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Abstract 

Carbon dioxide (CO2) emissions to the atmosphere from running waters are estimated to be 

four times larger than the total carbon (C) flux to the oceans. However, these fluxes remain 

poorly constrained because of substantial temporal variability in dissolved CO2 

concentrations. Using a global compilation of high frequency CO2 measurements, we 

demonstrate that nocturnal CO2 emissions are consistently larger, by an average of 27% (0.9 g 

C m-2 d-1), than those estimated from diurnal concentrations alone. Canopy shading is the 

principal control on observed diel (24 hr) variation, suggesting this nocturnal increase arises 

from daytime fixation of dissolved inorganic C by photosynthesis. Because contemporary 

global estimates of CO2 emissions to the atmosphere from running waters (0.65 – 1.8 Pg C yr-

1) rely primarily on discrete measurements of dissolved CO2 obtained during the day, they 

substantially underpredict the magnitude of this important flux. Accounting for night-time 

CO2 elevates global estimates of emissions from running waters to the atmosphere by 0.20-

0.55 Pg C yr-1.  



Carbon dioxide (CO2) emission from inland waters to the atmosphere is a major flux in the 

global carbon (C) cycle, and four-fold larger than the lateral C export to oceans1. Streams and 

rivers are hotspots for this flux, accounting for ~85% of inland water CO2 emissions despite 

covering  <20% of the freshwater surface area2. Despite this importance, the magnitude of 

global CO2 emissions from streams and rivers remains highly uncertain with estimates  

revised upwards over the past decade from 0.6 to 3.48 Pg C yr-1 (3,4). Changes to this estimate 

follow improvements in the spatial resolution for upscaling emissions2,5, as well as new 

studies from previously underrepresented areas such as the Congo6, Amazon7, and global 

mountains8. Further refinements have emerged from considering temporal variability in CO2 

emission rates9. However, despite recent studies showing dramatic day-night changes in 

stream and river water CO2 concentrations10–14 the significance of systematic sub-daily 

variation on overall CO2 emissions remains unexplored.  

Diurnal cycles in solar radiation impose a well-known periodicity on stream biogeochemical 

processes, creating diel (i.e., 24-hr period lengths) patterns for many solutes and gases, 

including nutrients, dissolved organic matter, and dissolved oxygen (O2)15. Indeed, diel 

variation in O2 arising from photosynthetic activity is the signal from which whole-system 

metabolic fluxes are estimated16. Photosynthetic production of O2 is stoichiometrically linked 

to the day-time assimilation of dissolved inorganic carbon (principally bicarbonate and 

dissolved CO2), lowering CO2 concentrations during the day. The resulting diel variation, with 

higher night-time CO2 concentrations when respiration reactions dominate, implies increased 

emissions at night. Despite the obvious connection between photosynthesis and CO2 

consumption, the implications for total aquatic CO2 emissions has been neglected, most likely 

due to the lack of sub-daily measurements of CO2 in water17. Notably, other processes can 

also vary at sub-daily time scales and could thus similarly drive diel change in CO2 emissions 

from streams, including interactions with the carbonate system18, photo-chemical oxidation of 



organic matter19, and diel changes in discharge and subsequently lateral CO2 inputs from 

terrestrial environments20. Regardless, the overall magnitude and direction of diel changes in 

CO2 concentrations and the associated consequences for emissions are largely unknown. 

Current global estimates of CO2 emissions from running waters rely almost exclusively on 

manually collected samples that fail to incorporate sub-daily variability. Here, we assess 

whether reliance on these samples creates a strong temporal sampling bias by using the most 

widely used global river chemistry database (GLORICH21). Next, we leverage recent 

technological advances in continuous, sensor-based dissolved CO2 monitoring17 to ask if this 

sampling bias is concurrent with consistent day-night differences in CO2 emission rates from 

streams. To do this, we compiled high-resolution CO2 time series representing a total of 52 

years of continuous data (Table S1) from 66 streams that span a wide range of climate, land 

cover, and stream physicochemical properties (Table S2). We evaluated the generality of 

diurnal stream CO2 variation, quantified the significance of these signals for CO2 emissions, 

and identified the main landscape factors that control diurnal variation. Finally, we estimated 

the potential bias in global CO2 stream emission estimates that arise from neglecting 

nocturnal emissions. 

 

Results and Discussion 

Magnitude and bias of diel changes in CO2 emissions 

Water samples compiled in the GLORICH database21 are primarily taken during the day, with  

90% of samples collected between 08:10 and 15:55 and a median sampling hour of 11:25 

(Figure 1a). Comparing this time window of manual sampling with sensor data synthesized in 

this study, we found that only 10% of days had maximum CO2 emissions within these hours, 

and there was a consistent pattern of higher emission rates during night than day (Figure 1b). 



On average, nocturnal emission rates were 27.2% greater than daytime rates across all sites, 

with differences ranging from −11.8 to 192.5 % (Table S3). While this overall pattern was 

geographically consistent, with 56 of 66 (85%) of sites showing higher average nocturnal CO2 

emission rates (Figure 2a and Table S3), the observed ranges in diel change varied among 

biomes (Figure 2b). Specifically, streams with the largest diel change in emissions drained 

temperate forests, followed by montane grasslands; however, these biomes also had the 

largest internal variation. By comparison, we observed generally smaller diel changes, and 

less internal variability, for boreal and tropical/sub-tropical systems. Despite such differences, 

the large variation observed within most biomes suggests that controls over these patterns 

operate at finer spatial scales13. Further, because the GLORICH database – the foundation of 

current global estimates of CO2 emissions from inland waters2 – relies primarily on manual 

samples with a strong daytime sampling bias, the geographically widespread diel variation in 

CO2 emissions introduces a systematic and potentially large error in estimates of aggregate 

flux rates.  

 

Drivers of diel changes in CO2 emissions 

Diel patterns in stream CO2 emissions are the result of a dynamic interplay between 

biogeochemical and hydrological processes that adjust stream CO2 concentrations at the daily 

scale – theses include aquatic primary production11,13, biological22 and photolytic oxidation of 

organic C19, and terrestrial import of CO2 from soil respiration and mineral weathering20. 

Additionally, diel changes in water temperature can affect CO2 emissions through its effect on 

the physical exchange rate between air and water (kCO2)23 . An initial exploration of our 

continuous data suggest that aquatic processes generate considerable temporal variation in the 

magnitude of diel variation in emissions (Figure 3). Specifically, the largest diel amplitudes 



were consistently observed during summer, and in open canopy reaches (median = 0.76 g C 

m-2 d-1). Markedly reduced amplitudes were observed in streams with closed canopies 

(median = 0.09 g C m-2 d-1), while intermediate amplitudes were evident at partially covered 

sites (median=0.37 g C m-2 d-1). Overall, these observations are consistent with greater levels 

of daytime CO2 uptake in open canopy streams during summer, when warm temperatures and 

greater incident light 24,25 support elevated rates of photosynthesis11. By contrast, wintertime 

diel changes in stream CO2 emissions are more similar across canopy cover categories, 

suggesting reduced aquatic photosynthesis.  

We used structural equation modeling (SEM) to further resolve factors and causal 

combinations that underpin variation in summertime diel emissions, the time-period for which 

have the most complete data set (Table S1). Our structural model consisted of two levels of 

factor interaction, or metamodels (see method section for a more detailed description of the 

SEM). First, we considered whether diel CO2 emission patterns arise from parallel variation 

in kCO2 and stream water pCO2, the two main factors determining aquatic CO2 emissions26. 

