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Predicted changes to the Earth’s climate are likely to affect above–belowground interac-
tions. Our understanding is limited, however, by past focus on two-species aboveground
interactions mostly ignoring belowground influences. Despite their importance to ecosys-
tem processes, there remains a dearth of empirical evidence showing how climate change
will affect above–belowground interactions. The responses of above- and belowground
organisms to climate change are likely to differ given the fundamentally different niches
they inhabit.Yet there are few studies that address the biological and ecological reactions of
belowground herbivores to environmental conditions in current and future climates. Even
fewer studies investigate the consequences of climate change for above–belowground
interactions between herbivores and other organisms; those that do provide no evidence of
a directed response. This paper highlights the importance of considering the belowground
fauna when making predictions on the effects of climate change on plant-mediated
interspecific interactions.
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INTRODUCTION
Trophic interactions are likely to be crucial in shaping net effects of
global climate change on ecosystems (e.g., Harrington et al., 1999;
Tylianakis et al., 2008). Modified interactions between trophic
groups (e.g., spatial or phenological decoupling of herbivore
and predator populations) could have far reaching consequences
across a range of natural and managed ecosystems with implica-
tions for food security (Gregory et al., 2009). In particular, the
plant-mediated interactions between above- and belowground
herbivores (Gange and Brown, 1989; Blossey and Hunt-Joshi,
2003; Johnson et al., 2012) may be important in the structuring of
herbivore and multi-trophic communities (Bardgett and Wardle,
2010; Megías and Müller, 2010; Soler et al., 2012; Johnson et al.,
2013). Surprisingly, investigating the potential impacts of climate
change on above–belowground interactions, has received little
attention (Schroter et al., 2004). Given that root and shoot herbi-
vores affect plants in dramatically different ways, but also interact
with each other (Meyer et al., 2009), the conclusions drawn from
studies of climate change impacts limited to only aboveground
herbivores may be misleading.

This perspectives paper uses empirical examples to illustrate
how belowground herbivores influence aboveground plant–insect
interactions. It draws on studies concerning above–belowground
interactions as well as studies showing how climate change can
alter soil herbivore communities. Finally, it considers the few
examples that exist where above–belowground interactions have
been studied under climate change scenarios to show how such
plant-mediated interactions are, or may be, modified. Thus,

this paper will highlight the potential for incomplete or inac-
curate predictions of climate change impacts on plant–insect
relationships, because of lack of consideration of belowground
interactions.

ABOVE–BELOWGROUND INTERACTIONS IN THE CURRENT
CLIMATE
Studies of plant-mediated interactions between spatially sep-
arated herbivores have revealed contrasting ecological pat-
terns (van Dam and Heil, 2011) that have evolved and built
upon two major hypotheses: the Stress Response Hypothesis
(Masters et al., 1993; Bezemer et al., 2004) and the Defense Induc-
tion Hypothesis (Bezemer et al., 2002). The Stress Response
Hypothesis suggests root herbivory impairs the plant’s capacity
for water and nutrient uptake, which can lead to the accu-
mulation of nitrogen compounds in foliage (White, 1984) to
increase palatability to aboveground herbivores. In contrast, the
Defense Induction Hypothesis, suggests that belowground herbi-
vores will induce a systemic increase in plant-defense chemicals,
making it more difficult for herbivore colonization to occur above-
ground (Bezemer and van Dam, 2005; Kaplan et al., 2008). These
plant-mediated mechanisms arise through a complex path of
communication between root and shoot tissues involving pri-
mary (e.g., Johnson et al., 2009) and secondary (Bezemer and van
Dam, 2005) chemicals. The nature and mode of signaling between
roots and leaves is a rapidly expanding area of research (Ras-
mann and Agrawal, 2008). Some hypotheses suggest that inter-
actions between phytohormonal pathways regulate interspecific
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herbivore interactions (Soler et al., 2013). Different feeding guilds
elicit different phytohormonal pathways. For example, jasmonic
acid (induced by root-chewers) reduces a plant’s salicylic acid
defense response against aphids (Soler et al., 2013). Given that
above- and belowground herbivores can systemically alter the
defensive phenotype of plants, future models of plant defense
allocation would benefit greatly from a systemic-plant approach
(Rasmann et al., 2009).

