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Abstract— Global synchronization is crucial to many sensor
network applications that require precise mapping of the
collected sensor data with the time of the events, for example
in tracking and surveillance. It also plays an important role
in energy conservation in MAC layer protocols. This paper
discusses three methods to achieve global synchronization in a
sensor network: a node-based approach, a hierarchical cluster-
based method, and a fully localized diffusion-based method. We
also give the synchronous and asynchronous implementations of
the diffusion-based protocols.

I. INTRODUCTION

Many emerging sensor network applications require that the
sensors in the network agree on the time. A global clock in a
sensor system will help process and analyze the data correctly
and predict future system behavior. For example, in the vehicle
tracking application, each sensor may know the time when
a vehicle is approaching. By matching the sensor location
and sensing time, the sensor system may predict the vehicle
moving direction and speed. Without a global agreement on
time, the data from different sensors cannot be matched up.
Other applications that need global clock synchronization
include environment monitoring (for example, temperature),
navigation guidance, and any other application that requires
the coordination of locally sensed data and mobility. Clock
synchronization may also help to conserve energy in a sensor
network, by allowing a coordinated way to set nodes into
sleeping mode. This leads to more complex communication
since a node must compute when to wake up to receive a
message.

In this paper we discuss three methods for global syn-
chronization in a sensor network: (1) the all-node-based
method, (2) the cluster-based method, and (3) a fully localized
diffusion-based method. The all-node-based method assumes
the transmission time of a packet across a hop is the same
for all nodes. It uses a packet to go around a cycle that
is composed of all the nodes in the network and amortizes
the packet transmission time on the cycle to each hop. This
method does not scale well because it requires the nodes
in the whole network to participate in the synchronization
process at the same time. To address the scalability issue, we
propose a hierarchical method. We use clusters to organize the
whole network. The cluster head nodes are synchronized by
using the first method and in each cluster the members are
synchronized with the cluster head. These two methods are

not localized; each synchronization process involves all the
nodes in that network partition. To achieve full scalability, we
propose a fully localized diffusion-based method with both
synchronous and asynchronous implementations, in which
each node exchanges and updates information locally with
its neighbors. No global operations are required. In the syn-
chronous rate-based algorithm, neighboring nodes exchange
clock reading values proportional to their clock difference in
a set order. To make our implementation more practical, we
propose two asynchronous implementations, in which a node
can synchronize with its neighbors at any time in any order.
The asynchronous algorithms can also adapt to node failure,
adverse communication channel, and node mobility.

Although our algorithms are aiming at solving the syn-
chronization problem in a sensor network, they can be easily
extended to the data aggregation problem, e.g., finding the
average, highest, and lowest sensor data reading among all
the sensors in the whole network. For example, in the all-
node-based algorithm, the reading of a sensor can be attached
to the message when the message used in the all-node-based
synchronization is going along the cycle composed of all
nodes. The sum of the readings (thus the average reading),
the highest, and lowest reading over the whole network can be
computed post hoc or on the fly. The diffusion-based algorithm
can also be extended straightforwardly.

This paper is organized as follows. Section III presents the
overview of the problem. Section IV discusses a synchroniza-
tion scheme that requires all the nodes to participate in the
global synchronization when a node initiates a synchronization
request. Section V describes a cluster-based scheme that
reduces the number of the participating nodes. Section VI
gives a synchronous diffusion-based algorithm that is fully
localized. Section VII discusses two asynchronous diffusion-
based algorithms. Section VIII gives the simulation results on
the asynchronous averaging algorithm.

II. RELATED WORK

Synchronization has been studied for a long time in tradi-
tional computer and embedded systems [13], [14], [12], [3],
[15]. The classical paper on logical time [11] presented the
solution to causal ordering of events in a distributed system.
Papers on synchronization in sensor networks include [6], [5],
[7], [16].