The results from the SEM for at this first level (r2=0.43; Figure S4 and Table S4) suggest that 

diel variation in CO2 emissions was mostly driven by variation in pCO2 (β=0.65), whereas 

kCO2 exerted a minor influence (β=0.02). Second, we used SEM to identify significant 

relationships between a set of environmental variables and the diel changes in pCO2. This 

second SEM model (r2=0.46; Figure 3 and Table S4) indicated that stream canopy cover 

(β=−0.58) was the primary driver of diel variation of pCO2, with channel slope (β=−0.18), 

stream NO3
- concentration (β=0.25) and diel temperature variation (β=0.13) as secondary 

drivers. Together with the observed seasonal patterns (Figure 3), SEM results support the 

hypothesis that riparian canopy cover drives diel pCO2 variation by regulating the light 

reaching the stream surface and, in turn, daytime rates of stream autotrophic CO2 uptake 

during16,27,28. 



Diel patterns in CO2 emissions in running waters not only varied seasonally but also spatially, 

increasing with drainage size (Figure 4a). In larger river systems, terrestrial shading of the  

channel is reduced, increasing the light available for primary producers24, which ultimately 

explains the general increase in GPP with channel size29,30. Still, we observed larger rivers 

with open canopies that do not sustain significant diel change in CO2 evasion (Figure 4b). 

This dampening of diel amplitude likely results from light-attenuation in the water column, 

for example linked to high concentrations of dissolved organic matter (DOM) that inhibit 

GPP31 (Figure 4c; Figure S6).  Thus, light attenuation, whether caused by canopy cover along 

small streams, or by water colour, turbidity, or depth for larger river systems32, dictates the 

overall magnitude of diel changes in CO2 emissions along river continua. We explored the 

potential influences of water colour more deeply at the sub-tropical Florida sites, where we 

have continuous CO2 and fDOM in five rivers spanning a large range in DOC (0.96-43.4 

ppm) and ecosystem size (9.0-66.7 median daily discharge). High frequency data from these 

sites confirm that diel changes in CO2 emissions are supressed above ca.70 ppb of fDOM 

(corresponding to ca. 20 mg L-1 DOC), despite relatively high incident light (Figure 4d). 

Overall, given that aquatic photosynthesis tends to increase with drainage size, because 

lowland systems are less shaded and more often subject to nutrient enrichment via human 

activities30, it is reasonable to predict that the importance of diel variation in CO2 emissions 

found in this study for smaller systems would persist for large rivers, as long as light 

attenuation in the water column permits.  

The controls on potential diel change in CO2 emissions exerted by either canopy cover or 

water color are highly variable in space, and do not follow strict geographical patterns (Fig. 

2). Yet, the probability that one or both of these constraints operates is likely biome-specific 

and this may aid in understanding which regions of Earth are more prone to strong bias in 

upscaling. For example, boreal and tropical regions are typically characterized by forests with 
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dense canopies and can support aquatic systems with dark, DOC-rich waters (refs; Fig S3). 

Indeed, for these biomes we observed, on average, a lower diel change in CO2 emissions (Fig. 

2b). In this context, observations from the sub-tropical Florida sites likely provide insight into 

the dynamics that would be expected for dark water systems elsewhere, particularly tropical 

rivers, which are otherwise poorly represented in our analysis.  For some biomes (e.g., 

montane grasslands and tundra), vegetation structure and edaphic properties make light 

constraints on aquatic GPP and diel CO2 evasion less likely, while in other settings (e.g., the 

temperate zone) the influences of land cover change and/or anthropogenic nutrient enrichment 

may play particularly important roles30.  Overall, we suggest that future efforts to the resolve 

the fine-scale spatial patterns of canopy cover and DOM in flowing waters could be used for a 

more refined understanding of aquatic GPP and its implications for CO2 emissions. 

 

Implications for global CO2 emissions from stream networks 

Our analysis reveals three facts with important consequences for global estimates of CO2 

emissions from running waters: (1) current estimates based on manual samples are heavily 

biased towards day-time, (2) CO2 emission rates are consistently higher at night-time due to 

variations in aquatic pCO2, and (3) this pattern is primarily driven by light availability and is 

widespread across biomes and along river continua. To further quantify this underestimation 

of CO2 emissions we compare the measured total emissions for each site with the emissions 

estimated considering only the CO2 concentrations observed between 10:00 and 14:00 (the 

interquartile sampling time in the GLORICH database (Figure 1a). Across all sites, CO2 

emissions integrated over a full day were 34.7% higher than those based on samples taken at 

midday (range: −6.6 – 369 %; bootstrapped 95% confidence interval: 14.0 – 46.7 %). Based 

on the two current global estimates of stream CO2 emissions of 0.6-1.8 Pg C yr-1 (2,33), this 

llgomez
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proportional bias results in an additional 0.20 – 0.55 Pg C yr-1 of CO2 evaded from streams 

globally (bootstrapped 95% confidence interval: 0.09 – 0.30; 0.25 – 0.84, respectively). 

However, given that the current global estimates of C emissions from running waters are still 

highly uncertain and conflict global C budgets34 this additional flux of CO2 should be taken 

with caution until future global estimates are refined.   

We also emphasize that there are other important sources of uncertainty embedded in the 

global estimates of emissions from streams, upon which our estimate is based. For example, 

current estimates4,33 are still derived from indirect determinations of surface water CO2 from 

alkalinity and pH, which can be highly uncertain35,36. Further, the notoriously variable nature 

of hydrodynamic factors that influence CO2 emissions cannot easily be aggregated at large 

spatial scales11,37. It is also problematic that current estimates remain biased towards 

observations from mid-to-high latitudes, while unrepresented areas such as the Tropics are 

thought to be key contributors to the global CO2 emissions from streams6,38. Our study, 

despite covering most biomes and spanning large gradients in canopy cover and water colour, 

also suffers from this bias. Despite this, our assessment represents the first compilation of 

direct, high-temporal resolution measurements of CO2 in flowing waters from across the 

globe, which will be a key piece in refining global estimates of CO2 emissions from inland 

waters. While the magnitude of this global estimate can be further refined, the broad 

consistency and strength of the patterns observed here suggest that nocturnal emissions of 

CO2 from streams and rivers is a major unaccounted flux in the global C cycle.  

 

  



Methods 

Study sites and data acquisition 

We compiled high-frequency dissolved CO2 time-series (median temporal resolution = 39 

min; range 5 to 180 min) over at least eight days (median time series duration = 317 days; 

range 8 to 1553 days) from 66 headwater streams worldwide (Figure 2a; Table S1). We used 

median annual discharge (which covaried with catchment surface area; Figure S5) as a 

criterion to select streams (i.e., median annual discharge < 1.5 m3 s-1, catchment area < 246 

km2; orders 1 to 339). Selected streams span biomes, including tropical forests and savanna, 

temperate forests, boreal forest and taiga, arctic tundra, high-mountain forests and grasslands 

and, accordingly, a wide range of climatic and biogeographic conditions (Table S2). They 

also encompass a variety of catchment features (e.g., land cover, altitude, and surface area) 

and reach-scale hydrological, morphometric, and physicochemical properties (Table S2).  

High-frequency CO2 measurements were obtained from a variety of sources, including 

unpublished time-series, monitoring network platforms (e.g., StreamPulse, 

https://data.streampulse.org/), and literature datasets (Table S2). In all the cases, CO2 was 

measured using in-situ automated sensors connected to data loggers (Table S2). The 

measurement accuracy of the CO2 sensors ranged from ±1% to ±3%. In addition, water 

temperature (in all streams) and discharge (in 57 of 66 streams) were also measured at the 

same frequency as CO2 using in-situ automated sensors. 

