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[1] Extreme value analysis of observed daily temperature anomalies from a new
quasi-global data set indicates that extreme daily maximum and minimum temperatures
(>98.5 or <1.5 percentile) have warmed for most regions since 1950. Changes in
extreme anomalous daily temperatures are determined by fitting extreme value
distributions with time-varying parameters. Changes in the distribution of anomaly
exceedances above a high threshold are found to be statistically significant at the 10%
level for most land areas when compared with a time-invariant distribution and with
the unforced natural variability produced by a coupled climate model. The largest
positive trends in the location parameter of the extreme distribution are found in
Canada and Eurasia where daily maximum temperatures have typically warmed by 1 to
3�C since 1950. The total area exhibiting positive trends is significantly greater than
can be attributed to unforced natural variability. For most regions, positive trend
magnitudes are larger and cover a greater area for daily minimum temperatures than for
maximum temperatures. The comparatively small areas of cooling are found to be
consistent with unforced natural climate variability. The North Atlantic Oscillation
(NAO) is found to have a significant influence on extreme winter daily temperatures
for many areas, with a negative NAO of one standard deviation reducing expected
extreme winter daily temperatures by �2�C over Eurasia but increasing temperatures
over northeastern North America.
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1. Introduction

[2] The impact of severe weather on ecosystems, econo-
mies and society has been witnessed throughout history
with the 2003 European summer heatwave being a recent
example. This heatwave caused between 22,000 and 35,000
heat-related deaths and approaching US$ 14 billion in
agricultural losses [Schär and Jendritzky, 2004]. There is
increasing evidence from climate models that at least some
types of extreme events will become more frequent and
more severe in the future [e.g., Cubasch et al., 2001; Kharin
and Zwiers, 2000; Kharin and Zwiers, 2005; Meehl et al.,
2005; Tebaldi et al., 2006]. Such projections naturally lead
to questions on whether the nature of extreme events has
already changed and whether this has been due to anthro-
pogenic activities.
[3] Because of the limited availability and homogeneity

issues of observed daily data suitable for studying extreme
events, fewer studies of observed changes in extremes of
daily data have been reported in the literature than for other
aspects of the climate system such as mean temperature.
Frich et al. [2002] used indices of various temperature and

precipitation extremes and found that the number of days
where the daily minimum temperature is above the 90th
percentile has increased for most land areas, with a com-
mensurate reduction in the number of frost days and
increases in growing season length. Heavy rainfall events
were found to have become more frequent with wet spells
producing significantly higher rainfall totals. Kiktev et al.
[2003] generally confirmed these results with more robust
statistical methods, but did not find the trend in maximum
annual 5-d rainfall to be field significant. Alexander et al.
[2006], using an updated indices data set with much greater
coverage, found over 70% of the sampled land area has a
significant decrease in the annual occurrence of cold nights
and corresponding increase in warm nights. Most precipi-
tation indices indicated a tendency toward wetter conditions
although there is considerable spatial variability and mixed
significance. Caesar et al. [2006] used rank statistics to
estimate changes since 1946 for the 5th to 95th percentiles
of daily maximum and minimum temperature (Tmax and
Tmin, respectively), finding that the largest warming has
occurred in Northern Hemisphere winter and spring.
Christidis et al. [2005] found that anthropogenic emissions
of greenhouse gases and aerosols have had a significant
impact on the global pattern of annual maximum and
minimum Tmin and annual minimum Tmax. A general
characteristic of these studies is their consideration of only
relatively moderate extremes on account of either the simple
empirical techniques used (e.g., percentiles from rank sta-
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tistics or maximum/minimum within a given period, usually
1 year) or that the available data has allowed (e.g., the
indices of Frich et al. [2002] and Alexander et al. [2006]). If
the area of interest is extreme events with multiyear return
periods then other approaches can be beneficial. In this paper
stationary and nonstationary extreme value distributions are
fitted to observations of daily maximum and minimum
temperatures to determine whether such extreme daily tem-
peratures have changed since 1950.

2. Observed and Model Data

[4] Long-term gridded monthly temperature data sets with
near global coverage have been available to climate research-
ers for many years [e.g., New et al., 2000] but data on daily
timescales has been limited to regional areas for data sets of
sufficient length for climate studies [e.g., Janowiak et al.,
1999]. Here we use the new gridded daily temperature data
set with quasi-global coverage of daily maximum and
minimum temperatures of Caesar et al. [2006] but extended
to cover the period January 1950 to December 2004. A
network of �2500 stations has been gridded onto a 2.5�
latitude by 3.75� longitude grid using an angular-distance
weighting algorithm following New et al. [2000]. To avoid
biases, particularly in areas of high-elevation variability,
anomalies are gridded. Daily anomalies are calculated sep-
arately for temperature minima and maxima as the difference
between each daily temperature and a normal value. The
normal value varies with the day of year and is computed as
the average of those daily temperatures recorded between
1961 and 1990 that are within two calendar days of the day of
interest. The anomalies are therefore the result of removing a
mean annual cycle. Stations must have at least 20 years of
data available within the reference period and at least 350
daily normal values out of 366 calendar days, otherwise they
are excluded from further consideration. As will be seen
from Figure 2 there is good coverage for North America,
Eurasia, South Africa and Australia but poor coverage for
parts of Africa, the Middle East, India and South America.
There are also very few observations for Antarctica and
Greenland so they are omitted from this study. The time-
varying nature of the station coverage has the potential to
introduce nonclimatic signals into this data set as is the case
with most gridded observed data. However, limiting stations
only to those which span the entire record would reduce the
spatial coverage to only a few small regions. These potential
limitations in the observed data need to be borne in mind
when interpreting the results.
[5] An alternative approach to gridding in this way would

