- Mulholland, P. J. *et al.* Inter-biome comparison of factors controlling stream metabolism.
 Freshwater Biology 46, 1503–1517 (2001).
- 28. Roberts, B. J., Mulholland, P. J. & Hill, W. R. Multiple scales of temporal variability in ecosystem metabolism rates: Results from 2 years of continuous monitoring in a forested headwater stream. *Ecosystems* **10**, 588–606 (2007).
- Vanote, R. L., Minshall, W. G., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The River Continuum Concept. *Canadian Journal of Fisheries and Aquatic Sciences* 37, 130–137 (1980).
- Finlay, J. C. Stream size and human influences on ecosystem production in river networks. *Ecosphere* 2, art87 (2011).
- 31. Kirk, L., Hensley, R. T., Savoy, P., Heffernan, J. B. & Cohen, M. J. Estimating Benthic Light Regimes Improves Predictions of Primary Production and constrains Light-Use Efficiency in Streams and Rivers. *Ecosystems* (2020) doi:10.1007/s10021-020-00552-1.
- 32. Julian, J. P., Doyle, M. W., Powers, S. M., Stanley, E. H. & Riggsbee, J. A. Optical water quality in rivers. *Water Resour. Res.* 44, (2008).

- 33. Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P. & Regnier, P. A. G. Spatial patterns in CO ₂ evasion from the global river network: SPATIAL PATTERNS OF RIVERINE P CO ₂ AND F CO ₂. Global Biogeochem. Cycles 29, 534–554 (2015).
- Friedlingstein, P. *et al.* Global Carbon Budget 2019. *Earth Syst. Sci. Data* 11, 1783–1838 (2019).
- 35. Liu, S., Butman, D. E. & Raymond, P. A. Evaluating CO₂ calculation error from organic alkalinity and PH measurement error in low ionic strength freshwaters. *Limnol Oceanogr Methods* 18, 606–622 (2020).
- 36. Abril, G. et al. Technical Note: Large overestimation of <i>p</i>CO<sub>2</sub> calculated from pH and alkalinity in acidic, organic-rich freshwaters. *Biogeosciences* 12, 67–78 (2015).
- Duvert, C., Butman, D. E., Marx, A., Ribolzi, O. & Hutley, L. B. CO2 evasion along streams driven by groundwater inputs and geomorphic controls. *Nature Geosci* 11, 813– 818 (2018).
- 38. Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. *Nature* 416, 617–620 (2002).
- 39. Guth, P. L. Drainage basin morphometry: a global snapshot from the shuttle radar topography mission. *Hydrol. Earth Syst. Sci.* **15**, 2091–2099 (2011).
- 40. Ulseth, A. J. et al. Distinct air-water gas exchange regimes in low- and high-energy streams. *Nat. Geosci.* **12**, 259–263 (2019).
- 41. Lapierre, J.-F., Guillemette, F., Berggren, M. & del Giorgio, P. a. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. *Nature communications* **4**, 2972 (2013).

Acknowledgements

The authors thank John Crawford and Sam Blackburn for providing data in this study. The authors also thank Jens Hartmann for providing access to the GLORICH database. This study was supported by a FORMAS grant to R.A.S.

Author contributions:

L.G-G, G.R-R, and R.A.S designed the study and wrote the paper with inputs from M.J.C. L.G-G and G.R-R compiled, processed, and analyzed the data. Å.H. provided remote sensing estimates. All authors contributed with data and commented on the earlier versions of this manuscript.

Competing interests:

The authors declare no competing interests

Materials and Correspondence:

Lluís Gomez-Gener (<u>luis.gomezgener@epfl.ch</u>) and Gerard Rocher-Ros (<u>gerard.rocher@umu.se</u>) Supplementary materials of:

Enhanced nocturnal emissions of carbon dioxide amplify the role of streams in the global carbon cycle

Supplementary text

ST1: Exploration of diel variation in atmospheric pCO₂

There is evidence of daily fluctuations in atmospheric pCO_2 near the surface in terrestrial ecosystems¹ which can therefore impact the estimates of CO₂ evasion. Here we assumed constant atmospheric pCO_2 given the lack of available data for the majority of sites. However, in a subset of sites (n=14) we have measured atmospheric pCO_2 above the stream surface. The median amplitude of the atmospheric pCO_2 for these streams is 7.8 ppm, with air pCO_2 increasing from day to night.

To further assess the consistency of this pattern we also explored the diel change in atmospheric pCO_2 measured by a network of eddy covariance towers worldwide (FLUXNET²). We compiled data from 77 sites that spanned a gradient in land cover and in the same geographical region as the stream sites (Figure S7). The median amplitude of air pCO_2 for different land cover types varied between 0 and 15 ppm, with a median for all sites of 4.2 ppm.

We have not corrected the atmospheric pCO_2 for diel changes for multiple reasons: (1) both for stream and terrestrial measurements there is substantial variability among sites, indicating that the drivers of this diel variability in atmospheric pCO_2 are hard to constrain and therefore extrapolate to other sites; (2) the diel amplitudes in atmospheric pCO_2 are more than one order of magnitude lower than aquatic counterparts (median of all sites: 102 ppm, range: 0 - 1515 ppm); (3) and the atmospheric diel changes are close to the accuracy of the sensors (see Table S1 for accuracy of different sensors). We acknowledge that diel changes in atmospheric pCO_2 can be important in specific sites and/or dates due to topographic depressions, closed canopy, or micrometeorological conditions, but without further data is not possible to confidently correct for this process.

Supplementary Figures

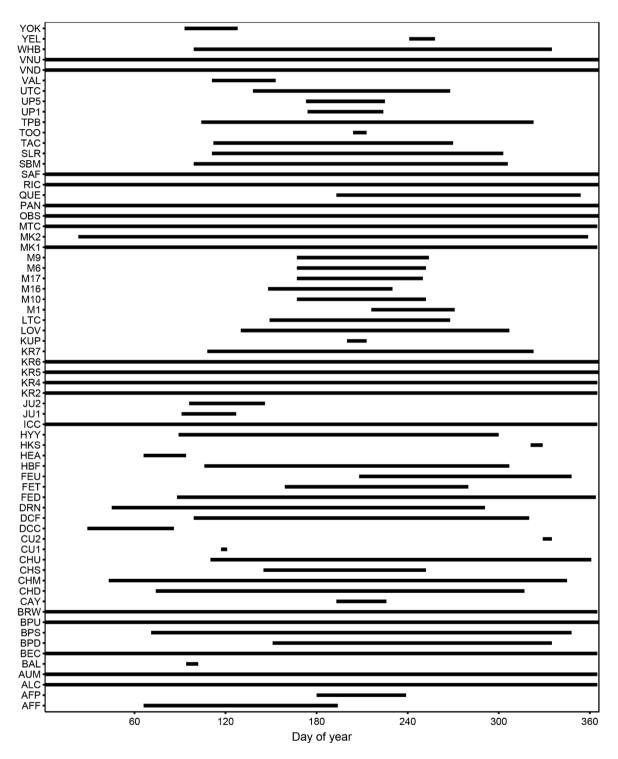
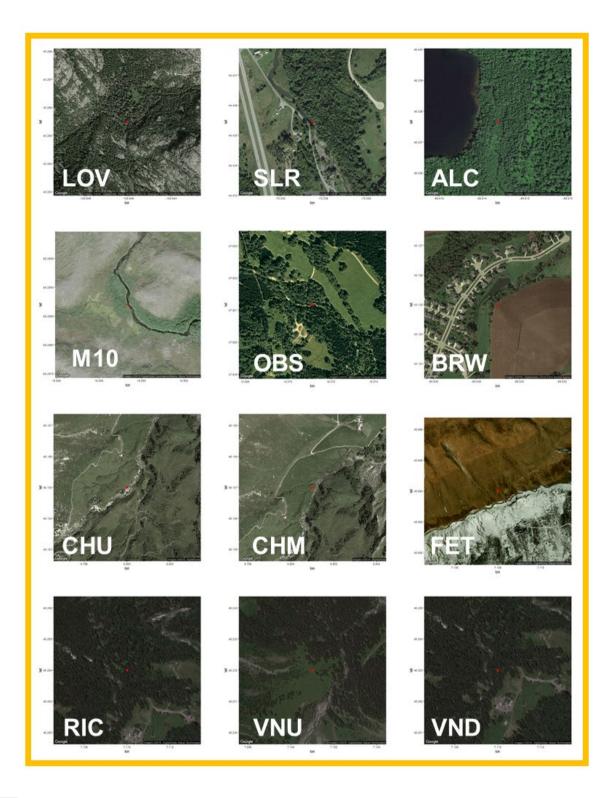



Figure S1. Intra-annual coverage of the high-frequency dataset used for the analysis.

Figure S2a: Sites with the canopy cover category "no cover", defined when the full extent of the stream was visible.

