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Roland Schmidt • Karin A. Koinig • Lluı́s Camarero • Roger J. Flower •

Oliver Heiri • Christian Kamenik • Atte Korhola • Peter R. Leavitt •

Roland Psenner • Ingemar Renberg

Received: 28 May 2012 / Accepted: 15 January 2013 / Published online: 16 February 2013

� Springer Science+Business Media Dordrecht 2013

Abstract Over recent decades, palaeolimnological

records from remote sites have provided convincing

evidence for the onset and development of several

facets of global environmental change. Remote lakes,

defined here as those occurring in high latitude or high

altitude regions, have the advantage of not being

overprinted by local anthropogenic processes. As

such, many of these sites record broad-scale environ-

mental changes, frequently driven by regime shifts in

the Earth system. Here, we review a selection of

studies from North America and Europe and discuss

their broader implications. The history of investigation

has evolved synchronously with the scope and aware-

ness of environmental problems. An initial focus on

acid deposition switched to metal and other types of

pollutants, then climate change and eventually to

atmospheric deposition-fertilising effects. However,

none of these topics is independent of the other, and all

of them affect ecosystem function and biodiversity in

profound ways. Currently, remote lake palaeolimnol-

ogy is developing unique datasets for each region

investigated that benchmark current trends with
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This paper has been written as a contribution to celebrating

Rick Battarbee’s influence on palaeolimnology. Some of us

have benefitted from his leadership (and friendship) in

transnational European projects during the last decade (e.g.,

ALPE, ALPE2, MOLAR, CHILL-10000, EMERGE,

EUROLIMPACS), which together with some other initiatives

spawned pan-European remote lake research. Others have

respected Rick as a teacher, colleague and a friend. To some

extent, this review follows the chronological order of topics

addressed in these projects, which also respond to the growing

social awareness about each issue. Rick also facilitated bridges

between North American and European schools, and beyond.

We expect his attitude towards collaboration will pervade and

persist through the palaeolimnological community for years to

come, and global change will certainly provide stimulating and

challenging questions with which to do so.
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respect to past, purely natural variability in lake

systems. Fostering conceptual and methodological

bridges with other environmental disciplines will

upturn contribution of remote lake palaeolimnology

in solving existing and emerging questions in global

change science and planetary stewardship.

Keywords Remote lake palaeolimnology � Climate

change �Nitrogen cascade �Acidification � Long-range

atmospheric pollution � Arctic lakes � Alpine lakes �
High latitude � High altitude

Introduction: global change and remote lakes

Since the Industrial Revolution, beginning in the late

eighteenth century, a new era has arisen in which

humans are the main drivers of global environmental

change. During the last 10,000 years, the Earth has

experienced a period of unusual environmental stability

compared to previous millennia, which exacerbates the

uncertainties regarding what may happen in the near and

distant future. Current global change is multidimen-

sional by nature (Rockström et al. 2009). The inexorable

rise of atmospheric carbon dioxide and other greenhouse

gases and attendant climate warming are the most

evident components, but they are not the only ones. The

depletion of stratospheric ozone and the increase of the

reactive nitrogen pool on the planet represent other key

dimensions of global atmospheric changes. Together,

these can be catalogued as systemic: they intrinsically

involve a modification of the Earth system. In addition,

other human impacts, which were initially regional in

nature, have become global as they progressively extend

across a large part of the planet. Resource overexploi-

tation, soil erosion, acidification, eutrophication, toxifi-

cation, urbanization and facilitation of organism

dispersion are all examples of changes with increasingly

widespread environmental footprints and potential

influence on a planetary scale. Furthermore, many of

these impacts intersect and result in emerging, and at

times synergistic, processes that have the potential to

influence ecosystem function, biodiversity, species

invasions, and the emergence of new diseases. The

planet is undergoing a variety of regime shifts, the

consequences of which remain difficult to predict,
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Fig. 1 Human landscape change. Early landscape changes

recorded in mountain lakes located at the timberline migration

zone are illustrated by multi-proxy sediment records from the

Sägistalsee (1935 m a.s.l.), Swiss Alps, a remote lake that was

chosen to reconstruct temperature changes over the Holocene

from diatom and chironomid records (Heiri et al. 2003).

However, it appeared that the different abiotic and biotic

proxies clearly reflect the human impact that already started

around 4000 cal yr BP with deforestation by slash-and-burn,

affecting erosion, soil stabilization, and the lakes productivity

and oxygen content (Koinig et al. 2003; Wick et al. 2003). For

further details, refer to the Electronic Supporting Information
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although many changes have already occurred that are

sufficient to consider them as harbingers of a new epoch,

the Anthropocene, which follows the relatively stable

Holocene within which present society has developed

(Steffen et al. 2011a).

Monitoring of some of the suspected key drivers of

global change provides indications about the mode

and pace at which global change is proceeding. For

instance, atmospheric CO2 concentrations, at stations

such as the Mauna Loa observatory, have become an

icon of global change even beyond scientific circles.

However, ecosystem changes and the consequent

whole-biosphere response to multiple stressors cannot

be evaluated exclusively based on these records.

Ecosystem response has to be directly evaluated

(Barnosky et al. 2012). However, how can local

variability be disentangled from planetary regime

shifts? At sites in which human activity takes place,

the confounding effects due to local activities may

obscure more subtle, but ultimately more powerful and

longer-lasting impacts. There is, therefore, a need for

biospheric sentinels of global change (Williamson

et al. 2008). Species migration (e.g., birds, butterflies,

Debinski et al. (2006)) provides indications that

ecological processes are accelerating rapidly for some

organisms, but the ecosystem perspective is missing.

Ecosystems at sites isolated from immediate human

pressure may provide a more comprehensive view

than single species changes. Currently remote sensing

can cover those areas and provides rich information

(Coppin et al. 2004). However, the time-series avail-

able provide relatively short temporal perspectives (a

few decades at best) and, moreover, only a limited

number of variables that pertain to ecosystem pro-

cesses. Proxies contained in sediment archives from

remote lakes provide a complementary view, with a

much longer temporal perspective and a richer array of

information, including biodiversity (Axford et al.

2009).

Lake sediments register environmental and ecological

dynamics far beyond the lake itself. Exports from the

surrounding terrestrial environment at the catchment

scale, as well as processes within the airshed of any given

locality, influence lake ecosystems to a high degree.

Ultimately, terrestrial and aquatic systems both respond

to atmospheric influences (Leavitt et al. 2009), which can

be tracked efficiently, if local human disturbances are

minimal. Temporal variations in remote lakes, namely

those at high altitude or high latitude, depend mostly on

ecological and biogeochemical responses to atmospheric

forcings conditioned by the ontogenic development of

the ecosystems through time (Birks et al. 2000). There-

fore, in the context of current global change, remote lakes

are excellent ecological sentinels because their sediments

contain an invaluable record of post-industrial changes

that can be benchmarked against early, pre-disturbance,

time intervals (Smol 2008). In this paper, we review how

palaeolimnological records of remote lakes have con-

tributed to the global change science agenda, and

comment on their current and future role in global

change monitoring and processual understanding.