Cristian [3] proposed a probabilistic synchronization
method that exploits a large number of messages to get
the accurate shortest round-trip time with high probability.
Ramanathan et al. [15] surveyed fault-tolerant clock synchro-
nization methods in distributed systems. Romer [16] used
message delay, which is estimated by the lower bound 0 and
the upper bound round trip time, to compare the maximal
difference between two communicating nodes and thus syn-
chronize them. The solution targets an ad hoc network in
which two nodes may be out of range and lose their direct
communication by propagating the maximal estimated clock
difference along the communication path. Elson and Romer [6]
discussed the design principles for synchronization in sensor
networks: use multiple, tunable modes of synchronization;
avoid maintain a global timescale for the entire network;
use post-facto synchronization; adapt to application; and ex-
ploit domain knowledge. Elson et al. [5] proposed a scheme
called Reference-Broadcast Synchronization (RBS), in which
a node sends reference broadcast beacons to its neighbors
using physical-layer broadcasts. RBS gets around the non-
determinism of packet send time, access time, and propagation
time, while depending only on the packet receive time. Since
the packet receive time is the same for all receivers, this
reference broadcast packet can be used to synchronize a set of
receivers with one another. This scheme can also be extended
to a multi-hop scenario. The three papers provided important
theoretical and practical building blocks for sensor network
synchronization. However, they did not specify how to do
global synchronization over the entire network.

In Intanagonwiwat et al.’s direct diffusion [9] approach, data
generated by sensor nodes is named by attribute-value pairs.
A node requests data by sending interests for named data; the
interests are propagated within the network to find the source
of the related data. The direct diffusion method is used to
reinforce the best path from the source to the sink. The goal
of our diffusion-based algorithm is to use local operations to
achieve global consensus.

Diffusion methods have been used in load balancing [4],
[2], [18], [1], [17]. Diffusion-based load balancing assumes the
computation load on the computers is fine enough to be treated
as a continuous quantity. By using diffusion, each computer
can give its load to other connected computers or take load
from connected computers if it is under-loaded. Cybenko
[4] and Boillat [2] analyzed the diffusion method in load
balancing. They gave the sufficient and necessary condition
for the convergence of the method. The time complexity of
the diffusion method was analyzed in [17]. Initial result about
the asynchronous diffusion method is provided in [1], which
gave the convergence proof of the asynchronous rate-based
protocol, but not the average protocol. We think it is helpful
that we put our different proof here for completeness. These
load balance algorithms fit into the robust interconnection
network well. However, further investigation is needed to see
how they can be applied to sensor network applications in
which the communication channel is not perfect, nodes are
prone to failure, and the system may be mobile.

III. THE SYNCHRONIZATION PROBLEM

The time of a computer clock is measured as a function of
the hardware oscillator C(t) = k

∫ t

t0
ω(τ)dτ + C(t0) where

ω(τ) is the angular frequency of the oscillator, k is a constant
for that oscillator, and t is the time. The change of the value
C(t) leads to the events (or interrupts) that can be captured
by the sensor.

The clocks in a sensor network can be inconsistent due
to several reasons. The clock may drift due to environment
changes, such as temperature, pressure, battery voltage, etc.
This has been a research topic in the operating system and
Internet communities for many years. The nodes in a sensor
network may not be synchronized well initially, when the
network is deployed. The sensors may be turned on at the
different times and their clocks may be running according to
different initial values. The results of events on specific sensors
may also affect the clock. For example, the Berkeley Mote
sensors may miss clock interrupts and the chance to increase
the clock time value when they are busy handling message
transmission or sensing tasks.

We explore how global synchronization can be achieved in
sensor networks. We assume the hardware clock is not precise
and nodes can read the current clock time and adjust the clock
time at any time. The clock, however, has some granularity
in its time reading (as coarse as a second or a fraction of
a second), due to the hardware clock resolution or power
conservation issues1. The sensor cannot determine the time
elapsed in between the two ticks.

