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Abstract. In this paper, global chaos synchronization is investigated for WINDMI (J. C.

Sprott, 2003) and Coullet (P. Coullet et al, 1979) chaotic systems using adaptive backstep-

ping control design based on recursive feedback control. Our theorems on synchronization

for WINDMI and Coullet chaotic systems are established using Lyapunov stability the-

ory. The adaptive backstepping control links the choice of Lyapunov function with the

design of a controller and guarantees global stability performance of strict-feedback chaotic

systems. The adaptive backstepping control maintains the parameter vector at a predeter-

mined desired value. The adaptive backstepping control method is effective and convenient

to synchronize and estimate the parameters of the chaotic systems. Mainly, this technique

gives the flexibility to construct a control law and estimate the parameter values. Numeri-

cal simulations are also given to illustrate and validate the synchronization results derived

in this paper.

1. Introduction

Chaos refers to one type of complex dynamical behaviors that possess extreme
sensitivity to tiny variations of initial conditions, bounded trajectories in phase
space and fractional topological dimensions. In general, synchronization research
has been focused on two areas. The first one works with the state observers, where
the main applications pertain to the synchronization of nonlinear oscillators. The
second one is the use of control laws, which allows to achieve the synchronization
between nonlinear oscillators, with different structures and orders.

The synchronization of chaotic system was first researched by Yamada and
Fujisaka [1] with subsequent work by Pecora and Carroll [2, 3]. The synchronization
of chaos is one way of explaining sensitive dependence on initial conditions. It has
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been established that the synchronization of two chaotic systems, that identify the
tendency of two or more systems are coupled together to undergo closely related
motions. The problem of chaos synchronization is to design a coupling between the
two systems such that the chaotic time evaluation becomes ideal. The output of
the slave system asymptotically follows the output of the master system i.e. the
output of the master system controls the output of the slave system.

The synchronization for chaotic systems has been widespread to the scope, such
as generalized synchronization [6], phase synchronization [7], lag synchronization,
projective synchronization [8], generalized projective synchronization [9, 10, 11, 12]
and even anti-synchronization [13, 14]. A variety of schemes for ensuring the con-
trol and synchronization of such systems have been demonstrated based on their
potential applications in various fields including chaos generator design, secure com-
munication [15, 16], physical systems [17], and chemical reaction [18], ecological
systems [19], information science [20], energy resource systems [21], ghostburster
neurons [22], bi-axial magnet models [23], neuronal models [24, 25], SIR epidemic
models with impulsive vaccination [26] and predicting the influence of solar wind
to celestial bodies [27, 28, 29, 30], etc. So far a variety of impressive approaches
have been proposed for the synchronization of the chaotic systems such as the OGY
method[31], sampled feedback synchronization method, time delay feedback method
[32], sliding mode control method [33, 34], active control method [35], backstepping
control [37, 38, 39, 40, 41] etc.

Adaptive backstepping control design is a direct aggregation of a control
methodology with some form of a recursive system identification and the system
identification could be aimed to determining the system to be controlled is linear or
nonlinear systems. The system identification is only the parameters of a fixed type
of model that need to be determined and limiting the parametric system identifica-
tion and parametric adaptive control [42, 43, 44, 45, 46, 47]. Adaptive backstepping
control design is studied and analyzed in theory of unknown but fixed parameter
systems.

In this paper, adaptive backstepping control design with feedback input ap-
proach has been proposed. This approach is a systematic design approach and
guarantees global stability of the WINDMI (J. C. Sprott, [48]) and Coullet (P.
Coullet et al, [49]) chaotic systems. Based on the Lyapunov function, the adaptive
update control is determined to tune the controller gain based on the precalcu-
lated feedback control inputs. We organize this paper as follows. In Section 2, we
present the methodology of chaos synchronization by adaptive backstepping con-
trol method. In Section 3, we give a description of the chaotic systems discussed
in this paper. In Section 4, we demonstrate the chaos synchronization of identi-
cal WINDMI chaotic system using adaptive backstepping control. In Section 5,
we demonstrate the chaos synchronization of identical Coullet chaotic system using
adaptive backstepping control. In Section 6, we demonstrate the chaos synchroniza-
tion of WINDMI and Coullet chaotic system using adaptive backstepping control.
In Section 7, we summarize the results obtained in this paper.
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2. Problem Statement and Our Methodology

In general, the two dynamic systems in synchronization are called the master
and slave system respectively. A well designed controller will make the trajectory of
the slave system track the trajectory of the master system, that is, the two systems
will be synchronous.

Consider the master system described by the dynamics

(2.1)

ẋ1 = F1(x1, x2, . . . , xn, αi),
ẋ2 = F2(x1, x2, . . . , xn, αi),
ẋ3 = F3(x1, x2, . . . , xn, αi),
...