The consequences of interactions between spatially segre-
gated organisms are more far-reaching than simple pair-wise
herbivore–herbivore interactions, with effects cascading across
species networks spanning trophic levels and the above- and
belowground sub-systems (Scheu, 2001; Bardgett and Wardle,
2003; Wardle et al., 2004). The effects of root herbivory can, for
instance, affect tertiary trophic levels. Root herbivores such as
the cabbage root fly (Delia radicum) have been observed to affect,
via the host plant, an aboveground herbivore (Pieris brassicae),
its parasitoid (Cotesia glomerata), and hyper-parasitoid (Lysibia
nana) (Soler et al., 2005). In this instance, D. radicum increased
the development time of P. brassicae and C. glomerata, and the
body size of both parasitoid and hyper-parasitoid were reduced.
These effects were attributed to an alteration in the blend of phyto-
toxins (glucosinolates) emitted post-herbivory (Soler et al., 2005).
Conversely, aboveground herbivory can have a negative effect on
belowground herbivores and associated natural enemies (Jones
and Finch, 1987; Soler et al., 2007). For instance, the presence of
butterfly larvae (P. brassicae) reduced the abundance of the below-
ground herbivore (D. radicum) and its parasitoid (Trybliographa
rapae) by up to 50% and decreased the body size of emerging para-
sitoid and root herbivore adults (Soler et al., 2007). If these broader
interactions between organisms inhabiting the plant rhizosphere
and canopy are typical, they could scale-up to play important roles
in governing ecosystem function.

CLIMATE CHANGE AND BELOWGROUND HERBIVORES
Many studies and comprehensive reviews address the effects of
global climate change on aboveground insect herbivores (e.g.,
Bale et al., 2002; Cornelissen, 2011), whereas there are substan-
tially fewer studies of the impacts on belowground organisms
(Staley and Johnson, 2008). Soil fauna are, at least to some
extent, buffered from the direct impacts of climate change (Bale
et al., 2002). Carbon dioxide concentrations are already high
within the soil due to root respiration and microbial processes
(Haimi et al., 2005), and therefore soil fauna are less likely to
be affected by increased atmospheric CO2 directly. Soil fauna
may, however, be affected indirectly by increased growth of root
resources caused by increased atmospheric CO2 (Norby, 1994).
While higher soil temperature may also increase root growth,
temperature increase may directly affect soil herbivore develop-
ment and insect phenology (van Asch et al., 2007). Reduced soil
moisture, potentially a consequence of increased temperature, can
also impact many soil insect life-history traits, such as survival
and abundance (Pacchioli and Hower, 2004). Predicted increases
in climatic extremes under a future climate (e.g., increased
flooding and drought events) may also drown or desiccate soil
biota and herbivores, thus reducing their prevalence in the soil
(Parmesan et al., 2000).

Soil-dwelling insect herbivores feed on the roots and therefore
have very different effects on plant traits than their aboveground
counterparts. These effects may alter the predicted consequences
of global climate change on shoot herbivores (Robinson et al.,
2012; Zavala et al., 2013). For instance, most plants increase
biomass accumulation and rates of photosynthesis in response to
elevated CO2 (Ainsworth and Long, 2005); this depends on plants
maximizing water and nitrogen use efficiency. To facilitate this,
many plants increase their root:shoot biomass ratio in response to
elevated CO2, but this may be compromised by root herbivores,
which remove root mass, therefore impairing water and nutrient
uptake (Johnson and Murray, 2008). A recent meta-analysis by
Zvereva and Kozlov (2012) showed that root herbivores reduced
rates of photosynthesis in host plants; this contrasts with many
aboveground herbivores that actually stimulate it (e.g., Thomson
et al., 2003). Empirical evidence also suggests that root herbivory
can effectively reverse the effects of elevated CO2 on eucalypt
chemistry (e.g., increased foliar C:N ratio) and biomass, poten-
tially altering the outcomes for aboveground herbivores (Johnson
and Riegler, 2013).

CLIMATE CHANGE AND ABOVE–BELOWGROUND
INTERACTIONS: EMPIRICAL EVIDENCE
To our knowledge, there are only two peer-reviewed published
examples describing how an elevated CO2 environment affects
the interaction between above- and belowground herbivores.
The first focused on the interaction between the root-feeding
(Pemphigus populitransversus) and shoot-feeding (Aphis fabae
fabae) aphids, on Cardamine pratensis (Salt et al., 1996). The
study concluded the interaction between these spatially sepa-
rated aphids was unaffected by CO2, because root herbivore
populations were always smaller in the presence of an above-
ground herbivore regardless of the CO2 environment. The second
study investigated the conspecific interaction between above-
ground adults and belowground larvae of the clover root weevil
(Sitona lepidus) (Johnson and McNicol, 2010). Elevated CO2

increased leaf consumption by adult weevils but resulted in
lower rates of oviposition. These patterns were interpreted by
the authors to be a compensatory feeding response to reduced
leaf nitrogen and lower reproductive output due to inadequate
nutrition. Despite reduced rates of oviposition, larval survival
was much greater at elevated than at ambient CO2-levels poten-
tially due to increased nodulation (increased food source) of
the host plant (Trifolium repens) under elevated CO2 conditions
(Johnson and McNicol, 2010).