More specifically, we aim to provide coarse synchronization
to many sensor network applications that need only low preci-
sion synchronization. Our goal is to synchronize the clocks in
the whole network such that all the clocks have approximately
the same reading at a global time point irrespective of their
relative distance. As a result, our proposed algorithms can be
run in a less frequent fashion to alleviate the system load and
in turn conserve energy.

We first explore how well the synchronization precision can
be achieved in an ideal system conforming to our assumptions.

Theorem 1: Ideally, it is possible to bound the clock differ-
ence in a sensor network to ∆ (that is, any two clocks differ
by at most ∆), but not less than ∆/2, where ∆ is the clock
cycle in use.

Proof: We can use a global wall clock to synchronize
all the clocks in the network. At the wall clock time t, each
clock adjusts to set its next clock interruption point to t. For
any node the clock cannot be earlier than the wall clock, but
is later by at most ∆, one clock cycle time. Thus the error
between any two node clocks is at most ∆, the clock cycle.
On the other hand, there is no way that we are able to set their
difference by less than ∆/2. An example would be the clock
of one node ticks ∆/2 time later than that of another node.
Since we cannot change when a clock should tick, their clock
difference is at least ∆/2.

1A high frequency of clock ticks leads to a much higher power consump-
tion; a reasonable frequency should be determined in a task-directed fashion.



IV. ALL-NODE-BASED SYNCHRONIZATION

In this section we describe a method to globally synchronize
the clocks in a sensor network. We assume the clock cycle on
each node is the same. This is reasonable since in most of the
cases before the sensors are deployed they are programmed
with the same parameters. We also assume the clock tick time
is much longer than the packet transmission time2.

Our algorithm assumes the message transmission time and
handling time on each node is roughly the same. This can be
obtained when the network traffic is small, e.g., upon its initial
deployment, a sensor network allows sufficient time solely
for clock synchronization (during the synchronization time,
all other messages except the synchronization messages are
suppressed for transmission). The main idea of the algorithm
is to send a message along a loop and record the initial time
and the end time of the message. Then by using the message
traveling time, we can average the time to different segments
of the loop and smooth over the error of the clocks. Alg. 1
summarizes this method.

Alg. 1 times how long it takes to route a message along
specified paths in the sensor system and uses this difference
iteratively, to correct the time for all the nodes along the path.
In order to synchronize the entire network, paths need to be
designed so that they contain all the nodes, but a specific node
may appear multiple times. The synchronization is divided into
two phases. In the first phase, a synchronization packet is sent
along a cycle. The initiating node of the packet records its
local starting time and the ending time of the packet. Each
other node simply forwards the packet and records how many
hops the packet has traveled so far. In the second phase, a clock
correction packet is sent along the same cycle informing each
node the packet starting time, ending time at the initiating node
and the total hops in the cycle. Each node then computes how
to adjust its clock.
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Fig. 1. A clock synchronization message traveling along a loop originated
from node n1 and then back to node n1.

Consider the example in Fig. 1. Node n1 initiates the clock
synchronization and generates a message with its current time,
ts, attached. The time ts is the exact tick time of node n1’s
local clock. Node n1 sends out the message to node n2, node
n2 relays the message to node n3, etc, finally node nk returns
the message to the originator of the message, node n1. The
message may travel to a node more than once, that is, some
nodes on this path may be visited repeatedly. Upon receipt

2Higher clock frequency consumes more power, therefore in many appli-
cations the clock rate set to be slow.

Algorithm 1 All Node based Synchronization Algorithm in a
Sensor Network

1: Find a cycle that passes each node at least once that need
to be synchronized

2: A message is passed along the cycle starting from an
initiating node

3: Upon receipt of the message, each node records its current
local time (ti) and its order (i) in the cycle. If the
node receives messages more than once, it chooses one
arbitrarily.