...
...

ẋn = Fn(x1, x2, . . . , xn, αi),

where x(t) ∈ Rn is a state vectors of the system and and αi are positive unknown
parameters, α̂i are estimates of the parameters αi.

Consider the slave system with the controller u described by the dynamics

(2.2)

ẏ1 = G1(y1, y2, . . . , yn, αi),
ẏ2 = G2(y1, y2, . . . , yn, αi),
ẏ3 = G3(y1, y2, . . . , yn, αi),
...

...
...

ẏn = Gn(y1, y2, . . . , yn, αi) + u(t),

where u is the input to the system with parameter estimator α̂i, i = 1, 2, 3, . . . , n,
y ∈ Rn is state of the system and Fi, Gi(i = 1, 2, 3, . . . , n) are linear and nonlinear
functions with inputs from systems (2.1) and (2.2).

If Fi equals to Gi, then the systems states are identical synchronization other-
wise that systems states are non identical chaotic synchronization of systems. The
chaotic systems (2.1) and (2.2) depend not only on state variables but also on time
t and the parameters.

We define the synchronization error as

e = yi − xi

then the error dynamics is obtained as

(2.3)

ė1 = G1(y1, y2, . . . , yn, αi)− F1(x1, x2, . . . , xn, αi),
ė2 = G2(y1, y2, . . . , yn, αi)− F2(x1, x2, . . . , xn, αi),
ė3 = G3(y1, y2, . . . , yn, αi)− F3(x1, x2, . . . , xn, αi),
...

...
...

ėn = Gn(y1, y2, . . . , yn, αi)− Fn(x1, x2, . . . , xn, αi) + u(t),
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where u is the controller to the system with parameter estimator α̂i. The parameter
estimation error is defined as

eαi
= αi − α̂i, i = 1, 2, 3, . . . , n.

The synchronization error system controls a controlled chaotic system with control
input u with adaptive update law ˙̂αi as a function of the parameter estimator error
states eα1 , eα2 , eα3 , . . . , eαn

. That means the systematic adaptive feedbacks so as to
stabilize the error dynamics (2.3), e1, e2, e3, . . . , en converge to zero as time t tends
to infinity. This implies that the controller u and adaptive update law ˙̂αi should be
designed so that the two chaotic systems can be synchronized. In mathematically

lim
t→∞

‖e(t)‖ = 0.

Adaptive backstepping control design is systematic and guarantees global sta-
bility performance of strict-feedback chaotic systems. By using the adaptive back-
stepping control design, the chaotic system is stabilized with respect to a Lyapunov
function V , by the design of parameter estimator control α̂i and a control input
function ui with adaptive update law ˙̂αi. The Lyapunov stability approach consists
in finding an update law. We use Lyapunov function technique as our methodology.

We consider the stability of the system

(2.4) ė1 = G1(y1, y2, ..., yn, αi)− F1(x1, x2, ..., xn, αi),

where the state variables x(t) ∈ Rn, y(t) ∈ Rn. As long as this feedback stabilize
the system (2.4) converge to zero as the time t goes to infinity, where e2 = β1(e1)
regarded as an virtual controller. For the design of β1(e1) to stabilize the subsystem
(2.4).

We consider the Lyapunov function defined by

(2.5) V1(e1, eαi) = eT
1 P1e1 +

i=k∑

i=1

eT
αi

Q1eαi ,

where P1 and Q1 are positive definite matrices.
Suppose the derivative of V1 is

(2.6) V̇1 = −eT
1 R1e1 −

i=k∑

i=1

eT
αi

S1eαi ,

where R1 and S1 are positive definite matrices.
Then V̇1 is negative definite function.
Thus by Lyapunov stability theory [50] the error dynamics (2.4) is globally

asymptotically stable.
The virtual control e2 = β1(e1) makes the system (2.4) asymptotically stable.

The function β1(e1) is estimative when e2 considered as controller.
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The error between e2 and β1(e1) is

(2.7) w2 = e2 − β1(e1),

Consider the (e1, w2) subsystem given by

(2.8)
ė1 = G1(y1, y2, . . . , yn, eαi)− F1(x1, x2, . . . , xn, eαi),
ẇ2 = G2(y1, y2, . . . , yn, eαi

)− F2(x1, x2, . . . , xn, eαi
)− β̇1(e1).

