
Biogeosciences, 10, 6657–6676, 2013

www.biogeosciences.net/10/6657/2013/

doi:10.5194/bg-10-6657-2013

© Author(s) 2013. CC Attribution 3.0 License.

Biogeosciences

O
p

e
n

 A
c
c
e

s
s

Global changes in dryland vegetation dynamics (1988–2008)

assessed by satellite remote sensing: comparing a new passive

microwave vegetation density record with reflective greenness data

N. Andela1, Y. Y. Liu2,4, A. I. J. M. van Dijk3,4, R. A. M. de Jeu1, and T. R. McVicar4

1Earth and Climate Cluster, Department of Earth Sciences, Faculty of Earth and Life Sciences, VU-University, Amsterdam,

the Netherlands
2Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia
3Fenner School of Environment & Society, The Australian National University, Canberra, Australia
4CSIRO Land and Water, GPO Box 1666, Canberra, 2601, ACT, Australia

Correspondence to: N. Andela (n.andela@vu.nl)

Received: 12 April 2013 – Published in Biogeosciences Discuss.: 28 May 2013

Revised: 19 August 2013 – Accepted: 12 September 2013 – Published: 24 October 2013

Abstract. Drylands, covering nearly 30 % of the global land

surface, are characterized by high climate variability and

sensitivity to land management. Here, two satellite-observed

vegetation products were used to study the long-term (1988–

2008) vegetation changes of global drylands: the widely

used reflective-based Normalized Difference Vegetation In-

dex (NDVI) and the recently developed passive-microwave-

based Vegetation Optical Depth (VOD). The NDVI is sensi-

tive to the chlorophyll concentrations in the canopy and the

canopy cover fraction, while the VOD is sensitive to vege-

tation water content of both leafy and woody components.

Therefore it can be expected that using both products helps

to better characterize vegetation dynamics, particularly over

regions with mixed herbaceous and woody vegetation. Lin-

ear regression analysis was performed between antecedent

precipitation and observed NDVI and VOD independently

to distinguish the contribution of climatic and non-climatic

drivers in vegetation variations. Where possible, the contri-

butions of fire, grazing, agriculture and CO2 level to vege-

tation trends were assessed. The results suggest that NDVI

is more sensitive to fluctuations in herbaceous vegetation,

which primarily uses shallow soil water, whereas VOD is

more sensitive to woody vegetation, which additionally can

exploit deeper water stores. Globally, evidence is found for

woody encroachment over drylands. In the arid drylands,

woody encroachment appears to be at the expense of herba-

ceous vegetation and a global driver is interpreted. Trends

in semi-arid drylands vary widely between regions, suggest-

ing that local rather than global drivers caused most of the

vegetation response. In savannas, besides precipitation, fire

regime plays an important role in shaping trends. Our results

demonstrate that NDVI and VOD provide complementary in-

formation and allow new insights into dryland vegetation dy-

namics.

1 Introduction

Drylands cover nearly 30 % of the global land surface, they

are characterized by high climate variability and are sen-

sitive to land use practice (Tietjen et al., 2010). Over the

last decades, many dryland ecosystems have faced increased

pressure from human demands and climate change (Asner

et al., 2004; Dore, 2005; Liu et al., 2013a). Here we de-

fine arid drylands as all areas that have a ratio of long-

term mean annual precipitation to mean annual potential

evaporation of 0.1 < P/ETp ≤ 0.3 and semi-arid drylands as

0.3 < P/ETp ≤ 0.7. Globally the primary drivers of vegetation

dynamics in drylands include: (i) climate (Herrmann et al.,

2005; Bai et al., 2008); (ii) fire regime (Bond and Keeley,

2005; Archibald et al., 2010); (iii) grazing (Asner et al., 2004;

Liu et al., 2013b); (iv) agriculture (Piao et al., 2003; Jeyasee-

lan et al., 2007); and (v) atmospheric CO2 concentrations

(Bond and Midgley, 2012; Donohue et al., 2013). Of these,
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fire, grazing and agriculture can be considered the main dis-

turbance processes that affect large-scale vegetation trends in

drylands. Other factors, e.g., nitrogen deposition and changes

in growing season length (Bai et al., 2008) may also play an

important role locally. Changes in the five primary drivers are

expected to result in differential responses of woody cover

(i.e., woody encroachment or decline) and herbaceous cover

(Archer et al., 1995; Van Auken, 2000; Bond et al., 2003;

Asner et al., 2004).

Although supporting evidence has been found that each of

the five primary drivers can result in responses of dryland

vegetation cover, simultaneous changes of the five primary

drivers and interactions among them and interaction with

ecosystem processes make it difficult to attribute change to

any single driver (Bond and Midgley, 2012). Using remote

sensing data the evidence of climate impacting vegetation

dynamics has been studied at regional (Evans and Geerken,

2004; Herrmann et al., 2005; Wessels et al., 2007), continen-

tal (Donohue et al., 2009) and global scales (Nemani et al.,

2003). To date, the impact of grazing and fire have not been

included in global studies of dryland vegetation dynamics

(e.g., Nemani et al., 2003; Fensholt et al., 2012; de Jong et al.,

2011). Remote sensing data on global fire regimes are avail-

able, with many improved products becoming available since

the launch of the first Moderate Resolution Imaging Spectro-

radiometer (MODIS) in 1999 (Kaufman et al., 1998). Studies

of fire-induced vegetation change are mainly performed re-

gionally (e.g., Flannigan et al., 2009; Archibald et al., 2010;

Heisler et al., 2003) with notable exceptions focusing on

longer timescales (Bowman et al., 2009; Bond et al., 2005).

Vegetation indices have been widely used as indicators for

advances in agricultural practice (e.g., irrigation and fertil-

ization) and annual crop yields (e.g., Tottrup and Rasmussen,

2004), while land cover maps provide information on the

spatial extent of agriculture. Several studies provide field ev-

idence of the impact of grazing (Van Auken, 2000; Asner

et al., 2003) and rising CO2 levels (McMahon et al., 2010;

Buitenwerf et al., 2011) on vegetation cover; however, these

studies are regional, presumably to avoid problems of com-

plexity and data availability. As a consequence, at a global

scale the relative importance of climate, fire, grazing, agri-

culture and CO2 on vegetation dynamics is still actively de-

bated and so far unresolved (Archer et al., 1995; Asner et al.,

2004; Bond and Keeley, 2005; Bond et al., 2005; Fensham

et al., 2005; Sankaran et al., 2005; Buitenwerf et al., 2011;

Lehmann et al., 2011; Bond and Midgley, 2012).

Satellite remote sensing is a powerful tool to globally

study both woody encroachment and desertification over

multiple decades, complementing local to regional field ev-

idence and process studies. For global studies, the Nor-

malized Difference Vegetation Index (NDVI) is the most

widely used spectral vegetation index and is based on a ra-

tio of red and near-infrared reflectance (Rouse et al., 1974;

Tucker, 1979; Beck et al., 2011). NDVI has been used as

an indicator of vegetation productivity (Tucker et al., 1985;

McVicar and Jupp, 1998); and is related to leaf area in-

dex (LAI; Wang et al., 2005), canopy cover fraction and

the fraction of absorbed photosynthetically active radiation

(fPAR; Asrar et al., 1984; Carlson and Ripley, 1997; Lu et al.,

2003). Complementary to the NDVI, a recently developed

data set is Vegetation Optical Depth (VOD). VOD describes

the transparency of vegetation in the microwave domain and

is mostly sensitive to vegetation water content (Kirdiashev

et al., 1979). Owe et al. (2001) developed the Land Parameter

Retrieval Model (LPRM) to derive VOD from low-frequency

passive microwave observations. This model was further im-

proved by Meesters et al. (2005) and has been applied to a

series of passive microwave sensors (Owe et al., 2008). VOD

is sensitive to vegetation water content in both the woody

and leafy vegetation components, and provides a measure of

aboveground biomass (Liu et al., 2011a).