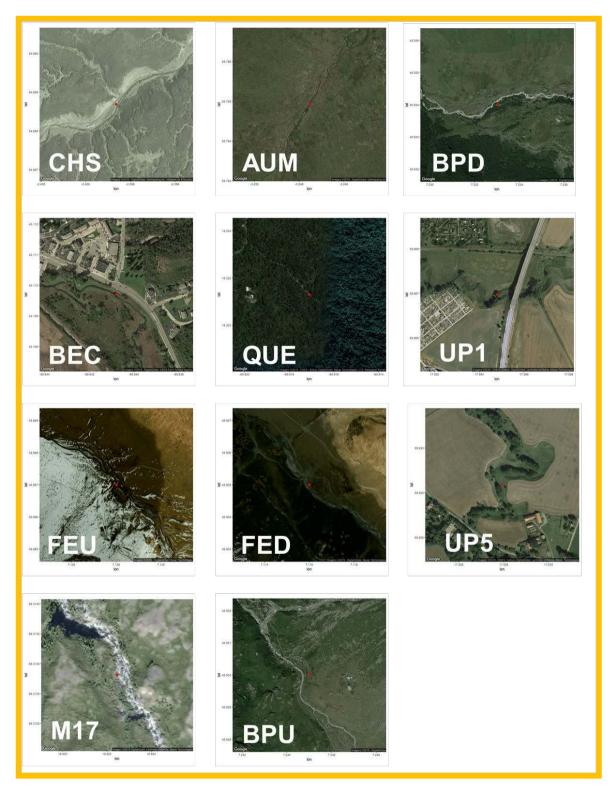
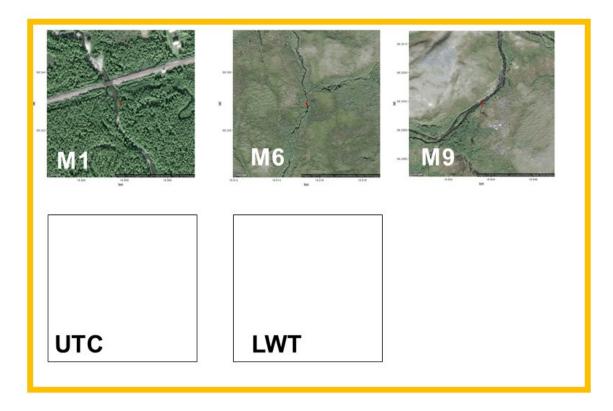
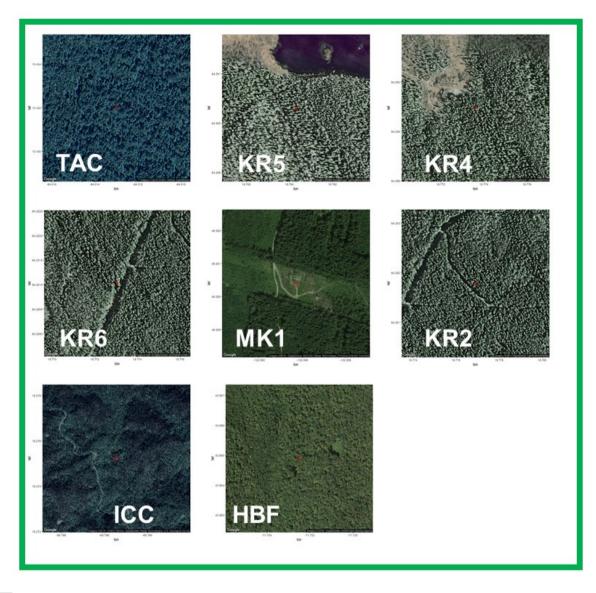
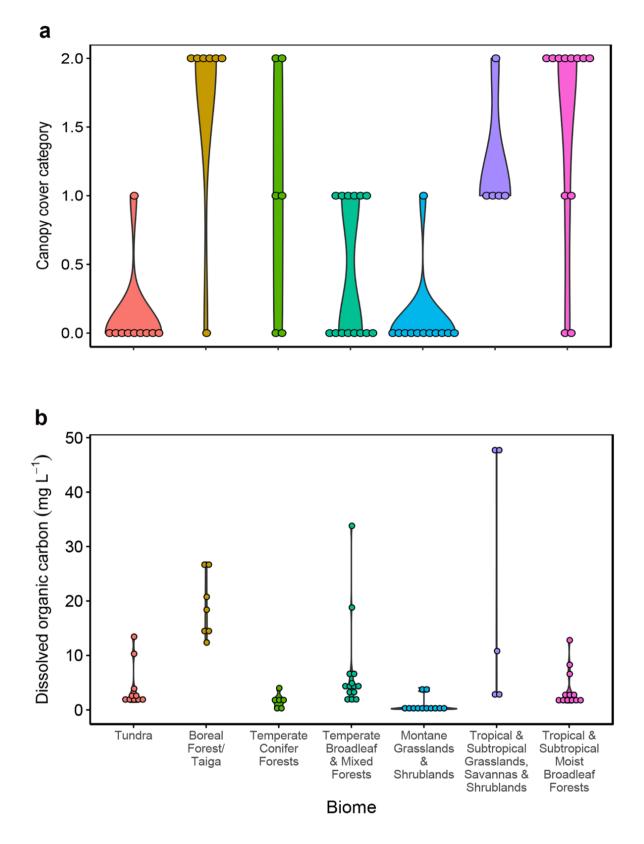
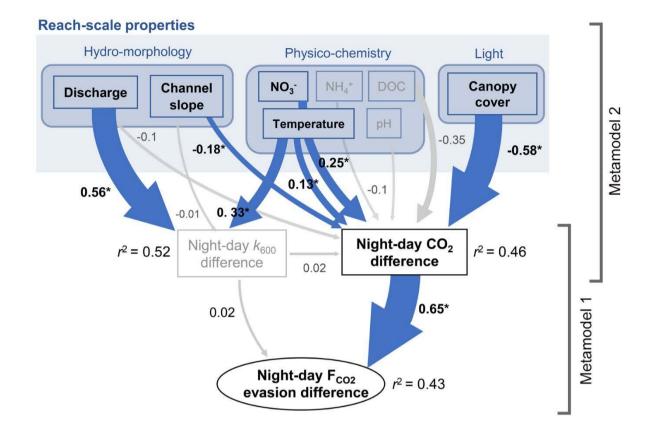
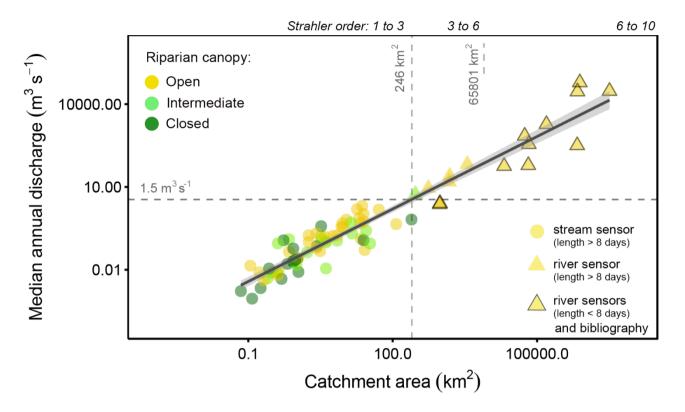


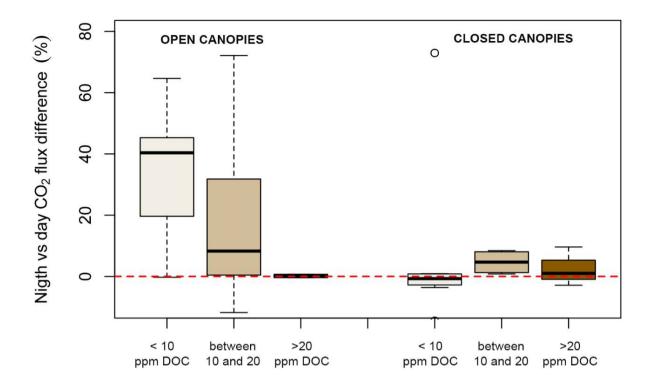
Figure S2a (cont.): Sites with the canopy cover category "no cover", defined when the full extent of the stream was visible.


Figure S2a (cont.): Sites with the canopy cover category "no cover", defined when the full extent of the stream was visible. Sites UTC and LWT have no high-resolution imagery on google earth due to the remoteness of the location (Alaska), but are located in the transition between tundra and boreal zones and are canopy free.


Figure S2b: Sites with the canopy cover category "partly covered, when it was possible to see multiple sections of the stream surface


Figure S2c: Sites with the canopy cover category "fully covered", when the presence of a stream was not detectable from orthophotos.


Figure S3. Ranges and distribution of canopy cover and stream DOC concentrations grouped by biome, and sorted by descending latitudes. Biome assignment derived from Olson et al. (2001)³.

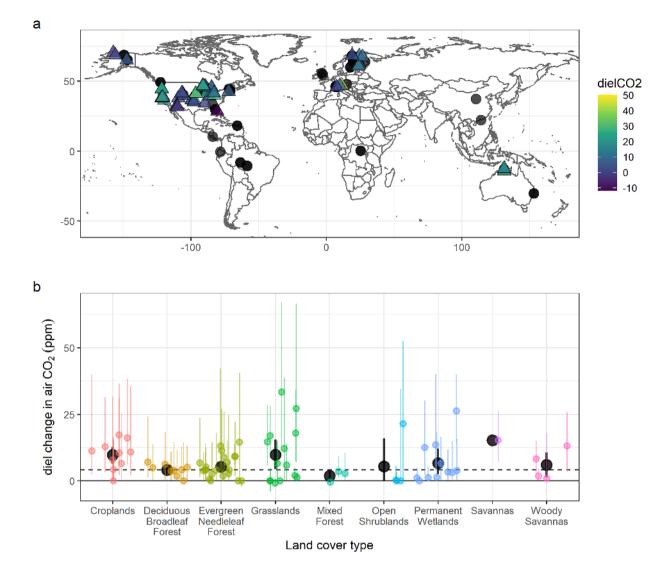

Figure S4. Drivers of night-day differences of CO₂ emissions from streams. Structural equation model (SEM) representing connections between reach-scale physical and biological parameters contributing to the relative night-day variation in summertime CO₂ emissions (%). The SEM consisted of two dependent levels of factor interaction or metamodels. Metamodel 1 assessed the influence of kCO₂ and stream water pCO₂ on night-day differences of CO₂ emissions. Metamodel 2 assessed relationships between environmental variables and diel changes in stream water pCO₂. Blue arrows represent significant effects (p < 0.05). Numbers adjacent to arrows are the standardized effect sizes of each relationship. Arrow width is proportional to the effect size. SEM goodness of fit was evaluated based on variance explained by each of the two models (r^2). A summary of statistical outputs from the SEM model is provided in Table S4. Reach-scale properties for each site used in the SEM model are presented in Table S2.

Figure S5. Distributions and relationship between catchment area and median annual discharge, colored by canopy color category. Symbols indicate the origin of the data (see Table S1 for more information). Strahler order obtained from the scaling ratio between catchment areas and river order by Guth, 2011⁴.

Figure S6. Comparison of night-day differences in CO_2 emission fluxes averaged by stream and grouped by canopy level and dissolved organic carbon concentration (DOC) level (lower than 10 ppm, between 10 and 20 ppm, and higher than 20 ppm). Box plots display the 25th, 50th, and 75th percentiles whiskers display minimum and maximum values.

Figure S7: Night-day differences in atmospheric pCO_2 measured in eddy covariance towers in the FLUXNET network. Positive values indicate higher concentrations at night (average between 0 and 3h) than day (average between 12 and 15 h). a) shows the location of the towers (triangles) colored with the average amplitude, while the circles show the location of the stream sites in this study. b) shows the mean \pm interquartile range for each site, grouped by land cover type. The black circle shows the median for each land cover. The dashed line shows the median of all values (4.2 ppm).

Supplementary Tables

Table S1. Summary of pCO_2 time series used to assess the daily bias on CO_2 evasion from streams.