 

Time-series processing  

We standardized each time-series to an hourly time step by resampling higher frequency 

measurements and interpolating lower frequency measurements. We also normalized CO2 

concentrations to CO2 partial pressures (pCO2, ppm), corrected for temperature and pressure 



variation, and removed obvious measurement errors (pCO2 < 0 ppm). Continuous discharge 

was calculated from stage-discharge rating curves developed from existing discharge 

measurements. In total, the high-frequency dataset used for analysis included 457,637 hourly 

CO2, temperature and discharge observations. 32 time series covered at least one complete 

year, 7 covered more than 200 days while the remaining 27 covered between 8 and 198 days, 

mostly during the summer (Figure S1).  

 

Compilation of ancillary variables 

Stream reach canopy cover was determined by visually inspecting orthophotos of the study 

sites. High-resolution orthophotos from Google Earth imagery were downloaded at the 

highest resolution possible using the “ggmap” package in R (version 3.0.0), and classified in 

three categories of “no cover” (0), “partly covered” (1), or “fully covered” (2). The “no 

cover” category was selected when it was possible to see the full extent of the stream channel, 

“partly covered” when some parts of the stream were visible, and “fully covered” when it was 

not possible to detect the presence of a stream based on an orthophoto (Figure S3).  

Stream channel slope was determined by measuring the difference in elevation between the 

sampling location and 300 meters upstream following the channel. To do this, we downloaded 

digital elevation models (DEM) at resolutions ranging between 1.9 – 14 m (depending on the 

location) using the “elevatr” package in R (version 0.2.0). Then, for each site a raster of the 

flow-accumulation was produced using the “whitebox” package in R (version 0.5.0), after 

initially breaching depressions for hydrological correctness. By combining the flow-

accumulation raster with the DEM, we extracted the stream path and the elevation at the site 

and 300 m upstream (in ArcGIS 10.5).   



Land cover was determined using the Global Land Cover Maps (100m resolution; Copernicus 

Global Land Service) and the catchment boundaries delineated using a high resolution DEMs 

(2x2m) in QGIS 3.2.1. Mean annual concentrations (not flow-weighted) of dissolved organic 

carbon (DOC), nitrate (NO3
-), ammonium (NH4

+), pH and conductivity for the study streams 

were obtained from unpublished sources or extracted from the literature. Mean annual stream 

discharge, as well as water temperature, were computed from hourly time series. 

 

Determination of CO2 emissions 

We estimated CO2 emissions as the product of the gas transfer velocity (kCO2) and the 

concentration of dissolved CO2 relative to atmospheric equilibrium26. A standardized gas 

transfer velocity (k600) was obtained based on the stream energy dissipation (eD)40, defined as 

the product of channel slope (S; m m-1), water velocity (V; m s-1) and acceleration due to 

gravity (g; 9.8 m s-2). We then calculated k600 as k600 = e(3.1 + 0.35×log(eD)) for eD < 0.02 m-2 s-3; 

and as k600 = e(6.43 + 1.18×log(eD)) for eD > 0.02 m-2 s-3. Water velocity was modelled using a 

power-law relationship with discharge26; in 4 streams discharge data were not available and 

we used a constant velocity of 0.2 m s-1. The k600 was converted to a gas- and temperature-

specific gas transfer velocity kCO2, using the temperature-dependent Schmidt numbers for CO2 

26. Potential day-night differences in gas exchange required separate night and day kCO2 

calculations with time-of-day specific velocity and temperature values. The CO2 

disequilibrium relative to the atmosphere was calculated as the difference in water and air 

pCO2, converted to molar CO2 concentrations using the temperature-specific Henry’s 

constant. Atmospheric pCO2 was assigned monthly to each site from the global average 

measured by the Global Monitoring Laboratory of NOAA 

(https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html), which contains measurements 

https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html


between 2007 to 2020, which align with our study. We assessed the importance of sub-daily 

changes in atmospheric concentrations by examining atmospheric measurements of pCO2 

from 14 streams and 77 ecosystem flux towers of globally. We concluded that day-night 

changes in atmospheric pCO2 are small and inconsistent, and therefore poorly constrained for 

extrapolation to other stream sites (See Supplementary Text 1). 

Finally, to assess whether a day-time sampling bias exists, we determined the distribution of 

sampling time in the GLORICH database21. From the database, we filtered all sampling 

occasions where both CO2 (calculated from alkalinity and pH) and the time of sampling were 

available (n = 733,977, from 8,520 locations), we then extracted summary statistics such as 

the median, 90% range and the interquartile range to compare with sensor measurements.  

 

Statistical analyses 

We examined a variety of metrics to characterize sub-daily and between-day variation. To 

quantify the underestimation in CO2 emissions due to a day-time bias, we compared total CO2 

emissions estimated using hourly measurements with total emissions estimated from the 

average measurements between 10:00 and 14:00, the interquartile range of the observations in 

the GLORICH database. Given the non-normality of results among sites, we present 

uncertainty as normal bootstrapped intervals using the “boot” package in R (version 1.3-24), 

with 10,000 replications. We quantified median CO2 emissions (g C m-2 d-1) during the day 

(between 12:00 and 17:00), median CO2 emissions during the night (between 00:00 and 

05:00), the absolute difference between day and night CO2 emissions, and the relative 

difference in CO2 concentrations between day and night (in %; ((CO2, NIGHT – CO2, DAY)/ CO2, 

DAY )×100). Also, to evaluate differences between canopy levels we used the non-parametric 

Kruskal–Wallis test. 



We explored temporal patterns of day-night CO2 emissions differences to test the influence of 

seasonality, local canopy cover, and their interaction. We used piecewise structural equation 

modelling (SEM) to evaluate causal and directional links between physical and biological 

parameters operating at the reach-scale (Table S2) and variance in daily day-night differences 

in CO2 emissions. SEM is a theory-oriented multivariate statistical approach capable of 

testing a network of causal hypotheses by allowing evaluation of simultaneous influences 

rather than individual (bivariate) causes41. We first devised a metamodel (or metamodels) 

based on a priori theoretical knowledge and known mechanisms (see above and Figure 3). 

The metamodel was fitted and tested using the function psem() in the piecewiseSEM  R 

Package (version 2.1). To evaluate the effect sizes of each interaction within metamodels, the 

psem() model output provides estimates of individual (standardized) path coefficients (β). The 

evaluation of goodness of fit and associated uncertainty is performed through the coefficient 

of determination (r2) and the residual standard error (RSE), respectively. Compared with 

traditional variance-covariance based SEM, piecewise SEM allows for fitting of models to 

different distributions through a generalized linear model (GLM). SEM modelling was 

conducted using summer data only, which is when most of the sites are represented (see 

Figure S1).   

 

Data availability 

Data will be available at the open data repository Zenodo and can already be explored 

interactively at: https://gmrocher.shinyapps.io/night_co2_emissions_streams/. 
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Supplementary materials of: 

Enhanced nocturnal emissions of carbon dioxide amplify the 

role of streams in the global carbon cycle 

 

Supplementary text 

ST1: Exploration of diel variation in atmospheric pCO2  

There is evidence of daily fluctuations in atmospheric pCO2 near the surface in terrestrial 

ecosystems1 which can therefore impact the estimates of CO2 evasion. Here we assumed constant 

atmospheric pCO2 given the lack of available data for the majority of sites. However, in a subset of 

sites (n=14) we have measured atmospheric pCO2 above the stream surface. The median amplitude 

of the atmospheric pCO2 for these streams is 7.8 ppm, with air pCO2 increasing from day to night.  