Enrichment with CO2 is not only expected to increase plant
biomass both above- and belowground, but also to reduce plant
tissue quality through increases in the C:N ratio and secondary
metabolite concentrations (Bezemer and Jones, 1998). Com-
pensatory feeding by phytophagous insects in an elevated CO2

environment may thus increase exposure to defensive chemicals
present in plant tissue. This is likely, however, to be contin-
gent on plant taxonomic identity, as concentrations of defensive
chemicals may increase [e.g., glucosinolates in Aradopsis thaliana
(Bidart-Bouzat et al., 2005)], or remain unchanged [e.g., tan-
nins in Quercus myrtifolia (Rossi et al., 2004)] in response to CO2

enrichment.
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Temperature changes may alter above–belowground interac-
tions either by affecting invertebrate phenology directly (Gordo
and Sanz, 2005; Harrington et al., 2007) or indirectly through
changes in the plant (Harrington et al., 1999; Bale et al., 2002;
Singer and Parmesan, 2010), although this remains to be tested
empirically. A predicted increase in global mean temperatures may
also result in an increased water stress response in plants (Huberty
and Denno, 2004), making them more susceptible to herbivory
both above- and belowground.

Summer drought is another factor associated with climate
change that has been shown to influence above–belowground
interactions. Typically, root-chewing Agriotes sp. larvae reduced
the abundance and performance of leaf-mining Stephensia brun-
nichella larvae and its associated parasitoid (Staley et al., 2007).
This effect was, however, negated under drought conditions.
Changes to summer rainfall may, therefore, reduce the occurrence
or alter the outcome of plant-mediated interactions between insect
herbivores.

Above–belowground interactions may also be influenced by
variation in soil moisture. Experimentally elevated rainfall
increased the suppression of an outbreak of the herbivorous moth
larvae Hepialus californicus by an entomopathogenic nematode
(Heterorhabditis marelatus), thereby indirectly protecting the host
plant – bush lupine (Lupinus arboreus) (Preisser and Strong, 2004).
Thus climate change, by altering patterns of precipitation, has
the potential to modify herbivore–natural enemy interactions to
reduce herbivore pressure.

Few studies have integrated the multiple abiotic factors asso-
ciated with climate change (i.e., water supply, temperature, CO2,
etc.) to investigate their combined effects on above–belowground
interactions. One such study (Stevnbak et al., 2012) manipulated
CO2 concentration, air and soil temperature, and precipitation
to show that soil microbial biomass was altered by aboveground
herbivory (Chorthippus brunneus). The combination of multiple
climate change treatments with aboveground herbivory increased
microbivorous protist abundance in the soil, emphasizing the
importance of considering climate change in above–belowground
interactions.

THE FUTURE OF ABOVE–BELOWGROUND INTERACTIONS
AND CLIMATE CHANGE RESEARCH
Johnson et al. (2012) conducted a meta-analysis on two-species
above–belowground herbivore interactions. Although restricted
by not including other trophic groups, the meta-analysis did iden-
tify several factors that determine the outcomes of interactions
between spatially separated herbivores. From these outcomes it
is possible to develop hypotheses of how specific interactions
are likely to be affected by climate change. The chronologi-
cal sequence in which herbivores fed on shared plants was a
major determinant of interaction outcome. In particular, above-
ground herbivores negatively affected belowground herbivores
when they fed first, but not when feeding synchronously or
following belowground herbivores. Conversely, belowground her-
bivores typically had positive effects on aboveground herbivores
only when synchronously feeding, otherwise they had a negative
impact (Johnson et al., 2012). Many of the data on above-
ground species are from aphids; we know that elevated CO2

and temperature results in earlier and longer seasonal occur-
rences of many pest species, including aphids (Harrington et al.,
2007). Therefore in the future it might be reasonable to expect
that some aphids may initiate feeding on the plant prior to
belowground herbivores. Under such circumstances, aphids may
negatively affect the belowground herbivore while remaining
unaffected themselves, the reverse of the interaction under cur-
rent conditions. Likewise, if drought conditions delayed root
herbivore development this change could become even more
pronounced.

Feeding guild identity (e.g., chewers, suckers, gallers) can
affect the outcome of above–belowground interactions. Johnson
et al. (2012) showed that the effects on aboveground herbi-
vores depended on belowground herbivore guild. Individual
feeding guilds and trophic levels respond differently to climate
change (Voigt et al., 2003), but how this translates into changes
in above–belowground trophic interactions remains unexplored.
The increased level of defense compounds in plant tissue, pre-
dicted to occur under climate change scenarios (Robinson et al.,
2012), are likely to have a disproportionate effect between (a)
herbivores feeding above- or belowground: defense compounds
may be concentrated in either leaf or root tissue, and (b) dif-
ferent feeding guilds: chewing insects being more susceptible
to defensive compounds than phloem-feeders. There is, how-
ever, a strong bias in the literature, with certain herbivore guilds
and orders (e.g., Lepidoptera) having been represented dispro-
portionately within empirical studies (Robinson et al., 2012).
Conclusions extrapolated regarding general herbivore-responses
to climate change should, therefore, be treated with appropriate
caution.

There are few long-term above–belowground interaction stud-
ies. Some Arctic long-term manipulative field studies (e.g., Ruess
et al., 1999) that illustrate the effects of climate warming on soil
fauna provide essential information on legacy effects in natural
ecosystems. These indicate that above–belowground interactions
may be separated temporally (Kostenko et al., 2012) as well as spa-
tially. Long-term field experiments may also yield different results
to laboratory experiments conducted over a smaller timescale
(Johnson et al., 2012).