AFP -9.8298 -55.9878 2 ALC 46.0377 -99.6133 -4 ALM 55.7949 -3.2476 -2 BAL 0.4228 25.1819 -4 BEC 43.1097 -99.6408 -2 BPD 45.9280 7.2460 -2 BRW 43.1250 -89.6350 -2 CAY -0.3286 -78.2006 -4 CHD 46.1590 6.8150 1 CHM 46.1570 6.8010 1 CHS 54.6887 -2.3986 -2 CU1 -8.0923 -63.4764 -2 CU2 -80.851 -63.4806 -2 DCC -30.1377 153.1636 -1 DRN 22.8627 -42.2836 -1 FED 45.9500 7.1180 1 FET 45.8940 -7.1080 2 FEU 45.8707 -28 -1 GCC 18.2752 -	ld	Lat (°)	Long (°)	Altitude (m)	Country	Biome ^a	Source ^b	CO ₂ sensor (model, manufacturer, country)	Initial date (yyyy-mm-dd)	Final date (yyyy-mm-dd)	Lenght (days)	Temporal resolution (min)	
ALC 46.0377 -89.6133 4 AUM 55.7949 -3.2476 2 BAL 0.4228 25.1819 4 BPD 45.9340 7.2330 1 BPS 45.9340 7.2330 2 BPU 45.9300 7.2460 2 BRW 43.1250 -89.6350 2 CAY -0.3286 -78.2006 4 CHD 46.1570 6.8010 1 CHS 54.6887 -2.3986 6 CHU 46.1570 6.8000 1 CHU 46.1570 6.8000 1 CHU 46.1570 6.8000 1 CHU 46.1570 6.8000 1 CHU 45.9870 7.1800 1 DCC -30.1367 153.1636 1 DRN 29.8627 -82.2836 1 FED 45.9050 7.1180 1 HEA -30.1367 153.1898		-9.8329	-55.9970	268	Brasil	TSMBF	3	GMM220, Vaisala, Finland	2017-03-07	2017-12-30	298	30	
AUM 55.7949 -3.2476 2 BAL 0.4228 25.1819 4 BEC 43.1097 -99.6408 2 BPD 45.9340 7.2330 1 BPS 45.9280 7.2460 2 BRW 43.1250 -89.6350 2 BRW 43.1250 -89.6350 2 CAY -0.3286 -78.2006 4 CHD 46.1550 6.8010 1 CHI 46.1550 6.8000 1 CU1 -8.0923 -63.4764 1 CU2 -8.0851 -63.4006 1 DCC -30.1370 153.1636 1 DCT 43.1345 -71.1840 1 DRN 29.8627 -82.2836 1 FED 45.9050 7.1160 1 FET 45.8940 7.1080 1 HEA -30.1367 153.1836 1 JU2 -10.4367 58.4667 </td <td></td> <td>-9.8298</td> <td>-55.9878</td> <td>268</td> <td>Brasil</td> <td>TSMBF</td> <td>3</td> <td>GMM220, Vaisala, Finland</td> <td>2017-06-29</td> <td>2017-08-27</td> <td>59</td> <td>30</td>		-9.8298	-55.9878	268	Brasil	TSMBF	3	GMM220, Vaisala, Finland	2017-06-29	2017-08-27	59	30	
BAL 0.4228 25.1819 4 BEC 43.1097 -89.6408 2 BPD 45.9340 7.2330 1 BPS 45.9200 7.2450 2 BPU 45.9300 7.2450 2 BRW 43.1250 -89.6350 2 CAY -0.3286 -78.2006 4 CHD 46.1570 6.8010 1 CHM 46.1570 6.8000 1 CHU 46.1570 6.8000 1 CHU 46.1570 6.8000 1 CHU 46.1570 6.8000 1 CHU 46.1570 6.8000 1 DCC -30.1370 153.1636 1 DCC -30.1377 153.1838 1 FED 45.9840 7.1120 1 FEU 45.8870 7.1280 1 HKS 22.2668 141.41406 1 JU1 -10.4167 -58.4667				494	USA	TBMF	1	GMM220, Vaisala, Finland	2014-04-08	2015-05-04	391	60	
BEC 43.1097 -89.6408 2 BPD 45.9340 7.2330 1 BPS 45.9280 7.2460 2 BPW 43.1250 -89.6350 2 BRW 43.1250 -89.6350 2 CAY -0.3286 -78.2006 4 CHD 46.1570 6.8010 1 CHM 46.1570 6.8010 1 CHI 46.1550 6.8000 1 CU2 -8.0851 63.4066 1 DCC -30.1370 153.1636 1 DCC -30.1370 153.1636 1 DCR 43.1345 -71.1840 1 DRN 29.8627 -82.2836 1 FEU 45.9840 7.1280 1 HEA -30.1367 153.1898 1 HEX 22.2668 141.4106 1 HY 61.8625 24.2642 1 JU2 -10.4367 -58.4667				266	Scotland	TBMF	1	GMM220, Vaisala, Finland	2007-11-21	2008-01-31	72	10	
BPD 45.9340 7.2330 1 BPS 45.9280 7.2460 2 BPU 45.9300 7.2450 2 BRW 43.1250 -89.6350 2 CAY -0.3286 -78.2006 4 CHD 46.1550 6.8010 1 CHS 54.6887 -2.3986 6 CHU 46.1550 6.8000 1 CU2 -80.681 63.4764 6 CU2 -30.1370 153.1636 1 DCF 43.1345 -71.1840 1 DRN 29.8627 -82.2836 1 FED 45.9950 7.1160 1 FED 45.9940 7.1280 1 HBF 43.9549 -71.725 5 HEA -30.1367 153.1898 1 HKS 22.2668 141.4106 1 HK4 64.2550 19.7736 2 JU1 -10.4167 -58.4667 <td></td> <td></td> <td></td> <td>444</td> <td>Congo</td> <td>TSMBF</td> <td>3</td> <td>eosGP, Eosense, Canada</td> <td>2019-04-04</td> <td>2019-04-12</td> <td>9</td> <td>5</td>				444	Congo	TSMBF	3	eosGP, Eosense, Canada	2019-04-04	2019-04-12	9	5	
BPS 45.9280 7.2460 2 BPU 45.9300 7.2450 2 BRW 43.1250 -89.6350 2 CAY -0.3286 -78.2006 4 CHD 46.1590 6.8150 1 CHM 46.1570 6.8010 1 CHS 54.6887 -2.3986 6 CU1 -8.0923 -63.4764 1 CU2 -8.0815 -63.4806 1 DCC -30.1370 153.1636 1 DCC -30.1370 153.1636 1 DCC -30.1370 153.1636 1 DRN 29.8627 -82.2836 1 FED 45.9050 7.1160 1 FEU 45.8970 7.1280 1 HBF 43.9549 -71.7225 5 HEA -30.1367 153.1898 1 HKS 22.2668 114.1406 1 HVY 61.8625 24.264				268	USA	TBMF	2	GMM220, Vaisala, Finland	2016-07-19	2018-07-06	717	60	
BPU 45.9300 7.2450 2 BRW 43.1250 -89.6350 2 CAY -0.3286 -78.2006 4 CHD 46.1590 6.8150 1 CHM 46.1570 6.8010 1 CHN 46.1550 6.8010 1 CHS 54.6887 -2.3986 6 CU1 -8.0923 -63.4764 1 CU2 -8.0851 -63.4066 1 DCC -30.1370 153.1636 1 DCF 43.345 -71.1840 1 DRN 29.8627 -82.2836 1 FED 45.3950 7.1180 1 FET 45.8970 7.1280 1 HEA -30.1367 153.1898 1 HKS 22.2668 114.1406 1 JU2 -10.4367 58.4667 2 JU2 -10.4367 58.4667 2 JU2 -10.4367 18.7667<				1937	Switzerland	TCF	3	GMM220, Vaisala, Finland	2016-09-30	2017-09-29	364	10	
BRW 43.1250 -89.6350 2 CAY -0.3286 -78.2006 4 CHD 46.1590 6.8150 1 CHM 46.1570 6.8010 1 CHU 46.1550 6.8000 1 CHU 46.1550 6.8000 1 CU1 -8.0923 -63.4764 1 CU2 -8.0851 -63.4806 1 DCC -30.1370 153.1636 1 DRN 29.8627 -82.2836 1 FED 45.9050 7.1160 1 FET 45.8940 7.1080 2 FEU 45.8870 7.1280 1 HBF 43.0549 -7.1.7225 5 HEX 22.2668 114.1406 1 HYY 61.8625 24.2642 1 ICC 18.2752 -65.7854 6 JU1 -10.4167 -58.7667 2 JU2 -10.4367 158.4967				2161	Switzerland	TCF	3	GMM220, Vaisala, Finland	2016-09-30	2017-09-29	364	10	
CAY -0.3266 -78.2066 4 CHD 46.1590 6.8150 1 CHM 46.1570 6.8010 1 CHS 54.6887 -2.3986 6 CHU 46.1550 6.8000 1 CHU 46.1550 6.8000 1 CU1 -8.0923 -63.4764 1 CU2 -8.0851 -63.4806 1 DCC -30.1370 153.1636 1 DCF 43.1345 -71.1840 1 DRN 29.8627 -82.2836 1 FED 45.9850 7.1180 2 FET 45.8870 7.1280 1 HBF 43.9549 -71.7225 2 HEA -30.1367 153.1898 1 HKS 22.2668 141.41406 1 HKY 61.8625 24.2642 1 JU1 -10.4167 -58.4667 2 JU2 -10.4367 -58.46				2148 278	Switzerland USA	TCF TBMF	3 2	GMM220, Vaisala, Finland GMM220, Vaisala, Finland	2016-09-30 2016-08-10	2017-09-29 2018-11-02	364 814	10 60	
CHD 46.1590 6.8150 1 CHM 46.1570 6.8010 1 CHS 54.6887 -2.3986 6 CHU 46.1550 6.8000 1 CU1 -8.0923 -63.4764 1 CU2 -8.0851 -63.4806 1 DCF 43.1345 -71.1840 1 DRN 29.8627 -82.2836 1 FED 45.9050 7.1160 1 FEU 45.9840 7.1080 2 FEU 45.9550 7.1160 1 HBF 43.9549 -71.7225 5 HEA -30.1367 153.1898 1 HKS 22.2668 144.1406 1 HYY 61.8252 24.2642 1 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 JU2 -10.4367 -58.4667 2 KR6 64.2510 19.7731				4093	Ecuador	MGS	2	GMM220, Vaisala, Finland	2018-08-10	2018-11-02	27	15	
CHM 46.1570 6.8010 1 CHS 54.6887 -2.3986 6 CHU 46.1550 6.8000 1 CU1 -8.0923 -63.4764 6 CU2 -8.0851 -63.4606 6 DCC -30.1370 153.1636 7 DCC -30.1370 153.1636 7 DCF 43.1345 -71.1840 1 FED 45.0900 7.1160 1 FET 45.8870 7.1280 1 HBF 43.9549 -71.7225 5 HEA -30.1367 153.1898 1 HKS 22.2668 114.1406 1 HY 61.8625 24.2642 1 JU1 -10.4167 -58.7654 2 JU2 -10.4367 -58.4667 2 JU2 -10.4367 -58.4667 2 KR6 64.2510 19.7731 1 1 KR7 64.2510 </td <td></td> <td></td> <td></td> <td>1415</td> <td>Switzerland</td> <td>TCF</td> <td>3</td> <td>GMM220, Vaisala, Finland</td> <td>2016-09-30</td> <td>2019-08-14</td> <td>364</td> <td>10</td>				1415	Switzerland	TCF	3	GMM220, Vaisala, Finland	2016-09-30	2019-08-14	364	10	
CHS 54.8887 -2.3986 6 CHU 46.1550 6.8000 1 CU1 -8.0923 63.4764 1 CU2 -8.0851 -63.4806 1 DCC -30.1370 153.1636 1 DCC -30.1370 153.1636 1 DCR 43.1345 -71.1840 1 DRN 29.8627 -82.2836 1 FED 45.8050 7.1160 1 FET 45.8970 7.1280 1 HBF 43.9549 -71.7225 5 HEA -30.1367 153.1898 1 HKS 22.2668 114.1406 1 HVY 61.8625 24.2642 1 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 KR2 64.2510 19.7731 2 KR7 64.2510 19.7731 2 KR7 64.2510 19.				1630	Switzerland	TCF	3	GMM220, Vaisala, Finland	2016-09-30	2017-09-29	364	10	
CHU 46.1550 6.8000 1 CU1 -8.0923 -63.4764 -63.4806 DCC -30.1370 153.1636 - DCF 43.1345 -71.1840 1 DRN 29.627 -82.2836 - FED 45.9050 7.1160 1 FET 45.8940 7.1080 2 FEU 45.8870 7.1280 1 HBF 43.9549 -71.7225 5 HEA -30.1367 153.1898 - HKS 22.2668 114.1406 1 HY 61.8625 24.2642 1 ICC 18.2752 -65.7854 6 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 JU2 -10.4367 -58.4667 2 JU2 -10.4575 -146.9144 1 KR6 64.2551 19.7761 2 KR7 64.2510				601	UK	TBMF	1	GMM220, Vaisala, Finland	2009-05-25	2009-09-09	107	60	
CU1 -8.0923 -63.4764 CU2 -8.0851 -63.4806 DCC -30.1370 153.1636 DCF 43.1345 -71.1840 1 DRN 29.8627 -82.2836 1 FED 45.9050 7.1160 1 FET 45.8940 7.1080 2 FEU 45.8870 7.1225 5 HEA -30.1367 153.1898 1 HYY 61.8625 24.2642 1 ICC 18.2752 -65.7854 6 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 KR4 64.2518 19.7769 2 KR5 64.2603 19.763 2 KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 2 KR6 68.3055 18.9154 3 M1 68.3435 18.9494 8 M				1689	Switzerland	TCF	3	GMM220, Vaisala, Finland	2016-09-30	2017-09-29	364	10	
CU2 -8.0851 -63.4806 DCC -30.1370 153.1636 DCF 43.1345 -71.1840 1 DRN 29.8627 -82.2836 1 FED 45.9050 7.1180 1 FET 45.8940 7.1280 1 HEA -30.1367 153.1898 1 HEK 22.2668 114.1406 1 HKS 22.2668 144.1406 1 HYY 61.8625 24.2642 1 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 KR6 64.2518 19.7736 2 KR7 64.2510 19.7731 2 KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 2 KR6 64.2531 18.9578 3 M1 68.3055 18.9154 3 3 M16 68.3055 18.9154 <td< td=""><td></td><td></td><td></td><td>72</td><td>Brasil</td><td>TSMBF</td><td>3</td><td>EGM-4, PP-Systems, USA</td><td>2010-09-30</td><td>2017-05-25</td><td>8</td><td>10</td></td<>				72	Brasil	TSMBF	3	EGM-4, PP-Systems, USA	2010-09-30	2017-05-25	8	10	
DCC -30.1370 153.1636 - DCF 43.1345 -71.1840 1 DRN 29.8627 -82.2836 - FED 45.9050 7.1160 1 FET 45.8940 7.1080 2 FEU 45.8940 7.1280 1 HBF 43.9549 -71.7225 5 HEA -30.1367 153.1898 - HKS 22.2668 114.1406 1 HY 61.8625 24.2642 1 LCC 18.2752 -65.7854 6 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 KR5 64.2503 19.7736 2 KR6 64.2510 19.7731 1 KR7 64.2510 19.7731 1 KR7 64.2510 19.7731 1 M1 68.3055 18.9154 3 M5 68.3055 18.9444<				75	Brasil	TSMBF	3	EGM-4, PP-Systems, USA	2013-04-26	2013-05-04	8	10	