Let e3 be a virtual controller in system (2.8). Assume that when

(2.9) e3 = β2(e1, w2)

the system (2.8) made globally asymptotically stable.
Consider the Lyapunov function defined by

(2.10) V2(e1, w2) = V1(e1) + wT
2 P2w2 +

i=m∑

i=k+1

eT
αi

Q2eαi ,

where P2 and S2 are positive definite matrices.
Suppose the derivative of V2 is

(2.11) V̇2 = −eT
1 R1e1 − wT

2 R2w2 −
i=m∑

i=k+1

eT
αi

S2eαi .

where R1, R2, S2 are positive definite matrices.
Then V̇2 is a negative definite function.
Thus by Lyapunov stability theory the error dynamics (2.10) is globally asymp-

totically stable.
The virtual control is e2 = β2(e1, w2) and it make the system (2.10) globally

asymptotically stable.
For the nth state of the error dynamics, define the error variable wn as

(2.12) wn = en − βn−1(e1, w2, w3, . . . , wn).

Consider the (e1, w2, w3, . . . , wn) subsystem given by

(2.13)

ė1 = G1(y1, y2, . . . , yn, eαi)− F1(x1, x2, . . . , xn, eαi),
ẇ2 = G2(y1, y2, . . . , yn, eαi)− F2(x1, x2, . . . , xn, eαi)− β̇1(e1),
...

...
...

ẇn = Gn(y1, y2, . . . , yn, eαi)− Fn(x1, x2, . . . , xn, eαi)
−β̇n−1(e1, w2, w3, . . . , wn) + ut.

Consider the Lyapunov function defined by
(2.14)

Vn(e1, w2, w3, . . . , wn, eαi) = Vn−1(e1, w2, w3, . . . , wn−1)+wT
n Pnwn+

i=n∑

i=m+1

eT
αi

Qneαi
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where Pn and Qn are positive definite matrices.
Suppose the derivative of Vn is

(2.15) V̇n = −eT
1 R1e1 − wT

2 R2w2 − ....− wT
n Rnwn −

n∑

i=m+1

eT
αi

Sneαi
,

where R1, R2, R3, . . . , Rn and Snare positive definite matrices.
Then V̇n is a negative definite function on Rn.
Thus by Lyapunov stability theory the error dynamics (2.13) is globally asymp-

totically stable.
The virtual control is en = βn−1(e1, w2, w2, . . . , wn−1) and the state feedback

input u makes the system (2.13) globally asymptotically stable.
Hence, the states of the master and slave systems are globally and asymptoti-

cally synchronized and the adaptive control law is given by

(2.16) ˙̂αi = G(e) + kieαi

where ki is positive constant, e = y − x is the error vector, and G : Rn → Rn is a
continuous vector function with the error as its argument.

3. The System Description

Recently, theoretical design and hardware implementation of different kinds of
chaotic oscillators have attracted increasing attention, aiming real world applica-
tions of many chaos based technologies and information systems.

3.1. The WINDMI system

The solar-wind driven magnetosphere-ionosphere is a complex driven-damped dy-
namical system. The system gives variety of dynamical properties such as low-level
steady plasma conversion, quasiperiodic releases of geotail stored plasma energy
into the ionosphere, states of continuous strong unloading provisionally identified
as magnetic stromes.

When the prediction of whether modeling, errors in initial values of the input
data, chaotic flucations in the forcing functions and internal chaotic dynamics from
the nonlinearity and feedback loops in the deterministic systems are. The WINDMI
model is well accepted mathematical model for solar-wind-driven magnetosphere-
ionosphere system. WINDMI model is directly track energy through the global
magnetosphere. The global energy properties of substrome using measured magne-
tosphere data is drive the WINDMI model.

The WINDMI (J. C. Sprott, [48]) system is a complex driven-damped dynamical
system. The WINDMI system describes as the energy flow through the solar wind
magnetosphere-ionosphere system. The dynamics of the chaotic WINDMI system
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is described by

(3.1.1)
ẋ1 = x2,
ẋ2 = x3,
ẋ3 = −ax3 − x2 + b− ex1 ,

where x1, x2, x3 are state variables and a, b are positive real constants. The
WINDMI system (3.1.1) is chaotic when

a = 0.7, b = 1.5

Fig. 1 depicts the WINDMI chaotic attractor.
WINDMI model enable to estimate the dimensionless parameter values for the

planets with magnetospheres. This model gives a useful perspective on the stome
and substrom problem. In geotail, there existing micro instabilities of collisionless
tearing modes and kinetic ballooning modes, WINDMI model could be used as an
external frame work for that modes.

3.2. The Coullet system

The Coullet (P. Coullet et al, [49]) chaotic systems, proposed by Coullet and Ar-
neodo. The Coullet chaotic system is one of the paradigms of chaotic system and
it includes a simple cubic part and three positive parameters. The dynamics of the
chaotic Coullet system is described by

(3.2.1)
ẋ1 = x2,
ẋ2 = x3,
ẋ3 = ax1 − bx2 − cx3 − x3

1,

where x1, x2, x3 are state variables and a, b and c are positive real constants. The
Coullet system (3.2.1) is chaotic when

a = 5.5, b = 3.5, and c = 1

Fig. 2 depicts the Coullet chaotic attractor.