CONCLUSION AND RESEARCH AGENDA
Our understanding of how individual species respond to climate
change has increased dramatically over the past 25 years. We have a
relatively well-informed understanding of how aboveground her-
bivores may react to different aspects of climate change (e.g., Bale
et al., 2002) but our knowledge of belowground species responses
remains lacking. Johnson and Murray (2008) illustrate how this
area of research is a“hot topic”for multidisciplinary research while
others (Soler et al., 2005; van Dam and Heil, 2011) underline the
importance of a more integrated understanding of climate change
impacts on ecosystems that incorporates above- and belowground
trophic linkages.

Based on current knowledge of above–belowground interac-
tions we are able to formulate hypotheses that could be tested
empirically in future research. For example:

(1) Root herbivory is likely to change fundamentally plant
responses to an elevated CO2 environment, since root function
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usually underpins the plants ability to respond to environmen-
tal changes. We hypothesise that inclusion of root herbivores
will reverse the effects of elevated CO2 on certain aboveground
herbivores, particularly those negatively affected by higher C:N
ratios (e.g., leaf-miners).

(2) Plant functional identity may shape how above–belowground
interactions respond to climate change. For instance, plants
with C3 and C4 photosynthetic pathways will respond differ-
ently to climate change, and notably elevated CO2 (Barbehenn
et al., 2004a). In particular, C3 plants potentially show a greater
decline in nutritional quality than C4 plants, which are often
inherently less favorable hosts to insect herbivores (see the
C3–C4 hypothesis of Caswell et al., 1973). This might lead
to compensatory feeding on C3, but not C4, plants in future
climates (Barbehenn et al., 2004b). We hypothesis that above–
belowground interactions are likely to be more affected on C3

than C4 plants.
(3) Belowground herbivory induces a water stress on the plant,

similar to drought. Experiments investigating drought effects
on aboveground plant-herbivore interactions may, therefore,
be analogous to above–belowground herbivore interactions
generally. We hypothesise that the combination of a drought
treatment and a belowground herbivore may have additive
negative effects on the plant and consequently on aboveground
herbivores (through increased susceptibility to herbivory).

Increasing trophic complexity in empirical climate change
research will strengthen the ability to make more accurate predic-
tions of trophic interactions in future environments (Robinson
et al., 2012). Making predictions based on simple plant–herbivore
interactions compared to wider communities may be misleading
and interaction outcomes may be altered with the inclusion of
higher trophic levels. As seen aboveground, climate change may
not directly affect the abundance of a herbivore, however, if the
abundance or impact of an associated antagonist is reduced then

climate change may increase herbivore abundance indirectly. Dis-
rupted phenological synchrony between predator and prey (Hance
et al., 2007) may be one mechanism, another may be a reduction in
plant production of chemical attractants (synomones) that recruit
natural enemies, which then regulate herbivore numbers (Yuan
et al., 2009). Alternatively, climate change may benefit the prey
and antagonist equally, with any increase in herbivore abundance
merely supporting greater numbers of natural enemies and thus
leading to no net change in populations (e.g., Chen et al., 2005). An
integrated approach considering trophic interactions as an inte-
gral part of an ecosystem comprising above- and belowground
components will provide a more accurate estimation of climate
change impacts. For example, a positive effect of root herbivores on
folivores at higher temperatures may, if climate change positively
affected antagonist efficacy (e.g., Bezemer et al., 1998; Hance et al.,
2007), be canceled-out with the inclusion of an above- or below-
ground antagonist. For the most part this remains to be tested
empirically. Moreover, with more empirical data it may be possi-
ble that – as has been observed with other areas of climate change
research (Robinson et al., 2012) – apparent idiosyncratic outcomes
of climate change impacts on plant-herbivore interactions give
way to reveal generalities. Trends have become apparent in some
aspects of insect herbivory in elevated CO2 (Zavala et al., 2013), for
example, phloem feeders generally increase in abundance under
elevated CO2, whereas leaf-miners generally decrease (Robinson
et al., 2012). Alternatively, further research may simply reveal a
lack of general responses of above–belowground interactions to
climate change. For instance, despite the large body of research on
aphid–plant interactions under climate change, aphid responses
to CO2 enrichment still appear to be highly species-specific (see
Sun and Ge, 2011 and references therein). The challenge for ecolo-
gists therefore is to utilize current knowledge of individual species
responses to climate change and develop our understanding into
general hypotheses for functional guilds, networks of species and
ecosystem processes.

REFERENCES
Ainsworth, E. A., and Long, S. P.