To further assess the consistency of this pattern we also explored the diel change in atmospheric 

pCO2 measured by a network of eddy covariance towers worldwide (FLUXNET2). We compiled 

data from 77 sites that spanned a gradient in land cover and in the same geographical region as the 

stream sites (Figure S7). The median amplitude of air pCO2 for different land cover types varied 

between 0 and 15 ppm, with a median for all sites of 4.2 ppm. 

We have not corrected the atmospheric pCO2 for diel changes for multiple reasons: (1) both for 

stream and terrestrial measurements there is substantial variability among sites, indicating that the 

drivers of this diel variability in atmospheric pCO2 are hard to constrain and therefore extrapolate to 

other sites; (2) the diel amplitudes in atmospheric pCO2 are more than one order of magnitude lower 

than aquatic counterparts (median of all sites: 102 ppm, range: 0 – 1515 ppm); (3) and the 

atmospheric diel changes are close to the accuracy of the sensors (see Table S1 for accuracy of 

different sensors). We acknowledge that diel changes in atmospheric pCO2 can be important in 

specific sites and/or dates due to topographic depressions, closed canopy, or micrometeorological 

conditions, but without further data is not possible to confidently correct for this process. 

  



Supplementary Figures  

 

Figure S1. Intra-annual coverage of the high-frequency dataset used for the analysis. 

  



 

Figure S2a: Sites with the canopy cover category “no cover”, defined when the full extent of the stream 

was visible. 
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Figure S2a (cont.): Sites with the canopy cover category “no cover”, defined when the full extent of 

the stream was visible. 
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Figure S2a (cont.): Sites with the canopy cover category “no cover”, defined when the full extent of 

the stream was visible. Sites UTC and LWT have no high-resolution imagery on google earth due to the 

remoteness of the location (Alaska), but are located in the transition between tundra and boreal zones 

and are canopy free. 
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Figure S2b: Sites with the canopy cover category “partly covered, when it was possible to see multiple 

sections of the stream surface 
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Figure S2c: Sites with the canopy cover category “fully covered”, when the presence of a stream was 

not detectable from orthophotos. 
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Figure S3. Ranges and distribution of canopy cover and stream DOC concentrations grouped by biome, and 

sorted by descending latitudes. Biome assignment derived from Olson et al. (2001)3. 

  



 

Figure S4. Drivers of night-day differences of CO2 emissions from streams. Structural equation model (SEM) 

representing connections between reach-scale physical and biological parameters contributing to the relative 

night-day variation in summertime CO2 emissions (%). The SEM consisted of two dependent levels of factor 

interaction or metamodels. Metamodel 1 assessed the influence of kCO2 and stream water pCO2 on night-day 

differences of CO2 emissions. Metamodel 2 assessed relationships between environmental variables and diel 

changes in stream water pCO2.  Blue arrows represent significant effects (p < 0.05). Numbers adjacent to 

arrows are the standardized effect sizes of each relationship. Arrow width is proportional to the effect size. 

SEM goodness of fit was evaluated based on variance explained by each of the two models (r2). A summary 

of statistical outputs from the SEM model is provided in Table S4. Reach-scale properties for each site used 

in the SEM model are presented in Table S2. 

  



 

 

Figure S5. Distributions and relationship between catchment area and median annual discharge, colored by 

canopy color category. Symbols indicate the origin of the data (see Table S1 for more information). Strahler 

order obtained from the scaling ratio between catchment areas and river order by Guth, 20114. 

  



 

Figure S6. Comparison of night-day differences in CO2 emission fluxes averaged by stream and grouped by 

canopy level and dissolved organic carbon concentration (DOC) level (lower than 10 ppm, between 10 and 20 

ppm, and higher than 20 ppm). Box plots display the 25th, 50th, and 75th percentiles whiskers display 

minimum and maximum values.  

 

 

 

 

 

 

 

 



 

Figure S7: Night-day differences in atmospheric pCO2 measured in eddy covariance towers in the 

FLUXNET network. Positive values indicate higher concentrations at night (average between 0 and 3h) than 

day (average between 12 and 15 h). a) shows the location of the towers (triangles) colored with the average 

amplitude, while the circles show the location of the stream sites in this study. b) shows the mean ± 

interquartile range for each site, grouped by land cover type. The black circle shows the median for each 

land cover. The dashed line shows the median of all values (4.2 ppm). 

 

 

 

  



Supplementary Tables 

Table S1. Summary of pCO2 time series used to assess the daily bias on CO2 evasion from streams. 

 
a  

Biome assignment derived from Olson et al. (2001)3:  

 T= Tundra 

 BFT= Boreal Forest/Taiga 

  TCF= Temperate Conifer Forests 

 TBM= Temperate Broadleaf & Mixed Forests 

 MGS= Montane Grasslands & Shrublnads 

 TSGSS= Tropical & Subtropical Grasslands, Savannas & Shrublands 

 TSMBF= Tropical & Subtropical Moist Broadleaf Forests  

b
 1=Literature dataset, 2=StreamPulse dataset, 3=Unpublished dataset 

Stream Id Lat (°) Long (°) Altitude (m) Country Biome
a

Source
b CO2 sensor                       

(model, manufacturer, country)

Initial date                                  

(yyyy-mm-dd)

Final date 

(yyyy-mm-dd)

Lenght 

(days)

Temporal resolution 

(min)

AFF -9.8329 -55.9970 268 Brasil TSMBF 3 GMM220, Vaisala, Finland 2017-03-07 2017-12-30 298 30

AFP -9.8298 -55.9878 268 Brasil TSMBF 3 GMM220, Vaisala, Finland 2017-06-29 2017-08-27 59 30

ALC 46.0377 -89.6133 494 USA TBMF 1 GMM220, Vaisala, Finland 2014-04-08 2015-05-04 391 60

AUM 55.7949 -3.2476 266 Scotland TBMF 1 GMM220, Vaisala, Finland 2007-11-21 2008-01-31 72 10

BAL 0.4228 25.1819 444 Congo TSMBF 3 eosGP, Eosense, Canada 2019-04-04 2019-04-12 9 5

BEC 43.1097 -89.6408 268 USA TBMF 2 GMM220, Vaisala, Finland 2016-07-19 2018-07-06 717 60

BPD 45.9340 7.2330 1937 Switzerland TCF 3 GMM220, Vaisala, Finland 2016-09-30 2017-09-29 364 10

BPS 45.9280 7.2460 2161 Switzerland TCF 3 GMM220, Vaisala, Finland 2016-09-30 2017-09-29 364 10

BPU 45.9300 7.2450 2148 Switzerland TCF 3 GMM220, Vaisala, Finland 2016-09-30 2017-09-29 364 10

BRW 43.1250 -89.6350 278 USA TBMF 2 GMM220, Vaisala, Finland 2016-08-10 2018-11-02 814 60

CAY -0.3286 -78.2006 4093 Ecuador MGS 1 GMM220, Vaisala, Finland 2019-07-12 2019-08-14 27 15

CHD 46.1590 6.8150 1415 Switzerland TCF 3 GMM220, Vaisala, Finland 2016-09-30 2017-09-29 364 10

CHM 46.1570 6.8010 1630 Switzerland TCF 3 GMM220, Vaisala, Finland 2016-09-30 2017-09-29 364 10

CHS 54.6887 -2.3986 601 UK TBMF 1 GMM220, Vaisala, Finland 2009-05-25 2009-09-09 107 60