Separately, both reflective and microwave products have

been used to study vegetation dynamics. Pettorelli et al.

(2005) review ecological studies that used NDVI to examine

climate- and human-induced vegetation change (e.g., Evans

and Geerken, 2004; Herrmann et al., 2005; Wessels et al.,

2007), global vegetation trends (e.g., de Jong et al., 2011;

Fensholt et al., 2012) and land degradation (e.g., Bai et al.,

2008). Long VOD time series were only recently developed,

and have been used to study vegetation phenology (Shi et al.,

2008; Jones et al., 2011, 2012) and to show the impact of

El Niño–Southern Oscillation on Australian vegetation cover

(Liu et al., 2007). Global trends in VOD were shown to

correspond to changes in precipitation, livestock (e.g., over-

grazing), crop production, deforestation and fires (Liu et al.,

2013a, b).

To date, only an introductory assessment of potential in-

sights from a combined interpretation of NDVI and VOD co-

trends has been performed (Liu et al., 2011a). While many

regions had similar co-trends regional differences were il-

lustrating that VOD provides new information for mixed

woody-herbaceous land cover types. Due to the character-

istics of both products, differential responses to changes in

land cover are expected (Shi et al., 2008). Compared to

VOD, NDVI saturates at relatively low biomass and is there-

fore most sensitive to vegetation covering the largest surface

(Tucker, 1979). As a consequence, temporal correlation be-

tween NDVI and VOD is high for grass and croplands but

lower for high biomass vegetation types where NDVI sat-

urates (Liu et al., 2011a). Grasses are the main source of

large interannual variation in NDVI for savanna ecosystems

(Archibald and Scholes, 2007; Roderick et al., 1999b; Lu

et al., 2003; Donohue et al., 2009). VOD has a greater pen-

etration capacity and is more sensitive to changes in woody

vegetation (Liu et al., 2011a; Shi et al., 2008). The relation-

ship between NDVI and VOD is further explored in the back-

ground theory section.

This paper uses the two complementary remote sensing

data sets and analyzes their trends across the global drylands.

In particular, we address the following questions:
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1. How do NDVI and VOD complement each other and

what do combined trends tell us about vegetation dy-

namics?

2. What component of temporal dryland vegetation dy-

namics is explained by precipitation?

3. What are the remaining trends in both vegetation in-

dices, and how are they related to the other primary

drivers (fire, grazing, agriculture and CO2)?

Differences between NDVI and VOD are explored and

their trends and co-trends are interpreted ecologically over

the global drylands. A model is developed to estimate the

dryland vegetation responses that can be explained by pre-

cipitation variation. Residual trends (i.e., the observed mi-

nus model-explained trends) and their potential drivers are

discussed and attributed where possible, by comparison with

independent data sets (e.g., burned area and grazing) and in-

formation from previous studies.

2 Background theory

A conceptual framework is required to relate temporal pat-

terns and trends in NDVI and VOD to vegetation character-

istics. For NDVI, the reflectance observations from which it

is derived are often described by a linear mixture of the con-

stituent surface reflectance components (cf. Roberts et al.,

1998):

ρ = foρo + (1 − fo)(fuρu + fsρs), (1)

where ρ is the wavelength reflectance and f the fraction

canopy cover, with subscripts denoting overstory (o), under-

story (u) and soil surface (s). This is a somewhat simpli-

fied approach, as light reflecting from one component can

affect reflectance of another component by multiple scatter-

ing and transmittance (Roberts et al. , 1993). Homogeneous

vegetation cover is assumed such that the overstory will ob-

scure some part of the understory, and it is assumed that

the NDVI observations are representative for nadir measure-

ments such that f equates to projected canopy cover. Here

it is assumed that the overstory and understory can be as-

sumed equal to the (woody) persistent and (herbaceous) re-

current vegetation components (cf. Roderick et al., 1999b;

Lu et al., 2003; Donohue et al., 2009). NDVI is calculated

as a reflectance difference index and therefore, using Eq. (1)

it can be shown that NDVI will respond to surface compo-

nent mixing ratios in a slightly non-linear manner, although

NDVI still converges to end member NDVI values when

these dominate overall reflectance (Asner, 1998). NDVI per

unit canopy area for recurrent vegetation tends to exceed

that of persistent vegetation, with recurrent vegetation hav-

ing shorter-lived and “greener” (i.e., higher chlorophyll den-

sity) leaves (Reich et al., 1997, 2003). As a result, all else

being equal, an increase in NDVI can be explained by an in-

crease in total canopy cover or a relative increase in recurrent

vegetation canopy cover, or both.

VOD (denoted τ ) can be interpreted as being linearly re-

lated to total aboveground biomass (AGB) water content, i.e.,

the sum of water in woody and non-woody vegetation (Jack-

son et al., 1982; Wigneron et al., 1993):

τ = τo + τu = cτ (θomo + θumu), (2)

where θ is vegetation water content, m the AGB, and cτ the

constant of proportionality. θ will normally be greater for

herbaceous vegetation than for woody vegetation (Roderick

et al., 1999a, 2000), therefore increases in VOD can mean an

increase in total AGB, an increase of the fraction of herba-

ceous vegetation AGB, or both.

Finally, the relationship between NDVI and VOD is influ-

enced by the connection between AGB (m) and canopy cover

(f ). This relationship can be presented by considering the

commonly used light extinction equation (Monsi and Saeki,

2005) that relates f to leaf area index (3):

f = 1 − exp(−κ3) = 1 − exp(−καSLAfleafm) = 1 − exp(−c3m), (3)

where κ is the extinction coefficient, αSLA the specific leaf

area (i.e., area per unit leaf mass), and fleaf the fraction of leaf

biomass in total AGB. While κ depends on leaf orientation

and clumping, fleaf and αSLA will be greater for non-woody

vegetation than for woody vegetation. Overall, total AGB re-

maining unchanged, the sensitivity of NDVI to a relative in-

crease in the herbaceous AGB is expected to be considerably

greater than the sensitivity of VOD. VOD, being sensitive to

AGB water content, is expected to be more sensitive to a rel-

ative increase in woody vegetation. Per unit mass the tree fo-

liage will have a somewhat higher relative water content than

the woody parts, but because woody biomass typically rep-

resents 90 % or more of total aboveground biomass (Northup

et al., 2005, and references therein) it still contains most of

the water (Sternberg and Shoshany, 2001). By using the trend

information from the different vegetation data sets the above

considerations lead to the following four expectations:

1. a long-term increase in both NDVI and VOD signifies

an increase in the relative fraction of herbaceous AGB

and/or an increase in total AGB;

2. a long-term increase in NDVI combined with a de-

crease in VOD signifies an increase in the relative frac-

tion of herbaceous AGB;

3. a long-term decrease in NDVI and an increase in VOD

signifies an increase in the relative fraction of woody

AGB; and

4. a long-term decrease in both NDVI and VOD signifies

a decrease in the relative fraction of herbaceous AGB

and/or a decrease in total AGB.
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3 Materials

To study global long-term dryland vegetation dynamics, both

NDVI and VOD data sets were used for their overlapping pe-

riod 1988–2008. Both vegetation indices are dimensionless

and here we use a 0.25◦ spatial and monthly temporal reso-

lution.