(2005). What have we learned from
15 years of free-air CO2 enrichment
(FACE)? A meta-analytic review of
the responses of photosynthesis,
canopy properties and plant pro-
duction to rising CO2. New Phytol.
165, 351–372. doi: 10.1111/j.1469-
8137.2004.01224.x

Bale, J. S., Masters, G. J., Hodkinson,
I. D., Awmack, C., Bezemer, T. M.,
Brown, V. K., et al. (2002). Herbivory
in global climate change research:
direct effects of rising temperature
on insect herbivores. Glob. Change
Biol. 8, 1–16. doi: 10.1046/j.1365-
2486.2002.00451.x

Barbehenn, R. V., Chen, Z., Karowe,
D. N., and Spickard, A. (2004a). C3

grasses have higher nutritional qual-
ity than C4 grasses under ambient
and elevated atmospheric CO2. Glob.
Change Biol. 10, 1565–1575. doi:
10.1111/j.1365-2486.2004.00833.x

Barbehenn, R., Karowe, D., and Chen,
Z. (2004b). Performance of a gen-
eralist grasshopper on a C3 and
a C4 grass: compensation for the
effects of elevated CO2 on plant
nutritional quality. Oecologia 140,
96–103. doi: 10.1007/s00442-004-
1555-x

Bardgett, R. D., and Wardle, D. A.
(2003). Herbivore-mediated linkages
between aboveground and below-
ground communities. Ecology 84,
2258–2268. doi: 10.1890/02-0274

Bardgett, R. D., and Wardle, D. A.
(2010). Aboveground–Belowground
Linkages; Biotic Interactions, Ecosys-
tem Processes and Global Change.
Oxford: Oxford University Press.

Bezemer, T., Wagenaar, R., van Dam, N.
M., and Wäckers, F. L. (2002). Inter-
actions between root and shoot feed-
ing insects are mediated by primary
and secondary plant compounds.
Proc. Exper. Appl. Entomol. NEV
Amsterdam 13, 117–121.

Bezemer, T. M., and Jones, T. H. (1998).
Plant-insect herbivore interactions in
elevated atmospheric CO2: quantita-
tive analyses and guild effects. Oikos
82, 212–222. doi: 10.2307/3546961

Bezemer, T. M., Jones, T. H., and
Knight, K. J. (1998). Long-term
effects of elevated CO2 and tem-
perature on populations of the
peach potato aphid Myzus persicae
and its parasitoid Aphidius matri-
cariae. Oecologia 116, 128–135. doi:
10.1007/s004420050571

Bezemer, T. M., and van Dam,
N. M. (2005). Linking above-
ground and belowground interac-
tions via induced plant defenses.
Trends Ecol. Evol. 20, 617–624. doi:
10.1016/j.tree.2005.08.006

Bezemer, T. M., Wagenaar, R., van
Dam, N. M., van der Putten, W. H.,
and Wäckers, F. L. (2004). Above-
and below-ground terpenoid alde-
hyde induction in cotton, Gossypium
herbaceum, following root and leaf

injury. J. Chem. Ecol. 30, 53–67.
doi: 10.1023/B:JOEC.0000013182.
50662.2a

Bidart-Bouzat, M., Mithen, R., and
Berenbaum, M. (2005). Elevated
CO2 influences herbivory-induced
defense responses of Arabidopsis
thaliana. Oecologia 145, 415–424.
doi: 10.1007/s00442-005-0158-5

Blossey, B., and Hunt-Joshi, T. R.
(2003). Belowground herbivory by
insects: influence on plants and
aboveground herbivores. Annu. Rev.
Entomol. 48, 521–547. doi: 10.1146/
annurev.ento.48.091801.112700

Caswell, H., Reed, F., Stephens, S. N.,
and Werner, P. A. (1973). Photo-
synthetic pathways and selective her-
bivory - hypothesis. Am. Nat., 107,
465–480.

Chen, F., Ge, F., and Parajulee, M.
N. (2005). Impact of elevated CO2

on tri-trophic interaction of Gossyp-
ium hirsutum, Aphis gossypii, and
Leis axyridis. Environ. Entomol. 34,

Frontiers in Plant Science | Plant-Microbe Interaction October 2013 | Volume 4 | Article 412 | 4

http://www.frontiersin.org/Plant-Microbe_Interaction/
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


“fpls-04-00412” — 2013/10/21 — 12:14 — page 5 — #5

McKenzie et al. Climate change and above–belowground interactions

37–46. doi: 10.1603/0046-225X-34.
1.37

Cornelissen, T. (2011). Climate
change and its effects on terres-
trial insects and herbivory patterns.
Neotrop. Entomol. 40, 155–163.
doi: 10.1590/S1519-566X201100020
0001

Gange, A. C., and Brown, V. K. (1989).
Effects of root herbivory by an insect
on a foliar-feeding species, medi-
ated through changes in the host
plant. Oecologia 81, 38–42. doi:
10.1007/BF00377007

Gordo, O., and Sanz, J. (2005).
Phenology and climate change: a
long-term study in a Mediterranean
locality. Oecologia 146, 484–495. doi:
10.1007/s00442-005-0240-z