4: After the initiating node receives the message, it sends
out another message informing each node on the cycle
the start time (ts) and the end time (te) of the previous
message

5: for each node, to adjust its local time t do
6: if ∃m, m+1 ≥ te−ts+1

k ·(i−1) ≥ ti ≥ te−ts

k ·(i−1) ≥
m then

7: node ni adjusts its time to t − ti + ts + m
8: if ∃m, m+1 ≥ te−ts+1

k ·(i−1) ≥ m ≥ te−ts

k ·(i−1) ≥
m − 1 then

9: node ni adjusts its time to t − ti + ts + m

of a message, each node keeps a record of the time of its
clock and the time attached to the message when the message
was created. Node n1 gets the message start time ts and the
ending time te. It computes the difference te − ts and sends
it out in the same way as the previous message. The message
will travel along the same path; this time each sensor will try
to get the hops this sensor is away from node n1 (include node
n1) by putting a hops item in the message. For simplicity, we
use the node id as the number of hops from node n1. Each
node then adjusts its clock as described in Alg. 1. When a
node appears twice in the cycle, it arbitrarily chooses its hops
i from the two hop numbers and the corresponding ti. In line
7 and 9, a node adjusts its clock using different value of m
obtained from line 6 and 8 respectively.

Theorem 2: After running Alg. 1 the relative clock error
between any two nodes is at most 3∆.

Proof: Without loss of generality, the proof in the
following looks at the elapsed time as node n1’s time.

For any ni, let the time when the first message arrives be ti.
The node will adjust its clock at the next tick after receiving
the message. We know the time the message travels from n1 to
ni is ti = te−ts+α

k ·(i−1) where 0 < α < 1 (because when the
message returns to n1, the clock has already ticked time te)),
which is between t1i = te−ts

k ·(i−1) and t2i = te−ts+1
k ·(i−1).

The message arrival time is ts + ti. t2i − t1i = i−1
k ≤ 1, so

they must both in the range of two integers [m, m + 1] or
t1i ∈ [m − 1, m] while t2i ∈ [m, m + 1] (see Fig. 2).

1) If m+1 ≥ te−ts+1
k · (i− 1) ≥ ti ≥ te−ts

k · (i− 1) ≥ m,
ni adjusts its next clock tick to ts + m + 1. The next
tick of ni after ts + ti and before ts + ti + 1 must be
between ts + t1i and ts + t2i + 1 in n1 time, which must
be between ts +m and ts +m+2, so the maximal error
to the time of n1 is 1 tick time, that is, ∆.



Algorithm 2 The Cluster Synchronization Algorithm
1: Run any clustering algorithm to organize the network into

clusters
2: Synchronize the cluster heads with a base using Alg. 1
3: for each cluster do
4: Synchronize the cluster members with the cluster head

2) If m+1 ≥ te−ts+1
k ·(i−1) ≥ m ≥ te−ts

k ·(i−1) ≥ m−1,
ni adjusts its next clock tick to ts + m + 1. The next
tick must be between ts + t1i and ts + t2i +1, which must
be between ts + m− 1 and ts + m + 2, so the maximal
error to the time of n1 is 2 tick time, that is, 2∆.

t i
1

it 22

t i
1

it 22
it 22
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Fig. 2. ni receives the synchronization message at time ti such that
t1
i
≤ ti ≤ t2

i
. Since |t2

i
− t1

i
| < 1, t1

i
and t2

i
are either in the range of

two consecutive integers or separated by only one integer. Those two figures
describe the two cases. On the second line in each figure, the next tick of ni

can be at any point between t1
i

and t2
i

+ 1. At that point, it adjusts its time
to m + 1.

For the first case, the error (the value obtained by subtracting
n1 time from ni time) is in the range of [−∆, 0]. For the
second case, since t2i − t1i = i−1

k , we have t2i − m, i−1
k and

m− t1i ,
i−1
k , thus |ti −m| ≤ i−1

k . The next tick must between
ts + m − i−1

k and ts + m + i−1
k + 1, so the maximal error is

(ts + m + 1− (ts + m− i−1
k ))∆ = (1 + i−1

k )∆. The error is
in the range of [−(1 + i−1

k )∆, i−1
k ∆].