3.1 Normalized Difference Vegetation Index (NDVI)

The NDVI data are Global Inventory Modeling and Map-

ping Studies 3rd generation (GIMMS3g) derived from the

Advanced Very High Resolution Radiometer (AVHRR) sen-

sor on board the NOAA series of satellites (i.e., NOAA 7,

9, 11, 14, 16 and 17; Tucker et al., 2005). Although data-

sets are merged from several sensors and corrections were

performed (Tucker et al., 2005), they do not affect the cal-

culated trends (Fensholt and Proud, 2012). These data were

resampled from 1/12◦ to 0.25◦ spatial resolution and from

twice to once monthly temporal resolution by simple averag-

ing. Data were available between 1981–2010. Recently Beck

et al. (2011) showed that of four AVHRR processing chains

tested, GIMMS was best able to track trends in 1424 Landsat

image pairs.

3.2 Vegetation Optical Depth (VOD)

Liu et al. (2011a) developed a harmonized VOD data set for

1988–2008 by merging VOD retrievals from SSM/I (Spe-

cial Sensor Microwave Imager, 1988–2007), TMI (the mi-

crowave instrument onboard the Tropical Rainfall Measuring

Mission satellite, 1998–2008) and AMSR-E (the Advanced

Microwave Scanning Radiometer – Earth Observing Sys-

tem, 2002–2008) using the LPRM algorithm. This harmo-

nized data set preserves the relative dynamics (e.g., season-

ality and interannual variations) of the original products (Liu

et al., 2011b) and is able to capture long-term changes in total

aboveground vegetation water content and biomass over var-

ious land cover types globally (Liu et al., 2013a). Because

of enhanced sensor characteristics (particularly the longer

wavelength), the accuracy of VOD retrievals from AMSR-

E is expected to be better than those from TMI and SSM/I. A

comprehensive evaluation study by Liu et al. (2013a) demon-

strated that the errors associated to sensor changes in the har-

monized VOD data set are small, however. The harmonized

data set captured long-term changes in total aboveground

vegetation water content and biomass over different land

cover types without sensor artefacts. The VOD data should

be interpreted with caution over sandy deserts, open water

and under the frost conditions (de Jeu, 2003; Jones et al.,

2011; Gouweleeuw et al., 2012).

3.3 Additional data sets

3.3.1 Precipitation

Precipitation data (monthly; 1901–2009) produced by the

University of East Anglia Climatic Research Unit (CRU

Time Series version 3.1) were available at a 0.5◦ resolu-

tion (Jones and Harris, 2008). For analysis it was assumed

that within this grid cell precipitation was homogeneously

distributed and data was resampled to a 0.25◦ resolution

(Koenig , 2002).

3.3.2 Land cover

The MODIS Land Cover Type Yearly Climate Modeling

Grid (MCD12C1; 2005; 0.05◦ resolution), land cover map

was used here (NASA, 2008). Data was resampled to a 0.25◦

resolution using the land cover with the highest frequency

in each grid cell. The land cover types follow the Univer-

sity of Maryland (UMD) classification scheme (Hansen et al.,

2000). For our analysis some land cover classes were merged

to assist interpretation (i.e., urban and built-up, barren or

sparsely vegetated, and unclassified + fill were here merged

into “barren or sparsely vegetated”; all types of forest into

“forest”; and closed and open shrublands into “shrublands”).

3.3.3 Fire

Monthly burned area data was available based on MODIS

Terra satellite imagery MCD64A1; 500 m resolution;

November 2000 onwards (Giglio et al., 2009). Data was

rescaled to a monthly 0.25◦ resolution by calculating the

mean burned area per 0.25◦ grid cell.

3.3.4 Livestock

Livestock density was available from the Food and

Agriculture Organization’s (FAO) Gridded Livestock of

the World data (http://www.fao.org/AG/againfo/resources/

en/glw/GLW_dens.html; Robinson et al., 2007) and was

expressed in Tropical Livestock Units (TLU) per km2

(1 TLU = 250 kg live weight, cattle = 0.7 TLU, sheep and

goats = 0.1 TLU; Jahnke, 1982).

4 Methods

4.1 Relationship between NDVI and VOD

To illustrate the theoretical relations between NDVI and

VOD (Sect. 2), we calculated global mean values and stan-

dard deviation for both vegetation indices. To provide more

insight, we calculated annual mean values and range (be-

tween maximum and minimum) and compared seasonal pat-

terns of three southern African land cover types with in-

creasing woody cover: (i) grasslands, (ii) savannas and (iii)

woody savannas. In addition to earlier explorations on the
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relationship between NDVI and VOD (Liu et al., 2011a; Shi

et al., 2008), the results of these analysis were used to verify

the four expectations of Sect. 2, regarding the co-trends be-

tween NDVI and VOD. Trends in NDVI and VOD were an-

alyzed separately (Sects. 4.2 and 4.3), but co-trends (NDVI

and VOD) were also interpreted using our theoretical frame-

work.

4.2 Response of vegetation index anomalies to

antecedent precipitation anomalies

Following Evans and Geerken (2004) and Herrmann et al.

(2005), linear regression models between antecedent precip-

itation and each vegetation index were developed for each

grid cell. These regression models were used to estimate

the long-term vegetation trends expected due to precipitation

patterns alone. Estimated vegetation trends were calculated

in three steps. Firstly, anomalies were calculated both for

precipitation and the vegetation products (NDVI and VOD).

Second, the antecedent precipitation index (API) was calcu-

lated, here defined as the optimal correlating precipitation

running mean (PRM) as judged from Spearman’s ranked cor-

relation coefficient (Rs) over 1- to 60-month averaging peri-

ods. The API(x,y, t) was calculated for each grid cell (x,y)

and month (t) using

API(x,y, t) =

t∑

t−(T (x,y)−1)

d ′(x,y, t)

T (x,y)
, (4)

where T is the averaging period in months for antecedent

precipitation that leads to the highest Rs between the PRM

and the vegetation anomalies and d ′ is the precipitation

anomaly. The estimated vegetation variation was calculated

as a linear function of API:

estimated(x,y, t) = a1(x,y) · API(x,y, t) + a2(x,y). (5)

For each grid cell the coefficients a1 and a2 were deter-

mined by least squared differences between the API and veg-

etation anomaly time series. Similar approaches were used

by Evans and Geerken (2004), Herrmann et al. (2005) and

Wessels et al. (2007) for NDVI, who also assumed (as we do)

that if estimated vegetation variation based on precipitation

variation was removed from observed vegetation anomalies,

the residual trends are largely independent of precipitation.