Although we aim to highlight the palaeolimnological

contribution, the review is by no means comprehensive,

and some relevant themes are only marginally addressed

(e.g., UV impacts; Leavitt et al. (2003)). The sections

approximately follow the chronological development of

awareness and interest for some main topics, particularly

in Europe and North America.

Ideally, the definition of remote lake should

embrace those in which direct human impact in the

catchment is irrelevant for studying any of the

processes implied in global change (Battarbee et al.

2002a). Generally, we may expect that the higher the

elevation and the farther north (or south), the more

remote. However, especially in alpine regions, human

influence on these seemingly natural landscapes

becomes more prominent and earlier in history as

studies intensify (Anderson et al. 2011; Koinig et al.

2003; Schmidt et al. 2008). In mountains, humans have

fostered the establishment of high altitude pastures,

and the treeline has been shifted down in many valleys

(Fig. 1). Fire was usually the tool used to produce such

landscape changes (Carcaillet et al. 2009). Contrasts

between fire regimes before and after the appearance of

humans in a region are well archived in lake sediment

records. On occasion, the local human impact is subtle,

e.g., a slight increase in erosion rates due to the

occasional sheep grazing (Camarero et al. 1998), while

at other sites it is a more direct manipulation of the

whole lake community, e.g., fish stocking (Schindler

et al. 2001). In many respects, the decline of ‘‘remote-

ness’’ is in and of itself a meaningful component of

global change, as both improved access and warming

temperatures lure human occupation and facilitate a

diversity of encroaching activities. Operationally,

remote lakes can be considered as those for which

atmospheric forcing is currently the main driver of lake

and catchment processes.
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Long-range atmospheric pollution

Acidification: the first signs of ecosystem

vulnerability

Human impacts on the Earth system are frequently

mediated through the atmosphere, and emissions from

fossil fuel combustion are the primary cause of much of

the resulting recent global change. However, historically,

concern about long-range atmospheric impacts did not

arise because of greenhouse-gas emissions, but rather

because of strong acid emissions and their acidifying

effect. Many remote lakes are situated on catchments of

crystalline bedrock with low natural buffering capacities

and thus are sensitive to acid deposition. Consequently,

remote lakes often recorded impacts of long-range

atmospheric pollution in their sediments, particularly

by diatoms, one of the main microfossil components of

the sediments in theses lakes. The assemblage compo-

sition of these algae is extremely sensitive to pH changes

(Battarbee et al. 2010; Flower and Battarbee 1983).

The acidification problem stimulated the develop-

ment of a range of new techniques and conceptual

approaches in palaeolimnology. Developments in high-

resolution age-depth modelling (Appleby et al. 1986)

and numerical methods (Birks 1998), mostly using

space-for-time regression and calibration approaches

known as training sets, are tools pioneered in this period

and later adapted for other applications. Beyond tech-

nical improvements, the acidification issue fuelled the

credibility of palaeolimnology as a powerful method for

framing current observational changes and testing

competing theories and hypotheses in the context of

long-term variability. The problem was clearly stated: is

long-range transport of atmospheric pollution the cause

of pH decline at sites distant from industrial point source

emission? The answer was an unambiguous yes, and

together with the neo-limnological evidence, settled

debates invoking alternative hypotheses such as ‘‘nat-

ural ontogenic’’ acidification (Battarbee and Renberg

1990). Despite the sobering final message, the scientific

success of palaeolimnology in acid rain research

conferred considerable credibility to the field in general,

a firm rooting within the environmental sciences, and a

rich trajectory for subsequent growth (reviewed in Smol

2008).

The acidification issue raised the question about

whether truly pristine areas still exist on the planet.

Palaeolimnological studies have demonstrated that

Arctic lakes, in general, have shown a remarkable

stability in their acidity state during the recent past and

that anthropogenic acidification of Arctic lakes is

commonly restricted only to the vicinity of some point

sources of pollution, such as the smelter industry on

the Kola Peninsula, Russia (Weckström et al. 2003).

However, the presence of soot, spheroidal carbona-

ceous particles (SCP), and other trace contaminants in

extremely remote lake sediments suggests that most

regions of the planet are affected to some extent by

human activities (Rose 1995). In any case, awareness

that pollution was not a local issue rapidly became

evident, and international regulative actions were

taken across many jurisdictions. Declines in sulphur

emissions and subsequent progressive pH recovery of

many impacted lakes were positive consequences of

these actions, and palaeorecords captured it all (Allott

et al. 1992). However, palaeolimnological records also

showed that biological recovery takes longer than

chemical recovery (Fig. 2) (Monteith and Evans

2005), particularly for species that totally disappeared

from the system (e.g. some chironomids and cladoc-

erans, Stuchlı́k et al. (2002)). In fact, it is still not clear

whether confounding effects may override competi-

tive effects for species with similar niche in these lakes

(Levine and D’Antonio 1999). Therefore, it may be

that, even with a complete chemical recovery, a return

to background reference conditions will not occur, and

rather the lake regime shifts to a new configuration. In

the current context of coupled effects associated with

climate change, the eventual return to initial condi-

tions is even more unlikely (Battarbee et al. 2005;

Smol 2010). Continued monitoring of acidification

recovery thus remains an important item in the

scientific agenda (Bennion et al. 2011).

Metals: the first form of long-range atmospheric

pollution

Although acidification was the first recognized long-

range atmospheric pollution problem, palaeolimno-

logical data confirmed that metal pollution long

pre-dated the Industrial Revolution in many regions

(Brännvall et al. 1999; Renberg et al. 1994). Early

mining and metallurgy was not environmentally

friendly, and the signature of long-range atmospheric

metal pollution can be traced back at least to the

Roman period in sediment records from remote sites in
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Europe (Renberg et al. 2000) and Pre-Columbian

empires in South America (Cooke et al. 2009).

Although lake acidification studies outnumber those

on atmospheric deposition of metals, evidence exists

of current long-range transport of lead, mercury and

other trace metals in both high altitude and high

latitude records (Camarero et al. 2009). Lead (Pb)

stable isotope studies allow the distinction between

catchment natural sources and atmospheric pollution

(Bindler et al. 2001; Camarero et al. 1998). As in the

case of acidification, for metal pollution one can

geographically identify a general diffuse component

related to some historical period of technologi-

cal development (e.g. Roman period), and another

depending on distance to the particular mining, and

metallurgical centres of each period.

Whereas lake and catchment ecological impacts of

acid deposition are clearly recorded in sediments (in

fact, we reconstruct the impact not the loading), the

direct effects of trace metals are difficult to evaluate

from the sediment record, unless they are associated

with acidification, such as in some intensive mining

areas of early industrialization (Ek and Renberg 2001).