be to determine the statistics of extreme temperatures of the
individual stations and then grid these statistical measures.
This may produce a better representation of extremes at a
given point in space as this would avoid interpolation
between individual events of different severity from differ-
ent sites. However, we wish to analyse the extremes from
our data set, which was constructed primarily to aid climate
model validation, and detection and attribution studies.
Climate models only produce temperatures averaged over
entire grid boxes and so the construction of the gridded
observations is designed to best match this. How future
projections at the climate model gridbox scale are related to

point locations is an important question but is outside the
scope of this paper.
[6] The maximum and minimum tails of the daily max-

imum and minimum temperatures (xTmax, nTmax, xTmin
and nTmin, respectively) are analysed. The focus of this
paper is on extreme temperature anomalies that could occur
on any day of the year (ANN), that is pooling data from all
days of the year, to provide a general description of changes
in extremes temperature anomalies. In regions where there
is a strong seasonality in the variance and possibly higher
moments of the raw temperatures ANN results may be
dominated by extremes in a single season. To assess this,
seasonal data are also analysed, the results of which are
presented in Figures S1–S8.1 The North Atlantic Oscilla-
tion (NAO) has a significant impact on winter temperatures
in the Northern Hemisphere [Hurrell and van Loon, 1997].
Its influence on extreme temperatures is investigated in a
separate section.
[7] Ideally, there would be sufficiently long observational

records to determine whether or not any observed trends are
outside what might be expected from natural variability.
This is not possible here, so data from the HadCM3
atmosphere-ocean general circulation model [Gordon et
al., 2000] is used for determining the level of unforced
internal natural climate variability (i.e., that which comes
from the chaotic nature of the climate system rather than
from naturally occurring climate forcings such as volca-
noes). Daily temperatures from 1500 years are taken from a
control climate simulation (CNTRL) after the model has
reached near equilibrium and where the levels of CO2 are
kept constant at preindustrial levels.

3. Extreme Value Methodology

[8] The use of extreme value distributions is increasingly
common in climate studies [e.g., Zwiers and Kharin, 1998;
Kharin and Zwiers, 2000; Wettstein and Mearns, 2002;
Zhang et al., 2004; Kharin and Zwiers, 2005] although this
has generally been restricted to Generalized Extreme Value
(GEV) distributions applied to the most extreme value
within a period, typically annual maxima or minima.
Although more straightforward to apply, the use of annual
extremes results in extensive data reduction and may not
fully capture all extreme events. For example the two largest
events in a record may occur in the same year. Extremal
analysis can be adapted to include the top r values, which
alleviates these problems to some degree [Zhang et al.,
2004]. An alternative, threshold approach is adopted below.
Furthermore, few studies have investigated trends in char-
acteristics of observed extremes, Nogaj et al. [2006] being a
rare example. As climate change accelerates through this
century [Cubasch et al., 2001] an assumption of a stationary
climate will become untenable if the evolution of extremes
is to be correctly described. Kharin and Zwiers [2005]
demonstrated the nonstationary nature of temperature and
precipitation extremes that might occur if future emissions
follow the IPCC SRES A2 scenario [Nakienovic and Swart,
2001]. The uncertainty in the future projection of extremes,
however, seems to be dominated by the uncertainty in

1Auxiliary materials are available in the HTML. doi:10.1029/
2006JD008091.
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modelling the climate [Kharin et al., 2007]. This paper asks
if there is any evidence of nonstationarity in the amounts by
which observed temperature anomalies from the annual
cycle fall above high or below low thresholds.
[9] To include more of the extremal data in the analysis,

as opposed to just annual maxima or minima, a peaks-over-
threshold model is used to describe all exceedances above a
high threshold, u. The exceedances are assumed to occur
according to a Poisson process, and the excesses of those
exceedances above the threshold are assumed to follow a
Generalized Pareto distribution [Katz et al., 2002]. The
expected number of exceedances per year above any level
x, conditional on x being greater than u, is written