DCF 43.1345 -71.1840 1 DRN 29.8627 -82.2836 - FED 45.9050 7.1160 1 FEU 45.8950 7.1160 1 FEU 45.8970 7.1280 2 FEU 45.8870 7.1280 1 HBF 43.9549 -71.7225 5 HEA -30.1367 153.1898 - HKS 22.2668 114.1406 1 HYY 61.8625 24.2642 1 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 KR4 64.2503 19.7736 2 KR5 64.2603 19.7731 1 KR7 64.2510 19.7731 1 LOV 40.2955 -105.6461 3 LOV 40.2955 -105.6461 3 M10 68.3051 18.9494 6 M11 68.3051 18.94				42	Australia	TSGSS	3	LI-840, Licor, Germany	2019-01-29	2019-03-27	55	10	
DRN 29.8627 -82.2836 FED 45.9050 7.1160 1 FET 45.840 7.1080 2 FEU 45.8670 7.1280 1 HEA -30.1367 153.1898 1 HEX 22.2668 114.1406 1 HYY 61.8625 24.2642 1 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 KR2 64.2510 19.7736 2 KR4 64.2505 19.7736 2 KR5 64.2610 19.7731 2 KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 2 KR7 68.3425 10.56461 3 LOV 40.2955 -105.6461 3 LOV 40.2955 -105.6461 3 M10 68.3055 18.9144 4 M11 68.3051 18.950 3				101	USA	TBMF	2	K30, SenseAir, Sweden	2015-04-17	2017-09-12	879	60	
FED 45.9050 7.1160 1 FET 45.8940 7.1080 2 FEU 45.8870 7.1280 1 HBF 43.9549 -7.17225 5 HEA -30.1367 153.1889 - HKS 22.2668 114.1406 1 HY 61.8625 24.2642 1 LCC 18.2752 -65.7854 6 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 KR2 64.2510 19.7736 2 KR4 64.2510 19.7731 1 1 LOV 40.2955 19.5731 1 3 LTC 65.3420 -148.9114 1 3 LTC 65.3420 -148.9144 1 3 M1 68.3055 18.9154 2 3 M16 68.3128 18.9255 3 5 M17 68.3128 18				32	USA	TSGSS	2	eosGP, Eosense, Canada	2018-07-17	2019-05-28	315	60	
FET 45.8940 7.1080 2 FEU 45.8870 7.1280 1 HBF 43.9549 -7.17225 5 HEA -30.1367 153.1898 1 HKS 22.2668 114.1406 1 HYY 61.8625 24.2424 1 LCC 18.2752 -65.7854 6 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 KR4 64.2518 19.7736 2 KR5 64.2510 19.7731 2 KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 3 LCC 65.3420 -146.8144 1 M1 68.3055 18.9154 3 LTC 65.3128 18.9259 3 M16 68.3128 18.9259 3 M16 68.3121 15.0711 6 M17 68.3121 15.0711				1774	Switzerland	TCF	3	GMM220, Vaisala, Finland	2016-09-30	2019-05-28	364	10	
FEU 45.8870 7.1280 1 HBF 43.9549 -71.7225 5 HEA -30.1367 153.1898 1 HYY 61.8625 24.2642 1 LIC 18.2752 -65.7654 6 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 KR2 64.2518 19.7769 2 KR4 64.2510 19.7731 2 KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 2 KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 2 KR6 68.3427 149.4119 7 LCV 40.2955 -105.6461 3 LTC 65.3420 -146.9144 1 M1 68.3427 18.9578 2 M10 68.2947 18.9494 6 M17 68.3128 18.9				2027	Switzerland	TCF	3	GMM220, Vaisala, Finland	2016-09-30	2017-09-29	364	10	
HBF 43.9549 -71.7225 5 HEA -30.1367 153.1898 1 HKS 22.2686 114.1406 1 HYY 61.8625 24.2642 1 ICC 18.2752 -65.7854 6 JUI -10.4167 -58.4667 2 JUZ -10.4367 -58.4667 2 KR2 64.2518 19.7736 2 KR4 64.2503 19.7603 2 KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 2 MK1 68.3427 14.94.119 2 M1 68.3427 18.9578 2 M10 68.2947 18.9494 8 M10 68.2947 1.94.				1995	Switzerland	TCF	3	GMM220, Vaisala, Finland	2016-09-30	2017-09-29	364	10	
HEA -30.1367 153.1898 HKS 22.2668 114.1406 1 HYY 61.8255 24.2642 1 JCC 18.2752 -65.7854 6 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 JU2 -10.4367 -58.4667 2 JU2 -10.4367 -58.4667 2 KR2 64.2518 19.7736 2 KR5 64.2510 19.7731 2 KR7 64.2510 19.7731 2 KR7 64.2510 19.7731 3 LCC 65.3420 -149.4119 3 LOV 40.2955 -105.6461 3 LTC 65.3420 -149.414 1 M1 68.3055 18.9154 3 M6 68.3056 18.9494 6 M10 68.2967 18.9494 6 M11 49.2604 -122.5899				546	USA	TBMF	2	K30, SenseAir, Sweden	2015-05-14	2017-05-29	770	60	
HKS 22.2668 114.1406 1 HYY 61.8625 24.2642 1 ICC 18.2752 -65.7854 6 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 KR2 64.2518 19.7769 2 KR4 64.2519 19.7736 2 KR5 64.2510 19.7731 2 KR6 64.2510 19.7731 2 LCV 60.2955 -106.6461 3 LCV 65.3420 -146.9144 1 M1 68.3055 18.9154 3 M6 68.3055 18.9494 4 M1 68.3128 18.9255 3 M17 68.3128 18.9255 3 M14 9.2604 -122.5589 3 M17 68.3121 15.0711 4 OBS 47.8512 15.0711 4 OLE 18.3213 -65.817				5	Australia	TSGSS	3	LI-840, Licor, Germany	2018-03-07	2017-00-22	28	10	
HYY 61.8625 24.2642 1 ICC 18.2752 -65.7854 62 JU1 -10.4167 -58.7667 2 JU2 -10.4167 -58.7667 2 KR2 64.2518 19.7769 2 KR4 64.2595 19.7736 2 KR5 64.2610 19.7731 2 KR6 64.2510 19.7731 2 LOV 40.2955 -105.6461 3 LC 65.3420 -148.9144 1 M1 68.3055 18.9154 7 M9 68.3000 18.9436 6 M16 68.3427 18.9500 3 M16 68.3427 18.9501 3 M17 68.3128 18.925 3 M14 49.2673 -122.5583 5 M17 68.3121 15.0711 6 QUE 18.213 -66.8171 3 RIC 46.2540 7.1100<				175	China	TSMBF	3	eosGP, Eosense, Canada	2020-11-17	2020-11-25	8	15	
ICC 18.2752 -65.7854 6 JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 KR2 64.2518 19.7769 2 KR4 64.2518 19.7769 2 KR5 64.2613 19.7731 2 KR6 64.2510 19.7731 2 KR7 64.3520 -146.9144 1 M1 68.3427 18.9578 2 M6 68.3027 18.9434 6 M10 68.2967 18.9434 6 M17 68.3128 18.9225 2 MK1 49.2673 -12.5599 </td <td></td> <td></td> <td></td> <td>152</td> <td>Finland</td> <td>BFT</td> <td>1</td> <td>GMM220, Vaisala, Finland</td> <td>2010-03-30</td> <td>2020-11-23</td> <td>211</td> <td>60</td>				152	Finland	BFT	1	GMM220, Vaisala, Finland	2010-03-30	2020-11-23	211	60	
JU1 -10.4167 -58.7667 2 JU2 -10.4367 -58.4667 2 KR2 64.2518 19.7769 2 KR4 64.2593 19.7736 2 KR5 64.2603 19.7731 2 KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 2 LOV 40.9295 -10.6461 3 LOV 40.9295 -10.6461 3 LTC 65.3420 -146.91419 7 M1 68.3435 18.9578 3 M6 68.3427 18.9494 6 M10 68.2967 18.9494 6 M17 68.3128 18.9225 7 M17 68.3128 18.9259 3 M17 68.3128 18.9259 3 M17 68.3121 15.0711 6 QUE 18.3213 66.8171 3 SKR 49.2664 -122.559				616	USA	TSMBF	1	GMM220, Vaisala, Finland	2014-03-13	2015-02-26	350	60	
JU2 -10.4367 -58.4667 2 KR2 64.2518 19.7769 2 KR4 64.2505 19.7736 2 KR5 64.2510 19.7731 2 KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 2 KR7 64.2510 19.7731 2 KR7 64.2510 19.7731 2 KR7 64.2510 19.7731 2 LUV 40.2955 -105.6461 3 LTC 65.3420 -146.9144 1 M1 68.3055 18.9154 3 M6 68.3051 18.9494 2 M10 68.2987 18.9494 2 M17 68.3128 18.9225 3 MK1 49.2673 -122.5593 2 OBS 47.8512 15.0711 6 OBS 47.8512 15.0711 6 GRC 62.540 7.1100 <td></td> <td></td> <td></td> <td>243</td> <td>Brasil</td> <td>TSMBF</td> <td>1</td> <td>GMM220, Vaisala, Finland</td> <td>2005-03-31</td> <td>2005-05-25</td> <td>55</td> <td>30</td>				243	Brasil	TSMBF	1	GMM220, Vaisala, Finland	2005-03-31	2005-05-25	55	30	
KR2 64.2518 19.7769 2 KR4 64.2595 19.7736 2 KR5 64.2630 19.7603 2 KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 2 LC0 40.2955 -105.6461 3 LTC 65.3420 -146.9144 1 M1 68.3055 18.9154 2 M6 68.3055 18.9436 2 M10 68.2987 18.9494 2 M17 68.3128 18.9225 2 MK1 49.2604 -122.5583 2 OBS 47.8512 15.0711 2 QUE 18.3213 -65.8171 <td></td> <td></td> <td></td> <td>250</td> <td>Brasil</td> <td>TSMBF</td> <td>1</td> <td>GMM220, Vaisala, Finland</td> <td>2005-03-31</td> <td>2005-05-26</td> <td>56</td> <td>30</td>				250	Brasil	TSMBF	1	GMM220, Vaisala, Finland	2005-03-31	2005-05-26	56	30	
KR4 64.2595 19.7736 2 KR5 64.2603 19.7603 2 KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 2 LCV 40.2955 -106.6461 3 LTC 65.3420 -149.9144 1 M1 68.3055 18.9154 7 M9 68.3000 18.9436 6 M10 68.2987 18.9494 6 M17 68.3128 18.9255 3 MK1 49.2604 -122.5583 5 MK2 49.2673 -122.5599 5 MK2 49.2673 -122.5599 5 QUE 18.3213 -65.8171 3 RIC 46.2540 7.1100				249	Sweden	BFT	3	GMM220, Vaisala, Finland	2012-08-30	2016-11-30	1553	60	
KR5 64.2603 19.7603 2 KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 2 KK7 64.2510 19.7731 2 LOV 40.2955 -105.6461 3 LC7 65.3420 -148.9144 3 M1 68.3055 18.9154 3 M6 68.3055 18.9154 3 M6 68.3057 18.9494 6 M16 68.3128 18.9255 3 MK1 49.2673 -122.5583 5 MK2 49.2673 -122.559 3 MK2 49.2673 -122.559 3 MK2 49.2673 -122.5583 5 MK2 49.2673 -122.559 3 MK2 49.2673 -122.559 3 MK2 49.2673 -122.559 3 GUE 18.3213 -66.8171 3 RIC 4.2240 7.110				297	Sweden	BFT	3	GMM220, Vaisala, Finland	2013-10-21	2016-12-01	1137	60	
KR6 64.2510 19.7731 2 KR7 64.2510 19.7731 1 KUP 68.6474 -149.4119 7 LOV 40.2955 -105.6461 3 LTC 65.3420 -146.9144 1 M1 68.3435 18.9578 3 M6 68.3055 18.9154 7 M9 68.3000 18.9436 8 M10 68.2987 18.9494 8 M17 68.3128 18.9255 7 MK1 49.26673 -122.5583 9 MTC -12.8801 131.1288 7 MK2 49.2673 -122.5599 9 MTC -12.8801 131.1288 7 MK2 49.2673 -122.5599 9 GBS 47.8512 15.07111 6 PAN 33.6311 -84.1722 2 QUE 18.2913 -66.8171 3 RIC 46.2540 <t< td=""><td></td><td></td><td></td><td>295</td><td>Sweden</td><td>BFT</td><td>3</td><td>GMM220, Vaisala, Finland</td><td>2013-12-06</td><td>2017-09-08</td><td>1372</td><td>60</td></t<>				295	Sweden	BFT	3	GMM220, Vaisala, Finland	2013-12-06	2017-09-08	1372	60	
KR7 64.2510 19.7731 1 KUP 68.6474 -149.4119 7 LOV 40.2955 -106.6461 3 LTC 65.3420 -146.9144 1 M1 68.3435 18.9578 3 M6 68.3055 18.9454 7 M9 68.3000 18.9436 6 M10 68.2987 18.9494 6 M10 68.2987 18.9494 6 M17 68.3128 18.9225 7 MK1 49.2664 -122.5539 9 MK2 49.2673 -122.5599 9 OBS 47.8512 15.0711 6 QUE 18.3213 -65.8171 3 RC 46.2540 7.1100 1 SLR 44.4354 -72.0385 9 TDO 68.4688 -149.3192 7 UP1 59.8670 17.5948 1 UP5 59.9222 17.527				238	Sweden	BFT	3	GMM220, Vaisala, Finland	2016-06-09	2016-11-30	174	60	
KUP 68.6474 -149.4119 7 LOV 40.2955 -105.6461 3 LTC 65.3420 -146.9144 1 M1 68.3055 18.9154 7 M9 68.3005 18.9436 8 M10 68.3025 18.9434 7 M16 68.3027 18.9436 8 M16 68.3027 18.9434 8 M16 68.3027 18.9434 8 M16 68.3128 18.9225 7 MK1 49.2604 -122.5533 9 MTC -12.8011 131.1298 9 OBS 47.8512 15.0711 6 OBS 47.8512 15.0711 1 SAF 29.8461 -71.100 1 SAF 29.8461 -72.173 2 SLR 44.4354 -72.0885 6 TAC 10.3320 48.0730 7 UP1 59.8670 17.584				168	Sweden	BFT	1	GMM220, Vaisala, Finland	2007-04-18	2008-05-09	387	60	