4. Synchronization of Identical WINDMI Chaotic Systems using Adap-
tive Backstepping Control Design

In this section we apply the adaptive backstepping method for the synchronization
of two identical WINDMI chaotic systems (J. C. Sprott, [48]) when the parameter
values are unknown. Thus, the master system is described by the chaotic WINDMI
dynamics

(4.1)
ẋ1 = x2,
ẋ2 = x3,
ẋ3 = −ax3 − x2 + b− ex1 ,
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where x1, x2, x3 are state variables and a, b are positive unknown parameters, â
and b̂ are estimates of the parameters a and b.

The slave system is also described by the chaotic WINDMI dynamics

(4.2)
ẏ1 = y2,
ẏ2 = y3,
ẏ3 = −ay3 − y2 + b− ey1 + u,

where y1, y2, y3 are state variables and u is the backstepping controller to be
designed.

The synchronization error is defined by

e1 = y1 − x1, e2 = y2 − x2, e3 = y3 − x3.

The error dynamics is obtained as

(4.3)
ė1 = e2,
ė2 = e3,
ė3 = −ae3 − e2 − ey1 + ex1 + u.

The objective is to find the control law and adaptive update law, so that the system
(4.3) is asymptotically stabilized at the origin and estimates the unknown parame-
ters a and b. We introduce the backstepping procedure to design the controller u,
where u is control feedback, as long as these feedback stabilize system (4.3) converge
to zero as the time t →∞.

First we consider the stability of the system

(4.4) ė1 = e2,

where e2 is regarded as virtual controller.
We consider the Lyapunov function defined by

(4.5) V1(e1) =
1
2
e2
1.

The derivative of V1 is as following

(4.6) V̇1 = e1e2.

Assume the controller e2 = β1(e1).
If we choose

(4.7) β1(e1) = −k1e1,

then

(4.8) V̇1 = −k1e
2
1,
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which is negative definite.
Hence the system (4.4) asymptotically stable.
The function β1(e1) is an estimative function when e2 is considered as a con-

troller.
The error between e2 and β1(e1) is

(4.9) w2 = e2 − β1(e1).

Consider the (e1, w2) subsystem given by

(4.10)
ė1 = w2 − k1e1,
ẇ2 = e3 + k1e2.

Let e3 be a virtual controller in system (4.10), assume when e3 = β2(e1, w2), the
system (4.10)is made globally asymptotically stable.

Consider the Lyapunov function defined by

(4.11) V2(e1, w2) = V1(e1) +
1
2
w2

2.

The derivative of V2(e3, w2) is

(4.12) V̇2 = −k1e
2
1 + w2(e1 + e3 + k1w2 − k2

1e1).

We choose

(4.13) β2(e1, w2) = −e1 − k1w2 + k2
1e1 − k2w2.

Then it follows that

(4.14) V̇2 = −k1e
2
1 − k2w

2
2.

Thus, V̇2 is negative definite function and hence the system (4.10) is globally asymp-
totically stable.

The error between e3 and β2(e1, w2) is

(4.15) w3 = e3 − β2(e1, w2).

Consider the (e1, w2, w3) subsystem given by

(4.16)

ė1 = w2 − k1e1,
ẇ2 = w3 − e1 − k2w2,
ẇ3 = −aw3 + ae1 + ak1w2 − ak2

1e1 − ey1 + ex1 − (k1 + k2)e1

+(k1 + k2)w3 − (k2
1 + k2

2)w2 + k3
1e1 − k1k2w2 + u.

Consider the Lyapunov function defined by

(4.17) V3(e1, w2, w3, ea, eb) = V2(e1, w2) +
1
2
w2

3 +
1
2
e2
a +

1
2
e2
b
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Let us define the parameter estimation error as

(4.18) ea = a− â, eb = b− b̂

Differentiating equation (4.17) along the trajectories (4.18) and using

(4.19) ėa = − ˙̂a, ėb = − ˙̂
b.

The derivative of V3(e1, w2, w3, ea, eb) is

(4.20)
V̇3 = −k1e

2
1 − k2w

2
2 − w3[−aw3 + ae1 + ak1w2 − ak2

1e1 + ak2w2

−ey1 + ex1 − (k1 + k2)e1 + (k1 + k2)w3 − (k2
1 − k2

2)w2 + k3
1e1

−k1k2w2 + u] + ea(− ˙̂a) + eb(− ˙̂
b).