Since the next tick of any sensor is between m − 1 and
m + 2. The maximal error between any of two sensors is 3∆.

To be more precise, we have the following. Since all the
absolute error (the value obtained by subtracting n1 time from
the ni time) is in the range of [−∆, 0] or [−(1+ i−1

k )∆, i−1
k ∆],

the maximal error between any two nodes must be (1 +
2(i−1)

k )∆, which is obtained when one node has the error of
−(1 + i−1

k )∆, another one has error of i−1
k ∆.

If all the synchronizations are referenced to the same node,
e.g. n1, then the maximal error to that node is [−(1 +
i−1
k )∆, i−1

k ∆], where k is the minimal number of nodes
synchronized in each synchronization round (excluding the
reference node).

V. CLUSTER-BASED SYNCHRONIZATION

The synchronization method proposed in Section IV has a
provable bound but requires all the nodes to participate in one
single synchronization session. This can be mitigated using a
hierarchical approach. More specifically, if the network can be
organized into clusters, we propose to synchronize the whole
network using Alg. 2. In Alg. 2, we first use the same method
as in Alg. 1 to synchronize all the cluster heads by designing
a message path that contains all the cluster heads (we call the
initiators base). Then in the second step, the nodes in each
cluster can be synchronized with their head.

This method can adapt to different clustering schemes. A
cluster can be composed of the nodes within the transmission
range of the cluster head; it can also be the nodes in a large
area (e.g., a zone). For the first case, RBS can be used. First a
reference broadcast is sent out by the head to synchronize
all the other cluster members, then any other node in the
cluster sends out another reference broadcast to synchronize
all the head and the other members. By these two broadcasts,
the clock difference can be calculated, and all the non-head
members can adjust their clocks according to the head’s clock.
In a zone scheme, we can use the same method as Alg. 1 to
first design a cycle to include all the nodes of the cluster
and synchronize them all. The head of the cluster will be the
initiator of the intra-cluster synchronization.

Using Alg. 1 in both the two hierarchical levels increases
the flexibility of the algorithm, but decreases the precision of
the synchronization. Consider the base, n0, a cluster head ni,
and nij , a member of ni’s cluster. Suppose i is the order of
ni on the inter-cluster synchronization path of length k and j
is the order of node nij on the intra-cluster synchronization
path of length m. By the previous section, we have ti − t0 ∈
[−(1 + i−1

k )∆, i−1
k ∆] and tij − ti ∈ [−(1 + j−1

m )∆, j−1
m ∆].

Thus, the error tij −t0 ∈ [−(2+ i−1
k + j−1

m )∆, ( i−1
k + j−1

m )∆].
The maximal error is 6∆.

VI. SYNCHRONOUS DIFFUSION

A. Why Use Diffusion?

Our previous methods use global time information sent to
all the nodes and are not scalable for very large networks.
The initiating node may encounter failure and thus the ap-
proach is not fault tolerant. The nodes that participate in the
synchronization must execute the related code approximately
at the same time, which may be too hard in a large system.
We develop a diffusion method that is fully distributed and
localized. The synchronization is done only locally, without a
global synchronization initiator. It can also be done at a relaxed
time constraint as opposed to the stringent requirement of the
previous methods.

Our diffusion method achieves global synchronization by
spreading the local synchronization information to the whole
system. It can choose various global values to synchronize the
network provided that each node in the overall network agrees
to change its clock reading to the consensus value. An easy and
possible way is to choose the highest or lowest reading over
the network. We will show that synchronization to the highest
or lowest value entails a simple algorithm. However, a faulty



or malicious node may impose an abnormally high or low
clock reading, which is likely to mess up the synchronization.
To make the algorithms more robust and reasonable, the
following algorithms use the global average value as the
ultimate synchronization clock reading. The main idea of the
algorithms is to average all the clock time readings and set
each clock to the average time. A node with high clock time
reading diffuses that time value to its neighbors and levels
down its clock time. A node with low time reading absorbs
some of the values from its neighbors and increases its value.
After a certain number of rounds of diffusion the clock in each
sensor will have the same value.