LOV 40.2955 -105.6461 3 LTC 65.3420 -146.9144 1 M1 68.3435 18.9578 3 M6 68.3055 18.9154 7 M9 68.3000 18.9436 6 M10 68.2987 18.9494 6 M17 68.3128 18.9225 7 MK1 49.2673 -122.5583 5 MK2 49.2673 -122.5599 5 MK2 49.2673 -122.5599 5 MK2 49.2673 -122.5599 5 MK2 49.2673 -122.5599 5 OBS 47.8512 15.0711 5 QUE 18.3213 -65.8171 3 RIC 46.2540 7.1100 1 SLR 44.4354 -72.0385 5 TAC 10.4320 48.0130 7 TOO 68.6468 -149.3192 7 TPB 43.3178 -			-149 4119	739	USA	т	3	eosGP, Eosense, Canada	2018-07-19	2018-08-01	13	10	
LTC 65.3420 -146.9144 1 M1 68.3435 18.9578 3 M6 68.3055 18.9154 7 M9 68.3000 18.9436 6 M10 68.2987 18.9494 8 M16 68.3427 18.9494 8 M17 68.3128 18.9255 7 MK1 49.2673 -122.5583 9 MTC -12.8001 131.1298 9 OBS 47.8512 15.0711 6 PAN 33.6311 -84.1722 2 QUE 18.3213 -66.8171 3 SLR 44.354 -72.0385 5 TAC 10.4320 -84.0130 7 TOO 68.6468 -149.3192 7 TPB 43.3178 -71.1675 1 UP1 59.8670 17.5448 1 UP5 59.9292 17.5279 1 UTC 65.3515 -146.9				3215	USA	TCF	1	GMM220, Vaisala, Finland	2012-05-09	2012-11-02	177	60	
M1 68.3435 18.9678 2 M6 68.3055 18.9154 7 M9 68.3000 18.9436 8 M10 68.2987 18.9494 8 M10 68.2987 18.9494 8 M10 68.2987 18.9494 8 M16 68.3427 18.9250 3 M17 68.3128 18.9225 3 MK1 49.2673 -122.5583 5 MK2 49.2673 -122.5599 5 MTC -12.801 131.1298 - OBS 47.8512 15.0711 6 QUE 18.213 -66.8171 3 SLR 29.8461 -82.2199 - SLR 44.354 -72.0385 5 TAC 10.4320 -84.0130 - TOO 68.468 -149.3192 7 TDP 43.3178 -71.1675 1 UP1 59.8670 17.5248 </td <td></td> <td></td> <td></td> <td>1525</td> <td>USA</td> <td>т</td> <td>1</td> <td>GMM220, Vaisala, Finland</td> <td>2011-05-29</td> <td>2011-09-25</td> <td>119</td> <td>60</td>				1525	USA	т	1	GMM220, Vaisala, Finland	2011-05-29	2011-09-25	119	60	
M6 68.3055 18.9154 7 M9 68.3000 18.9436 8 M10 68.2987 18.9494 8 M16 68.3427 18.9500 3 M17 68.3128 18.9225 3 M17 68.3128 18.9225 3 MK1 49.2673 -122.5599 5 MK2 49.2673 -122.559 5 MK2 49.2673 -122.559 5 MK2 49.2673 -122.559 5 OBS 47.8512 15.0711 6 OBS 47.8512 15.0711 6 QUE 18.2213 66.8171 3 SAF 29.8461 -82.2199 5 SLR 44.4320 -71.100 1 TOO 68.6486 -149.3192 7 TOD 68.6486 -149.3192 1 UP5 59.9292 17.5278 1 UP5 59.9292 17.5279				381	Sweden	т	3	GMM220, Vaisala, Finland	2016-08-03	2016-09-27	54	60	
M9 68.3000 18.9436 8 M10 68.2967 18.9494 8 M16 68.3427 18.9500 3 M17 68.3128 18.9225 7 MK1 49.2604 -122.5599 5 MK2 49.2673 -122.5599 5 MK2 49.2673 -122.5599 5 MK2 49.2673 -122.5599 5 OBS 47.8512 15.0711 6 OBS 47.8512 15.0711 6 RIC 46.2540 7.1100 1 SAF 29.8461 -82.2199 5 SBM 43.1704 -71.2173 2 SLR 44.3540 -72.0885 5 TAC 10.4320 -84.0130 5 TOO 68.468 -149.3192 7 UP1 59.8670 17.5948 5 UP5 59.3292 17.5279 1 UTC 65.3515 -146				747	Sweden	т	3	GMM220, Vaisala, Finland	2015-07-04	2016-09-08	149	60	
M10 68.2987 18.9494 8 M16 68.3427 18.9500 3 M17 68.3128 18.9225 3 M17 68.3128 18.9225 3 MK1 49.2673 -122.5583 5 MK2 49.2673 -122.5593 5 MTC -12.8001 131.1298 3 OBS 47.8512 150.711 5 PAN 33.6311 -64.1722 2 QUE 18.3213 -65.8171 3 RIC 46.2540 7.1100 1 SAF 29.8461 -82.2199 5 SLR 44.4354 -72.0385 5 TAC 10.4320 -84.0130 7 TPB 43.3178 -71.1675 1 UP1 59.9670 17.5848 149.3192 1 UP1 59.9292 17.5279 1 1 UTC 65.3515 -146.9073 1 VND				800	Sweden	т	3	GMM220, Vaisala, Finland	2015-07-04	2016-09-08	149	60	
M17 68.3128 18.9225 7 MK1 49.2604 -122.5583 9 MK2 49.2673 -122.5599 9 MTC -12.8801 131.1298 9 OBS 47.8512 15.0711 6 PAN 33.6311 -84.1722 2 QUE 18.3213 -66.8171 3 RIC 46.2540 7.1100 1 SAF 29.8461 -82.2199 5 SLR 44.4354 -72.0385 5 TAC 10.4320 -84.0130 7 TOO 68.6468 -149.3192 7 TPB 43.3178 -71.1675 1 UP1 59.8670 17.5448 1 UP5 59.9292 17.5279 1 UTC 65.3515 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1				815	Sweden	т	3	GMM220, Vaisala, Finland	2015-07-04	2016-09-08	149	60	
M17 68.3128 18.9225 7 MK1 49.2604 -122.5583 9 MK2 49.2673 -122.5599 9 MK2 49.2673 -122.5599 9 OBS 47.8512 15.0711 6 PAN 33.6311 -84.1722 2 QUE 18.3213 -65.8171 3 RIC 46.2540 7.1100 1 SAF 29.8461 -82.2199 5 SLR 44.4354 -72.0385 5 TAC 10.4320 -84.0130 7 TOO 68.6468 -149.3192 7 TPB 43.3178 -71.1675 1 UP1 59.8670 17.5448 1 UP5 59.9292 17.5279 1 UTC 65.3615 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1		68.3427	18.9500	385	Sweden	т	3	GMM220, Vaisala, Finland	2016-05-27	2016-08-17	82	60	
MK1 49.2604 -122.5583 5 MK2 49.2673 -122.5599 5 MTC -12.8801 131.1298 5 OBS 47.8512 15.0711 6 PAN 33.6311 -84.1722 2 QUE 18.213 -66.8171 2 RIC 46.2540 7.1100 1 SAF 29.8461 -82.2199 5 SBM 43.1704 -71.2173 2 TAC 10.4320 -84.0130 7 TOO 68.468 -149.3192 7 TPB 43.3178 -71.1675 1 UP1 59.8670 17.5948 1 UP5 59.9222 17.5279 1 UTC 65.3515 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1				706	Sweden	т	3	GMM220, Vaisala, Finland	2015-08-12	2016-08-16	87	60	
MK2 49.2673 -122.5599 5 MTC -12.8001 131.1298 - OBS 47.8512 15.0711 6 PAN 33.6311 -84.1722 2 QUE 18.3213 -65.8171 3 RC 46.2540 7.100 1 SAF 29.8461 -82.2199 - SBM 43.1704 -71.2173 2 SLR 44.4354 -72.0385 5 TAC 10.4320 -84.0130 - TOO 66.868 -149.3192 - TPB 43.3178 -71.1675 1 UP1 59.8670 17.5948 - UF5 59.9222 17.5279 1 UTC 65.3515 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.100 1		49.2604		979	Canada	TCF	1	GMM220, Vaisala, Finland	2007-04-04	2008-07-10	463	60	
MTC -12.8801 131.1298 OBS 47.8512 15.0711 6 PAN 33.6311 -84.1722 2 QUE 18.3213 -65.8171 3 RIC 46.2540 7.1100 1 SAF 29.8461 -82.2199 3 SLR 44.4354 -72.0385 5 TAC 10.4320 -84.0130 -71.1675 TOO 68.8468 -149.3192 7 TPB 43.3178 -71.1675 1 UP1 59.9292 17.5279 1 UTC 65.3515 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1				979	Canada	TCF	1	GMMP221, Vaisala, Finland	2016-11-05	2017-06-27	234	60	
OBS 47.8512 15.0711 66 PAN 33.6311 -84.1722 2 QUE 18.3213 -65.8171 3 RC 46.2540 7.1100 1 SAF 29.8461 -82.2199 1 SBM 43.1704 -71.2173 2 SLR 44.4354 -72.0385 5 TAC 10.4320 -84.0130 -7 TOO 68.6468 -149.3192 7 TPB 43.3178 -71.1675 1 UP1 59.9292 17.5279 1 UTC 65.3515 -146.9073 1 VAL 63.8667 7.1100 1 VND 46.2530 7.1100 1				48	Australia	TSGSS	3	eosGP, Eosense, Canada	2018-04-07	2019-03-21	348	5	
PAN 33.6311 -84.1722 2 QUE 18.3213 -65.8171 3 RIC 46.2540 7.1100 1 SAF 29.4861 -82.2199 1 SBM 43.1704 -71.2173 2 SLR 44.4354 -72.0385 5 TAC 10.4320 -84.0130 7 TOO 68.8468 -149.3192 7 TPB 43.3178 -71.1675 7 UP1 59.6670 17.5448 1 UP5 59.9292 17.5279 1 UTC 65.3515 -146.0973 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1				617	Austria	TCF	1	GHG Sentinel, Axys, Canada	2010-05-01	2013-03-29	1063	180	
QUE 18.3213 -65.8171 23.33 RiC 46.2540 7.1100 1 SAF 29.8461 -82.2199 1 SBM 43.1704 -71.2173 2 SLR 44.4354 -72.0385 5 TAC 10.4320 -84.0130 1 TPB 43.3178 -71.1675 1 UP1 59.8670 17.5248 1 UP5 59.9292 17.5279 1 UTC 65.3515 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1 VNU 46.2320 7.1010 1				222	USA	TBMF	1	GMM220, Vaisala, Finland	2012-06-19	2013-05-14	329	60	
RIC 46.2540 7.1100 1 SAF 29.8461 -82.2199				385	USA	TSMBF	2	K30, SenseAir, Sweden	2017-07-12	2017-12-20	161	60	
SAF 29.8461 -82.2199 SBM 43.1704 -71.2173 2 SLR 44.4354 -72.0385 5 TAC 10.4320 -84.0130 7 TOO 68.6488 -149.3192 7 TPB 43.3178 -71.1675 1 UP1 59.8670 17.5948 1 UP5 59.9292 17.5279 1 VITC 65.3515 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1 VNU 46.2320 7.1010 1				1200	Switzerland	TCF	2	GMM220, Vaisala, Finland	2016-09-30	2017-09-29	364	10	
SBM 43.1704 -71.2173 22 SLR 44.4354 -72.0385 55 TAC 10.4320 -84.0130 70 TOO 68.6468 -149.3192 70 TPB 43.3178 -71.1675 71 UP1 59.8670 17.5948 70 UP5 59.9292 17.5279 101C UTC 65.3515 -146.9073 1 VAL 63.8667 28.6667 11 VND 46.2530 7.1100 1 VNU 46.2320 7.1010 1		29.8461	-82.2199	30	USA	TSGSS	3	eosGP, Eosense, Canada	2016-08-22	2018-01-03	499	60	
SLR 44.4354 -72.0385 5 TAC 10.4320 -84.0130 -84.0130 -71.075 TOO 68.6468 -149.3192 77 TPB 43.3178 -71.1675 17 UP1 59.8670 17.5948 19 UP5 59.9292 17.5279 10 UTC 65.3515 -146.8073 1 VAL 63.8667 28.6667 14 VND 46.2530 7.1100 1 VNU 46.2320 7.1010 1		43.1704	-71.2173	206	USA	TBMF	2	K30, SenseAir, Sweden	2015-04-13	2016-07-03	447	60	
TAC 10.4320 -84.0130 -84.0130 TOO 68.6468 -149.3192 77 TPB 43.3178 -71.1675 17 UP1 59.8670 17.5948 19 UP5 59.9292 17.5279 17 UTC 65.3515 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1 VNU 46.2320 7.010 1				524	USA	TBMF	1	GMM220, Vaisala, Finland	2012-04-20	2012-10-29	192	60	
TOO 68.6468 -149.3192 77 TPB 43.3178 -71.1675 1 UP1 59.8670 17.5948 UP5 59.9292 17.5279 UTC 65.3515 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1 VNU 46.2320 7.0100 1				46	Costa Rica	TSMBF	2	GMMP221, Vaisala, Finland	2013-04-01	2013-09-27	179	60	
TPB 43.3178 -71.1675 1 UP1 59.8670 17.5948 1 UP5 59.9292 17.5279 1 UTC 65.3515 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1 VNU 46.2320 7.1010 1				741	USA	т	3	eosGP, Eosense, Canada	2018-07-19	2018-08-01	13	10	
UP1 59.8670 17.5948 UP5 59.9292 17.5279 UTC 65.3515 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1 VNU 46.2320 7.1010 1				192	USA	TBMF	2	K30, SenseAir, Sweden	2016-04-14	2017-10-25	559	60	
UP5 59.9292 17.5279 UTC 65.3515 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1 VNU 46.2320 7.010 1				33	Sweden	TBMF	3	K30, SenseAir, Sweden	2017-06-23	2017-08-12	50	30	
UTC 65.3515 -146.9073 1 VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1 VNU 46.2320 7.1010 1				32	Sweden	TBMF	3	K30, SenseAir, Sweden	2017-06-22	2017-08-13	52	30	
VAL 63.8667 28.6667 1 VND 46.2530 7.1100 1 VNU 46.2320 7.1010 1				1525	USA	т	1	GMM220, Vaisala, Finland	2011-05-18	2011-00-15	130	60	
VND 46.2530 7.1100 1 VNU 46.2320 7.1010 1				198	Finland	BFT	1	GMM220, Vaisala, Finland	2008-04-10	2008-06-01	52	10	
VNU 46.2320 7.1010 1				1201	Switzerland	TCF	3	GMM220, Vaisala, Finland	2016-09-30	2017-09-29	364	10	
				1465	Switzerland	TCF	3	GMM220, Vaisala, Finland	2016-09-30	2017-09-29	364	10	
		43.1222	-71.0049	31	USA	TBMF	2	K30, SenseAir, Sweden	2015-04-23	2017-09-29	922	60	
				730	China	MGS	2	eosGP, Eosense, Canada	2015-04-23	2017-10-31	922	10	
				440	Congo	TSMBF	3	eosGP, Eosense, Canada	2019-08-29	2019-09-15	35	5	