Long-range metal pollution is generally evaluated

using a historical rather than an ecological perspective

(Renberg et al. 2002). Natural metal concentrations in

lake sediments can fluctuate markedly (Koinig et al.

2003) and atmospheric metal deposition must there-

fore be extremely high to create an observable

disturbance in the system. However, this is not simple

because multiple interactions can also occur in the

soils (Bindler et al. 2008).

The soils in polluted catchments have stored depos-

ited metals over long-periods of time. The anthropo-

genic trace metals accumulated in catchments can be

several orders of magnitude higher than the current

yearly atmospheric deposition over the area (Bacardit

et al. 2012; Klaminder et al. 2005). Under changing

conditions, the accumulated metal inventory can be

released to surface waters, and delayed contamination of

aquatic systems may occur. Local climate may affect the

release rate from soil metal pools in different ways.

Increased transport from soils to lakes may happen

because of leaching or soil erosion. Enhanced winter

precipitation, drier summers, and higher frequencies of

extreme rainfall events have increased soil erosion in the

Scottish uplands, and, as a consequence, trace metal

records are not showing the decline expected as a result

of the massive reduction in emissions since the 1970s

(Rose et al. 2012). Palaeolimnological evidence from

Greenland indicates that aeolian redistribution of metal

deposits under changing climate may also be significant

(Lindeberg et al. 2006). Another possible mechanism

increasing the load of metals such as Hg from soils to

aquatic systems is an increase in soil moisture and

anoxic conditions occurring during wet periods, which

increases Hg methylation. In addition to soils, there are

other potential reservoirs of metals that can be mobilised

by changing climate. For instance, currently there is a

surprisingly high metal release coming from rock

glaciers in Alpine areas (Thies et al. 2007). Other

Fig. 2 Acidification and recovery of Lake Starolesnianske

(Tatra Mountains, Slovakia). a Historical concentrations of

lake-water Al and pH and their reconstructed values using the

MAGIC model (dashed lines) (Stuchlı́k et al. 2002). b Relative

frequencies of the dominant chironomids. c Relative frequencies

of head shields of Chydorus sphaericus and ephippia of

Ceriodaphnia quadrangula. Vertical grey lines show the period

in which water quality recovered, but taxa such as Tanytarsus
lugens and C. quadrangula did not rebound. For further details,

refer to the Electronic Supporting Information
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remote reservoirs may be associated with unexpected

transportation vectors such as birds with large foraging

areas or that migrate from polluted areas (Foster et al.

2011).

Sediment records may provide reference conditions

for what has occurred under similar changing climate

conditions and less atmospherically polluted periods.

This is relevant because changing characteristics of

soil and other metal catchment deposits under chang-

ing climate may confound the evaluation of regional

measures to reduce emissions. From a global change

perspective, it is challenging to discern whether the

metal loads (e.g., Hg) at high latitudes follow the

recent decreasing trends in some regional emissions

(e.g., Europe) or whether the load is still high because

of continuing global emissions (Lindeberg et al.

2007). Sediments are system recorders and also sinks

of materials. Determining how stable that sink is for

metals is a matter of considerable interest (Rydberg

et al. 2008). Metal pollution has permeated remote

ecosystems over the last *150 years, including some

parts of the Arctic. Future research should aim to find

out whether the extra metal loading has had an

additional effect to that of other stressors (Fig. 3).

Synthetic pollutants: an overlooked side of global

change?

Prosperity following the Industrial Revolution has

been based on the increased use of energy and also in

the continuous development of new compounds.

These synthetic substances were not present before

in nature and hold many uncertainties about their

impacts on ecosystems and the biosphere as a whole.

Toxicity is not a feature inherent to the nature of any

particular compound, but it is defined for the particular

interaction of the compound and a specific organism.

There are substances that are clear candidates to being

poisonous for most (if not all) living beings, but there

are others whose high toxicity came as a surprise to the

scientific community (e.g., polychlorinated biphenyls,

PCBs). Particularly challenging are those substances

that show high affinity for organic solvents (hydro-

phobic), are persistent (chemically recalcitrant in the

environment) and are relatively volatile allowing

transport over long distances. These persistent organic

pollutants (POPs) tend to bioaccumulate in organisms

across the planet with uncertain consequences. They

have been found at high latitude and high altitude, with

the additional feature that some compounds predom-

inantly accumulate in cold environments.

The respective higher POP volatilisation in warm,

and condensation in cold areas can be seen as a ‘‘global

distillation’’ process (Wania and Mackay 1993), which

in high mountains results in altitudinal gradients (Blais

et al. 1998). The lake sediments show a concentration

increase in DDTs and some PCBs of about an order of

magnitude per km elevation (Grimalt et al. 2001). The

number of organic synthetic substances is high and will

certainly increase in the future. If they are relatively

labile but massively used, they are likely to be

continuously transported to remote sites, where high

Fig. 3 Synthesis of palaeolimnological records from the

Kangerlussuaq lake district of south-western Greenland.

a Long-range atmospheric pollution witnessed by Pb and Hg

concentrations trends. b Evidence of recent ecological change

captured by the leading axis of Detrended Correspondence

Analysis (DCA) from diatom assemblages dominated (40–60%)

by the Discostella stelligera complex (Perren et al. 2009).

c Changing atmospheric nitrogen inputs recorded from the

Summit of the Greenland Ice Sheet (Hastings et al. 2009).

d Mean annual temperature from Nuuk. For further details, refer

to the Electronic Supporting Information
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pools can be maintained by sustained loading despite the

short life of the compounds. On the other hand, for some

highly stable molecules, it is difficult to accurately

estimate the volatility. Apparently non-volatile sub-

stances (e.g., polybromodiphenyl ether 209) have been

found in the sediments of remote sites after only a few

years of use (Bartrons et al. 2011).

Pollutant release from melting glaciers is currently a

topic of interest (Blais et al. 2001). Dated sediment cores

from glacier-fed lakes in Swiss Alps (Bogdal et al. 2009;

Schmid et al. 2011) have shown that fluxes of all

organochlorines increased in the 1950s, peaked in the

1960s–1970s, and decreased again to low levels in the

1980s–1990s as expected from the emission and

regulation history of these compounds. However, since

the late 1990s, input of all compounds has increased

sharply, being even higher than in the 1960s–1970s,

supporting the hypothesis that there is a release of

persistent organic chemicals from melting glaciers.

We know little about the ecological and physiological

impacts that environmental POPs may be causing. Even

though individual quantities of each compound may not

appear dangerous, the toxicological potential of the

resulting cocktail of pollutants progressively accumulat-

ing in remote sites is largely unknown. Organohalogen

pollutants (PCBs, DDTs, PBDEs, and others) add to the

above-mentioned metals and to polycyclic aromatic

hydrocarbons (PAHs) resulting from natural and anthro-

pogenic combustion (Fernandez et al. 2000). Sediments

are useful for assessing the inventory of pollutants to

which lake communities have been exposed, although it

remains difficult to elucidate their impacts. However, it is

possible to obtain direct evaluations of toxicological

potential of sediments using recombinant yeast assays

(Garcia-Reyero et al. 2001). Palaeolimnological attention

to pollution by organic chemicals will probably grow in

parallel with interest for global consequences of contin-

ued release of volatile synthetic substances, which up to

now is an overlooked aspect of global change (Rockström

et al. 2009).