CHU 46.1550 6.8000 1689 Switzerland TCF 3 GMM220, Vaisala, Finland 2016-09-30 2017-09-29 364 10

CU1 -8.0923 -63.4764 72 Brasil TSMBF 3 EGM-4, PP-Systems, USA 2013-04-26 2013-05-04 8 10

CU2 -8.0851 -63.4806 75 Brasil TSMBF 3 EGM-4, PP-Systems, USA 2013-04-26 2013-05-04 8 10

DCC -30.1370 153.1636 42 Australia TSGSS 3 LI-840, Licor, Germany 2019-01-29 2019-03-27 55 10

DCF 43.1345 -71.1840 101 USA TBMF 2 K30, SenseAir, Sweden 2015-04-17 2017-09-12 879 60

DRN 29.8627 -82.2836 32 USA TSGSS 2 eosGP, Eosense, Canada 2018-07-17 2019-05-28 315 60

FED 45.9050 7.1160 1774 Switzerland TCF 3 GMM220, Vaisala, Finland 2016-09-30 2017-09-29 364 10

FET 45.8940 7.1080 2027 Switzerland TCF 3 GMM220, Vaisala, Finland 2016-09-30 2017-09-29 364 10

FEU 45.8870 7.1280 1995 Switzerland TCF 3 GMM220, Vaisala, Finland 2016-09-30 2017-09-29 364 10

HBF 43.9549 -71.7225 546 USA TBMF 2 K30, SenseAir, Sweden 2015-05-14 2017-06-22 770 60

HEA -30.1367 153.1898 5 Australia TSGSS 3 LI-840, Licor, Germany 2018-03-07 2018-04-04 28 10

HKS 22.2668 114.1406 175 China TSMBF 3 eosGP, Eosense, Canada 2020-11-17 2020-11-25 8 15

HYY 61.8625 24.2642 152 Finland BFT 1 GMM220, Vaisala, Finland 2010-03-30 2010-10-27 211 60

ICC 18.2752 -65.7854 616 USA TSMBF 1 GMM220, Vaisala, Finland 2014-03-13 2015-02-26 350 60

JU1 -10.4167 -58.7667 243 Brasil TSMBF 1 GMM220, Vaisala, Finland 2005-03-31 2005-05-25 55 30

JU2 -10.4367 -58.4667 250 Brasil TSMBF 1 GMM220, Vaisala, Finland 2005-03-31 2005-05-26 56 30

KR2 64.2518 19.7769 249 Sweden BFT 3 GMM220, Vaisala, Finland 2012-08-30 2016-11-30 1553 60

KR4 64.2595 19.7736 297 Sweden BFT 3 GMM220, Vaisala, Finland 2013-10-21 2016-12-01 1137 60

KR5 64.2603 19.7603 295 Sweden BFT 3 GMM220, Vaisala, Finland 2013-12-06 2017-09-08 1372 60

KR6 64.2510 19.7731 238 Sweden BFT 3 GMM220, Vaisala, Finland 2016-06-09 2016-11-30 174 60

KR7 64.2510 19.7731 168 Sweden BFT 1 GMM220, Vaisala, Finland 2007-04-18 2008-05-09 387 60

KUP 68.6474 -149.4119 739 USA T 3 eosGP, Eosense, Canada 2018-07-19 2018-08-01 13 10

LOV 40.2955 -105.6461 3215 USA TCF 1 GMM220, Vaisala, Finland 2012-05-09 2012-11-02 177 60

LTC 65.3420 -146.9144 1525 USA T 1 GMM220, Vaisala, Finland 2011-05-29 2011-09-25 119 60

M1 68.3435 18.9578 381 Sweden T 3 GMM220, Vaisala, Finland 2016-08-03 2016-09-27 54 60

M6 68.3055 18.9154 747 Sweden T 3 GMM220, Vaisala, Finland 2015-07-04 2016-09-08 149 60

M9 68.3000 18.9436 800 Sweden T 3 GMM220, Vaisala, Finland 2015-07-04 2016-09-08 149 60

M10 68.2987 18.9494 815 Sweden T 3 GMM220, Vaisala, Finland 2015-07-04 2016-09-08 149 60

M16 68.3427 18.9500 385 Sweden T 3 GMM220, Vaisala, Finland 2016-05-27 2016-08-17 82 60

M17 68.3128 18.9225 706 Sweden T 3 GMM220, Vaisala, Finland 2015-08-12 2016-08-16 87 60

MK1 49.2604 -122.5583 979 Canada TCF 1 GMM220, Vaisala, Finland 2007-04-04 2008-07-10 463 60

MK2 49.2673 -122.5599 979 Canada TCF 1 GMMP221, Vaisala, Finland 2016-11-05 2017-06-27 234 60

MTC -12.8801 131.1298 48 Australia TSGSS 3 eosGP, Eosense, Canada 2018-04-07 2019-03-21 348 5

OBS 47.8512 15.0711 617 Austria TCF 1 GHG Sentinel, Axys, Canada 2010-05-01 2013-03-29 1063 180

PAN 33.6311 -84.1722 222 USA TBMF 1 GMM220, Vaisala, Finland 2012-06-19 2013-05-14 329 60

QUE 18.3213 -65.8171 385 USA TSMBF 2 K30, SenseAir, Sweden 2017-07-12 2017-12-20 161 60

RIC 46.2540 7.1100 1200 Switzerland TCF 2 GMM220, Vaisala, Finland 2016-09-30 2017-09-29 364 10

SAF 29.8461 -82.2199 30 USA TSGSS 3 eosGP, Eosense, Canada 2016-08-22 2018-01-03 499 60

SBM 43.1704 -71.2173 206 USA TBMF 2 K30, SenseAir, Sweden 2015-04-13 2016-07-03 447 60

SLR 44.4354 -72.0385 524 USA TBMF 1 GMM220, Vaisala, Finland 2012-04-20 2012-10-29 192 60

TAC 10.4320 -84.0130 46 Costa Rica TSMBF 2 GMMP221, Vaisala, Finland 2013-04-01 2013-09-27 179 60

TOO 68.6468 -149.3192 741 USA T 3 eosGP, Eosense, Canada 2018-07-19 2018-08-01 13 10

TPB 43.3178 -71.1675 192 USA TBMF 2 K30, SenseAir, Sweden 2016-04-14 2017-10-25 559 60

UP1 59.8670 17.5948 33 Sweden TBMF 3 K30, SenseAir, Sweden 2017-06-23 2017-08-12 50 30

UP5 59.9292 17.5279 32 Sweden TBMF 3 K30, SenseAir, Sweden 2017-06-22 2017-08-13 52 30

UTC 65.3515 -146.9073 1525 USA T 1 GMM220, Vaisala, Finland 2011-05-18 2011-09-25 130 60

VAL 63.8667 28.6667 198 Finland BFT 1 GMM220, Vaisala, Finland 2008-04-10 2008-06-01 52 10

VND 46.2530 7.1100 1201 Switzerland TCF 3 GMM220, Vaisala, Finland 2016-09-30 2017-09-29 364 10

VNU 46.2320 7.1010 1465 Switzerland TCF 3 GMM220, Vaisala, Finland 2016-09-30 2017-09-29 364 10

WHB 43.1222 -71.0049 31 USA TBMF 2 K30, SenseAir, Sweden 2015-04-23 2017-10-31 922 60

YEL 37.2310 110.4099 730 China MGS 3 eosGP, Eosense, Canada 2019-08-29 2019-09-15 17 10

YOK 0.2935 25.2950 440 Congo TSMBF 3 eosGP, Eosense, Canada 2019-04-03 2019-05-08 35 5



Table S2. Summary of reach-, catchment- and regional-scale properties of the study sites.  