a Biome assignment derived from *Olson et al.* (2001)³:

T= Tundra BFT= Boreal Forest/Taiga TCF= Temperate Conifer Forests TBM= Temperate Broadleaf & Mixed Forests MCS= Montane Grasslands & Shrublnads TSGSS= Tropical & Subtropical Grasslands, Savannas & Shrublands TSMBF= Tropical & Subtropical Moist Broadleaf Forests

b 1=Literature dataset, 2=StreamPulse dataset, 3=Unpublished dataset

	Stream reach properties									Catchment prpoerties				Regional prpoerties		
ream Id	Riparian canopy	Channel slope	Median discharge	Water temp.	pН	Cond.	[DOC]	[NO ₃ -]	[NH₄⁺]	Area	Mineral surfaces	Grass and Shrubs	Crops	Forest	MAT	MAP
	Category	m m ⁻¹	L s ⁻¹	°C		μS cm ⁻¹	mg L ⁻¹	μg L ⁻¹	μg L ⁻¹	km ²	%	%	%	%	°C	mm
AFF	1	0.005	284.0	25.6	6.6	80.2	3.0	NA	18.8	13.1						
AFP	0	0.003	25.9	27.4	6.0	54.8	2.2	NA	16.2	1.5						
ALC	0	0.003	132.5	8.7	7.0	55.0	4.9	20.0	43.0	21.8	0	100	0	0	4.1	673
AUM	0	0.004	51.2	4.4	5.5	87.8	33.8	NA	57.1	3.4	0	100	0	0	7.5	746
BAL	2	0.002	75.4	25.0	6.6	25.0	12.8	110.0	70.0	2.7	_					
BEC	0	0.004	446.3	10.1	8.0	610.0	4.8	2750.0	103.5	118.1	0	46	0	22	7.6	687
BPD	0	0.108	1534.8	3.7	8.1	166.7	0.2	121.7	12.6	23.2	11	76	0	13	1.8	1359
BPS	0	0.043	52.0	3.9	8.1	151.6	0.4	79.7	2.7	3.1	11	89	0	0	1.1	1501
BPU BRW	0	0.035 0.001	764.1 46.6	2.4 9.8	8.1 8.0	183.9 610.0	0.2 6.5	124.8 3250.0	15.8 55.0	18.1 26.2	0	100 34	0 50	0 16	1.1 7.6	1501 687
CAY	0	0.013	40.0 227.0	9.8 6.5	6.6	83.1	6.5 4.1	5.0	0.5	0.4	0	34	50	10	7.0	007
CHD	1	0.123	50.6	5.8	8.4	599.2	4.1	5.0 146.5	7.5	3.2	0	47	0	53	4.4	1297
CHD	0	0.223	50.6	5.6 4.6	8.3	305.2	0.5	56.4	7.2	0.7	0	47 95	0	5	3.9	1333
CHS	0	0.025	5.7 7.5	4.0 11.5	6.5 4.3	305.2 41.8	18.8	56.4 NA	43.6	0.2	0	100	0	0	6.1	1505
CHU	0	0.167	29.3	5.3	4.3 8.3	335.1	0.4	58.4	43.6 8.7	0.2	0	100	0	0	3.9	1333
CHU CU1	2	0.167	29.3 47.7	5.3 25.3	8.3 5.6	42.2	0.4 2.5	58.4 1.1	8.7 29.3	1.0		100	v		3.8	1000
CU1 CU2	2	0.013	41.1	25.3 25.7	5.0 6.3	42.2	2.5 8.3	1.1	29.3 8.9	0.9						
DCC	2	0.013	44.2 64.0	25.7	6.6	491.0	0.3 3.1	5040.0	8.9 19.0	0.9						
DCF	1	0.017	100.4	15.6	6.1	50.0	6.8	49.0	19.0	7.0	0	0	0	100	7.8	884
DCF	1	0.003	668.5	19.0	4.4	55.0	0.0 47.7	49.0	142.0	34.0	0	0	25	100	20.3	004 1102
FED	0	0.100	223.4	3.8	4.4 8.3	343.0	0.2	12.0	4.0	20.2	0	59	25	41	20.3	1344
FET	0	0.046	223.4 354.3	5.8	8.3	439.7	0.2	70.8	4.0	4.0	0	87	0	13	1.0	1640
FEU	0	0.061	6.2	4.8	8.2	265.6	0.2	97.9	5.0	9.3	ō	100	0	0	1.8	1453
HBF	2	0.183	42.7	11.9	5.7	11.0	2.8	82.0	6.0	0.4	õ	0	0	100	5.2	974
HEA	1	0.023	57.4	22.7	6.8	93.5	10.8	672.0	33.8	1.7	Ū	0	0	100	0.2	074
HKS	2	0.097	174.9	26.8	6.6	83.1	1.5	154.0	26.0	4.1						
HYY	0	0.010	294.3	13.1	6.5	32.0	14.1	10.0	38.2	7.0	0	0	0	25	3.3	551
ICC	2	0.021	74.5	21.1	6.5	57.0	1.7	149.0	8.0	3.3	0	0	0	100	21.1	1707
JU1	2	0.013	47.7	24.4	6.1	48.8	2.3	NA	16.4	1.0	0	0	0	100	21.1	1707
JU2	2	0.013	1.0	24.9	6.4	71.9	2.7	NA	17.9	0.9						
KR2	2	0.031	2.0	2.1	5.0	34.4	18.4	16.1	34.0	0.1	0	0	Ö	100	1.8	518
KR4	2	0.040	7.6	4.1	4.8	53.1	27.1	65.3	46.5	0.2	0	44	ō	100	1.6	520
KR5	2	0.008	8.0	5.3	5.0	36.3	14.9	39.7	46.1	0.2	0	0	0	100	1.6	523
KR6	2	0.073	5.7	4.2	5.5	32.6	12.4	72.1	34.3	1.1	0	0	0	100	1.7	516
KR7	2	0.005	4.2	5.8	4.9	25.4	20.8	34.4	16.6	0.5	õ	ő	0	100	1.9	503
KUP	0	0.009	175.4	9.3	7.2	47.0	3.9	80.0	2.0	0.2	Ū	0	0	100	1.0	000
LOV	0	0.101	109.9	9.0	6.4	13.0	1.6	1100.0	20.0	1.8	0	100	0	0	1.1	479
LTC	0	0.034	108.9	3.9	6.4	27.6	13.4	168.0	28.0	4.1	0	100	0	0	-4.6	269
M1	0	0.005	333.3	7.6	7.0	38.1	2.5	40.0	17.2	51.5	0	106	0	15	0.3	295
M6	0	0.078	165.2	6.7	7.0	24.4	1.6	34.0	14.0	1.8	0	79	0	21	-1.9	421
M9	0	0.034	12.7	5.7	7.2	33.2	1.6	27.0	14.0	10.9	0	100	0	0	-2.2	455
M10	0	0.028	106.3	6.0	7.1	21.8	2.7	28.0	17.9	8.6	0	100	0	0	-2.2	455
M16	1	0.011	788.5	5.9	7.0	21.8	1.8	91.0	14.8	0.7	0	51	0	49	0.3	295
M17	0	0.010	1.7	7.8	6.9	43.2	2.4	9.0	16.9	0.1	0	83	0	17	-1.6	396
MK1	2	0.035	115.9	8.1	5.7	22.2	4.0	NA	21.4	0.1	0	0	0	100	9.1	1867
MK2	2	0.035	265.6	7.1	6.9	12.0	2.0	NA	15.6	0.5	0	0	0	100	9.2	1880
MTC	1	0.009	1089.9	27.2	7.7	454.0	2.6	65.0	71.0	28.0	0	16	0	84	27.2	1203
OBS	0	0.008	77.6	6.7	8.3	232.0	1.7	570.0	4.0	24.8	0	95	0	5	7.1	797
PAN	1	0.024	362.9	14.6	6.2	33.8	3.7	120.0	171.5	0.4	0	0	0	100	16.4	1065
QUE	0	0.223	228.7	22.7	7.2	52.0	1.9	155.0	7.0	2.6	0	75	0	25	23.0	1769
RIC	1	0.153	702.2	4.1	8.6	239.3	0.4	188.7	5.0	14.3	0	50	0	50	5.6	1078
SAF	2	0.002	661.4	19.3	5.3	96.0	47.7	64.0	150.0	245.8	0	0	25	100	20.2	1103
SBM	1	0.047	5.7	10.9	4.6	30.0	1.9	9.0	7.0	0.3	0	0	Ö	100	7.4	907
SLR	0	0.011	8.5	12.1	7.7	150.6	1.7	84.0	14.2	0.4	0	29	0	71	5.9	814
TAC	2	0.031	157.6	24.6	5.4	22.3	1.3	1333.0	29.8	0.3	0	0	0	100	26.0	3174
TOO	0	0.003	64.4	12.7	6.6	20.0	10.3	NA	7.6	5.7						
TPB	1	0.021	81.5	14.2	5.0	18.0	4.2	16.0	10.0	4.1	0	0	Ö	100	7.0	918
UP1	0	0.010	165.0	15.2	7.8	580.0	4.4	310.0	25.0	25.0	10	115	60	0	5.8	467
UP5	0	0.013	61.4	15.1	8.1	670.0	2.2	2690.0	22.0	21.0	0	109	77	0	5.7	474
UTC	0	0.036	50.7	2.8	6.7	102.0	1.4	581.0	28.0	2.6	0	100	0	0	-4.5	271
VAL	2	0.021	477.7	7.5	4.3	31.8	26.2	8.0	8.7	0.9	0	0	0	100	1.7	522
VND	1	0.107	446.6	4.6	8.6	216.6	0.2	171.1	3.7	13.4	0	85	0	25	5.6	1078
VNU	0	0.028	9.6	4.6	8.2	209.2	0.1	168.0	2.8	9.0	0	63	0	37	4.6	1134
WHB	1	0.016	47.0	13.3	7.0	343.0	3.9	710.0	12.0	1.0	0	0	0	100	8.2	896
YEL	0	0.006	24.4	20.1	8.6	1127.0	3.5	NA	20.0	1.1						
YOK	2	0.008	22.4	24.4	6.7	29.8	6.6	233.0	47.0	0.9						