We choose the controller u as follows

(4.21) u = −w2 + âw3 − âe1 − âk1w2 + âk2
1e1 − âk2w2 + ey1 − ex1

−(k1 + k2)(w3 − e1) + (k2
1 − k2

2)w2 − k3
1 + k1k2w2 − k3w3

and the parameters are updated by the update law

(4.22)
˙̂a = w3[e1 + k1w2 − k2

1e1 + k2w2 − w3] + k4ea,
˙̂
b = k5eb.

Then it follows that

(4.23) V̇3 = −k1e
2
1 − k2w

2
2 − k3w

2 − k5e
2
a − k6e

2
b .

Thus, V̇3 is negative definite function.
Thus by Lyapunov stability theory [50], the error dynamics (4.3) is globally

asymptotically stable for all initial conditions.
Hence, the states of the master and slave systems are globally asymptotically

synchronized. 2

Theorem 4.1. The identical WINDMI systems (4.1) and (4.2) are globally asymp-
totically synchronized with adaptive backstepping control

(4.24)
u = −w2 + âw3 − âe1 − âk1w2 + âk2

1e1 − âk2w2 + ey1 − ex1

−(k1 + k2)(w3 − e1) + (k2
1 − k2

2)w2 − k3
1 + k1k2w2 − k3w3

by using adaptive parameter update law

(4.25)
˙̂a = w3[e1 + k1w2 − k2

1e1 + k2w2 − w3] + k4ea,
˙̂
b = k5eb,

where ki, i = 1, 2, 3, . . . 8 are positive constants.

4.1. Numerical simulation
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For the numerical simulations, the fourth order Runge-Kutta method is used to
solve the system of differential equations (4.1) and (4.2) with the feedback controls
u given by (4.24). The parameters of the systems (4.1) and (4.2) are taken in the
case of chaotic case as

a = 0.7, b = 2.5

The initial value of the master system (4.1) are chosen as

x1(0) = 0.984, x2(0) = 0.345, x3(0) = 0.789

and slave system (4.2) are chosen as

y1(0) = 0.456, y2(0) = 0.812, y3(0) = 0.124

The initial values of the estimated parameters are :

â(0) = 10, b̂ = 5.6.

We take the parameters ki = 0.2, i = 1, 2, 3...., 8.
Figure 3 depict the synchronization of identical WINDMI chaotic systems (4.1)

and (4.2).
Figure 4 depict the synchronization error between identical WINDMI chaotic

systems (4.1) and (4.2).
Figure 5 shows the estimated values of the parameters â and b̂ converges to

system parameters a = 0.7 and b = 2.5

5. Synchronization of Identical Coullet Chaotic Systems using Adaptive
Backstepping Control

In this section we apply the adaptive backstepping method for the synchronization
of two identical Coullet (P. Coullet et al, [49]) chaotic systems when the parameter
values are unknown. Thus, the master system is described by the chaotic Coullet
dynamics

(5.1)
ẋ1 = x2,
ẋ2 = x3,
ẋ3 = ax1 − bx2 − cx3 − x3

1,

where x1, x2, x3 are state variables and a, b ,c are positive unknown parameters,
â, b̂ and ĉ are estimates of the parameters a, b and c.

The slave system is also described by the chaotic Coullet dynamics

(5.2)
ẏ1 = y2,
ẏ2 = y3,
ẏ3 = ay1 − by2 − cy3 − y3

1 + u,

where y1, y2, y3 are state variables and u is the backstepping controller to be de-
signed.
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The synchronization error is defined by

(5.3) e1 = y1 − x1, e2 = y2 − x2, e3 = y3 − x3.

Then the error dynamics is obtained as

(5.4)
ė1 = e2,
ė2 = e3,
ė3 = ae1 − be2 − ce3 − y3

1 + x3
1 + u.

The objective is to find the control law and adaptive update law, so that the system
(5.4) is asymptotically stabilized at the origin and estimates the unknown parame-
ters a, b and c. We introduce the backstepping procedure to design the controller u,
where u is control feedback, as long as these feedback stabilize system (5.3) converge
to zero as the time t →∞.

First we consider the stability of the system

(5.5) ė1 = e2,

where e2 is regarded as virtual controller.
We consider the Lyapunov function defined by

(5.6) V1(e1) =
1
2
e2
1.

The derivative of V1 is as following

(5.7) V̇1 = e1e2

Assume the controller e2 = β1(e1).
If we choose

(5.8) β1(e1) = −k1e1,

then

(5.9) V̇1 = −k1e
2
1,

which is negative definite function.
Hence the system (5.5) asymptotically stable.
Function β1(e1) is an estimative function when e2 is considered as a controller.
The error between e2 and β1(e1) is

(5.10) w2 = e2 − β1(e1)

Consider the (e1, w2) subsystem given by

(5.11)
ė1 = w2 − k1e1,
ẇ2 = e3 + k1e2.
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Let e3 be a virtual controller in system (5.11).
Assume when e3 = β2(e1, w2), the system (5.11) made globally asymptotically

stable.
Consider the Lyapunov function defined by

(5.12) V2(e1, w2) = V1(e1) +
1
2
w2

2.