 

Riparian 

canopy 
Channel slope

Median 

discharge
Water temp. pH Cond. [DOC] [NO3

- 
] [NH4

+
] Area

Mineral 

surfaces

Grass and 

Shrubs
Crops Forest MAT MAP

Category m m
-1

L s
-1 °C µS cm

-1
mg L

-1
µg L

-1
µg L

-1
km

2 % % % % °C mm 

AFF 1 0.005 284.0 25.6 6.6 80.2 3.0 NA 18.8 13.1

AFP 0 0.003 25.9 27.4 6.0 54.8 2.2 NA 16.2 1.5

ALC 0 0.003 132.5 8.7 7.0 55.0 4.9 20.0 43.0 21.8 0 100 0 0 4.1 673

AUM 0 0.004 51.2 4.4 5.5 87.8 33.8 NA 57.1 3.4 0 100 0 0 7.5 746

BAL 2 0.002 75.4 25.0 6.6 25.0 12.8 110.0 70.0 2.7

BEC 0 0.004 446.3 10.1 8.0 610.0 4.8 2750.0 103.5 118.1 0 46 0 22 7.6 687

BPD 0 0.108 1534.8 3.7 8.1 166.7 0.2 121.7 12.6 23.2 11 76 0 13 1.8 1359

BPS 0 0.043 52.0 3.9 8.1 151.6 0.4 79.7 2.7 3.1 11 89 0 0 1.1 1501

BPU 0 0.035 764.1 2.4 8.1 183.9 0.2 124.8 15.8 18.1 0 100 0 0 1.1 1501

BRW 0 0.001 46.6 9.8 8.0 610.0 6.5 3250.0 55.0 26.2 0 34 50 16 7.6 687

CAY 0 0.013 227.0 6.5 6.6 83.1 4.1 5.0 0.5 0.4

CHD 1 0.123 50.6 5.8 8.4 599.2 0.5 146.5 7.5 3.2 0 47 0 53 4.4 1297

CHM 0 0.223 5.7 4.6 8.3 305.2 0.4 56.4 7.2 0.7 0 95 0 5 3.9 1333

CHS 0 0.025 7.5 11.5 4.3 41.8 18.8 NA 43.6 0.2 0 100 0 0 6.1 1505

CHU 0 0.167 29.3 5.3 8.3 335.1 0.4 58.4 8.7 0.3 0 100 0 0 3.9 1333

CU1 2 0.013 47.7 25.3 5.6 42.2 2.5 1.1 29.3 1.0

CU2 2 0.013 44.2 25.7 6.3 67.8 8.3 1.4 8.9 0.9

DCC 1 0.017 64.0 22.3 6.6 491.0 3.1 5040.0 19.0 0.2

DCF 1 0.014 100.4 15.6 6.1 50.0 6.8 49.0 19.0 7.0 0 0 0 100 7.8 884

DRN 1 0.003 668.5 19.0 4.4 55.0 47.7 12.0 142.0 34.0 0 0 25 100 20.3 1102

FED 0 0.100 223.4 3.8 8.3 343.0 0.2 108.0 4.0 20.2 0 59 0 41 2.6 1344

FET 0 0.046 354.3 5.8 8.3 439.7 0.2 70.8 4.5 4.0 0 87 0 13 1.0 1640

FEU 0 0.061 6.2 4.8 8.2 265.6 0.1 97.9 5.0 9.3 0 100 0 0 1.8 1453

HBF 2 0.183 42.7 11.9 5.7 11.0 2.8 82.0 6.0 0.4 0 0 0 100 5.2 974

HEA 1 0.023 57.4 22.7 6.8 93.5 10.8 672.0 33.8 1.7

HKS 2 0.097 174.9 26.8 6.6 83.1 1.5 154.0 26.0 4.1

HYY 0 0.010 294.3 13.1 6.5 32.0 14.1 10.0 38.2 7.0 0 0 0 25 3.3 551

ICC 2 0.021 74.5 21.1 6.5 57.0 1.7 149.0 8.0 3.3 0 0 0 100 21.1 1707

JU1 2 0.013 47.7 24.4 6.1 48.8 2.3 NA 16.4 1.0

JU2 2 0.013 1.0 24.9 6.4 71.9 2.7 NA 17.9 0.9

KR2 2 0.031 2.0 2.1 5.0 34.4 18.4 16.1 34.0 0.1 0 0 0 100 1.8 518

KR4 2 0.040 7.6 4.1 4.8 53.1 27.1 65.3 46.5 0.2 0 44 0 100 1.6 520

KR5 2 0.008 8.0 5.3 5.0 36.3 14.9 39.7 46.1 0.7 0 0 0 100 1.6 523

KR6 2 0.073 5.7 4.2 5.5 32.6 12.4 72.1 34.3 1.1 0 0 0 100 1.7 516

KR7 2 0.005 4.2 5.8 4.9 25.4 20.8 34.4 16.6 0.5 0 0 0 100 1.9 503

KUP 0 0.009 175.4 9.3 7.2 47.0 3.9 80.0 2.0 0.2

LOV 0 0.101 109.9 9.0 6.4 13.0 1.6 1100.0 20.0 1.8 0 100 0 0 1.1 479

LTC 0 0.034 108.9 3.9 6.4 27.6 13.4 168.0 28.0 4.1 0 100 0 0 -4.6 269

M1 0 0.005 333.3 7.6 7.0 38.1 2.5 40.0 17.2 51.5 0 106 0 15 0.3 295

M6 0 0.078 165.2 6.7 7.0 24.4 1.6 34.0 14.0 1.8 0 79 0 21 -1.9 421

M9 0 0.034 12.7 5.7 7.2 33.2 1.6 27.0 14.0 10.9 0 100 0 0 -2.2 455

M10 0 0.028 106.3 6.0 7.1 21.8 2.7 28.0 17.9 8.6 0 100 0 0 -2.2 455

M16 1 0.011 788.5 5.9 7.0 21.8 1.8 91.0 14.8 0.7 0 51 0 49 0.3 295

M17 0 0.010 1.7 7.8 6.9 43.2 2.4 9.0 16.9 0.1 0 83 0 17 -1.6 396

MK1 2 0.035 115.9 8.1 5.7 22.2 4.0 NA 21.4 0.1 0 0 0 100 9.1 1867

MK2 2 0.035 265.6 7.1 6.9 12.0 2.0 NA 15.6 0.5 0 0 0 100 9.2 1880

MTC 1 0.009 1089.9 27.2 7.7 454.0 2.6 65.0 71.0 28.0 0 16 0 84 27.2 1203

OBS 0 0.008 77.6 6.7 8.3 232.0 1.7 570.0 4.0 24.8 0 95 0 5 7.1 797

PAN 1 0.024 362.9 14.6 6.2 33.8 3.7 120.0 171.5 0.4 0 0 0 100 16.4 1065

QUE 0 0.223 228.7 22.7 7.2 52.0 1.9 155.0 7.0 2.6 0 75 0 25 23.0 1769

RIC 1 0.153 702.2 4.1 8.6 239.3 0.4 188.7 5.0 14.3 0 50 0 50 5.6 1078

SAF 2 0.002 661.4 19.3 5.3 96.0 47.7 64.0 150.0 245.8 0 0 25 100 20.2 1103

SBM 1 0.047 5.7 10.9 4.6 30.0 1.9 9.0 7.0 0.3 0 0 0 100 7.4 907

SLR 0 0.011 8.5 12.1 7.7 150.6 1.7 84.0 14.2 0.4 0 29 0 71 5.9 814

TAC 2 0.031 157.6 24.6 5.4 22.3 1.3 1333.0 29.8 0.3 0 0 0 100 26.0 3174

TOO 0 0.003 64.4 12.7 6.6 20.0 10.3 NA 7.6 5.7

TPB 1 0.021 81.5 14.2 5.0 18.0 4.2 16.0 10.0 4.1 0 0 0 100 7.0 918

UP1 0 0.010 165.0 15.2 7.8 580.0 4.4 310.0 25.0 25.0 10 115 60 0 5.8 467