1þ x
x� m

s

� �h i�1=x
; ð1Þ

where m, s, and x are termed the location, scale and shape
parameters, respectively [Coles, 2001; Katz et al., 2005].
This formulation of the marked point process (MPP) model
ensures that the scale parameter is invariant to the threshold
u, and that the parameters are equivalent to those in the
GEV distribution for annual maxima. The MPP parameters
are estimated by maximum likelihood [Coles, 2001] in
preference to other estimation procedures to enable both the
inclusion of covariates for modelling trends in the
parameters, and the imposition of constraints that ensure
all observed exceedances are feasible under the estimated
model. From such a model it is useful to determine the
estimated exceedance value for a given probability,
commonly referred to as the return level (zm) experienced
on average once every m years [Coles, 2001]:

zm ¼
m� s=xð Þ 1� � ln 1�
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[10] Figure 1 gives an example of such a return-level
curve for an MPP model fitted (as described later) to xTmax
data for the gridbox containing London. Empirical return
levels and probabilities of the actual data are included as
points. To illustrate the role of different distribution param-
eters, the curves obtained when the location, scale and shape
parameters are altered unilaterally are superimposed. The
location parameter is analogous to the mean of a normal
distribution, so increases in m uniformly shift the distribu-
tion to higher values, increasing all extremes equally.
Whereas s and x determine the rate with which the
magnitude of extremes alters with rarity.
[11] The MPP model described above assumes stationary

extremes. Nonstationarity is modelled by allowing the
parameters to depend linearly on time throughout the data
record. Following Kharin and Zwiers [2005] and Coles
[2001], this gives

mt ¼ a0 þ a1t

st ¼ exp b0 þ b1tð Þ
xt ¼ g0 þ g1t

; ð3Þ

where the covariate t is the date during the observational
period scaled to range from 0 to 1. More complex time
dependence was not investigated as linear forms are deemed
an adequate first-order approximation to any nonstationarity
and avoid finding nonlinearity that is just a product of
natural internal climate variability. Furthermore the ob-
servational period is relatively short so there is a danger of
over fitting if more complex time dependence is introduced.
Applying this approach to future projections of climate may
require more sophisticated covariates, such as global mean
temperature, as future temperature changes are unlikely to
be linear [Cubasch et al., 2001]. The inclusion of NAO as a
covariate is described later.
[12] The threshold, u, is also replaced by a threshold that

changes linearly in time to ensure that exceedances are
obtained throughout the record. This time-dependent thresh-

Figure 1. Return-level curve derived from fitting marked point process extreme value distribution to the
top 1.5 % of daily Tmax data for the grid box containing London. Circles represent empirical return
levels, the heavy solid line represents the fitted return values, and light lines represent the corresponding
5–95% uncertainty range. Nonsolid lines represent return-level curves where distribution parameters are
adjusted according to the legend.
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old is obtained separately for each grid point by fitting a
linear regression through all temperature anomalies
recorded at the grid point and then shifting the fitted
regression curve uniformly until it is exceeded by a pre-
determined proportion of the data. Results presented below
correspond to the top 1.5 % of the data. For the lower tails
of the distributions the data are negated prior to this
extremes selection. The sensitivity to threshold choice is
determined by repeating the analysis with thresholds of
0.75% and 3%.
[13] The statistical analysis is simpler if exceedances are

serially independent of one another. This is achieved ap-
proximately by retaining only the maximum (or minimum)
temperatures within 10-d, nonoverlapping windows for
each grid point. The sensitivity to the width of this declus-
tering window is determined by repeating the analysis using
widths of 5 and 30 d.
[14] Two approaches are adopted for assessing the sig-

nificance of nonstationarity in the MPP parameters. The
first determines whether or not the fit to the data achieved
with one model is statistically significantly better than that
achieved with a simpler model by means of a likelihood
ratio test conducted at the 10% level. For example, the
model with a time-dependent location parameter is deemed
to be a significantly better description of the data than the
same model with a time-invariant location parameter if the
deviance between the models exceeds the upper 10%
quantile of the chi-squared distribution with one degree of
freedom [Coles, 2001].
[15] The location parameter is the only parameter for

which significant nonstationarity is found. No time or
NAO dependence for scale or shape, or combinations of
the three parameters, is found to be a significant improve-
ment from the stationary MPP model or the location-only
dependent model other than for small regions which are not
field significant. Although more complex changes in the
distributions of extremes have been discussed in the liter-
ature [Brabson et al., 2005; Kharin and Zwiers, 2005] it is
not possible by the approach used here to find any such
changes from the available observed data. Therefore, only
four MPP models are considered further: a stationary model
(STAT), the location parameter having a linear trend (L-
TREND), the location parameter having NAO dependence
(L-NAO) and the location parameter having a linear trend
and NAO dependence (L-TREND-NAO).
[16] The second significance test follows the approach of

Karoly and Wu [2005] to determine field significance. A
number of grid boxes may exhibit warming trends purely
due to unforced natural variability and these can have large
spatial coherence. The test uses 1500 years of daily data
from CNTRL divided into thirty 50-year periods from
which time-dependent parameters are calculated in the same
manner as the observed data. The fraction of grid boxes
with significant trends is calculated for each of the thirty
samples from which a 5–95% confidence interval is esti-
mated for the area which may exhibit significant trends on
account of unforced natural variability as simulated by
HadCM3. However, unlike Karoly and Wu [2005] resam-
pling of CNTRL to increase the number of 50-year samples
and increase the precision of the confidence intervals is not
practicable as the computational expense is prohibitive. The
result of such a small sample of natural variability will mean

that the significance tests for Table 2 are less robust.
However, all but four of the areas that are deemed signif-
icantly different from natural variability are larger than the
test threshold by at least 10% (in percentage area terms)
suggesting a degree of robustness in the results.
[17] The accuracy with which each MPP model represents

the distribution of the threshold excesses is determined by a
Kolmogorov-Smirnov goodness-of-fit test. Specifically,
suppose that the temperature Xt at time t exceeds the
threshold ut, and the MPP parameters at time t are (mt, st,
xt). If the MPP is a good model for the data then the
transformed exceedance