 Table S2. Summary of reach-, catchment- and regional-scale properties of the study sites.

Table S3. Summary of stream diel CO2 concentration and flux patterns.

Ofmo one lal	CO2	concentration	(ppm)		CO ₂ flux (g C m ⁻² d ⁻¹)						
Stream Id	Day-time	Night-time	Diff. (%)	Day-time	Night-time	Diff.	(%)	Night > day (%			
AFF	7319	7407	87.8 1.2	12.8	12.9	0.1	0.7	60.5			
AFP	7139	6444	-694.2 -9.7	6.9	6.2	-0.7	-5.0	25.0			
ALC	2176	2560	383.8 17.6	2.5	3.1	0.6	33.0	80.6			
AUM	4087	4013	-73.9 -1.8	5.4	5.3	-0.1	0.1	34.5			
BAL	2974	3126	151.7 5.1	2.5	2.8	0.2	8.4	77.8			
BEC	2351	3260	909.4 38.7	3.5	5.2	1.7	59.8	87.7			
BPD	392	402	9.7 2.5	-0.7	-0.3	0.4	13.4	37.5			
BPS	520	546	25.1 4.8	0.6	0.9	0.3	192.5	97.6			
BPU	380	399	18.2 4.8	-0.4	0.0	0.4	-11.8	26.5			
BRW	6268	7288	1020.4 16.3	6.1	7.3	1.2	31.6	77.6			
CAY	2716	3831	1115.4 41.1	4.2	6.4	2.2	68.2	96.3			
CHD	667	679	12.5 1.9	7.2	7.4	0.2	15.8	48.3			
CHM	507	491	-16.7 -3.3	4.2	3.4	-0.2	32.8	48.3 81.0			
CHS	5201	6626	1425.1 27.4	9.4	12.6	3.1	40.2	98.0			
CHU	473	519	45.9 9.7	0.8	1.3	0.5	80.1	89.0			
CU1	8812	8677	-135.5 -1.5	71.2	70.7	-0.5	-0.7	20.0			
CU2	10812	10698	-113.2 -1.0	87.9	87.4	-0.5	-3.6	0.0			
DCC	4058	4274	215.7 5.3	6.3	7.0	0.7	10.8	96.4			
DCF	1347	1587	239.7 17.8	2.0	2.5	0.5	31.9	96.1			
DRN	8208	8245	37.7 0.5	15.4	15.4	-0.1	11.1	59.8			
FED	442	449	6.8 1.5	1.4	1.9	0.5	45.1	66.4			
FET	487	504	17.5 3.6	0.8	1.0	0.1	31.7	72.6			
FEU	825	858	33.0 4.0	7.3	9.6	2.3	30.0	92.3			
HBF	737	830	93.3 12.6	2.5	3.5	1.0	55.1	84.6			
HEA	4218	4963	744.7 17.7	9.2	11.2	2.0	24.7	88.9			
HKS	583	700	116.6 20.0	9.4	16.3	6.9	80.3	87.5			
HYY	1317	1517	199.5 15.1	2.2	2.7	0.4	66.8	88.4			
ICC	2979	2977	-2.3 -0.1	10.8	10.8	0.0	0.9	65.9			
JU1	3311	3182	-128.7 -3.9	24.9	24.0	-0.9	-4.5	30.6			
JU2	6105	6015	-90.6 -1.5	48.7	47.9	-0.8	-1.3	36.2			
KR2	7361	7535	174.1 2.4	13.3	14.2	0.9	8.4	81.0			
KR4	8137	8173	35.5 0.4	17.8	18.0	0.1	1.0	51.2			
KR5	3650	3659	8.6 0.2	5.2	5.3	0.2	0.8	52.1			
KR6	1886	1901	15.0 0.8	7.8	7.9	0.1	1.7	55.7			
KR7	1765	1873	107.7 6.1	1.8	1.9	0.1	10.4	89.1			
KUP	895	952	57.4 6.4	0.7	0.8	0.1	12.9	92.3			
LOV	596	807	211.7 35.5	4.9	9.7	4.9	145.2	98.8			
LTC	1350	1478	128.4 9.5	5.6	6.5	0.9	143.2	90.0			
M1	1008	1283	274.7 27.3		2.3	0.9	53.5				
M6	681	749	68.0 10.0	1.5 1.8	2.3	0.8	39.1	94.5 77.5			
M9	1442	1573	130.9 9.1	2.5	2.9	0.4	14.8	92.8			
M10	2292	2530	237.8 10.4	3.4	3.9	0.5	13.6	88.6			
M16	808	824	16.6 2.1	6.1	6.4	0.2	3.3				
M17	822	950	128.6 15.7	4.5	6.0	1.5	34.5				
MK1	2825	2843	18.2 0.6	4.9	4.9	0.0	1.1	58.0			
MK2	1454	1437	-17.6 -1.2	6.0	5.9	-0.1	-1.2				
MTC	5718	5693	-25.9 -0.5	11.1	11.1	0.0	0.8				
OBS	559	851	292.2 52.3	0.4	1.1		143.8				
PAN	5466	5368	-98.2 -1.8	16.0	16.0	0.0	1.2				
QUE	1447	1371	-76.2 -5.3	72.2	68.5	-3.7	-5.8	23.9			
RIC	458	472	14.8 3.2	2.3	3.3	1.0	43.1	91.1			
SAF	6469	5754	-715.6 ###	6.6	6.3	-0.3	-3.2	29.7			
SBM	3236	3339	103.7 3.2	10.5	9.9	-0.6	3.1	60.9			
SLR	1589	1626	37.3 2.4	1.5	1.6	0.1	4.2	50.0			
TAC	6480	6641	160.8 2.5	12.7	13.2	0.5	1.2	72.2			
TOO	1700	2077	376.9 22.2	1.8	2.3	0.5	29.2	88.9			
TPB	1750	1892	142.5 8.1	4.4	4.9	0.5	12.6				
UP1	6484	7990	1505.8 23.2	33.7	44.1	10.4	34.3				
UP5	3991	5005	1014.3 25.4	31.4	42.9	11.5	37.7				
UTC	2362	2745	383.7 16.2	10.4	12.8	2.3	21.8	95.4			
VAL	4718	4942	223.4 4.7	10.4	11.5	0.5	5.7				
VND	4718	4942	9.5 2.1	1.9	2.4	0.5	22.8	80.9			
VNU	404 592	403 603	9.5 2.1 11.7 2.0	1.5	2.4 1.6	0.5	22.0 9.0	82.5			
WHB	1287	1434	146.2 11.4	1.7	2.0	0.4	24.9	89.3			
YEL	1283	1968	685.0 53.4	2.9	5.3	2.4	84.6	94.4			
YOK	1944	1860	-84.2 -4.3	2.4	2.3	0.0	-1.9	32.1			
	2915	3087	172.1 9.0	10.7	11.6		27.2	72.3			

Model	Response	Predictors	Std. Estimate	p-value	R ²	RSE
1	ΔCO_2 Flux	ΔpCO ₂	0.65 ***	< 0.001	0.43	38.3
		ΔkCO_2	0.02	0.56		
2	$\Delta p CO_2$	Canopy cover	-0.58 ***	< 0.001	0.46	15.9
		[DOC]	-0.35	0.75		
		[NO ₃ ⁻]	0.25 *	< 0.001		
		Channel slope	-0.18 *	< 0.001		
		∆ Temperature	0.13 *	< 0.001		
		Δ Discharge	-0.10	0.31		
		$\Delta k CO_2$	0.02	0.82		
		$[NH_4^+]$	0.10	0.45		
		рН	0.10	0.34		
3	Δ kCO ₂	Δ Discharge	0.56 ***	< 0.001	0.52	5.5
		∆ Temperature	0.33 ***	< 0.001		
		Slope	-0.01	0.85		

Table S4. Summary of the structural equation model (SEM) statistical outputs.

Table S5. Summary of pCO_2 sensor time-series and literature data used to assess the daily bias on CO_2 evasion from larger rivers (see Figure 2 and Figure S5).