UP5 0 0.013 61.4 15.1 8.1 670.0 2.2 2690.0 22.0 21.0 0 109 77 0 5.7 474

UTC 0 0.036 50.7 2.8 6.7 102.0 1.4 581.0 28.0 2.6 0 100 0 0 -4.5 271

VAL 2 0.021 477.7 7.5 4.3 31.8 26.2 8.0 8.7 0.9 0 0 0 100 1.7 522

VND 1 0.107 446.6 4.6 8.6 216.6 0.2 171.1 3.7 13.4 0 85 0 25 5.6 1078

VNU 0 0.028 9.6 4.6 8.2 209.2 0.1 168.0 2.8 9.0 0 63 0 37 4.6 1134

WHB 1 0.016 47.0 13.3 7.0 343.0 3.9 710.0 12.0 1.0 0 0 0 100 8.2 896

YEL 0 0.006 24.4 20.1 8.6 1127.0 3.5 NA 20.0 1.1

YOK 2 0.008 22.4 24.4 6.7 29.8 6.6 233.0 47.0 0.9

Stream Id

Stream reach properties Catchment prpoerties Regional prpoerties

llgomez
TO UPDATE CATCHMENT PROPERTIES AND REGIONAL PROPERTIES (ASA’s data)



Table S3.  Summary of stream diel CO2 concentration and flux patterns. 

Day-time Night-time Day-time Night-time Night > day (%)

AFF 7319 7407 87.8 1.2 12.8 12.9 0.1 0.7 60.5

AFP 7139 6444 -694.2 -9.7 6.9 6.2 -0.7 -5.0 25.0

ALC 2176 2560 383.8 17.6 2.5 3.1 0.6 33.0 80.6

AUM 4087 4013 -73.9 -1.8 5.4 5.3 -0.1 0.1 34.5

BAL 2974 3126 151.7 5.1 2.5 2.8 0.2 8.4 77.8

BEC 2351 3260 909.4 38.7 3.5 5.2 1.7 59.8 87.7

BPD 392 402 9.7 2.5 -0.7 -0.3 0.4 13.4 37.5

BPS 520 546 25.1 4.8 0.6 0.9 0.3 192.5 97.6

BPU 380 399 18.2 4.8 -0.4 0.0 0.4 -11.8 26.5

BRW 6268 7288 1020.4 16.3 6.1 7.3 1.2 31.6 77.6

CAY 2716 3831 1115.4 41.1 4.2 6.4 2.2 68.2 96.3

CHD 667 679 12.5 1.9 7.2 7.4 0.2 15.8 48.3

CHM 507 491 -16.7 -3.3 4.2 3.4 -0.8 32.8 81.0

CHS 5201 6626 1425.1 27.4 9.4 12.6 3.1 40.2 98.0

CHU 473 519 45.9 9.7 0.8 1.3 0.5 80.1 89.0

CU1 8812 8677 -135.5 -1.5 71.2 70.7 -0.5 -0.7 20.0

CU2 10812 10698 -113.2 -1.0 87.9 87.4 -0.5 -3.6 0.0

DCC 4058 4274 215.7 5.3 6.3 7.0 0.7 10.8 96.4

DCF 1347 1587 239.7 17.8 2.0 2.5 0.5 31.9 96.1

DRN 8208 8245 37.7 0.5 15.4 15.4 -0.1 11.1 59.8

FED 442 449 6.8 1.5 1.4 1.9 0.5 45.1 66.4

FET 487 504 17.5 3.6 0.8 1.0 0.1 31.7 72.6

FEU 825 858 33.0 4.0 7.3 9.6 2.3 30.0 92.3

HBF 737 830 93.3 12.6 2.5 3.5 1.0 55.1 84.6

HEA 4218 4963 744.7 17.7 9.2 11.2 2.0 24.7 88.9

HKS 583 700 116.6 20.0 9.4 16.3 6.9 80.3 87.5

HYY 1317 1517 199.5 15.1 2.2 2.7 0.4 66.8 88.4

ICC 2979 2977 -2.3 -0.1 10.8 10.8 0.0 0.9 65.9

JU1 3311 3182 -128.7 -3.9 24.9 24.0 -0.9 -4.5 30.6

JU2 6105 6015 -90.6 -1.5 48.7 47.9 -0.8 -1.3 36.2

KR2 7361 7535 174.1 2.4 13.3 14.2 0.9 8.4 81.0

KR4 8137 8173 35.5 0.4 17.8 18.0 0.1 1.0 51.2

KR5 3650 3659 8.6 0.2 5.2 5.3 0.2 0.8 52.1

KR6 1886 1901 15.0 0.8 7.8 7.9 0.1 1.7 55.7

KR7 1765 1873 107.7 6.1 1.8 1.9 0.1 10.4 89.1

KUP 895 952 57.4 6.4 0.7 0.8 0.1 12.9 92.3

LOV 596 807 211.7 35.5 4.9 9.7 4.9 145.2 98.8

LTC 1350 1478 128.4 9.5 5.6 6.5 0.9 17.7 91.7

M1 1008 1283 274.7 27.3 1.5 2.3 0.8 53.5 94.5

M6 681 749 68.0 10.0 1.8 2.2 0.5 39.1 77.5

M9 1442 1573 130.9 9.1 2.5 2.9 0.4 14.8 92.8

M10 2292 2530 237.8 10.4 3.4 3.9 0.5 13.6 88.6

M16 808 824 16.6 2.1 6.1 6.4 0.2 3.3 63.8

M17 822 950 128.6 15.7 4.5 6.0 1.5 34.5 98.0

MK1 2825 2843 18.2 0.6 4.9 4.9 0.0 1.1 58.0

MK2 1454 1437 -17.6 -1.2 6.0 5.9 -0.1 -1.2 54.1

MTC 5718 5693 -25.9 -0.5 11.1 11.1 0.0 0.8 48.2

OBS 559 851 292.2 52.3 0.4 1.1 0.7 143.8 97.7

PAN 5466 5368 -98.2 -1.8 16.0 16.0 0.0 1.2 56.1

QUE 1447 1371 -76.2 -5.3 72.2 68.5 -3.7 -5.8 23.9

RIC 458 472 14.8 3.2 2.3 3.3 1.0 43.1 91.1

SAF 6469 5754 -715.6 ### 6.6 6.3 -0.3 -3.2 29.7

SBM 3236 3339 103.7 3.2 10.5 9.9 -0.6 3.1 60.9

SLR 1589 1626 37.3 2.4 1.5 1.6 0.1 4.2 50.0

TAC 6480 6641 160.8 2.5 12.7 13.2 0.5 1.2 72.2

TOO 1700 2077 376.9 22.2 1.8 2.3 0.5 29.2 88.9

TPB 1750 1892 142.5 8.1 4.4 4.9 0.5 12.6 87.7

UP1 6484 7990 1505.8 23.2 33.7 44.1 10.4 34.3 98.0

UP5 3991 5005 1014.3 25.4 31.4 42.9 11.5 37.7 94.3

UTC 2362 2745 383.7 16.2 10.4 12.8 2.3 21.8 95.4

VAL 4718 4942 223.4 4.7 10.9 11.5 0.5 5.7 81.0

VND 454 463 9.5 2.1 1.9 2.4 0.5 22.8 80.9

VNU 592 603 11.7 2.0 1.5 1.6 0.1 9.0 82.5

WHB 1287 1434 146.2 11.4 1.7 2.0 0.4 24.9 89.3

YEL 1283 1968 685.0 53.4 2.9 5.3 2.4 84.6 94.4

YOK 1944 1860 -84.2 -4.3 2.4 2.3 0.0 -1.9 32.1

Mean 2915 3087 172.1 9.0 10.7 11.6 0.9 27.2 72.3

Stream Id

 CO2 concentration (ppm)  CO2 flux (g C m
-2
 d

-1
 )