Here we develop models based on precipitation and vegeta-

tion anomalies (rather than the original vegetation indices)

as all trends are present in the anomalies, and not in the sea-

sonal pattern. So a model optimized for anomalies will give

a better estimation of trends in the vegetation indices caused

by precipitation. Although direct correlation between precip-

itation and vegetation indices will be higher than correla-

tion between vegetation index and precipitation anomalies,

a model based on the original vegetation indices and precipi-

tation would be more suitable to study the effect of precipita-

tion on seasonal rather than interannual vegetation dynamics.

However, to facilitate comparison with previous studies, the

analysis was also repeated using the original vegetation in-

dices rather than anomalies (cf. Herrmann et al., 2005).

4.3 Global dryland vegetation trends

After calculating the estimated index anomalies, trends were

calculated for the observed, estimated and residual vegeta-

tion index. The residual trend was calculated as the trend in

the observed minus estimated vegetation anomaly and repre-

sents the component of the signal that could not be directly

attributed to precipitation variations. A conventional non-

parametric Mann–Kendall trend test was used to determine

areas of significant monotonic trends (cf. de Jong et al., 2011;

Fensholt et al., 2012; Liu et al., 2013a). The non-parametric

Theil–Sen estimator of slope is insensitive to outliers and was

used to calculate linear trends (Sen, 1968; Theil, 1950).

Climate and land cover affect NDVI and VOD dynamics

and will likely cause them to respond differently to the pri-

mary drivers of dryland vegetation dynamics. Hence, to strat-

ify our results, we used global maps of land cover (Fig. 1a)

and P/ETp classes; referred to as humidity classes hereafter

(Fig. 1b). Global maps of livestock density, burned area, re-

cent trends in burned area, and ecosystem characteristics of

land cover and humidity were used to interpret results. Only

static livestock density and land cover data were available,

but these could in some cases be combined with regional

studies to interpret the influence on vegetation dynamics. It

was assumed that globally consistent trends not explained

by climate, fire, grazing and agricultural developments are

caused by increasing atmospheric CO2 concentrations (Bond

et al., 2003; Donohue et al., 2013). Impact of fire on vege-

tation indices was further explored studying time series of

NDVI, VOD and burned area for grassland, savanna and

woody savanna in southern Africa.

Grid cells with less than 40 % valid data (i.e., 100 or less of

the 252-month series) in either vegetation data set were not

included in this analysis. NDVI cannot be used over snow

and ice (Brown et al., 2006), while VOD is sensitive to frost

conditions (see Sect. 3.2; Liu et al., 2011a), hence seasonally

recurrent data gaps exist in both products during winter. The

threshold of 40 % valid data was chosen to include most dry-

lands at high latitudes/elevations. Data gaps were ignored in

trend calculations yet are considered in their interpretation.

5 Results

5.1 Relationship between NDVI and VOD

Globally, for the arid drylands, mean VOD values were

generally lower than NDVI, with increasing humidity and

biomass VOD increased faster than NDVI (Fig. 2a and b).

Most notable examples of large differences between NDVI

and VOD were forests and agricultural regions of the temper-

ate northern hemisphere drylands. NDVI generally showed

www.biogeosciences.net/10/6657/2013/ Biogeosciences, 10, 6657–6676, 2013
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Table 1. Percentage of global drylands with significant (p < 0.05) correlation between API and the two vegetation indices for land cover

and humidity classes. The average humidity (P/ETp) for each land cover class is shown in brackets with the land cover classes ordered in

increasing humidity. 1 % represents ≈ 750 grid cells (0.25◦ resolution), and abbreviations of land cover classes are explained in the legend

of Fig. 1a.

Land cover Humidity

Class Total NDVI VOD Class Total NDVI VOD

[%] [%] [%] [%] [%] [%]

B/SV (0.15) 4.3 3.6 3.3 0.1–0.3 38.2 35.0 35.9

Sh (0.21) 21.3 19.9 20.1 0.3–0.5 29.8 26.5 26.3

Gr (0.33) 27.4 23.8 24.4 0.5–0.7 32.0 19.7 18.6

Sa (0.45) 11.4 9.9 10.5

Cr (0.51) 17.9 14.6 13.2

WSa (0.53) 8.3 6.1 6.4

Fo (0.59) 9.5 3.4 2.9

Total 100.0 81.2 80.7 Total 100.0 81.2 80.7
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(a) Dominant land cover type (b) Humidity classes (P/ETp) [-]

Fig. 1. Characterization of ecosystems in terms of land cover and humidity. (a) MODIS dominant land cover type, herein referred to as land

cover; and (b) humidity classes, based on 50 yr average (1950–2000) precipitation (P) data (Hijmans et al., 2005) and potential evaporation

(ETp) data (Zomer et al., 2008). All maps in this paper (except for Fig. 3d) are projected in the Miller cylindrical projection (60◦ N–60◦ S,

130◦ W–160◦ E). Terrestrial areas that are not drylands (0.1 < humidity ≤ 0.7) are from now on masked grey in all figures and are excluded

from analysis, and oceans are masked (white) in all figures.

higher standard deviations than VOD, especially for drylands

that face cold winters (Fig. 2c and d). Regional exceptions

were observed, with standard deviation of VOD being larger

for some savanna regions in northern and southern Africa

and Australia. More detail was provided by studying three

land cover types of southern Africa (study areas are shown in

Fig. 3d). With increasing woody cover, VOD increased faster

than NDVI (Fig. 3a, b and c). The annual average VOD for

grassland was 0.41 and for woody savanna this increased to

0.70 (i.e., a 0.29 increase). In contrast, the annual average

NDVI only increased by 0.19 (i.e., from 0.43 for grassland

to 0.62 for woody savanna). The NDVI range (annual maxi-

mum minus minimum) exceeded the VOD range for all three

land cover types (Fig. 3a, b and c).

5.2 Response of vegetation index anomalies to

antecedent precipitation anomalies

The strongest correlation (Rs) between vegetation anoma-

lies and antecedent precipitation index (API) were observed

over arid drylands (0.1 < P/ETp ≤ 0.3; Fig. 4a and c). While

NDVI and VOD showed similar spatial patterns, VOD

showed higher correlation coefficients, suggesting that VOD

reacts stronger to interannual precipitation variability in dry-

lands than NDVI. In regions with low or insignificant corre-

lations between vegetation and API, factors other than pre-

cipitation are likely to determine interannual vegetation vari-

ability and/or variability was minimal over the study period.

While in general the strongest correlation was found between

VOD and API, the total area of significant correlation was

similar for both vegetation indices (Table 1).
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(a) NDVI mean [-] (b) VOD mean [-]

(c) NDVI standard deviation [-] (d) VOD standard deviation [-]

Fig. 2. Mean values and standard deviation of vegetation indices (1988–2008). (a) Mean NDVI; (b) mean VOD; (c) standard deviation of

NDVI; and (d) standard deviation of VOD.

Averaging periods (denoted T in the methods; Fig. 4b and

d) are related to the capacity of vegetation to use antecedent

precipitation and the lead time of interannual variation in

precipitation followed by a vegetation response. NDVI gen-

erally has shorter averaging periods than VOD (cf. Fig. 4b

with d). To facilitate comparison with other studies, model

results based on original vegetation indices and precipitation

are shown in the annex material (Fig. A1). In general, ob-

served correlation was higher, and averaging periods were

shorter for the model based on original vegetation indices

and precipitation (Fig. A1) than when compared to the model

based on anomalies used here (Fig. 4, see Sect. 4.2). Figure 5

shows box plots of the data in Fig. 4, stratified by land cover

and humidity classes. Both NDVI and VOD showed longest

averaging periods for areas dominated by woody vegetation

and croplands, shorter periods were observed for grasslands

and savannas.