Climate change impacts

Early warming, early warning and the case

of Cyclotella increases

Although global change is multivariate in nature,

climate change linked to the enhanced greenhouse

effect of gas emissions is currently garnering the most

attention of any environmental issue. However, evi-

dence of climate change impacts on ecosystems is

showing up at a slower pace than other human-induced

disturbances, and with more uncertainty and contro-

versy. This was not unexpected. Climate is a weather

statistical construct over a certain time (usually 30

years). This period is usually longer than the time

response of ecosystem processes that are conditioned,

directly or indirectly, by weather. Therefore, one can

resolve the link between climate and many ecological

processes, but this needs a long time series of

observations, which are not usually available. The

palaeolimnological record at remote sites is extremely

valuable in this context.

Despite difficulties, some astonishing regularities

have been observed in a large number of lakes, first

observed in Arctic and alpine regions, and later in less

remote sites. One example is the increase in small

planktonic diatoms with climate warming (e.g.

Cyclotella sensu lato, including representatives of

Cyclotella, Discostella, and Puncticulata) (Rühland

et al. 2008). Many studies have reported their increase

and, in some cases, a concomitant decline of large

filamentous diatoms (e.g. Aulacoseira taxa). The exact

mechanism suggested in the studies reporting these

tendencies may differ but a common feature is an

increase in the length of the growing season and

periods of high stability of the water column (com-

pared to those of intense mixing). For Arctic lakes, the

changes are related to decreased ice cover duration

(Prowse et al. 2011b; Smol and Douglas 2007) and

hence a higher heat content in the water column during

the summer that may also increase water column

stability. In other cases, the warming tendency is

restricted to the growing season of the small diatoms,

and their population densities follow the interannual

temperature oscillations of the growing periods

(Catalan et al. 2002a). Several neo-limnological

studies show that contemporary climate warming is

exhibiting a selection pressure on diatom cell size in

the same direction as observed in the palaeolimno-

logical studies. Small-sized diatoms are able to out-

compete large-sized cells and so expand under inten-

sified stratification. An empirical model has shown

that such shifts are consistent within different water

column depth strata, and that altered nutrient concen-

trations were not responsible for the change (Winder

et al. 2009).
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It is also possible to find localities with declining

abundances of Cyclotella. These species, as any other

phytoplanktonic species, respond neither directly to

weather nor climate, but to proximal growing condi-

tions (nutrients, light, temperature, mixing regimes,

grazing), which can appear or disappear under differ-

ent combinations of factors forcing the lake system.

Therefore, Cyclotella or any other diatom taxon

cannot be used as a lake thermometer by itself. Not

surprisingly, there are lakes dominated by Cyclotella

throughout their history despite climate fluctuations

(e.g., Gossenköllesee, Tyrolian Alps, Austria (Koinig

et al. 2002); Lake Saanajärvi, Finnish Lapland

(Korkonen pers. comm.)). Nonetheless, such a large

number of similar cases around the Northern Hemi-

sphere may be symptomatic of rather extended

shifting conditions (Fig. 4).

The average timing of the Cyclotella rise differs

statistically between high latitude, high altitude and

temperate lakes (Rühland et al. 2008). The median

increase at high latitudes occurred about 50 years

earlier than at high altitudes and 100 years earlier than

at temperate latitudes (Fig. 4). This supports the

evidence that Arctic lakes register an early indication

of current climate-related changes compared to other

parts of the planet (Douglas et al. 1994; Smol and

Douglas 2007) and that mountains may be regions of

early response at lower latitudes (Battarbee et al.

2002b; Hobbs et al. 2010). In fact, temperature records

of the Arctic meteorological stations show that the

Arctic amplification (ratio of the Arctic to global

temperature trends) is not a constant, but varies in time

on a multi-decadal time scale (Chylek et al. 2009). The

early Arctic warming from 1880–1940 proceeded at a

significantly faster rate than the current 1970–2008

warming, with the ratios of the annual mean low

Arctic to global temperature trends being 5.4 and 2.0

for the early and more recent warming periods,

respectively. This rapid, early twentieth-century

warming (ETCW) in the Arctic has been widely

studied, yet its cause-effects still requires full expla-

nation (Bengtsson et al. 2004).

Abrupt changes

Climate impacts currently occurring may suddenly

accelerate because of the potential non-linearity of

climate change per se and because of the interaction

with additional variables and the ecosystem’s own

dynamics. If today’s pronounced warming is trigger-

ing unprecedented ecological changes, would we not

expect to find evidence for similar changes (e.g., algal

Fig. 4 The case of Cyclotella sensu lato diatoms. Scanning

electron micrographs of Cyclotella comensis (a) and Discostella
stelligera (b), (scale bars are 1 lm). c Timing of increased

relative frequencies of summed (z-scores) small Cyclotella s.l.
taxa from a selection of lakes in Arctic (black line), alpine

(dashed line) and temperate (grey line) regions. Vertical lines

indicate median age of change in each ecoregion (AD 1870

Arctic, AD 1920 alpine, and AD 1970 temperate), based on 82

diatom profiles included in a meta-analysis spanning the

Northern Hemisphere (Rühland et al. 2008). Boxplots in the

lower panel display range in timing of change within each

ecoregion. (d) Relative abundances of Cyclotella s.l. taxa from

dated sediments compared with historical ice-out dates (White-

fish Bay, Lake of the Woods, Ontario, Canada). For further

details, refer to Electronic Supporting Information
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shifts in lake systems) in the past? Climate forcing

mechanisms (e.g., insolation, ice sheet distribution,

sea level, aerosol and atmospheric greenhouse gas

concentrations) in the past were different (Bigelow

et al. 2003) and seasonality today is also different from

the past (see below), thus true analogues do not exist.

However, high magnitude fluctuations in past climate

have induced pronounced shifts in diatom assem-

blages, similar in nature to recent Cyclotella-Aulaco-

seira-Fragilaria shifts (Ampel et al. 2010; Huber et al.

2010; Lami et al. 2010; Rudaya et al. 2009; Wang et al.

2008; Wilson et al. 2008). These palaeolimnological

records, which span thousands of years, suggest that

these current taxon-specific shifts are in response to an

overriding effect of climate and, perhaps, they are an

early indication of expected abrupt and general

ecosystem shifts (Barnosky et al. 2012). In fact,

Holocene and Late Glacial sediment records show that

abrupt and large vegetation changes may occur in

response to climate fluctuations within the range

projected for the coming decades (Giesecke et al.