Diff.    (%) Diff.     (%)



  



Table S4. Summary of the structural equation model (SEM) statistical outputs. 

  

  

Model Response Predictors p-value R
2 RSE

1 Δ CO2 Flux Δ pCO2 0.65 *** < 0.001 0.43 38.3

Δ kCO2 0.02 0.56

2 Δ p CO2 Canopy cover -0.58 *** < 0.001 0.46 15.9

[DOC] -0.35 0.75

[NO3
-
] 0.25 * < 0.001

Channel slope -0.18 * < 0.001

Δ Temperature 0.13 * < 0.001

Δ Discharge -0.10 0.31

Δ k CO2 0.02 0.82

[NH4
+
] 0.10 0.45

pH 0.10 0.34

3 Δ k CO2 Δ Discharge 0.56 *** < 0.001 0.52 5.5

Δ Temperature 0.33 *** < 0.001

Slope -0.01 0.85

Std. Estimate



Table S5. Summary of pCO2 sensor time-series and literature data used to assess the daily bias on CO2 evasion 

from larger rivers (see Figure 2 and Figure S5). 

 

a  Biome assignment derived from Olson et al. (20013):  

 T= Tundra 

 BFT= Boreal Forest/Taiga 

  TCF= Temperate Conifer Forests 

 TBM= Temperate Broadleaf & Mixed Forests 

 TGSS= Temperate Grasslands, Savannas & Shrublands 

 TSMBF= Tropical & Subtropical Moist Broadleaf Forests 

 TSGSS= Tropical & Subtropical Grasslands, Savannas & Shrublands 

 

b  Data type and origin 

1. Sensor (long time-series, > 8 days) 

2. Sensor (short time-series, < 8 days) 

3. Extracted from the literature (non-continuous)5–9 

  

River id Lat (°) Long (°) Altitude (m) Country Biome
a

Data type
b Source

Canopy 

category

DOC     

(mg L
-1
)
c

Santa Fe (1500) 29.9526 -82.7863 17 USA TSGSS 1 Unpublished 0 38.3

Santa Fe (2500) 29.9980 -82.2742 16 USA TSGSS 1 Unpublished 0 11.9

Santa Fe (2800) 29.8493 -82.7148 10 USA TSGSS 1 Unpublished 0 10.3

Ichetucknee River 29.9118 -82.8606 8 USA TSGSS 1 Unpublished 0 1.0

New River 29.9219 -82.4262 27 USA TSGSS 1 Unpublished 1 43.4

Colorado River (Cameo) 39.2390 -108.2660 1475 USA DXS 2 Unpublished 0 3.1

Colorado River (Potash) 38.5050 -109.6580 1211 USA DXS 2 Unpublished 0 3.5

Fluvià River (Armentera) 42.1685 3.0250 13 Spain MFWS 2 Unpublished 0 0.9

Fluvià River (Pescador) 42.1769 3.0598 7 Spain MFWS 2 Unpublished 0 0.9

Negro River -3.1000 -60.1167 46 Brasil TSMBF 2 Unpublished 0 8.6

Curuá River 1.7482 -51.4405 126 Brasil TSMBF 2 Unpublished 0 4.2

Mississippi 30.4336 -91.1975 6 USA TBMF 3 Reiman and Xu., 2019 0 6.3

Clark Fork (Missoula) 46.8668 -113.9903 988 USA TBMF 3 Lynch et al., 2010 0 5.0

Zambezi River (mouth) 16.0162 28.8798 371 Mozambique TSMBF 3 Teodoru et al., 2015 0 3.4

Congo River -3.9495 15.9073 5 Congo TSMBF 3 Borges et al., 2019 0 8.1

Red River 21.7000 104.8667 5 Vietnam TSMBF 3 Le et al., 2018 0 2.1
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Figure 1. Magnitude and bias of diel variation in CO2 emissions from global streams.  

a) Distributions of observations of sampling time (GLORICH database2) and the time of maximum CO2 

emissions from sensor data (this study). b) Relationship between median day and night CO2 emissions 

(g C m-2 d-1) for all study sites and days. The black 1:1 line indicates that 75.2 % of observations exhibit 

enhanced nocturnal emissions. The inset illustrates the distribution of observations in the densest region 

of the graph.   



 

Figure 2. Geographical distribution of diel variation in stream CO2 emissions. a) Global patterns of 

night-day differences in CO2 emission fluxes averaged by stream (in g C m-2 d-1; see Table S3 for a 

detailed summary). Triangles represent locations of studied rivers in Figure 4.  b) Night-day differences 

in CO2 emission fluxes averaged by stream, grouped by biome and sorted by descending latitudes (in 

%; see Table S3 for a more detailed summary). Biome assignment derived from Olson et al. (2001). 



 

Figure 3. Seasonal pattern of diel changes in CO2 emissions from streams. Seasonal variation in the 

night-day difference of CO2 emissions (g C m-2 d-1) grouped by riparian canopy cover category (open = 

yellow, intermediate = light green and closed = dark green; 33, 16 and 17 sites and 5780, 3814 and 5130 

daily observations, respectively; see Methods and Table S2). The colored solid lines are locally weighted 

regression (LOESS) model fits for a visual interpretation. Panels at top and bottom show extreme 

positive and negative values, respectively (note y-axis breaks and change in scaling). Density plots show 

distributions of night-day differences of CO2 fluxes (g C m-2 d-1) grouped by canopy cover during 

summer. Differences between canopy levels were evaluated using the non-parametric Kruskal–Wallis 

test.  

  



 

Figure 4. Night-day differences in CO2 emissions along the river size and color continuum. 

Relationship between the night-day difference of CO2 emission fluxes (%) and the median annual 

discharge (m3 s-1) for a) streams (median discharge below 1.5 m3 s-1, Figure S5) colored by canopy 

cover category, and b) rivers (median discharge above 1.5 m3 s-1). Each point represents a monthly 

average for each site, except data from the six additional rivers (circles with grey error bars) obtained 

from the literature (Table SX). c) Relationship between the night-day difference of CO2 emission 

fluxes (%) and the mean dissolved organic carbon concentration (DOC) for streams (circles) and rivers 

(triangles), colored by canopy cover category. d) Relationship between the daily night-day difference 

of CO2 emission fluxes (%) and the daily fluorescent organic matter concentration (fDOM, ppb QSE) 

for the five rivers in Florida with high-frequency water color data (Table SX) , colored by mean daily 

photosynthetic photon flux density (PPFD; μmol m-2 s-1).  
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