Figure 6 shows an example of estimated and observed

anomalies in NDVI and VOD for two 5◦
× 5◦ regions

(Fig. 3d): (i) eastern Australia (25–30◦ S, 145–150◦ E); and

(ii) southern Africa (25–30◦ S, 20–25◦ E). Modeled NDVI

is based on shorter averaging periods, because the signal

showed little interannual variation. VOD, on the other hand,

is usually based on longer averaging periods and therefore

follows the interannual variation in precipitation, being less

sensitive to small intra-annual variability.

5.3 Global dryland vegetation trends

For some regions, observed annual trends in NDVI and VOD

(1988–2008) showed similar trends: e.g., India, North Amer-

ica, eastern Australia, and northern African savannas (Fig. 7a

and b). Other areas showed contrasting trends between the

data sets: e.g., southern Africa, northern Australia, Argentina

and central Asia. While observed trends in NDVI and VOD

differ considerably, the estimated trends in NDVI and VOD

were relatively similar and strong decreasing trends were

found in southeastern Australia and Mongolia, while increas-

ing trends were found in most of Africa and northern Aus-

tralia (Fig. 7c and d). Figure 7e and f show residual trends,

calculated as observed anomalies minus estimated vegeta-

tion anomalies. For the NDVI (Fig. 7e) some trends per-

sisted (e.g., positive trends over most of India and Spain,

and negative trends over southern Russia and Kazakhstan).

In other cases, if observed and estimated trends had the op-

posite direction (i.e., one is positive and the other negative)

this resulted in enhanced residual trends (e.g., Argentina, arid

northern Africa, southern Africa and northern Australia in

the case of NDVI; compare Fig. 7a, c and e). If observed

and estimated trends had the same direction this resulted

in smaller residual NDVI trends (e.g., Mongolian steppe

and semi-arid drylands of northern Africa), or trends tended

to zero (e.g., southern India and northern China). Finally,

in some regions new NDVI trends emerged (southeastern
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(a) Grassland (b) Savanna

(c) Woody savanna (d) Study areas

Fig. 3. Long-term (1988–2008) average monthly NDVI and VOD

signals for three common land cover classes of southern Africa (5–

35◦ S, 10–50◦ E): (a) grassland (733 0.25◦ resolution grid cells), (b)

savanna (4041 0.25◦ resolution grid cells), and (c) woody savanna

(3826 0.25◦ resolution grid cells). The annual average and range of

both vegetation indices are reported on each sub-plot. (d) shows an

overview of the study areas used in Figs. 3, 6 and 10. Australia is

shown at half the scale of southern Africa. The three regions, based

on land cover, used in (a–c) are shown in yellow (grassland), blue

(savanna) and pink (woody savanna).

Australia and southwest Western Australia). Observed and

estimated trends in VOD generally had the same direction,

resulting in smaller residual trends (e.g., northern Australia,

Sahel, southern Africa and southern Argentina; compare

Fig. 7b, d and f). Although there were also regions with

trends in observed VOD, and no corresponding trends in es-

timated vegetation anomalies (e.g., east Africa and northern

India). Figure 8a–c shows the co-trends between NDVI and

VOD using the four categories of our conceptual framework,

and their corresponding ecological interpretation is shown in

Fig. 8d.

Median observed trends in NDVI were increasing for

savanna and croplands, and decreasing for the other land

cover classes (Fig. 9a). For VOD decreasing median ob-

served trends were found in forested drylands, while increas-

ing median trends were found for all other land cover classes

(Fig. 9a). Over arid drylands the median VOD trend was in-

creasing while NDVI showed mostly decreasing trends, for

more humid drylands NDVI and VOD trends were more sim-

ilar and closer to zero (Fig. 9d). Savannas and shrublands

showed a small increase in estimated median NDVI and

VOD (Fig. 9b), indicating that part of the change in median

vegetation index response is explained by trends in precipita-

tion. There were no particular humidity classes that showed

a large change in estimated median vegetation response, in-

dicating that median changes in precipitation were close to

zero for each humidity class (Fig. 9e). In the residual trends

(i.e., observed minus estimated) similar but smaller median

trends remained, both for NDVI and VOD (Fig. 9c and f).

Vegetation trends (Fig. 7), are expected to be related to

trends in precipitation (Fig. 10a) and trends in annual burned

area (Fig. 10b). Most global drylands experienced stable or

increasing precipitation amounts during 1988–2008; notable

exceptions are southeast Australia, northern India, the Mon-

golian steppe and northern China (Fig. 10a). Trends in an-

nual burned area declined for northern Africa and increased

in most of southern Africa (2001–2011; Fig. 10b). Southern

America showed a mixed pattern of increased and declined

trends of annual burned area, while trends of annual burned

area over most of Australia have been stable or declined. The

relationship between burned area and vegetation indices was

further analyzed using three study areas with different land

cover in southern Africa (locations are shown in Fig. 3d). For

grasslands, annual burned area is relatively low and no obvi-

ous relationship between vegetation indices and burned area

is present (Fig. 11a). In savannas, secondary to precipitation,

both NDVI and VOD are related to interannual variation in

burned area (Fig. 11b; compare 2006 and 2008 with the other

years). For woody savannas, increased annual burned area

together with relatively low annual minimum NDVI values

were observed in 2004 and 2007–2009, but interannual vari-

ation was much smaller.

6 Discussion

6.1 Relationship between NDVI and VOD

Our conceptual framework resulted in four expectations cor-

responding to the four categories of Fig. 8d. In addition to

exploring the relation between NDVI and VOD theoretically,

we illustrate these expectations by comparing global distri-

bution of mean and standard deviation of both vegetation

indices. Following Liu et al. (2011a), we found that VOD

showed stronger increase than NDVI, moving from low to

high biomass regions (Figs. 2a, b and 3). Standard deviations

of the vegetation indices were mostly influenced by seasonal

fluctuations in greenness and AGB, driven by precipitation

and/or temperature. While NDVI is more sensitive to sea-

sonal greening in regions dominated by herbaceous vege-

tation (Archibald and Scholes, 2007; Donohue et al., 2009,

Fig. 3), for southern Africa the seasonal biomass fluctuations

seem to be better captured by the VOD signal. Ovington et al.