The derivative of V2(e3, w2) is

(5.13) V̇2 = −k1e
2
1 + w2(e1 + e3 + k1w2 − k2

1e1).

We choose

(5.14) β2(e1) = −e1 − k1w2 + k2
1e1 − k2w2.

Then it follows that

(5.15) V̇2 = −k1e
2
1 − k2w

2
2.

Thus V̇2 is negative definite function.
Hence the system (5.11) is globally asymptotically stable.
Define the error between e3 and β2(e1, w2) is

(5.16) w3 = e3 − β2(e1, w2).

Consider the (e1, w2, w3) subsystem given by

(5.17)

ė1 = w2 − k1e1,
ẇ2 = w3 − e1 − k2w2,
ẇ3 = ae1 − be2 − ce3 − y3

1 + x3
1 + w2 − 2k1e1 + (k1 + k2)w3

−k1k2w2 + k3
1e1 − k2e1 − (k2

1 + k2
2)w2.

Consider the Lyapunov function defined by

(5.18) V3(e1, w2, w3, ea, eb, ec) = V2(e3, w2) +
1
2
w2

3 +
1
2
e2
a +

1
2
e2
b +

1
2
e2
c

Let us define the parameter estimation error as

(5.19) ea = a− â, eb = b− b̂, ea = c− ĉ

Differentiating equation (5.18) along the trajectories (5.19) and using

(5.20) ėa = − ˙̂a, ėb = − ˙̂
b, ėc = − ˙̂c.

The derivative of V3(e1, w2, w3, ea, eb, ec) is
(5.21)

V̇3 = −k1e
2
1 − k2w

2
2 − w3(ae1 − be2 − ce3 − y3

1 + x3
1 + 2w2

−(2k1 + k2)e1 + (k1 + k2)w3 − k1k2w2 + k3
1e1 − (k2

1 + k2
2)w2 + u3)

+ea(− ˙̂a) + eb(− ˙̂
b) + ec(− ˙̂c).
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We choose the controller

(5.22) u = −âe1 + b̂e2 + ĉe3 + y3
1 − x3

1 − 2w2 + (2k1 + k2)e1

−(k1 + k2)w3 + k1k2w2 − k3
1 + (k2

1 + k2
2)w2 − k3w3

and the parameters are updated by the update law

(5.23)

˙̂a = w3e1 + k4ea,
˙̂
b = −w3e2 + k5eb and
˙̂c = −w3e3 + k6ec.

Then we obtain

(5.24) V̇3 = −k1e
2
1 − k2w

2
2 − k3w

2
3 − k4e

2
a − k5e

2
b − k6e

2
c .

Thus V̇3 is negative definite function.
Thus by a Lyapunov stability theory [50], the error dynamics (5.3) is globally

asymptotically stable for all initial conditions.
Hence, the states of the master and slave systems are globally and asymptoti-

cally synchronized. 2

Theorem 5.1. The Identical Coullet chaotic systems (5.1) and (5.2) are globally
and asymptotically synchronized with adaptive backstepping control

(5.25) u = −âe1 + b̂e2 + ĉe3 + y3
1 − x3

1 − 2w2 + (2k1 + k2)e1

−(k1 + k2)w3 + k1k2w2 − k3
1 + (k2

1 + k2
2)w2 − k3w3,

by using adaptive parameter update law

(5.26)

˙̂a = w3e1 + k4ea,
˙̂
b = −w3e2 + k5eb and
˙̂c = −w3e3 + k6ec,

where ki, i = 1, 2, 3, ..., 9 are positive constants.

5.1. Numerical simulation

For the numerical simulations, the fourth order Runge-Kutta method is used to
solve the differential equations (5.1) and (5.2) with the feedback controls u.

The parameters of the systems (5.1) and (5.2) are taken in the case of chaotic
case as

a = 5.5, b = 3.5, c = 1.

The initial value of the drive system (5.1) are chosen as

x1(0) = 0.125, x2(0) = 0.625, x3(0) = 0.825

and response system (5.2) are chosen as

y1(0) = 0.924, y2(0) = 0.498, y3(0) = 0.032
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The initial values of the parameter estimates are taken as:

â(0) = 10, b̂(0) = 34.4, ĉ(0) = 25.