Our discussion is based on the two basic operations: (1) the
neighboring nodes compare their clock readings at a certain
time point and (2) change them accordingly. This, however,
may be a problem because the clock comparison and the clock
update cannot be done simultaneously (especially when clock
comparison may take several steps). The clock updates based
on the clock readings of the comparison time will be incorrect.
The solution is to ask each node to keep a record of how much
time elapses after the clock comparison on each node and use
this time in the clock update. For ease of explanation, our
algorithms use the two operations with this implementation
fix.

Our goal here is to present a high level framework for
global synchronization. The low level implementations can
be different as long as they provide a way to compare the
clock difference among all the neighbors. For example, we
can use the RBS scheme[5] as the low level component. When
a node (say A) intends to do local synchronization, it sends
out a reference broadcast to all its neighbors. The neighbors
record the time of the reception time, so the clock differences
among these neighbors can be computed. Next a node that
is the mutual neighbor of both A and any of A’s neighbor
(say B) sends out another reference broadcast, so the clock
difference between A and B can be computed. By way of B,
we can achieve the clock comparison among A and any of its
neighbor. In another example that assumes fixed and known
transmission time (say t0) of a packet between neighbors,
the clock reading exchange can be done by broadcasting a
packet with the sender’s current time. Upon receipt of the
packet, each node records its local time (say t2) and the
packet sending time attached to the packet (say t1). Thus the
clock difference between the sender and the receiver can be
computed as t2 − t1 − t0.

We argue that in some real time applications, such as vehicle
tracking, post-facto synchronization is not sufficient. We aim
at synchronizing all the clocks of the network in real time.
RBS can also achieve global synchronization, but it is not a
localized protocol. Our diffusion-based protocols are localized
holding the value of adapting to node failure, broken link, and
node mobility.

B. The Rate-based Synchronous Diffusion Algorithm

We assume that we have n sensors in the system. This
network is represented as a graph G(V, E) in which the

Algorithm 3 Diffusion algorithm to synchronize the whole
network

1: Do the following with some given frequency
2: for each sensor ni in the network do
3: Exchange clock times with ni’s neighbors
4: for each neighbor nj do
5: Let the time difference between ni and nj be ti − tj
6: Change ni’s time to ti − rij(ti − tj)

vertices are the sensors and the edge relationship is defined
by the sensor communication connectivity. Each node has a
corresponding vertex in that graph, and if two sensors are
within the transmission range of each other, their correspond-
ing vertices ni and nj have an edge to connect them.

Let C = (ct
1, c

t
2, · · · , ct

n)T contain the time readings of
the sensors in the network at time t where ct

i is the clock
reading for sensor ni at time t (for simplicity use ci). If ni

and nj are within their transmission range and ci > cj , we
want to decrease ci and increase cj . Since we are computing
the average value for all the sensors in the system, the
decrease of ci should go to the increase of cj to maintain
the conservation law. Suppose that the diffusion value is
proportional to ci − cj and the diffusion rate is rij > 0
(rij = 0 if ni and nj are not neighbors. rij can be chosen
randomly provided

∑

j 6=i ri,j ≤ 1.). Sensor ni will lose some
of its clock value, rij · (ci − cj), to sensor nj and it will lose
a total of

∑

j 6=i ri,j · (ci − cj) to all its neighbors (or gain
some value if that sum is negative). Its value will become
ci −

∑

j 6=i ri,j · (ci − cj) = (1−∑

j 6=i ri,j) · ci +
∑

j 6=i ri,j · cj

Alg. 3 shows the diffusion method. Synchronization be-
tween a sensor and its neighbors is done by clock comparison
and update operations. Because we only consider the time
difference between two sensors instead of the absolute clock
time value, it is not required that all the sensors must do
this local synchronization at the same time. In line 6, the
exchanged value between sensor ni and its neighbor nj is
proportional to the time difference between them.