1� 1þ xt
Xt � ut

bt

� �� ��1=xt

;

where bt = st + xt(ut � mt), will be approximately uniformly
distributed on the interval (0, 1). Transforming all the
exceedances in this way, we can test the model fit by
comparing their empirical distribution to a uniform
distribution. The Kolmogorov-Smirnov test provides a
formal comparison. In practice, we must use estimates of
the MPP parameters to transform the exceedances, and this
affects the critical values of the test statistic, which are
therefore determined by simulation as follows. Data are
simulated from an MPP model with parameters equal to the
parameter estimates. The model is then refitted to the
simulated data, the exceedances transformed and the test
statistic computed. This is repeated 10 000 times and the
upper P% quantiles of the statistics define the P% critical
values of the test.

4. Observed Changes in Extreme Temperatures

[18] The location, scale and shape parameters from L-
TREND for xTmax, nTmax, xTmin and nTmin are plotted
in Figure 2 for annual daily anomalies (ANN) and all land
points with sufficient data for a retrieval. The location
parameter exhibits a general progression to higher values
with higher latitudes, with values typically �4�C at the
equator rising to �16�C nearer the pole. Differences in
location reflect differences in variability between regions
rather than absolute extreme temperatures as the data are
anomalies from the annual cycle. Daily temperature vari-
ability can be larger at higher latitudes and in continental
interiors. This can be due to several mechanisms, such as air
masses from quite different climatological regions influenc-
ing a region hence increasing variability. Also, at high
latitudes strong inversions and their demise can allow large
and rapid changes in temperature and hence high variability.
For coastal regions, the sea can moderate temperature
variability because of its high heat capacity. This, together
with the prevailing winds, could be a contributing factor to
the east-west progression of the location parameter seen for
North America and for Europe into Russia. With North
America this eastward influence appears to be contained by
the Rocky Mountains. Both of the lower tails, nTmax and
nTmin, show a greater range of location values with larger
regions of high location values in the north of the Northern
Hemisphere continents. The scale parameter has a similar
spatial pattern to the location parameter which may be due
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simply to statistical correlation between the location and
scale parameter estimates. The smallest scale values
(�0.4�C) are in the tropical maritime continent rising to
�3�C in the highest latitudes.
[19] For the shape parameter there is less spatial variation

with no strong, large-scale coherent patterns. The shape
parameter for nTmin shows small areas of western Europe
and western North America which are positive. Further,
visual inspection of the data for these areas suggests the
selected extremes form two populations: ‘‘less’’ extreme
cold anomalies and ‘‘more’’ extreme cold anomalies. Such
composite distributions are not catered for by the extreme
distribution used here which assumes that all samples come
from the same parent distribution and indicates that for
these regions the thresholds may be too small. When the
data are divided into seasons the occurrence of positive
shape values is much reduced or even removed for these
regions, further suggesting the positive shape values are a
result of mixing extreme temperature anomaly events which
have arisen from different weather types. Given this is
found for only a small number of points it is not seen as
a major issue for the adopted methodology. The area
average of L-TREND parameters for selected regions are
given in Table 1 for the four distribution tails. The shape
parameter can be seen to be somewhat invariant at these
spatial scales with most regions having values of �0.2. The
scale parameter shows more variation although there is a
degree of similarity between upper or lower tail values, as
might be expected if the same weather is responsible for
either hot events in Tmax and Tmin or cold events. The
greatest spatial variation is seen with the location parameter.
[20] Corresponding seasonal results can be found in

Figures S1–S8 but a short discussion of seasonality is
provided here. We find the shape parameter exhibits little
coherent variation through the seasons although the in-

creased spatial noise, due to the reduced volume of data
arising from separating into seasons, may be obscuring any
seasonality. Location and scale both have considerable
seasonality. In JJA the retrieved location parameters have
a much reduced range of values and equator/pole gradient
when compared with DJF, which has the largest range.
Similar seasonality is seen with the scale parameter. This
indicates that the largest extreme temperature anomalies
occur during DJF and the smallest during JJA for the
Northern Hemisphere.
[21] The retrieved location trend for L-TREND and ANN

data is plotted in Figure 3 for xTmax, nTmax, xTmin and
nTmin. This shows that most land areas have a significant
positive trend in the location parameter and hence where
there has been a significant positive trend in extreme tails
of the temperature distributions over the observed period.
Significance presented in Figure 3 is determined by the
likelihood ratio test against STAT on a grid point basis at
the 10% significance level. Similar patterns of significance
are found when tested against the unforced natural vari-
ability from CNTRL. Greatest trend values and largest
areas of significant positive trends are located in Canada,
Alaska and Eurasia with values typically 1 to 3�C over the
55 years of the data. Smaller areas of significant negative
trends are found in the United States, Mexico and eastern
coast of Canada for xTmax and xTmin and in Uruguay,
South Africa, Egypt and parts of Australia for nTmax and
nTmin. The size and magnitude of these areas with
negative trends are not found to be significantly different
from those found in the CNTRL simulations. Both nTmin
and xTmin have significant positive trends of greater
magnitude and over a greater land area than the
corresponding Tmax data.
[22] The trend in the location parameter seen over North