Gregory, P. J., Johnson, S. N., Newton,
A. C., and Ingram, J. S. I. (2009). Inte-
grating pests and pathogens into the
climate change/food security debate.
J. Exp. Bot. 60, 2827–2838. doi:
10.1093/jxb/erp080

Haimi, J., Laamanen, J., Penttinen,
R., Räty, M., Koponen, S., Kel-
lomäki, S., et al. (2005). Impacts
of elevated CO2 and temperature
on the soil fauna of boreal forests.
Appl. Soil Ecol. 30, 104–112. doi:
10.1016/j.apsoil.2005.02.006

Hance, T., van Baaren, J., Vernon, P., and
Boivin, G. (2007). Impact of extreme
temperatures on parasitoids in a
climate change perspective. Annu.
Rev. Entomol. 52, 107–126. doi: 10.
1146/annurev.ento.52.110405.091333

Harrington, R., Clark, S. J., Welham,
S. J., Verrier, P. J., Denholm, C. H.,
Hullé, M., et al. (2007). Environ-
mental change and the phenology of
European aphids. Glob. Change Biol.
13, 1550–1564. doi: 10.1111/j.1365-
2486.2007.01394.x

Harrington, R., Woiwod, I., and
Sparks, T. (1999). Climate change
and trophic interactions. Trends
Ecol. Evol. 14, 146–150. doi:
10.1016/S0169-5347(99)01604-3

Huberty, A. F., and Denno, R. F.
(2004). Plant water stress and its con-
sequences for herbivorous insects: a
new synthesis. Ecology 85, 1383–
1398. doi: 10.1890/03-0352

Johnson, S. N., Clark, K. E., Hartley, S.
E., Jones, T. H., McKenzie, S. W., and
Koricheva, J. (2012). Aboveground–
belowground herbivore interactions:
a meta-analysis. Ecology 93, 2208–
2215. doi: 10.1890/11-2272.1

Johnson, S. N., Hawes, C., and Kar-
ley, A. J. (2009). Reappraising the
role of plant nutrients as mediators
of interactions between root- and
foliar-feeding insects. Funct. Ecol.
23, 699–706. doi: 10.1111/j.1365-
2435.2009.01550.x

Johnson, S. N., and McNicol, J. (2010).
Elevated CO2 and aboveground-
belowground herbivory by the
clover root weevil. Oecologia 162,
209–216. doi: 10.1007/s00442-009-
1428-4

Johnson, S. N., Mitchell, C., Thomp-
son, J., and Karley, A. J. (2013).
Downstairs drivers – root herbivores
shape communities of aboveground
herbivores and natural enemies via
plant nutrients. J. Anim. Ecol.
doi: 10.1111/1365-2656.12070 [Epub
ahead of print].

Johnson, S. N., and Murray, P. J.
(2008). Root Feeders: An Ecosystem
Perspective. Wallingford: CABI. doi:
10.1079/9781845934613.0000

Johnson, S. N., and Riegler, M. (2013).
Root damage by insects reverses the
effects of elevated atmospheric CO2

on eucalypt seedlings. PLoS ONE (in
press).

Jones, T. H., and Finch, S. (1987).
The effect of a chemical deterrent,
released from the grass of caterpillars
of the garden pebble moth, on root
fly oviposition. Entomol. Exp. Appl.
45, 283–288. doi: 10.1111/j.1570-
7458.1987.tb01096.x

Kaplan, I., Halitschke, R., Kessler,
A., Sardanelli, S., and Denno, R.
F. (2008). Constitutive and induced
defenses to herbivory in above- and
belowground plant tissues. Ecology
89, 392–406. doi: 10.1890/07-0471.1

Kostenko, O., van de Voorde, T.
F. J., Mulder, P. P. J., van
der Putten, W. H., and Bezemer,
T. M. (2012). Legacy effects of
aboveground-belowground interac-
tions. Ecol. Lett. 15, 813–821. doi:
10.1111/j.1461-0248.2012.01801.x

Masters, G. J., Brown, V. K., and Gange,
A. C. (1993). Plant mediated inter-
actions between above- and below-
ground insect herbivores. Oikos 66,
148–151. doi: 10.2307/3545209

Megías, A. G., and Müller,
C. (2010). Root herbivores
and detritivores shape above-
ground multitrophic assemblage
through plant-mediated effects.
J. Anim. Ecol. 79, 923–931. doi:
10.1111/j.1365-2656.2010.01681.x

Meyer, K. M., Vos, M., Mooij, W.
M., Hol, W. H. G., Termorshuizen,
A. J., Vet, L. E. M., et al. (2009).
Quantifying the impact of above- and
belowground higher trophic levels on
plant and herbivore performance by
modeling. Oikos 118, 981–990. doi:
10.1111/j.1600-0706.2009.17220.x

Norby, R. J. (1994). Issues and perspec-
tives for investigating root responses
to elevated atmospheric carbon-
dioxide. Plant Soil 165, 9–20. doi:
10.1007/BF00009958