The clock value diffusion formula can be described by
applying the following matrix R on the clock reading vector:

R =









r11, r12, · · · , r1n

r21, r22, · · · , r2n

· · · , · · · , · · · , · · ·
rn1, rn2, · · · , rnn









In the matrix, rij = rji; rij = 0 if ni and nj are not
neighbors, so

rii = 1 −
∑

j,(i,j)∈E

rij = 1 −
∑

j 6=i

rij

Every time we run Alg. 3, we apply the matrix R to the
clock reading vector. More precisely: C t+1 = R · Ct. Let
Co = (c0

1, c
0
2, · · · , c0

n)T be the initial clock reading distribution
at time 0. We have Ct+1 = Rt+1 · C0. We hope this time
reading vector will become Cs = (c0, c0, · · · , c0)T (where
c0 =

∑n
k=1 c0

k/n) after running the algorithm. We call Cs the
synchronized clock distribution. It is easy to see that when the



sensors achieve Cs, this value is stable. Note that Cs is an
eigenvector of matrix R with respect to eigenvalue 1.

C. Convergence of the Rate-based Synchronous Algorithm

In this section we show that Alg. 3 achieves global syn-
chronization in the whole network. More specifically, the time
vector Ct+1 = Rt+1 ·C0 converges to the synchronized clock
distribution Cs. We first summarize the convergence result of
our algorithm similar to the convergence of a Markov chain
and then present results regarding the convergence speed.

We assume the graph we derived from the network is
strongly connected, so the matrix R is irreducible. It is also
symmetric and positive because rij = rji > 0. The eigenval-
ues of a symmetric matrix are real. Also by Perron-Frobenius
theorem [8], the matrix R has the following eigenvalues:
1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn ≥ −1.

Theorem 3: The convergence of Alg. 3 depends on the
eigenvalue of the second largest absolute value, that is,
λmax = max(|λ2|, |λn|). If λmax < 1, the iteration will
converge to the synchronized clock vector.

Proof: Suppose λmax < 1. Let R have n normalized
independent eigenvectors e1, e2, · · · , en corresponding to the
eigenvalues λ1, λ2, λ3, · · · , λn. Let A = (e1, e2, · · · , en). We
have R = A−1DA where D is the diagonal matrix of
eigenvalues Dii = λi. Rt = A−1DtA =

∑n
i=1 λt

iMi. Rt

will approach M1 if λmax < 1. Since C0 can be writ-
ten as

∑n
i=1 aiei, then we have RC0 =

∑n
i=1 aiλiei and

RtC0 =
∑n

i=1 aiλ
t
iei. The last term approaches a1λ

t
1e1 (all

the elements of e1 are the same), that is, all the clock readings
are the same eventually.

Theorem 4: If λn = −1, then there is a permutation
matrix P such that P T RP has the block partitioned form
(

0 R12

R21 0

)

Proof: If λn = −1, then there are exactly two eigen-
values λ1 = 1 and λn = −1 of modulus 1 (remember the
eigenvalues of a symmetric matrix are always real.), and there
is a permutation matrix P such that P T RP has the block

partitioned form

(

0 R12

R21 0

)

.

By examining the above matrix, we have rii = 0 for all
1 ≤ i ≤ n if λn = −1. Likewise, if rii 6= 0 for some i,
we have λn 6= −1. In our algorithm, if we let rii 6= 0, our
algorithm converges to the synchronized clock vector.