(1963) show that seasonal AGB variation (mostly caused by

herbaceous vegetation and tree leaves) for savanna vegeta-

tion is about three times larger than for grassland. This corre-

sponds to a 2.2 times increase in VOD range from grasslands

to savannas. By comparison, the NDVI range only increased

1.3 times (Fig. 3a and b). As the exact physical relationships
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Fig. 4. Spearman’s rank correlation coefficient (Rs) and averaging periods for the two vegetation indices. For the NDVI (a) is the Rs between

API and the NDVI anomaly and (b) is the averaging period for antecedent precipitation that leads to the highest Rs between PRM and

the vegetation anomalies (denoted as T in the methods), (c) and (d) are as (a) and (b) except for the VOD. Grid cells without significant

correlation (p < 0.05), with over 60 % missing values, or with a negative correlation coefficients are masked (white).
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Fig. 5. Box plots showing the distribution of Rs and averaging periods for the two vegetation indices. (a) Distribution of Rs between observed

vegetation anomalies and API for NDVI and VOD, stratified by: (left) land cover classes and (right) humidity classes; and (b) the distribution

of the duration of averaging period for antecedent precipitation that leads to strongest correlation between the PRM and observed vegetation

anomalies, stratified by: (left) land cover classes and (right) humidity classes. Solid lines indicate the NDVI medians and dash-dot lines the

VOD medians. The maximum and minimum extents of the colored boxes indicate 25th and 75th percentiles and whiskers represent the 5th

and 95th percentiles. Grid cells with over 60 % missing values are not included in this figure, and grid cells without significant correlation

(p > 0.05) in Fig. 4 are not included in Fig. 5b. Abbreviations of land cover classes are explained in the legend of Fig. 1a.

between NDVI and VOD are currently being resolved, we

limit our theoretical framework (Sect. 2; Fig. 8) to contrast-

ing trends in NDVI and VOD, comparing directions rather

than the magnitudes of trends. Furthermore, the conceptual

framework applies to both temporal and spatial vegetation

dynamics. For example, an increase in both NDVI and VOD
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Fig. 6. Time series of estimated and observed vegetation anomalies. Estimated NDVI (green) and observed NDVI (black) vegetation anoma-

lies are shown for regions in (a) eastern Australia (25–30◦ S, 145–150◦ E) and (b) southern Africa (25–30◦ S, 20–25◦ E), (c) and (d) are as

(a) and (b) except for the estimated VOD (red) and observed VOD (black) vegetation anomalies. The average Spearman’s ranked correlation

coefficient (Rs) and averaging period (T ) of all 0.25◦ resolution grid cells in each 5◦ region are listed in each sub-plot. Locations of both 5◦

regions are shown in Fig. 3d.

signifies an increase in the relative fraction of herbaceous

AGB and/or an increase in the total AGB; this can be caused

both by increased growing season length and/or by actual

changes in vegetation density.

6.2 Response of vegetation index anomalies to

antecedent precipitation anomalies

As expected, arid drylands showed the strongest correlation

between the vegetation index anomalies and API (i.e., me-

dian Rs NDVI > 0.3, median Rs VOD > 0.5; see Fig. 5). Ne-

mani et al. (2003) mapped these areas as being water limited,

and for higher latitudes, water- and temperature limited. Cor-

relation is less strong than found when analyzing the original

indices (Fig. A1; Herrmann et al., 2005) because seasonal

vegetation–precipitation responses are not included. In semi-

arid drylands, regions that have a strong seasonal precipita-

tion response do not necessarily show a strong interannual re-

sponse (compare Fig. 4a and c with Fig. A1). This can be ex-

plained by a seasonal abundance of water in which variation

in precipitation does not affect vegetation, followed by a dry

season in which the vegetation is unable to use antecedent

precipitation.

Following previous studies (Evans and Geerken, 2004;

Herrmann et al., 2005; Nemani et al., 2003; Wessels et al.,

2007; Donohue et al., 2009), we also found that not all in-

terannual variation can be explained by precipitation alone.

Precipitation-driven estimated trends in NDVI and VOD

largely agree with trends in soil moisture reported by Dorigo

et al. (2012). VOD generally shows longer averaging peri-

ods than NDVI, this is because they are sensitive to different

components of vegetation cover (Fig. 3a–c); NDVI is more

sensitive to changes in the shallow rooted herbaceous under-

story (Archibald and Scholes, 2007), and VOD more sensi-

tive to changes in the woody overstory, which can also utilize

moisture from deeper soil and groundwater stores (Rossatto

et al., 2012; House et al., 2003). Clear geographical patterns

are present in the NDVI and VOD averaging periods (see

Fig. 4b and d), suggesting that physical landscape (includ-

ing landform and soil type), affecting water holding capacity,

likely contributes. The stronger correlations between VOD

and API are attributed to the larger interannual variation in

the VOD data set and caused by interannual precipitation

variations (Fig. 6). Archibald and Scholes (2007) reported

similar findings, and concluded that plants that access deeper

water and have carbohydrate reserves may show a phenology

that is quite different from surrounding areas with grass cover

that depend on shallow soil moisture for their growth. It ap-

pears that similar conclusions may be drawn for interannual

variation.

6.3 Global dryland vegetation trends

The relationship between NDVI and VOD trends (Fig. 8)

provides new insights in the relative performance of herba-

ceous and woody vegetation components in global dry-

lands. Woody encroachment into grassland or savannas has

been observed across the globe, including Argentina (e.g.,

Adamoli et al., 1990), Africa (e.g., Vegten, 1984; Olde-

land et al., 2010) and Australia (Fensham et al., 2005, cf.

review by Archer et al., 2001). Although satellite obser-

vations of NDVI and VOD confirm our theoretical frame-

work, future validation studies, comparing satellite observa-

tions with local to regional studies, would help to improve
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Fig. 7. Linear trends (1988–2008) of the observed, estimated and residual for both vegetation indices: (a) and (b) are the NDVI and VOD observed trends, (c) and (d) are the NDVI

and VOD estimated trends, and (e) and (f) are the NDVI and VOD residual trends. Grid cells with over 60 % missing values or without significant trends (p > 0.05) are masked

(white).
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(c) Residual (d) Ecological interpretation

Fig. 8. Co-relationship of NDVI and VOD trends stratified into four classes: (i) both increasing; (ii) increasing NDVI and decreasing VOD; (iii) increasing VOD and decreasing

NDVI; and (iv) both decreasing. (a) is the observed trends, (b) the estimated trends, and (c) the residual trends. Only grid cells with significant trends (p < 0.05) and less than 60 %

missing values in both products are shown. (d) shows the ecological interpretation, based on the four expectations of the background theory section.

www.biogeosciences.net/10/6657/2013/ Biogeosciences, 10, 6657–6676, 2013



6668 N. Andela et al.: Global changes in dryland vegetation dynamics

regional interpretation and confidence. Vegetation trends of

the world’s arid drylands and semi-arid drylands are dis-

cussed in turn. Overall, the world’s drylands show a decrease

in NDVI and an increase in VOD (Fig. 9d).

6.3.1 Arid drylands (0.1 < P/ETp ≤ 0.3)

The world’s arid drylands are mainly covered by shrub-

lands (48.2 %) and grasslands (31.3 %). Trends over bare or

sparsely vegetated areas (10.6 %) need to be treated with care

due to the limitations of both vegetation indices over those

regions (see Sect. 3; Tucker et al., 2005; Brown et al., 2006).

Many arid drylands experienced unchanged or increasing an-

nual precipitation (Fig. 10b), and median estimated trends in

both vegetation indices were close to zero (Fig. 9e). NDVI

median trend for arid drylands was negative while VOD me-

dian trend was positive (Fig. 9e). Both the relatively constant

or increasing VOD trends and most negative trends in NDVI

remain after precipitation-induced variation is accounted for

(Fig. 7e and f). This results in many regions showing oppo-

site trends in NDVI and VOD (Fig. 8; e.g., arid drylands of

Argentina, southern Africa, northern Africa and Australia).