Pacchioli, M. A., and Hower, A. A.
(2004). Soil and moisture effects
on the dynamics of early instar
clover root Curculio (Coleoptera:
Curculionidae) and biomass of alfalfa
root nodules. Environ. Entomol. 33,
119–127. doi: 10.1603/0046-225X-
33.2.119

Parmesan, C., Root, T. L., and
Willig, M. R. (2000). Impacts
of extreme weather and climate
on terrestrial biota. Bull. Am.
Meteorol. Soc. 81, 443–450. doi:
10.1175/1520-0477(2000)081<0443:
IOEWAC>2.3.CO;2

Preisser, E. L., and Strong, D. R. (2004).
Climate affects predator control of an
herbivore outbreak. Am. Nat. 163,
754–762. doi: 10.1086/383620

Rasmann, S., and Agrawal, A. A.
(2008). In defense of roots: a
research agenda for studying plant
resistance to belowground herbivory.
Plant Physiol. 146, 875–880. doi:
10.1104/pp.107.112045

Rasmann, S., Agrawal, A. A., Cook, S.
C., and Erwin, A. C. (2009). Car-
denolides, induced responses, and
interactions between above- and
belowground herbivores of milkweed
(Asclepias spp.). Ecology 90, 2393–
2404. doi: 10.1890/08-1895.1

Robinson, E. A., Ryan, G. D., and
Newman, J. A. (2012). A meta-
analytical review of the effects of
elevated CO2 on plant–arthropod
interactions highlights the impor-
tance of interacting environmental
and biological variables. New Phytol.
194, 321–336. doi: 10.1111/j.1469-
8137.2012.04074.x

Rossi, A., Stiling, P., Moon, D., Cattell,
M., and Drake, B. (2004). Induced
defensive response of Myrtle Oak to
foliar insect herbivory in ambient
and elevated CO2. J. Chem. Ecol.
30, 1143–1152. doi: 10.1023/B:JOEC.
0000030268.78918.3a

Ruess, L., Michelsen, A., Schmidt,
I., and Jonasson, S. (1999). Sim-
ulated climate change affecting
microorganisms, nematode den-
sity and biodiversity in subarctic
soils. Plant Soil 212, 63–73. doi:
10.1023/A:1004567816355

Salt, D. T., Fenwick, P., and Whittaker,
J. B. (1996). Interspecific herbivore
interactions in a high CO2 environ-
ment: root and shoot aphids feeding
on Cardamine. Oikos 77, 326–330.
doi: 10.2307/3546072

Scheu, S. (2001). Plants and gen-
eralist predators as links between
the below-ground and above-ground
system. Basic Appl. Ecol. 2, 3–13. doi:
10.1078/1439-1791-00031

Schroter, D., Brussaard, L., De Deyn,
G., Poveda, K., Brown, V. K., Berg,

M. P., et al. (2004). Trophic interac-
tions in a changing world: modelling
aboveground–belowground interac-
tions. Basic Appl. Ecol. 5, 515–528.
doi: 10.1016/j.baae.2004.09.006

Singer, M. C., and Parmesan, C.
(2010). Phenological asynchrony
between herbivorous insects and
their hosts: signal of climate
change or pre-existing adaptive
strategy? Philos. Trans. R. Soc. B
Biol. Sci. 365, 3161–3176. doi:
10.1098/rstb.2010.0144

Soler, R., Bezemer, T., Cortesero, A., van
der Putten, W., Vet, L., and Harvey,
J. (2007). Impact of foliar herbivory
on the development of a root-feeding
insect and its parasitoid. Oecologia
152, 257–264. doi: 10.1007/s00442-
006-0649-z

Soler, R., Bezemer, T. M., van der
Putten, W. H., Vet, L. E. M., and
Harvey, J. A. (2005). Root herbivore
effects on above-ground herbivore,
parasitoid and hyperparasitoid per-
formance via changes in plant quality.
J. Anim. Ecol., 74, 1121–1130. doi:
10.1111/j.1365-2656.2005.01006.x

Soler, R., Erb, M., and Kaplan, I. (2013).
Long distance root–shoot signalling
in plant–insect community interac-
tions. Trends Plant Sci. 18, 149–
156. doi: 10.1016/j.tplants.2012.08.
010

Soler, R., van der Putten, W. H.,
Harvey, J. A., Vet, L. E. M.,
Dicke, M., and Bezemer, T. M.
(2012). Root herbivore effects on
aboveground multitrophic interac-
tions: patterns, processes and mech-
anisms. J. Chem. Ecol. 38, 755–767.
doi: 10.1007/s10886-012-0104-z

Staley, J. T., and Johnson, S. N. (2008).
“Climate change impacts on root her-
bivores,” in Root Feeders: An Ecosys-
tem Perspective, eds S. N. Johnson
and P. J. Murray (Wallingford: CABI),
192–215.