America is similar to the pattern and magnitude of changes

Table 1. Averaged Marked Point Process Distribution Parameters for the Subregionsa

Region

xTmax nTmax

Location Location Trend Scale Shape Location Location Trend Scale Shape

Northern Africa 5.3 1.7 1.0 �0.2 6.4 0.5 1.1 �0.2
Southern Africa 5.6 1.8 0.8 �0.1 8.2 �0.5 1.2 �0.2
Central Asia 10.0 1.5 1.4 �0.2 12.6 1.3 2.0 �0.2
Australia 6.9 0.9 0.9 �0.2 7.7 0.3 1.0 �0.2
Europe 8.1 1.1 1.1 �0.2 9.9 0.9 1.7 �0.1
North America 11.6 0.3 1.6 �0.2 13.5 1.2 1.9 �0.2
Southern South America 9.1 1.2 1.4 �0.3 8.3 �0.6 1.1 �0.2
South Asia 6.9 0.7 1.1 �0.2 7.9 0.8 1.2 �0.2
Arctic 13.1 1.2 2.0 �0.2 14.2 1.9 2.2 �0.2

xTmin nTmin

Location Location Trend Scale Shape Location Location Trend Scale Shape

Northern Africa 4.7 1.2 0.9 �0.1 5.3 0.3 0.9 �0.2
Southern Africa 5.2 1.2 0.8 �0.1 6.2 �0.5 0.9 �0.2
Central Asia 10.0 1.9 1.7 �0.2 12.8 2.5 1.9 �0.2
Australia 6.2 0.9 0.8 �0.2 6.6 0.2 0.8 �0.2
Europe 7.7 1.4 1.1 �0.2 11.1 1.6 1.9 �0.2
North America 11.8 0.5 1.7 �0.2 13.7 1.9 1.9 �0.2
Southern South America 8.2 2.1 1.3 �0.3 8.3 �1.2 1.0 �0.3
South Asia 5.0 1.1 0.9 �0.2 6.9 1.8 1.1 �0.1
Arctic 14.0 1.6 2.2 �0.3 14.0 2.5 1.8 �0.2

aNorthern Africa [20W, 10S, 45E, 36N], southern Africa [20W, 40S, 45E, 10S], central Asia [45E, 36N, 180E, 65N], Australia [105E, 45S, 180E, 10S],
Europe [20W, 36N, 45E, 65N], North America [165W, 15S, 30E, 65N], southern South America [115W, 55S, 30W, 10S], South Asia [45E, 10S, 160E,
36N], and Arctic [180W, 65N, 180E, 90N].
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found for the 90th and 10th percentiles of daily Tmin and
Tmax by Robeson [2004]. The largest increases in Tmin and
Tmax are similarly found to be in Northern Hemisphere
winter and spring (not shown, see Figures S1–S8) and
occurring in the western and northwestern parts of the
continent. The strongest period showing extremes cooling
for some regions is in SON as with Robeson [2004],
however the inclusion of all percentiles in the cluster
analysis of Robeson [2004] probably explains the different
patterns of extremes cooling between the two studies. The
percentile trend analysis of Caesar et al. [2006] using the
same data set as used here but focussing on less extreme
temperatures (5th to 95th percentile) and that of Alexander
et al. [2006] which used daily extreme indices (occurrence
of warm or cold days or nights above/below the 90th/10th

percentiles) are in broad agreement with the results shown
here. Both these studies find that the greatest warming of
temperature extremes occurs over Eurasia and that this has
predominately occurred in DJF and MAM as found here
(not shown, see Figures S1–S8). Nogaj et al. [2006] apply
an alternative nonstationary extreme value methodology to
NCEP reanalysis data restricted to the North Atlantic
region. For the land points in their domain there is consid-
erable agreement with a decrease (increase) in warm JJA
extremes for the southern (northern) east coast of North
America and extremes increasing for most of Europe. For
DJF we find more extensive indication that extreme cold
events are getting warmer (see Figures S1–S8). Possible
reasons for these differences could include the use of daily
mean temperatures from the reanalysis and the limitations of
the land surface schemes in the assimilation model resulting
in discrepancies with the observations [Kharin et al., 2005].
[23] The sensitivity of these results to the declustering

window width was found to be small. Repeating the
analysis using 5-d and 30-d windows produces very similar
location trend patterns with the only difference being a
larger number of retrievals failing to converge to a solution
with the numerical solver for the 30-d window due to the
smaller volume of data available for fitting. The magnitudes
of the retrieved trends were found to be within one standard
error of the original estimates for most grid boxes. Likewise
sensitivity to threshold level was also found to be small.
Thresholds of 0.75% and 3.0% produce very similar loca-
tion trend patterns although substantially more retrievals fail
to converge due to lack of data with the 0.75% threshold.
Magnitudes of the trends from the different thresholds were
also found to be within one standard error of the original
estimates for most grid boxes.
[24] The average magnitude of the observed positive