In those regions, it seems that woody encroachment takes

place at the expense of the herbaceous understory. Woody

encroachment has been attributed to climate (Fensham et al.,

2005), fire regime (Sankey et al., 2012), grazing (Asner et al.,

2004) and CO2 fertilization (Buitenwerf et al., 2011).

Clear trends in the NDVI and VOD residuals indicate that

next to precipitation, other drivers also play a role (Fig. 7e

and f). A possible explanation for residual trends could be

changing fire regimes (Fig. 10b) through its impact on com-

petitiveness of the herbaceous and woody vegetation compo-

nents (Sankey et al., 2012). Bowman et al. (2009) showed

that annual burned area is highest in areas of intermediate

primary production, limited by a lack of dry periods towards

the tropics and limited by a lack of fuel towards dry ar-

eas (Fig. 10d). Primary production is the main limitation on

annual burned area in these drier regions (Archibald et al.,

2009) and increasing precipitation and/or CO2 concentra-

tions (Donohue et al., 2013) can increase net primary produc-

tion and hence increase annual burned area in arid drylands.

This results in a system of highly variable biomass produc-

tion, followed by infrequent fires (Fig. 11a). Recent trends

(2000–2011) in annual burned area do not show increases in

most arid drylands and showed declines in northern Australia

and the Sahel (Fig. 10b). This, combined with an average an-

nual burned area of below 10 % (Fig. 10d), seems to make

fire an unlikely driver of globally observed changes.

Decreasing NDVI trends have been interpreted as a proxy

for land degradation (Wessels et al., 2007; Bai et al., 2008)

which might be caused by grazing. Grazing has also been as-

sociated with woody encroachment (e.g., Asner et al., 2004).

Although grazing might cause contradicting trends between

NDVI and VOD in some regions (e.g., arid parts of northern

Africa) similar trends are observed in regions of limited or no

grazing by domestic livestock (e.g., compare Figs. 10c and

8 for arid drylands of Argentina and Australia). The spatial

patterns and scale at which trends occur suggest that grazing

by domestic livestock is not the main driver in these cases,

impact of grazing by non-domesticated animals was not in-

cluded here, as no information was available.

Sankaran et al. (2005) suggest that woody vegetation re-

ceiving less than 350 mm annual precipitation is largely con-

strained by water availability. Rising atmospheric CO2 con-

centrations affects water use efficiency and photosynthetic

rates (Donohue et al., 2013; Franks et al., 2013; Keenan

et al., 2013) as well as light and nutrient efficiency (Drake

et al., 1997; Farquhar, 1997). CO2 is reported to enhance

the relative performance of woody C3 species over the C4

grasses that dominate tropical savannas (Bond and Midgley,

2012; Higgins and Scheiter, 2012). Once woody plants are

established in savannas, they are likely to limit the growth of

herbaceous plants through water uptake and shading (Bres-

hears, 2006).

Increases in extreme air temperatures and changes in

growing season duration can also explain some of the ob-

served vegetation trends (Allen et al., 2010). Changing du-

ration of rainy seasons can impact the relative performance

of different species: a shorter but more intense wet sea-

son is likely to result in decreasing herbaceous understory

(NDVI) during dry seasons, while deep rooted vegetation

suffers less, having access to deeper water resources and

therefore being more sensitive to long-term water availability

(Fig. 5; Archibald and Scholes, 2007). Evidence for shorten-

ing growing seasons is found for arid drylands of northern

Africa (de Jong et al., 2011). Finally, increased air temper-

atures can result in higher evaporation rates and during the

dry season result in a competitive advantage of deep rooted

species over shallow rooted species (Tietjen et al., 2010).

Although air temperature is increasing over many drylands

globally, decreasing trends are also observed in some re-

gions, as temperature tends to be strongly related to pre-

cipitation through the effect of cloud cover on solar irra-

diation. Additionally, decreases in wind speed (“wind still-

ing”), and changes in other meteorological variables govern-

ing the evaporative process, also alter the evaporative regime

(McVicar et al., 2012). Following Higgins and Scheiter

(2012), we suggest that the effects of changing evaporation

rates in drylands are less important than the effects of in-

creasing atmospheric CO2 concentrations. Given that pat-

terns in the residual trends are found in most global arid dry-

lands, all experiencing very different fire and grazing condi-

tions (compare Fig. 7e and f with Fig. 10c and d), a global

driver such as CO2 fertilization appears more plausible.

6.3.2 Semi-arid drylands (0.3 < P/ETp ≤ 0.7)

The world’s semi-arid drylands mainly contain croplands

(26.4 %), grasslands (25.0 %), savannas (15.9 %), forest

(15.2 %) and woody savannas (12.4 %). The distribution of
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Fig. 9. Box plots of the distribution of observed, estimated and residual linear trends for both vegetation indices. Observed trends stratified by

the (a) land cover and (d) humidity classes, estimated trends stratified by the (b) land cover and (e) humidity classes, and the residual trends

stratified by the (c) land cover and (f) humidity classes. Solid lines indicate the NDVI medians and dash-dot lines the VOD medians. The

maximum and minimum extents of the colored boxes indicate 25th and 75th percentiles and whiskers represent the 5th and 95th percentiles.

Grid cells with over 60 % missing values are not included in this figure. Abbreviations of land cover classes are explained in the legend of

Fig. 1a.

trends in vegetation indices differs between humidity classes

and land cover classes (Fig. 9). The median trend in NDVI is

around zero for semi-arid drylands, showing positive trends

over savannas and croplands and negative median trends for

other land cover classes. VOD shows positive median trends

for all land cover classes except forest (see Fig. 9a and d).

In most semi-arid areas, where savanna grasslands domi-

nate, resources are available to support forests which are

suppressed by frequent fire (Bond and Keeley, 2005). Fire

is thought to be the next most important driver of vegeta-

tion variation in savannas after precipitation (Sankaran et al.,

2005).

Although northern and southern African semi-arid dry-

lands experience similar increasing trends in precipitation

(Fig. 10a), the changes in the vegetation indices are very

different. In southern Africa (i.e., south of 5◦S), NDVI

trends are declining, while VOD trends are increasing– likely

caused by an increase in the relative fraction of woody AGB.

Northern African savannas (in contrast with the grasslands

in adjacent arid drylands), show increasing trends in NDVI,

along with increasing trends (in most regions) for VOD; in-

terpreted as an increase in the relative fraction of herbaceous

AGB and/or increase in total AGB. The increasing trend in

the northern African grasslands and savannas is widely dis-

cussed in literature and has been explained as a result of

recovery after drought (1983–1985 being the driest years;

Anyamba and Tucker, 2005) and improved land management

(e.g., irrigation, and soil and water conservation; Herrmann

et al., 2005). Strong trends in NDVI occur in semi-arid ar-

eas with large annual burned area (compare Fig. 7e with

Fig. 10d). Northern African savannas, with recent declines

in annual burned area (Fig. 10b), showed increasing NDVI

values (Fig. 7e). Widespread grazing (Fig. 10c) and associ-

ated fire suppression may explain decreasing annual burned

area in northern Africa between 2001 and 2011 (Fig. 10b;

Archibald et al., 2010). Southern African regions, with re-

cent increases in annual burned area, showed declining NDVI

trends. We found that annual variation in burned area es-

pecially affects NDVI and VOD minimum values (Fig. 11).