Staley, J. T., Mortimer, S. R., Morecroft,
M. D., Brown, V. K., and Mas-
ters, G. J. (2007). Summer drought
alters plant-mediated competition
between foliar- and root-feeding
insects. Glob. Change Biol. 13,
866–877. doi: 10.1111/j.1365-
2486.2007.01338.x

Stevnbak, K., Scherber, C., Glad-
bach, D. J., Beier, C., Mikkelsen,
T. N., and Christensen, S. (2012).
Interactions between above- and
belowground organisms modified in
climate change experiments. Nat.
Clim. Chang. 2, 805–808. doi:
10.1038/nclimate1544

Sun, Y., and Ge, F. (2011). How do
aphids respond to elevated CO2? J.
Asia Pac. Entomol. 14, 217–220. doi:
10.1016/j.aspen.2010.08.001

www.frontiersin.org October 2013 | Volume 4 | Article 412 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


“fpls-04-00412” — 2013/10/21 — 12:14 — page 6 — #6

McKenzie et al. Climate change and above–belowground interactions

Thomson, V., Cunningham, S., Ball, M.,
and Nicotra, A. (2003). Compensa-
tion for herbivory by Cucumis sativus
through increased photosynthetic
capacity and efficiency. Oecologia
134, 167–175. doi: 10.1007/s00442-
002-1102-6

Tylianakis, J. M., Didham, R. K.,
Bascompte, J., and Wardle, D.
A. (2008). Global change and
species interactions in terrestrial
ecosystems. Ecol. Lett. 11, 1351–
1363. doi: 10.1111/j.1461-0248.2008.
01250.x

van Asch, M., van Tienderen, P. H.,
Holleman, L. J. M., and Visser, M.
E. (2007). Predicting adaptation of
phenology in response to climate
change, an insect herbivore exam-
ple. Glob. Change Biol. 13, 1596–
1604. doi: 10.1111/j.1365-2486.2007.
01400.x

van Dam, N. M., and Heil, M. (2011).
Multitrophic interactions below and
above ground: en route to the

next level. J. Ecol. 99, 77–88. doi:
10.1111/j.1365-2745.2010.01761.x

Voigt, W., Perner, J., Davis, A. J., Eggers,
T., Schumacher, J., Bährmann, R.,
et al. (2003). Trophic levels are dif-
ferentially sensitive to climate. Ecol-
ogy 84, 2444–2453. doi: 10.1890/02-
0266

Wardle, D. A., Bardgett, R. D.,
Klironomos, J. N., Setälä, H.,
van der Putten, W. H., and Wall,
D. H. (2004). Ecological linkages
between aboveground and below-
ground biota. Science 304, 1629–
1633. doi: 10.1126/science.1094875

White, T. C. R. (1984). The abun-
dance of invertebrate herbivores in
relation to the availability of nitrogen
in stressed food plants. Oecologia 64,
90–105. doi: 10.1007/BF00379790

Yuan, J. S., Himanen, S. J., Holopainen,
J. K., Chen, F., and Stewart, C.
N. (2009). Smelling global climate
change: mitigation of function for
plant volatile organic compounds.

Trends Ecol. Evol. 24, 323–331. doi:
10.1016/j.tree.2009.01.012

Zavala, J. A., Nabity, P. D., and DeLucia,
E. H. (2013). An emerging under-
standing of mechanisms governing
insect herbivory under elevated CO2.
Annu. Rev. Entomol. 58, 79–97.
doi: 10.1146/annurev-ento-120811-
153544

Zvereva, E., and Kozlov, M.
(2012). Sources of variation in
plant responses to belowground
insect herbivory: a meta-analysis.
Oecologia 169, 441–452. doi:
10.1007/s00442-011-2210-y

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 01 May 2013; paper pending
published: 14 June 2013; accepted: 29

September 2013; published online: 22
October 2013.
Citation: McKenzie SW, Hentley WT,
Hails RS, Jones TH, Vanbergen AJ and
Johnson SN (2013) Global climate change
and above–belowground insect herbivore
interactions. Front. Plant Sci. 4:412. doi:
10.3389/fpls.2013.00412
This article was submitted to Plant-
Microbe Interaction, a section of the
journal Frontiers in Plant Science.
Copyright © 2013 McKenzie, Hent-
ley, Hails, Jones, Vanbergen and John-
son. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) or licensor are cred-
ited and that the original publication
in this journal is cited, in accordance
with accepted academic practice. No use,
distribution or reproduction is permit-
ted which does not comply with these
terms.

Frontiers in Plant Science | Plant-Microbe Interaction October 2013 | Volume 4 | Article 412 | 6

http://dx.doi.org/10.3389/fpls.2013.00412
http://dx.doi.org/10.3389/fpls.2013.00412
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Plant-Microbe_Interaction/
http://www.frontiersin.org/Plant-Microbe_Interaction/archive

	Global climate change and above–belowground insect herbivore interactions
	Introduction
	Above–belowground interactions in the current climate
	Climate change and belowground herbivores
	Climate change and above–belowground interactions: empirical evidence
	The future of above–belowground interactions and climate change research
	Conclusion and research agenda
	References