trends in the location parameter together with the area
covered by positive trends, are presented for selected
regions in Table 2. Assessment of field significance with
respect to unforced natural climate variability is made
through comparison with equivalent values from CNTRL
as outlined earlier. Trends and areas not significantly
different from that which might be expected from the
model’s unforced natural variability, at the 10% significance
level, are italicized in Table 2. All regions have positive
trends and nearly all their averages are greater in magnitude
than can be expected from unforced natural variability for
the four measures of extreme temperatures. Exceptions are
nTmax and nTmin extremes for southern Africa and nTmax
extremes for Europe. Considering the area with positive
trends within these regions, 25 out of the 36 measures have
areas which are greater than expected from unforced natural
climate variability at the 10% significance level. The area of
positive trends for all four temperature tails for Europe,
central Asia, South Asia and the Arctic are significantly
greater than expected from a stable climate. If the control
climate of HadCM3 is an accurate measure of the unforced
natural variability of daily temperature extremes the results
of Table 2 suggest that the observed changes in extreme
temperatures are being driven by external forcing of the
climate system. The similarity between the significance
mask derived from the likelihood ratio test and the CNTRL
data (not shown) provides additional confidence that the
detected changes in extreme temperatures are real. These

Figure 3. Trend in location parameter derived from
time-dependent marked point process extreme distribution
(L-TREND) fitted to (a) xTmax, (b) nTmax, (c) xTmin,
and (d) nTmin. Values correspond to the change over the
observation period 1950–2004 of all extreme tempera-
tures more extreme than the data selection threshold; units
are �C. Unshaded areas have significant trends rejecting
the hypothesis of no trend at the 10% significance level
derived from a likelihood ratio test with the corresponding
stationary marked point process extreme distribution.
Points failing the goodness-of-fit test at the 1% level
are masked as missing.
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results are consistent with the findings of Christidis et al.
[2005] who detected the warming influence of increased
greenhouse gases on the warmest and coldest night and
coldest day of the year (here xTmin, nTmin and nTmax)
although not for the warmest day (here xTmax).
[25] An important question, particularly for adaptation

planning, is whether the distributions of regional daily
temperature extremes will change at a different rate to those
of daily mean temperatures. For the future, climate model
simulations suggest that for some regions extreme changes
could be considerably different to the changes in the mean
[Kharin and Zwiers, 2005; Clark et al., 2006]. To see
whether this has already happened, Figure 4 shows the
differences between the linear trend in the mean (derived
from all daily anomalous temperature data) and the trend in
the ANN location parameter. The statistical significance of
these differences is determined at the 10% level via a
bootstrap approach. The original data at each grid-point
are resampled in blocks of 30 d to preserve serial correla-
tion, and the mean and extreme trends are recalculated. The
p-value is the proportion of resampled trend differences
greater in magnitude than the trend difference in the original
data. Because of computing limitations, the test was re-
stricted to points with absolute trend differences greater than
0.5�C over the period and to 400 resamples.
[26] For most of the globe, changes in extremes are

indistinguishable from change in the mean over the period
1950 to 2004. However, there are a substantial number of
regions showing significantly differing trends. For example,
in North America the cold tails have generally warmed
more than the mean, particularly nTmin, and a similar but
opposite and smaller response for the warm tails. The
Southern Hemisphere regions, Uruguay, southern Africa
and Australia show the opposite patterns. Eurasia and
northern Africa have a more complicated picture with
opposing patterns of positive and negative differences
between xTmax and nTmax. For Tmin there are large parts
of central Eurasia that have both Tmin tails warming more

than the mean. Assessment of the causes for these differ-
ences is left for future work but potential candidates include
local feedbacks which may enhance or reduce the effective-
ness of the processes causing changes in extremes with
respect to the mean, such as changes in soil moisture [Clark
et al., 2006].

5. Influence of NAO on Extreme Temperatures

[27] The North Atlantic Oscillation (NAO) and the Arctic
Oscillation (AO), both patterns of large-scale, low-frequen-
cy natural atmospheric variability in the Northern Hemi-
sphere, have been shown to have a significant influence on
average winter surface temperatures [e.g., Hurrell and van
Loon, 1997; Thompson and Wallace, 1998] with positive
NAO indicating strong zonal flow over the North Atlantic
bringing warmer, moister and stormier weather to Europe.
However, their influence on extremes has been restricted to

Table 2. Percentage Land Area Having Positive Trends and

Corresponding Average Positive Trend Magnitude for Subregions

Defined in Table 1a

Extreme

Northern
Africa

Southern
Africa

Central
Asia Australia Europe

%
Area Trend

%
Area Trend

%
Area Trend

%
Area Trend

%
Area Trend

xTmax 94 1.83 100 1.78 96 1.57 89 0.99 92 1.28
nTmax 71 1.28 30 0.27 95 1.39 58 0.86 97 0.96
xTmin 91 1.37 100 1.23 97 1.99 89 1.03 90 1.56
nTmin 64 0.76 5 0.40 100 2.48 57 0.87 100 1.64

Extreme

North
America

Southern
South

America
South
Asia Arctic

%
Area Trend

%
Area Trend

%
Area Trend

%
Area Trend

xTmax 64 1.01 94 1.32 81 0.89 79 1.64
nTmax 84 1.50 0 - 76 1.19 96 1.95
xTmin 62 1.47 100 2.09 97 1.20 84 1.98
nTmin 94 2.07 0 - 99 1.79 100 2.49

aTrends and areas not significantly different from HadCM3’s unforced
natural variability, at the 10% significance level, are italicized.