2011). Complete replacement of prominent landscape

species, including forest trees, can occur within a few

centuries, which implies that there are periods of

extreme dynamism in the vegetation. A more ecolog-

ically oriented examination of the Holocene records

may result in uncovering new clues for understanding

on-going changes and improving projections for

midterm future.

Seasonality

One of the features of current warming is its contrast-

ing seasonal character at different sites (Battarbee

et al. 2002b). Is seasonality actually changing? For

example, it has been suggested that circulation modes

in the Alps are unstable in time and space, causing

decoupling of autumn and spring climates at the

southern slopes of the Alps starting during Medieval

times (Schmidt et al. 2008). On geological timescales,

climatic changes are often conceptually simplified to

cold/dry and warm/humid stereotypes, which can be

useful for framing current changes (Wilson et al.

2012). However, these stereotypes lack the sophisti-

cation for understanding the full spectrum of climate

variability. The analysis of the latter requires a

decoupling of temperature and moisture and an

independent consideration of cold and warm seasons.

At high latitude and high altitude, seasonality is better

understood when considering ice/snow (winter/

spring) and ice/snow free (summer/autumn) periods,

which represent the latent and growth periods for

many organisms. Vegetation and most catchment

processes mainly respond to weather during the

growth period, and the proxies they leave in the

sediment record (e.g., pollen) mostly indicate fluctu-

ations during this period. However, high latitude and

high altitude lakes are particularly sensitive to the

duration of the ice cover (Catalan et al. 2002b; Prowse

et al. 2011a; Smol and Douglas 2007) and this makes

them valuable for reconstructing the cold/warm tran-

sient season. Lake ice phenology is closely tied to

winter and spring air temperatures, and in many recent

climate records, winter and spring months often

experience the largest magnitude temperature

increases (Thompson et al. 2009). Contrary to expec-

tation, it is not what is occurring under the ice that is

the most relevant for recording cold season effects in

the sediments, but rather how lake ice phenology links

to subsequent ecological seasonal succession. It is for

this reason that chrysophytes, growing during the ice-

free period, are extremely good recorders of the

winter/spring climatic fluctuations (De Jong and

Kamenik 2011; Pla-Rabes and Catalan 2011). Win-

ter/spring climate during the Holocene (Kamenik and

Schmidt 2005; Pla and Catalan 2005), reconstructed

using chrysophyte cysts, contrasts with the commonly

reconstructed summer/autumn conditions (Fig. 5).

The ecological implications of different trends in the

two seasons throughout the Holocene could provide a

foreshadowing of upcoming changes.

Biogeochemical analogues

Although vegetation changes have attracted much

interest, the Holocene can also serve as a reference for

biogeochemical dynamics. We may ask whether

biogeochemical analogues would be more likely than

community analogues. Climate amelioration at the

transition from Late Glacial to Holocene resulted in

development of vegetation and soils and pronounced

changes in terrestrial export of DOC, P, and organi-

cally bound metals to lakes, leading to their oligo-

trophication (Norton et al. 2011). Photochemical

cleaving of Al-DOC complexes caused Al(OH)3

precipitation in lakes and its increasing accumulation

in sediments. Because phosphate adsorption to

Al(OH)3 sequesters P regardless of sediment redox
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conditions, in-lake concentrations of bio-available P

decline with Al supply (Kopáček et al. 2007). How-

ever, the future climate amelioration may have the

opposite effect on P loading of lakes than in the early

Holocene, due to the changed environmental condi-

tions. Current catchments have largely depleted pools

of easily weathered minerals such as (hydroxyl)

apatite, compared to the early postglacial time.

Terrestrial P-loading in high altitude lakes is generally

low. Consequently, the elevated DOC exports from

their catchments, resulting either from the current

ecosystem recovery from acidification or from poten-

tial vegetation and soil development under a milder

climate in the future, could have eutrophication effects

for lakes. Elevated DOC leaching is accompanied by

increased P export from soils, which may increase

primary production. In addition, photochemical pro-

duction of bioavailable DOC from allochthonous

organic matter may promote bacterial biomass. These

changes may affect C and P availability in lakes, the

resulting seston stoichiometry, and food web structure.

P will be more available in the water column and less

in the surface sediment; more C will support bacterial

production; both changes will decrease the C:P ratio of

seston due to higher bacteria to algae biomass ratio in

seston. We can observe similar gradients in C and P

availability along an elevation gradient on mountain

slopes (Kopáček et al. 2011). The question is how the

forcing of these stoichiometric changes will interact

with rising water temperatures, length of ice-off

period, and whole-lake primary production.

Atmospheric fertilization

The nitrogen cascade

Industrial fixation of atmospheric nitrogen following

the widespread introduction of the Haber-Bosch

process has revolutionized modern agriculture. In

concert with increased emissions from fossil-fuel

combustion, the global nitrogen cycle has been

fundamentally altered (Galloway et al. 1995). For

example, the global pool of reactive nitrogen (Nr,

which includes all fixed bio-available forms) has at

least doubled since pre-industrial times. Nr is sequen-

tially transferred through environmental systems and

results in environmental changes as Nr moves through

or is temporarily stored within each system; this

phenomenon is referred to as the nitrogen cascade.

This must be considered as a systemic change with

many unknown consequences.

Remote lakes are not immune to the effects of

enhanced Nr deposition (Fig. 6). N-limitation under

natural conditions appears more prevalent than previ-

ously suspected (Elser et al. 2009). This means that

even modest increases in Nr deposition have the

potential to alleviate N-limitation and exacerbate

P-limitation, with attendant shifts of primary produc-

ers towards taxa favoured by high N/P resource ratios.

It appears that lakes may have considerably lower

critical loads for responding with community changes

to Nr deposition than terrestrial ecosystems (Saros

et al. 2011). This implies that palaeolimnology can

provide early warnings of chronic effects before they

pervade the broader landscape.

Recent evidence from nitrogen stable isotope

(d15N) excursions suggests that anthropogenic Nr is

Fig. 5 Change of seasonal climate throughout the Holocene

(Lake Redon, Pyrenees). Alkalinity changes reconstructed using

diatoms (Catalan et al. 2009) follow the general temperature

trends expected from pollen records in the Pyrenees, while ice-

cover duration, reconstructed using chrysophyte cysts, shows an

opposed tendency for this period, indicating that winter and

spring temperatures increased from the onset of the Holocene to

about 2,000 years BP (Pla and Catalan 2005). Note that the ice-

cover duration scale in the plot has been inverted to indicate

colder conditions downwards. For further details, refer to the

Electronic Supporting Information
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disseminated to remote lakes of the Northern Hemi-

sphere in a temporally coherent way (Holtgrieve et al.

2011). The isotopic signature in some lakes reveals an

earliest inflection at 1895±10 AD, followed by a

pronounced acceleration in the second half of the

twentieth century, coincident with the ‘‘Great Accel-

eration’’ of global environmental change (Steffen et al.

2007). It is plausible that this isotopic change finger-

prints an increase of atmospheric nitrogen loading or,

as a minimum, the relative anthropogenic contribution

to total Nr inputs.