We take the parameters ki = 2, i = 1, 2, 3...., 8
Figure.6 depict the synchronization of identical Coullet chaotic systems (5.1)

and (5.2).
Figure. 7 depict the synchronization error between identical Coullet chaotic

systems (5.1) and (5.2).
Figure. 8 shows the estimated values of the parameters â, b̂ and ĉ converges to

system parameters a = 5.5, b = 3.5 and c = 1.

6. Synchronization of WINDMI and Coullet Chaotic Systems using
Adaptive Backstepping Control Design

In this section, the adaptive backstepping control design is applied for the synchro-
nization of two different chaotic systems described by WINDMI (J. C. Sprott, [48])
system as the master system and Coullet (P. Coullet et al, [49]) system as the slave
system. The dynamics of the WINDMI system, taken as master system is described
by

(6.1)
ẋ1 = x2,
ẋ2 = x3,
ẋ3 = −ax3 − x2 + b− ex1 ,

where x1, x2,x3 are state variables, a, b are positive unknown parameters, â and b̂
are estimates of the parameters a and b.

The dynamics of the Coullet system, taken as the slave system, is described by

(6.2)
ẏ1 = y2,
ẏ2 = y3,
ẏ3 = αy1 − βy2 − γy3 − y3

1 + u,

where α, β, γ are positive unknown parameters, α̂, β̂ and γ̂ are estimates of the
parameters α, β and γ. u is the backstepping controller to be designed so as to
synchronize the states of the different chaotic systems (6.1) and (6.2).

The synchronization error is defined by

(6.3) e1 = y1 − x1, e2 = y2 − x2, e3 = y3 − x3.

The error dynamics is obtained as

(6.4)
ė1 = e2,
ė2 = e3,
ė3 = αy1 − βy2 − γy3 − y3

1 + ax3 + x2 − b + ex1 + u.
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The objective is to find the control law and adaptive update law, so that the system
(6.4) is asymptotically stabilized at the origin and estimates the unknown param-
eters a, b, c, α, β and γ We introduce the backstepping procedure to design the
controller u, where u is control feedback, as long as these feedback stabilize system
(6.4) converge to zero as the time t →∞.

First we consider the stability of the system

(6.5) ė1 = e2,

where e2 is regarded as virtual controller.
We consider the Lyapunov function defined by

(6.6) V1(e1) =
1
2
e2
1.

The derivative of V1 is as following

(6.7) V̇1 = e1e2.

Assume the virtual controller e2 = α1(e1).
If we choose

(6.8) α1(e1) = −k1e1,

then

(6.9) V̇1 = −k1e
2
1,

which is a negative definite function.
Hence the system (6.4) asymptotically stable.
Function β1(e1) is an estimative function when e2 is considered as a controller.
The error between e2 and β1(e1) is

(6.10) w2 = e2 − β1(e1).

Consider (e1, w2) subsystem given by

(6.11) ė1 = w2 − k1e1,
ẇ2 = e3 + k1w2 − k2

1e1.

Let e3 be a virtual controller in system (6.11).
Assume when e3 = β2(e1, w2), the system (6.11) is made globally asymptotically

stable.
Consider the Lyapunov function defined by

(6.12) V2(e1, w2) = V1(e1) +
1
2
w2

2.
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The derivative of V2(e3, w2) is

(6.13) V̇2 = −k1e
2
1 + w2(e1 + e3 + k1w2 − k2

1e1).

If we choose

(6.14) β2(e1) = −e1 − k1w2 + k2
1e1 − k2w2.

Then it follow that

(6.15) V̇2 = −k1e
2
1 − k2w

2
2.

Thus, V̇2 is a negative definite function.
Hence the system (6.11)is globally asymptotically stable.
The error between e3 and β2(e1, w2) is

(6.16) w3 = e3 − β2(e1, w2).

Consider (e1, w2, w3) subsystem given by

(6.17)

ė1 = w2 − k1e1,
ẇ2 = w3 − e1 − k2w2,
ẇ3 = αy1 − βy2 − γy3 − y3

1 + ax3 + x2 − b + ex1 + w2 − (2k1 + k2)e1

+(k1 + k2)w3 − k1k2w2 − (k2
1 + k2

2)w2 + k3
1e1 + u.

Consider the Lyapunov function defined by
(6.18)

V3(e1, w2, w3, eα, eβ , eγ , ea, eb) = V2(e3, w2) + 1
2w2

3+
1
2e2

α + 1
2e2

β + 1
2e2

γ + + 1
2e2

a + 1
2e2

b

Let us define the parameter estimation error as

(6.19)
eα = α− α̂, eβ = β − β̂, eγ = γ − γ̂

ea = a− â, eb = b− b̂.

Differentiating equation (6.18) along the trajectories (6.19) and using

(6.20) ėα = − ˙̂α, ėβ = − ˙̂
β,

ėγ = − ˙̂γ, ėa = − ˙̂a, ėb = − ˙̂
b.