Figure 4. Difference between the location parameter
trends of Figure 3 and trend in all daily temperatures:
(a) xTmax - mean of Tmax, (b) nTmax - mean of Tmax,
(c) xTmin - mean of Tmin, and (d) nTmin - mean of Tmin.
Anomalies from all days of the year are used; units are �C.
Significance is determined through bootstrapping (see
section 3) with shaded areas failing to reject the null
hypothesis of equal trends at the 10% level or where trends
are within 0.5�C over the data period. Points failing the
goodness-of-fit test at the 1% level are masked as missing.
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regional studies [e.g., Wettstein and Mearns, 2002; Higgins
et al., 2002; Gong and Ho, 2004]. Here, the influence of the
NAO on the location parameter is determined through the
introduction of an NAO index (defined as the standardized
seasonal mean pressure difference between the Azores and
Iceland) as a covariate in the estimation of the location
parameter (L-NAO) and also where the location parameter
depends on both NAO and time (L-TREND-NAO) to give
location parameters that are, respectively:

mt ¼ a0 þ a2nao

mt ¼ a0 þ a1t þ a2nao
ð4Þ

These are tested for significance using the likelihood ratio
test against STAT and L-TREND.
[28] For most regions there is little or no NAO influence

on extreme daily temperatures found for ANN or for
seasons other than DJF (not shown). For DJF, L-TREND-

NAO is found to produce the largest number of grid boxes
with significantly better fits with respect to STAT than L-
TREND. The areas of significance for L-TREND and L-
NAO with respect to STAT indicate regions for which both
covariates have an influence, as for Europe and central
Eurasia, in addition to regions where only one has a
significant contribution, as with L-TREND in central and
western North America (not shown). The introduction of an
NAO covariate does not alter the retrieved temperature
trends (a1 in equations (2) and (3)) for most areas, the
largest difference occurring for western Europe and north-
ern Eurasia with coefficients for nTmax and nTmin being
up to 0.4�C/decade lower if the NAO is included in the
MPP model. Similarly the introduction of a trend covariate
does not have a significant effect on the magnitude of the
NAO coefficient (not shown).
[29] Figure 5 plots a2 of L-TREND-NAO in equation (4),

representing the effect NAO has had on extreme DJF

Figure 5. The effect the range of the North Atlantic Oscillation (NAO) has had on extreme DJF
temperatures during the period 1950 to 2004 as derived from a marked point process model of extreme
values of daily temperatures where the location parameter depends on both time and NAO (L-TREND-
NAO) (a) xTmax, (b) nTmax,(c) xTmin, and (d) nTmin. Units are �C. Unshaded areas reject the
hypothesis of no NAO effect and no trend at the 10% significance level derived from a likelihood ratio
test. Points failing the goodness-of-fit test at the 1% level are masked as missing.
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anomalous daily temperatures for all four distribution tails.
The general patterns of influence correspond well with the
patterns found by Hurrell and van Loon [1997] for mean
winter temperatures. Positive NAO brings warmer temper-
ature extremes for most of northern Eurasia and cooling,
albeit weaker, for northern Africa, the Middle East and
southern Eurasia. The cooling for northeastern North Amer-
ica is also reproduced. The impact of NAO on the rest of
North America agrees less well with Hurrell and van Loon
[1997] with a complicated pattern of warming and cooling
being found here, and cooling with increased NAO found
for Alaska, the opposite of that found by Hurrell and van
Loon [1997]. These regional differences could be due to the
use here of pressure data from the Azores rather than Lisbon
in the formation of the NAO index.
[30] Unlike Hurrell and van Loon [1997] which looked at

the influence of NAO on mean winter temperatures, here we
have four extreme temperature measures. Figure 5 indicates
that these measures do not always respond equally to NAO.
The differences between the NAO coefficients for each pair
of tails (not shown) are tested for statistical significance
with a t-test at the 10% level. The test assumes indepen-
dence between the extremes in the two tails, so may be
liberal in case of dependence; however, any serial correla-
tion in the data will make the test conservative. Notwith-
standing these limitations, the NAO response of xTmax in
Eurasia is seen to be significantly less positive in the north
and more negative in the south. Alaska has a large negative
response for nTmax and nTmin, as does western Europe,
with significantly larger coefficients for the cold tails of the
distributions than for the warm tails. These differences
between the different temperature measures are potentially
due to the different weather which causes extremes in each
tail. The lower tail of nTmin is generally associated with
cold winter nights and the weather causing such extremes
(e.g., an arctic outbreak over Europe) will be different from
that which causes extreme warm winter days for xTmax
(e.g., a strong southerly flow bringing warm air from lower
latitudes). The similarities in NAO influence between
nTmin and nTmax suggest that similar weather types are
causing extremes in both tails.
[31] These results are in qualitative agreement with