For remote areas that have neither warmed nor

acidified, there is no conclusive evidence that nitrogen

deposition has affected the diatom assemblages (Smol

and Douglas 2007; Smol et al. 2005). For example, in

contrast to the rest of the circumpolar Arctic region,

the western subpolar North Atlantic (e.g. around

Hudson Bay, northern Quebec, Labrador, and southern

Greenland) experienced little or no warming (even a

slight cooling), up until *mid-1990s (Chapman and

Walsh 1993). Consistent with this lack of warming,

palaeolimnological records throughout northern Qué-

bec and Labrador have consistently yielded diatom

profiles with little assemblage change over at least the

past few hundred years (Laing et al. 2002; Smol et al.

2005), although diatom communities across Baffin

Bay in southwest Greenland witness trends that

parallel nitrogen deposition in ice cores during the

last two centuries (Fig. 3). Remarkably, within the last

*15–20 years, the Hudson Bay region has undergone

unprecedented warming and significant thinning of

Hudson Bay sea ice resulting in a shift to a new climate

regime (Hochheim and Barber 2010). Lakes in this

region are now recording increases in primary pro-

duction and the first appearances of small, Cyclotella

s.l. taxa as well as pennate planktonic diatoms in

notable abundances in the topmost sedimentary inter-

vals (*mid-1990s to present) (Rühland et al. pers.

comm.).

In environments with low biological N fixation,

even modest increases in N deposition may trigger

ecosystem changes from the bottom-up. However,

beyond fingerprinting the arrival of anthropogenic Nr

at sites extremely distant from populated regions,

more insight is required on evaluating how the

nitrogen cycle has been modified and what are the

consequences for the lake and catchment ecosystems.

This is a challenging question for remote lake

palaeolimnology.

Elusive nitrogen palaeolimnology

Reconstructing the onset and intensification of Nr

deposition effects on lakes using the sediment record

is complicated due to the nature of the nitrogen cycle

and the lack of an easily interpretable response in the

fossil record by organisms providing fossil remains.

Nitrogenous compounds do not precipitate in sedi-

ments as inorganic forms in the way, for instance, that

phosphorus does in association with either iron and

aluminium hydroxides or calcium compounds. Nitro-

gen remains highly labile in lake sediments, where it is

actively recycled between organic and inorganic

forms by microbial processes, affecting both the total

quantities archived as well as their stable isotopic

composition. However, issues of nitrogen palaeolim-

nology can best be tackled in remote lake sites where

the confounding effects of N catchment loading by

human activities are lacking.

At first glance, the influence of N deposition on

final bulk isotopic composition can be gauged by how

different its isotopic composition is from catchment

pools resulting from biological fixation. However, it

has to be recognized that the final d15N of bulk

sediment is the result of a complex suite of processes.

On one hand, although naturally fixed N and N from

industrial pollution show distinctive mean values,

large seasonal and ‘‘event-by-event’’ variability exist

in NH4
?-d15N and NO3

- -d15N of deposition (Bartrons

et al. 2010). On the other hand, the degree to which

d15N changes during atmospheric transport, runoff,

biological uptake, and sediment diagenetic processes

is only beginning to be understood (Gälman et al.

2009). At high latitudes, mixing between stratospheric

and tropospheric nitrogen oxides may influence the

eventual d15N of nitrate in snow (Heaton et al. 2004).

The pathways followed by runoff water may signif-

icantly change the original deposition d15N values of

dissolved inorganic (Bartrons et al. 2010) and organic

nitrogen forms (Bunting et al. 2010). Finally, steady-

state d15N in soils and plants depends on precipitation

and temperature (Amundson et al. 2003). However,

little is known about how terrestrial and aquatic

nitrogen-fixers respond to climate. Despite these

realities, there are cases where anthropogenic Nr

derived from far-field atmospheric emissions seems to

retain a sufficiently distinct source isotopic composi-

tion as to remain discernible in remote lake sediments.

Recent declines in sediment d15N are observed in
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many lakes (Holtgrieve et al. 2011). Nonetheless,

there are populations of nearby lakes with similar

limnological features showing alternately declining

and rising twentieth-century trends in d15N (e.g.

eastern Baffin Island, Canadian Arctic Archipelago,

(Briner et al. 2006; Thomas et al. 2008; Wolfe et al.

2006)). Stable isotopes appear powerful, but must be

complemented with other indicators of N-cycle

dynamics.

There is a need to increase knowledge about the N

influence upon aquatic organisms and communities.

Biological remains, useful as proxies for investigating

the nitrogen cycle, are scarce. A few diatom taxa have

been considered nitrophilous. For instance, Asterionella

formosa is likely to have been stimulated in alpine lakes

by atmospheric N deposition (Wolfe et al. 2001) or from

enhanced catchment N export during periods of climate

change (Schmidt et al. 2002). However, diatom com-

munities are influenced by other factors, particularly pH

and P availability, and also by light and Si. Diatom

transfer functions developed specifically for nitrate

consequently suffer several handicaps, for instance, the

high inverse correlation between dissolved organic

carbon (DOC) and nitrate at both regional and local

scales (Curtis et al. 2009), and the poor performance of

inference models at relatively low nitrogen concentra-

tions (Arnett et al. 2012). Revealing species sensitivities

to C:N:P:Si ratios through experimental approaches

seems to indicate one way forward (Saros et al. 2005),

with the potential to assist in differentiating changes in

response to increased Nr availability from those med-

iated by climate change.

Towards a stoichiometric palaeolimnology

Clearly, a relevant question is whether increased N

deposition has a net fertilization effect in lakes. This is

most likely to be the case in naturally P-rich, N-limited

lakes; for example, those situated in meadows receiving

high DOC and P loading (Kopáček et al. 2011).

However, if P loading is low, higher N deposition may

not have a direct influence in productivity, given that P

limitation is more likely to remain the key factor. Most

likely, the nitrogen cycle in both aquatic and terrestrial

spheres is capable of reorganizing itself in ways that

remain difficult to predict with current understanding. In

addition, the response to atmospheric N loads may

differ according to the overall chemical composition

of atmospheric deposition, i.e., concentration ratios of

other elements to Nr. If the deposition is not buffered,

transient fertilization of aquatic ecosystems will be

followed by base cation depletion, species changes, and

loss of acid-neutralizing capacity (Baron et al. 2011). In

contrast, if the deposition is enriched in Nr, but also

contains abundant cations and phosphorus, as occurs

when dust contributions are important (Camarero and

Catalan 1996), then the fertilisation action may be

enhanced and systems may revert to P-limitation

(Camarero and Catalan 2012). The issue of Nr impacts

thus requires full consideration of the coupling between

C, N and P biogeochemical cycles under different

circumstances, and their implications for aquatic organ-

isms, including connections between aquatic and

terrestrial ecosystems (Peñuelas et al. 2012).