Human land use practice is also thought to be an important

driver of annual burned area (Archibald et al., 2009). The ef-

fect of fire on vegetation indices is most profound in African

and Australian savannas and woody savannas, where annual

burned area typically ranges from 20 to 80 % (Fig. 10d).

Given the high percentage of area burnt each year in many

African savannas and woody savannas (Fig. 11), it seems fea-

sible that changing fire regimes, affecting annual minimum

values of NDVI, cause the observed trend in NDVI.

Outside the African savannas and woody savannas, the

residual trends in NDVI are not easily attributed to changes
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(a) Precipitation trend [mm × yr−2] (b) Burned area trend [% × yr−2 per 0.25◦ region]

(c) Livestock density [TLU × km−2] (d) Burned area [% × yr−1]

Fig. 10. Data sets used for interpretation of vegetation dynamics: (a) linear trend in annual mean precipitation (1988–2008), (b) linear trend in

annual mean burned area (2001–2011), (c) livestock density, and (d) mean annual burned area (2001–2011). Due to MODIS data limitations

the burned area trends are calculated from 2001–2011. Trends in burned area were only calculated for grid cells with burned area in at least

6 out of 11 yr, remaining grid cells are shown in white. For mean burned area (d), grid cells with no fire occurrence (mean is zero) are shown

in white. Trends are shown for all significance levels.

in annual burned area, at least not using the data available

to us. While even in the less fire prone regions, fire might

play a crucial role in species competition, the direct effect

of the smaller relative area of fire scars on the vegetation in-

dices would be limited. NDVI can also be affected by graz-

ing; while any given area might support livestock during

most times, the highest pressure on vegetation occurs during

longer dry seasons. The negative trends in NDVI and VOD

over the South American dry forests are likely caused by de-

forestation, that is reducing the woody vegetation component

and therefore total AGB (Grau et al., 2005).

Trends in VOD occurred in areas of frequent fire, but no

coherent spatial pattern was apparent (compare Fig. 7f with

Fig. 10b and 10d). Although fire suppresses woody encroach-

ment, dryland fires generally have a relatively low tempera-

ture and flame height and therefore do not necessarily af-

fect established woody vegetation (Bond and Keeley, 2005).

Woody vegetation increased in the southern African savan-

nas despite recently increased burning (Figs. 10b and 8).

This may be explained by increasing precipitation (Fig. 7;

Sankaran et al., 2005), CO2 fertilization (Buitenwerf et al.,

2011; Higgins and Scheiter, 2012) and/or grazing by non-

domesticated herbivores. A clear increasing NDVI and VOD

trend was found for croplands and adjacent grasslands in

the USA. Woody encroachment in US grasslands has been

widely reported (see Archer et al., 2001, and the refer-

ences therein) and although there is no straightforward sin-

gle driver, grazing is understood to play an important role

(Van Auken, 2000; Briggs et al., 2005). Increasing agricul-

tural activity could also play a role in explaining those trends

(Neigh et al., 2008).

The strongest positive median NDVI and VOD trends were

found in agricultural areas (Fig. 9). Increases of both indices

over the world’s agricultural regions are explained by ad-

vances in agricultural practice including mechanization, irri-

gation and fertilization (Liu et al., 2013a). In India, Pakistan,

Bangladesh, China, Ukraine, southwestern Russia, several

European countries, the USA, and a number of other coun-

tries, substantial areas of agricultural land are irrigated (Wada

et al., 2010). Evidence that increasing trends in NDVI are
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Fig. 11. Time series of NDVI, VOD and burned area (black,

dashed) for three selected 0.5◦ regions with different land cover in

southern Africa: (a) grassland (19.5–20.0◦ S, 17.0–17.5◦ E), (b) sa-

vanna (17.0–17.5◦ S, 17.0–17.5◦ E), and (c) woody savanna (9.5–

10.0◦ S,19.5–20.0◦ E). Numbers above the sub-parts are the per-

centage burned area [yr−1], and locations of study areas are shown

as black dots (marked a, b and c) within Fig. 3d.

caused by irrigation and fertilization has been documented

for India (Jeyaseelan et al., 2007) and the North China Plain

(Piao et al., 2003), while Liu et al. (2013a) showed that posi-

tive VOD trends in southern Russia, China, India and the US

are the result of increased agricultural production. We used a

land cover map of 2005 and for many regions agricultural ex-

tent increased during the study period. Therefore, trends may

partly be explained by land cover conversion from natural

land cover classes to cropland. In drylands at higher latitudes

both water and temperature are factors limiting vegetation

growth (Nemani et al., 2003), and global changes in temper-

ature can therefore also explain some of the vegetation trends

(Tucker et al., 2001).

7 Conclusions

A recently developed passive microwave vegetation data set

(VOD) and a widely used reflective based vegetation data set

(NDVI) were combined to study the long-term (1988–2008)

vegetation changes over the world’s drylands. We draw the

following conclusions:

1. The two data sets provide complementary information

on vegetation dynamics; NDVI being most responsive

to canopy cover and greenness, and VOD to above-

ground biomass.

2. NDVI was more sensitive to herbaceous vegetation

changes and short-term precipitation variations. VOD,

on the other hand, was more sensitive to changes in

woody vegetation and longer-term precipitation varia-

tions.

3. Although precipitation is an important driver for

dryland vegetation dynamics, precipitation variations

could not explain all of the observed trends in vegeta-

tion indices.

4. Co-trends between NDVI and VOD provide evidence

of widespread woody vegetation encroachment at the

expense of the herbaceous vegetation component in

arid regions (humidity < 0.3), and arid shrublands in

particular. Spatial distribution of trends suggests that

a global driver (e.g., CO2 fertilization) is causing a

change in relative performance of woody vegetation

compared to herbaceous vegetation.

5. Remote sensing evidence for woody thickening and

encroachment is also found for some semi-arid dry-

lands, but regional trends vary widely. It is interpreted

that local rather than global drivers are responsible for

most of the observed residual trends in these areas.

Limited observations of monthly burned area suggests

that after precipitation, changing fire regimes are an

important driver of vegetation change in semi-arid dry-

lands, especially in savannas.

6. Large changes in vegetation density were observed in

agricultural dryland regions, where advances in agri-

cultural practices caused increasing trends in both veg-

etation indices.

In summary, we demonstrated that using two complemen-

tary vegetation indices provide new insights into the dynam-

ics of different vegetation components in global drylands.

While it remains challenging to conclusively attribute dry-

land vegetation dynamics to any individual driver, a linear

precipitation response model showed that change cannot be

attributed to precipitation alone. Global data on fire regimes

and grazing enabled a first assessment of the likely relative

importance of these drivers on global vegetation change. Fu-

ture improvements and extensions to time series of fire char-

acteristics, grazing and land use change are likely to further

improve understanding of global vegetation changes and its

drivers.
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Fig. A1. Spearman’s rank correlation coefficient (Rs) and averaging periods for the two vegetation indices. For the NDVI (a) is the Rs

between API and the NDVI and (b) is the averaging period for antecedent precipitation that leads to the highest Rs between PRM and the

NDVI, (c) and (d) are as (a) and (b) except for the VOD. Grid cells without significant correlation (p > 0.05), with over 60 % missing values,

or with a negative correlation coefficients are masked (white).
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