Wettstein and Mearns [2002] who found high AO condi-
tions increased (decreased) expected mean winter Tmin and
Tmax for the region around New York (eastern Canada).
Higgins et al. [2002] find a positive (negative) AO rela-
tionship for the number of warm (cold) days for central and
eastern United States. These relationships correspond well
with the NAO influence shown in Figure 5. Repeating our
extreme analysis with an AO generally reproduces the
patterns found for the NAO in North America. The extreme
measures used by Higgins et al. [2002] of daily average
temperature (rather than Tmax and Tmin) and the number of
days exceeding a threshold or the separation of the effects of
positive and negative phases of the AO could account for
the differences in detail between their results and those
presented here.
[32] The presence of an NAO effect might cast doubt on

the earlier trend estimates for ANN (Figure 3). The com-
parison between the location trends of L-TREND-NAO and
L-TREND (not shown) indicates that the effect of omitting
the NAO dependence in L-TREND is very small for ANN

(less than 0.04�C/decade) unlike that found earlier for DJF.
Thus we conclude that the omission of NAO in the MPP
parameter estimation for ANN has not unduly biased the
inferred widespread changes in extreme daily temperatures
since 1950 presented earlier.

6. Summary

[33] Changes in extreme daily temperatures from a new
observed gridded daily maximum and minimum tempera-
ture data set are examined using both a stationary marked
point process extreme value distribution and one which can
have time and/or NAO dependence. The use of nonstation-
ary extreme value distributions is found to be an effective
method for discerning changes in extreme temperatures.
The location parameter of the extreme distribution (concep-
tually analogous to the mean of a normal distribution) is the
only parameter which is found to have discernable nonsta-
tionary characteristics from the observations. Changes in the
location parameter represent a uniform shift for the entire
extreme tail of the distribution it represents.
[34] Since 1950 there has been a significant positive trend

in extreme daily temperature anomalies for both the upper
and lower tails of the daily maximum and daily minimum
temperature distributions. This is characterized by a trend in
the location parameter of a marked point process extreme
value distribution. This has occurred for most land areas for
which there is suitable data, with extreme daily temper-
atures in the upper or lower 1.5% of the daily distribution
increasing by 1 to 3�C over the observed period. The
greatest warming is found for the cold tail of daily minimum
temperatures with some regions in Russia and Canada
warming by over 4�C. The cold tail of the daily maximum
temperatures shows the least warming. Small areas of
cooling are found, the largest being for eastern United
States and Mexico for xTmax (approximately 1�C) and
Australia for nTmin (approximately 0.5�C).
[35] The magnitude of the positive trends and the area

they cover are outside the unforced natural climate variabil-
ity (as simulated by the HadCM3 climate model) for most
regions. Whether these increases are a result of anthropo-
genic emissions of green house gases is not assessed in this
study. However, these results are in good agreement with
those of Christidis et al. [2005] who detected an anthropo-
genic greenhouse gas influence in the warming of the
annual extremes of xTmin, nTmin and nTmax at a global
scale. They did not detect any such influence on xTmax but
the similarity of the warming patterns between the four
extreme measures suggests that the causes of the patterns
are the same. It is possible that the noise characteristics of
xTmax may be such that detection of an anthropogenic
influence is not yet possible.
[36] Trends in extreme temperatures are not significantly

different from trends in the mean for most of the land
surface for which there is data. However, there are regions
of significant differences, for example the cold (warm) tails
of the daily distributions for most of North America appear
to be warming faster (slower) than changes in the mean. The
opposite is found for the Southern Hemisphere in the
smaller regions for which there is data. Eurasia has a more
complicated pattern but with large regions indicating that
upper and lower tails of Tmin have warmed more than the
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mean. This suggests that extremes may already be changing
at a different rate than the mean in some areas and which
may become clearer and more prominent in the future.
[37] The NAO is found to have had a significant influ-

ence on northern winter (DJF) extreme temperatures. A
negative unit deviation of a standardized NAO index is
found to cool the lower extreme tail of daily winter
minimum temperatures by up to �2�C for western Europe
and warm those for Newfoundland by �1.5�C. A smaller
influence is seen for most of Eurasia. A warming trend in
DJF is found for most regions even when the influence of
NAO is taken into account.
[38] Nonstationary extreme value distributions are found

to be a powerful and useful tool in the characterization of
extremes in a changing climate. If the rate of climate change
increases, as it is expected to in the future, such approaches
will be needed if accurate information on the changing risk
of extremes is to be provided. The forthcoming UK Climate
Impact Programme (UKCIP) climate change scenarios will
utilize such methods in their ambition to provide probabi-
listic estimates of future risk from extremes. It is envisaged
that this approach to providing information on how
extremes will change in the future will greatly assist
adaptation activities and adaptation planning. The gridded
extreme distribution parameters can be obtained from the
Met Office Hadley Centre at http://www.hadobs.org.
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