Ecological stoichiometry links biogeochemical

processes to community ecology (Sterner and Elser

2002). Alteration of C:N:P ratios may have multiple

biological consequences. Different adaptive strategies

may be selected for according to the prevalent

situation. For example, plankton in Himalayan lakes

do not produce microsporine-like amino acids (for UV

protection) as occurs in the Alps, but rather produce

melanin because of insufficient nitrogen compared to

the excess Nr in the Alps (Sommaruga 2010).

Elemental ratios may also modify food quality with

community composition consequences. In the context

of current global change, N deposition extends beyond

fertilization and acidification effects to regulating the

complex processes that modify terrestrial and aquatic

ecosystem stoichiometry. Palaeolimnology at remote

sites can provide a long-term perspective to this topic.

Atmospheric fertilization at the global scale is

likely to remain an issue of continued research in

coming years. It may well be that pre-industrial

intervals do not constitute an adequate reference for

the nitrogen cascade and stoichiometry ecology in

remote ecosystems. Recent estimates indicate that the

majority of the total cumulative Nr flux from anthro-

pogenic sources over the last 10,000 years occurred in

the preindustrial period and could have increased soil

N pools of some remote ecosystems much earlier than

is currently assumed (Kopáček and Posch 2011).

Double forcing: climate change and atmospheric

fertilisation

Palaeolimnology of remote sites has much potential to

increase knowledge on climate interactions with
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biogeochemical processes, because lake sediments

record both lake, and terrestrial ecosystem trends.

Nitrogen stable isotope excursions in remote lakes of

the Northern Hemisphere (Holtgrieve et al. 2011) have

stimulated controversy as to whether climate warming

or nitrogen deposition may be the proximate cause of

recent biological changes at certain sites. However,

climate change and N atmospheric deposition are not

mutually exclusive as causative drivers of recent

limnological change. Across different lake regions,

the relative influence of each factor may differ (Curtis

et al. 2009; Hobbs et al. 2010), which is directly

relevant for management and mitigation strategies.

For instance, the nature and timing of algal community

changes recorded in the Arctic (Smol and Douglas

2007), as well as increases in planktonic diatoms

across the Northern Hemisphere (Rühland et al. 2008),

differ from the algal changes observed in nitrogen

deposition hot spots of the Rocky Mountains (Hobbs

et al. 2010; Saros et al. 2011). The Arctic shows

principally a warming effect (Perren et al. 2012; Smol

and Douglas 2007).

Across Europe, a mosaic of situations has been

suggested based on pre- and post-industrial diatom

community comparisons (Curtis et al. 2009). There are

areas with nitrogen deposition as the suggested main

driver of diatom change; others in which both warming

and nitrogen increase are responsible, but without

acidification; others where acidification occurred (Pla

et al. 2009) and others where climate warming seems to

be the sole driver of diatom community change. This

array of responses is modulated by the situation of the

lake district relative to sources of atmospheric pollution,

but also to the relative influence of other factors

conditioning the chemistry of atmospheric deposition

(i.e., ocean, and dust land influences). Areas with large

influence of dust transport (e.g. the Pyrenees) do not

show acidification trends despite nitrogen loads similar

to other areas with clear symptoms of acidification

(Camarero and Catalan 1996). However, it seems there

is a fertilising effect, which can be due to the combined

effect of N from pollution and P from dust (Camarero

and Catalan 2012). On the other hand, air temperature

increase has been suggested as a mechanism to coun-

terbalance the acidifying effect of atmospheric nitrogen

loading in some areas of the Alps with low buffering

capacity. This is because warmer situations will enhance

rock weathering and biological production (Sommaru-

ga-Wögrath et al. 1997). In summary, many ways of

interaction between climate change and atmospheric

fertilisation potentially exist. The variety of double

forcing combinations across the world that remote areas

show is an excellent opportunity for understanding

synergistic effects between climate and atmospheric

fertilisation.

Under a true global change perspective, whether

climate or atmospheric fertilisation dominates at

specific sites becomes an irrelevant question. During

the last century, average northern hemisphere temper-

ature has changed highly correlated with many

atmospheric gases and, eventually, many indicators

of economic growth, resource use or land conversion.

This is the most challenging aspect of global change;

many things are simultaneously changing at an

exceptional rate. In the long run, some of the details

now under consideration may become irrelevant. The

question is whether site idiosyncratic responses will

persist or are we approaching a generalised planetary

ecosystem shift forced by the fundamental atmo-

spheric change (Barnosky et al. 2012). The palaeo-

limnology of remote sites has much to offer in terms of

evaluating the spatial and temporal dimensions of the

Earth system change (Table 1).

Perspectives: global change and remote lake

research

Compared to environmental changes in the past, only

recently have humans gained the power to exert

environmental modifications at the planetary scale.

Presumably, this implies that humans also possess the

wherewithal to mitigate the pace of global change,

notwithstanding geopolitical obstacles. The objective

documentation of ongoing changes thus has the

potential to serve as a powerful societal feedback.

As part of global change research, palaeolimnology

at remote lakes should increase focus on catchment

ecosystems. High latitude areas in which organic

carbon has been accumulating in the catchments offer

a significant opportunity to address questions on the

global carbon cycle and greenhouse gas emissions

(Karlsson et al. 2010; Kokfelt et al. 2009; Rouillard

et al. 2011). There is evidence of shifts in Arctic plant

community composition, particularly an increase in

shrubs. On the other hand, in addition to increased

shrub cover, there are changes in the balance of

graminoids and forbs in mid-latitude mountain
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regions. Such vegetation changes may result in a

complex series of biotic cascades, couplings and

feedbacks which are superimposed on direct responses

of ecosystem components to first-order drivers of

global environmental change (Wookey et al. 2009).

The carbon cycle at high latitudes is a key player in

suspected nonlinearities of global change. Some of the

soil considerations made during the acidification

debate (Krug and Frink 1983) may find renewed

relevance in global change research. Permafrost

melting and deepening of the active soil layer is

increasing microbial habitat activity, which affects

soil nutrient stoichiometry, organic matter minerali-

zation, the release of nutrients to ground- and surface

waters, and the evasion of greenhouse gases (van

Hardenbroek et al. 2012). In many Arctic lakes, this is

likely an important mechanistic pathway for the

impacts of warming. High altitude systems show

environmental gradients in a much shorter absolute

distance relative to high latitude counterparts. This

may exacerbate the visibility of demographic early

responses in the catchments because the absolute size

of populations is smaller than at high latitudes. A

formal analysis of this contrasting situation is also

required.