River id	Lat (°)	Long (°)	Altitude (m)	Country	Biome ^a	Data type ^b	Source	Canopy category	DOC (mg L ⁻¹) ^c
Santa Fe (1500)	29.9526	-82.7863	17	USA	TSGSS	1	Unpublished	0	38.3
Santa Fe (2500)	29.9980	-82.2742	16	USA	TSGSS	1	Unpublished	0	11.9
Santa Fe (2800)	29.8493	-82.7148	10	USA	TSGSS	1	Unpublished	0	10.3
Ichetucknee River	29.9118	-82.8606	8	USA	TSGSS	1	Unpublished	0	1.0
New River	29.9219	-82.4262	27	USA	TSGSS	1	Unpublished	1	43.4
Colorado River (Cameo)	39.2390	-108.2660	1475	USA	DXS	2	Unpublished	0	3.1
Colorado River (Potash)	38.5050	-109.6580	1211	USA	DXS	2	Unpublished	0	3.5
Fluvià River (Armentera)	42.1685	3.0250	13	Spain	MFWS	2	Unpublished	0	0.9
Fluvià River (Pescador)	42.1769	3.0598	7	Spain	MFWS	2	Unpublished	0	0.9
Negro River	-3.1000	-60.1167	46	Brasil	TSMBF	2	Unpublished	0	8.6
Curuá River	1.7482	-51.4405	126	Brasil	TSMBF	2	Unpublished	0	4.2
Mississippi	30.4336	-91.1975	6	USA	TBMF	3	Reiman and Xu., 2019	0	6.3
Clark Fork (Missoula)	46.8668	-113.9903	988	USA	TBMF	3	Lynch et al., 2010	0	5.0
Zambezi River (mouth)	16.0162	28.8798	371	Mozambique	TSMBF	3	Teodoru et al., 2015	0	3.4
Congo River	-3.9495	15.9073	5	Congo	TSMBF	3	Borges et al., 2019	0	8.1
Red River	21.7000	104.8667	5	Vietnam	TSMBF	3	Le et al., 2018	0	2.1

^a Biome assignment derived from *Olson et al.* (2001³): T= Tundra BFT= Boreal Forest/Taiga

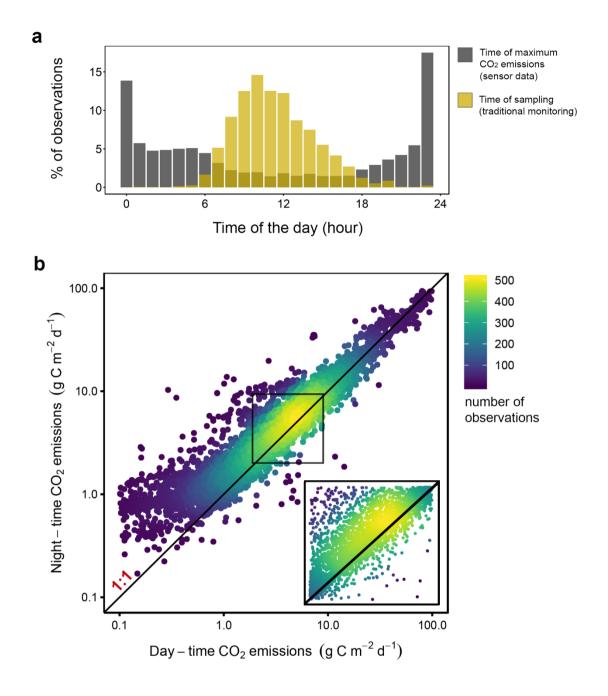
TCF= Temperate Conifer Forests

TBM= Temperate Broadleaf & Mixed Forests

TGSS= Temperate Grasslands, Savannas & Shrublands

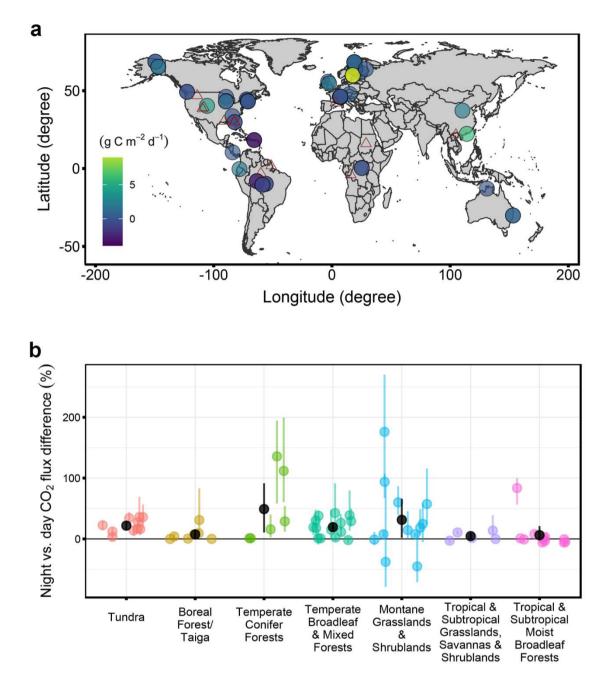
TSMBF= Tropical & Subtropical Moist Broadleaf Forests TSGSS= Tropical & Subtropical Grasslands, Savannas & Shrublands

^b Data type and origin


1. Sensor (long time-series, > 8 days)

2. Sensor (short time-series, < 8 days)

3. Extracted from the literature (non-continuous)⁵⁻⁹


References

- Brooks, J. R., Flanagan, L. B., Varney, G. T. & Ehleringer, J. R. Vertical gradients in photosynthetic gas exchange characteristics and refixation of respired CO2 within boreal forest canopies. *Tree Physiology* 17, 1–12 (1997).
- Pastorello, G. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.
 27.
- 3. Olson, D. M. *et al.* Terrestrial Ecoregions of the World: A New Map of Life on Earth. *BioScience* **51**, 933 (2001).
- 4. Guth, P. L. Drainage basin morphometry: a global snapshot from the shuttle radar topography mission. *Hydrol. Earth Syst. Sci.* **15**, 2091–2099 (2011).
- 5. Reiman, J. & Xu, Y. J. Diel Variability of pCO2 and CO2 Outgassing from the Lower Mississippi River: Implications for Riverine CO2 Outgassing Estimation. *Water* **11**, 43 (2018).
- Lynch, J. K., Beatty, C. M., Seidel, M. P., Jungst, L. J. & DeGrandpre, M. D. Controls of riverine CO2 over an annual cycle determined using direct, high temporal resolution pCO2 measurements. *J. Geophys. Res.* 115, G03016 (2010).
- Teodoru, C. R. *et al.* Dynamics of greenhouse gases (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. *Biogeosciences* 12, 2431–2453 (2015).
- Borges, A. V. *et al.* Variations in dissolved greenhouse gases (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity. *Biogeosciences* 16, 3801–3834 (2019).
- 9. Le, T. P. Q. *et al.* CO<sub>2</sub> partial pressure and CO<sub>2</sub> emission along the lower Red River (Vietnam). *Biogeosciences* **15**, 4799–4814 (2018).

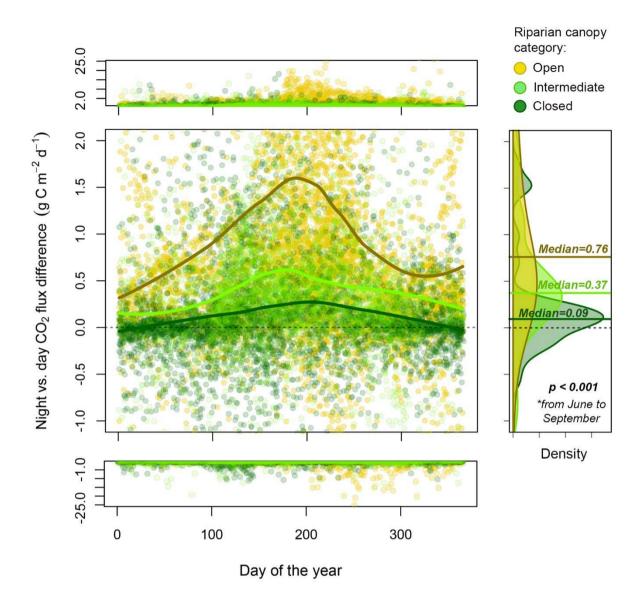


Figure 1. Magnitude and bias of diel variation in CO₂ emissions from global streams.

a) Distributions of observations of sampling time (GLORICH database²) and the time of maximum CO₂ emissions from sensor data (this study). **b)** Relationship between median day and night CO₂ emissions (g C m⁻² d⁻¹) for all study sites and days. The black 1:1 line indicates that 75.2 % of observations exhibit enhanced nocturnal emissions. The inset illustrates the distribution of observations in the densest region of the graph.

Figure 2. Geographical distribution of diel variation in stream CO₂ emissions. a) Global patterns of night-day differences in CO₂ emission fluxes averaged by stream (in g C m⁻² d⁻¹; see Table S3 for a detailed summary). Triangles represent locations of studied rivers in Figure 4. b) Night-day differences in CO₂ emission fluxes averaged by stream, grouped by biome and sorted by descending latitudes (in %; see Table S3 for a more detailed summary). Biome assignment derived from Olson et al. (2001).

Figure 3. Seasonal pattern of diel changes in CO₂ emissions from streams. Seasonal variation in the night-day difference of CO₂ emissions (g C m⁻² d⁻¹) grouped by riparian canopy cover category (open = yellow, intermediate = light green and closed = dark green; 33, 16 and 17 sites and 5780, 3814 and 5130 daily observations, respectively; see Methods and Table S2). The colored solid lines are locally weighted regression (LOESS) model fits for a visual interpretation. Panels at top and bottom show extreme positive and negative values, respectively (note y-axis breaks and change in scaling). Density plots show distributions of night-day differences of CO₂ fluxes (g C m⁻² d⁻¹) grouped by canopy cover during summer. Differences between canopy levels were evaluated using the non-parametric Kruskal–Wallis test.

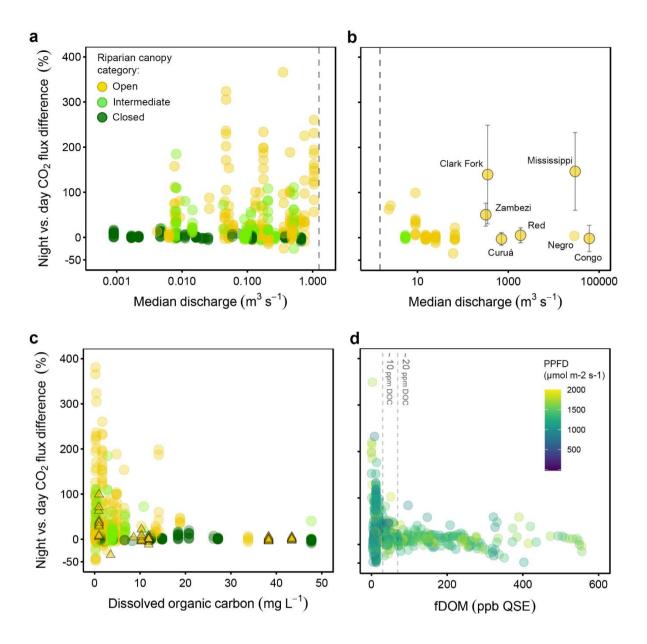


Figure 4. Night-day differences in CO₂ emissions along the river size and color continuum. Relationship between the night-day difference of CO₂ emission fluxes (%) and the median annual discharge (m³ s⁻¹) for **a**) streams (median discharge below 1.5 m³ s⁻¹, Figure S5) colored by canopy cover category, and **b**) rivers (median discharge above 1.5 m³ s⁻¹). Each point represents a monthly average for each site, except data from the six additional rivers (circles with grey error bars) obtained from the literature (Table SX). **c**) Relationship between the night-day difference of CO₂ emission fluxes (%) and the mean dissolved organic carbon concentration (DOC) for streams (circles) and rivers (triangles), colored by canopy cover category. **d**) Relationship between the daily night-day difference of CO₂ emission fluxes (%) and the daily fluorescent organic matter concentration (fDOM, ppb QSE) for the five rivers in Florida with high-frequency water color data (Table SX) , colored by mean daily photosynthetic photon flux density (PPFD; µmol m⁻² s⁻¹).