The derivative of V3(e1, w2, w3, ea, eb) is
(6.21)

V̇3 = −k1e
2
1 − k2w

2
2 − w3[ae1 − be2 − ce3 − y3

1 + x3
1 + 2w2

−(2k1 + k2)e1 + (k1 + k2)w3 − k1k2w2 + k3
1e1 − (k2

1 + k2
2)w2 + u]

+eα(− ˙̂α) + eβ(− ˙̂
β) + eγ(− ˙̂γ) + ea(− ˙̂a) + eb(− ˙̂

b).
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We choose the controller
(6.22)
u3 = −2w2 − αx1 − α̂e1 + βx2 + β̂e2 + γx3 + γ̂e3 + y3

1 − ay3 + âe3 − x2 + b̂− ex1

+(2k1 + k2)e1 − (k1 + k2)w3 + k1k2w2 + (k2
1 + k2

2)w2 − k3
1e1 − k3w3,

and the parameters are updated by the update law

(6.23)
˙̂α = w3e1 + k4eα,

˙̂
β = −w3e2 + k5eβ ,

˙̂γ = −w3e3 + k6eγ , ˙̂a = −w3e3 + k7ea, and
˙̂
b = −w3 + k8eb.

Then we obtain

(6.24) V̇3 = −k1e
2
1 − k2w

2
2 − k3w

2
3 − k4e

2
α − k5e

2
β − k6e

2
γ − k7e

2
a − k8e

2
b .

Thus V̇3 is negative definite function.
Thus by a Lyapunov stability theory [50], the error dynamics (6.4) is globally

exponentially stable and satisfied for all initial conditions.
Hence, the states of the master and slave systems are globally and asymptoti-

cally synchronized. Hence, we obtain the following result.

Theorem 6.1. The WINDMI chaotic system (6.1) and Coullet chaotic system
(6.2) are globally and asymptotically synchronized with adaptive backstepping con-
rol
(6.25)
u3 = −2w2 − αx1 − α̂e1 + βx2 + β̂e2 + γx3 + γ̂e3 + y3

1 − ay3 + âe3 − x2 + b̂− ex1

+(2k1 + k2)e1 − (k1 + k2)w3 + k1k2w2 + (k2
1 + k2

2)w2 − k3
1e1 − k3w3,

by using adaptive parameter update law

(6.26)
˙̂α = w3e1 + k4eα,

˙̂
β = −w3e2 + k5eβ ,

˙̂γ = −w3e3 + k6eγ , ˙̂a = −w3e3 + k7ea, and
˙̂
b = −w3 + k8eb.

where ki, i = 1, 2, 3, ..., 11. are positive constants. 2

6.1. Numerical simulation

For the numerical simulations, the fourth order Runge-Kutta method is used to
solve the differential equations (6.1) and (6.2) with the feedback controls u.

The parameters of the systems (6.1) and (6.2) are taken in the case of chaotic
case as

a = 0.7, b = 2.5

and
α = 5.5, β = 3.5, γ = 1.
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The initial value of the drive system (6.1) are chosen as

x1(0) = 0.341, x2(0) = 0.598, x3(0) = 0.928

and response system (6.2) are chosen as

y1(0) = 792, y2(0) = 0.734, y3(0) = 0.253.

The initial values of the parameter estimates are taken as:

α̂(0) = 1.2, β̂(0) = 1.5, γ̂(0) = 3, â(0) = 8, b̂(0) = 4.

We take the parameters ki = 2, i = 1, 2, 3...., 11.
Figure 9 depict the synchronization of WINDMI and Coullet chaotic systems

(6.1) and (6.2).
Figure 10 depict the synchronization error between WINDMI and Coullet

chaotic systems (6.1) and (6.2).
Figure. 11 shows the estimated values of the parameters â, b̂ and ĉ converges

to system parameters α = 5.5, β = 3.5, γ = 1, a = 0.7, andb = 2.5.

7. Conclusion

In this paper, adaptive backstepping control method has been applied to esti-
mate the fixed but unknown parameter and achieve global chaos synchronization
for WINDMI and Coullet chaotic systems. Since the Lyapunov exponents are not
required for these calculations, the adaptive backstepping control design is very
effective and convenient to achieve global chaos synchronization. Numerical simu-
lations have been given to illustrate and validate the effectiveness of the adaptive
backstepping control based synchronization schemes of the WINDMI and Coullet
chaotic systems.
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Figure 9: Synchronization of WINDMI and Coullet Chaotic Systems
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Figure 10: Error portrait of WINDMI and Coullet Chaotic Systems
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Figure 11: Parameter estimates of α̂, β̂, γ̂, â and b̂