Combinations of traditional and emerging analytical

techniques in palaeolimnology will contribute mean-

ingfully to future insights. However, the way in which

such analytical methods are developed and applied

mandates a consideration of a broad conceptual frame-

work that embraces the multidisciplinarity of global

change research. Accordingly, there is a need for further

bridging of palaeolimnology with other environmental

disciplines. Remote lakes are particularly suitable for

this purpose as they are usually small and simple

enough to facilitate quantitative and modelling efforts

(Anderson et al. 2006). This view is already emerging

in palaeolimnology (Leavitt et al. 2009) and is expected

Table 1 Some current challenges in remote lake palaeolimnology

Topic Rationale/questions

The shifting boundaries of remoteness Remoteness is a convenient operational definition, the boundary in

landscape between local and non-local human influence. This

boundary has been historically shifting and will do so under current

changing conditions

Impacts of metals and organic pollutants in remote areas Palaeolimnology has documented historical pollution at remote sites.

However, contrasting with other environmental problems, it has

scarcely contributed to show the ecosystem impacts of this pollution.

Are there ways to show these impacts?

Climate interactions with long-range atmospheric

pollution

Will climate warming accelerate biological sensitivity and responses to

pollutants?

Delayed pollution from environmental deposits (soils,

glaciers)

For decades, atmospherically transported pollutants have accumulated

in natural deposits, with climate change, they are remobilized. What

are the consequences?

Development of new lakes (glacier retreat) Lake ontogeny—comparison with early Holocene, colonisation

Disentangling what is new in current global change

compared to past climatic and environmental changes

Current climate changes include a set of conditions that are new

compared to past climatic changes due to its unique origin. For

millennia, biogeochemical processes have been co-varying in parallel

with climate. The multicomponent nature of the current global

change, directly disturbing some biogeochemical cycles, creates new

combinations that may have no past analogues

Palaeolimnology of the disturbed nitrogen cycle The nitrogen cycle is a methodological challenge for palaeolimnology

due to its complexity and scarce direct recording in the sediments.

Development of new techniques and approaches in the coming years

is required

Downscaling from global to local Understanding and mapping the regional impacts of atmospheric

forcing deserve dedication and networking in international initiative

Upscaling from regional to global The ultimate challenge of palaeolimnology at remote sites is to upscale

regional information in a coherent way to evaluate globally the state

of the biosphere
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to expand as global change pushes the discipline

beyond its traditional boundaries (Bogdal et al. 2010).

Under a mechanistic view, there is a need for

understanding the processes leading to patterns case

by case. Each lake and its catchment constitute an

integral system that may or may not be representative

of regional behaviour. Therefore, long-term limno-

logical observations at key sites should incorporate

benthic studies and water-column profiles to palaeo-

limnological investigations, ideally including cores

from nearby lakes in order to establish regionally

representative trends. We suspect that the more we

progress in understanding first principles, the more we

may understand higher-scale correlations. Even at an

individual site, correlations may not be stable through

time—an excellent example of this is the decoupling

between diatom-based pH and air temperature at the

onset of acidification in some parts of the Alps

(Psenner and Schmidt 1992). Therefore, dissection of

the causal pathways is always desirable (Shippley

2000). Methodological progress needs to move

beyond purely statistical interpretations (Saros et al.

2012), towards improving the conceptual and proces-

sual tools for interpreting sediment archives as the

end-member of energy and matter fluxes from the

catchment to the lake (Leavitt et al. 2009).

On the other hand, holistic approaches should not

be dismissed. Causality and correlation are two

concepts that are not always distinguishable in highly

stochastic dynamics, such as those taking place in

climate and atmospherically-driven systems. Cer-

tainly, at the proximal level of species, at short

temporal and spatial scales, the physical causal link

matters most. However, the stochastic nature of

dynamics increases when we start to consider ensem-

bles (communities, complex biogeochemical pro-

cesses, sets of atmospheric drivers). The resulting

dynamics, and eventually the way they are recorded in

the sediment archive, depends on the relative contri-

bution of many causal, not necessarily inter-connected

pathways. Atmospheric forcing upon any lake (and

catchment) system has a statistical nature, which

impinges in causal mechanisms that may differ

between lakes and eventually provide different sedi-

ment records among sites. In such cases, one must

keep in mind that lakes cannot constitute formal

experimental replicates, with a caveat for direct

statistical comparisons. Regional climate and envi-

ronmental shifts may force converging tendencies

among lake communities, although stochastic

responses of species and lakes are likely to remain

(Fig. 7).

Remote ecosystems are pervasively affected by

global change components. Warming and fertilization

accelerates dynamics, which increases local temporal

variability, the frequency of statistically unusual

events increases (Seekell et al. 2011) and eventually

the likelihood for non-linear ecosystem behaviour

(Carpenter and Brock 2011). Necessarily, climate

projections indicate smooth trends towards certain

new states. However, the inherent non-linearity of

climate and ecosystems dynamics assures that there

will be some abruptness in the way. The problem is to

suggest when, where and how. Examples of the past

can provide some light on this issue, and again remote

lake palaeolimnology is in an optimal position to offer

important contributions to these questions. For

instance, the mid-Holocene illustrates how vegetation

changes driven by sustained trends in general climate

were punctuated by accelerations in the penetration of

new species due to higher frequency climatic oscilla-

tions (Pelachs et al. 2011; Tinner and Lotter 2006). As

climate change progresses, the likelihood for abrupt

changes may increase; the ultimate goal for remote

lake palaeolimnology should be to contribute in the

detection of planetary-scale regime shifts.

Local impacts of global change need not necessar-

ily correlate strongly with one or more specific

components (e.g., warming in spring, nitrogen depo-

sition, episodic strong winds, etc.). It may happen that

we simply observe a progressive shift in the ecosystem

state that ultimately correlates better with some large-

scale Earth system indicator (e.g., CO2 concentrations;

mean hemispheric temperature) than with any local

driver. It is not enough to monitor atmospheric drivers

(e.g., local weather stations) for global change under-

standing; the observation of the ecosystem itself is

ultimately more informative. Therefore, long-term

ecological studies are essential for monitoring global

change (Hobbie et al. 2003) and anticipating critical

transitions (Scheffer et al. 2012). In this context,

remote lake studies may have an influential role (Parr

et al. 2003) and international initiatives are needed to

link available data with other climate and atmospheric

monitoring programs. Spatial and temporal replication

at the landscape scale can be achieved with palaeo-

limnology (Smol 2008). Global change research is not

a matter of scoring percentages of individual cases that
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satisfy (or not) a set of predictions. Rather it represents

an opportunity to nurture confidence in regional to

global scale assessments about processes relevant to

biodiversity preservation and for humankind to pro-

gress towards a sustainable world and planetary

stewardship (Steffen et al. 2011b). One of the

challenges of palaeolimnology at remote sites is how

to upscale the individual lake responses to regions and,

eventually, globally in order to portray a coherent

understanding of large scale changes. We must seek to

find ways of synthesizing palaeolimnological evi-

dence over large regions, at the scales of continents

and hemispheres, in order to best portray how aquatic

ecosystems, and catchments related to them, are

responding to these complex forcings.
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Kopáček J, Maresova M, Hejzlar J, Norton SA (2007) Natural

inactivation of phosphorus by aluminium in preindustrial

lake sediments. Limnol Oceanogr 52:1147–1155
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