Now consider the convergence speed of the matrix. We scale
the sum of all the clock readings to 1, so

∑n
i=1 ci = 1. We

have c0 = 1/n.
Theorem 5: For R with eigenvalue λmax < 1 and synchro-

nized clock vector Cs, the relative error after running Alg. 3

for t steps is maxi,j
r
(t)
ij

−c0

c0 where r
(t)
ij is the Rt(i, j).

Proof: First we have maxi,j
|r(t)

ij
−1/n|

1/n ≤ λt
max

1/n = nλt
max

since the elements of A and A−1 are no greater than 1. Then
ct
i =

∑n
j=1 r

(t)
ij ·c0

j = 1
n

∑

c0
j +

∑

(r
(t)
ij − 1

n )c0
j = c0+

∑

(r
(t)
ij −

Algorithm 4 Asynchronous Averaging Algorithm in a Sensor
Network

1: for each node ni with uniform probability do
2: Ask its neighbors the clock readings (read values from

ni and its neighbors)
3: Average the readings (compute)
4: Send back to the neighbors the new value (write values

to ni and its neighbors)

1
n )c0

j . Thus, the relative error |ct
i−c0|
c0 =

∑

(|r(t)

ij
− 1

n
|)c0

j

c0 ≤
nλt

max (since c0
j ≤ 1).

The value of λmax determines the convergence speed of our
algorithm. Next we evaluate the value of λmax.

Let S be a set of sensors, CS =
∑

i∈S cs
i = |S|

n be the ca-
pacity of S, and FS =

∑

i∈S,j 6∈S rij/n. Define ΦS = FS/CS .
The conductance of the diffusion procedure is defined as
Φ = minS:CS≤ 1

2
ΦS . By Jerrum-Sinclair [10], λ2 < 1−Φ2/2.

Thus, we can bound the convergence speed if we know Φ.

VII. THE ASYNCHRONOUS DIFFUSION METHODS

A. Asynchronous Diffusion Algorithms

In the previous section we gave the synchronous version of
the rate-based algorithm, proved its convergence, and bound its
convergence speed. It is nice that the synchronous algorithm
is localized. However, it requires the node operations to be
done in a set order. No node can perform the operation
without waiting for all the nodes to finish the current round of
operations. To make our algorithm more practical, we present
an asynchronous version of the algorithm that does not have
this constraint. We ensure that all the nodes can perform
operations in any order as long as each node is involved in
the operations with non-zero probability. Our method can be
shown to converge.

We start with an asynchronous averaging algorithm (Alg. 4),
which is mainly a very simple average operation of a node over
its neighbors. Each node tries to compute the local average
value directly by asking all its neighbors about their values; it
then sends out the computed average value to all its neighbors
to update their values.

We assume the average operation is atomic, that is, if a node
is involved in two or more average operations, these operations
must be sequenced. As before, we also assume the network is
connected.

Theorem 6: The asynchronous average algorithm converges
to C (where C is the average value).

Proof: Let Ht and Lt be the highest and lowest value
respectively of all sensors at time t. We note that: (1) Ht

is non-increasing over time t (by the average algorithm, since
there is no value greater than Ht at time t, Ht cannot increase
from that time on); (2) Lt is non-decreasing over time t by
symmetry.

We know Ht ≥ C and Ht is non-increasing according
to (1). Let the infimum of the series Ht be M , we have
limt→∞Ht = M ≥ C. Suppose M 6= C. We will derive
a contradiction.



Define function ε(k) =
∑k

i=1 niε. Choose ε such that M −
nn+1−1

n−1 ε = M − ε(n) = C where n is the number of sensors.
For any k (k = n, n− 1, · · · , 1), define set S1

k to be the set of
sensors whose values are greater than M − ε(k) and set S2

k to
be the set of the rest of the nodes.

For ε, there must exist a time t such that Ht < M + ε; also
at that time there must be some node whose value is less than
C = M − ε(n) because C is the average value.

We first consider a snapshot of the k-th step (k = n, n −
1, · · · , 1) in our constructive proof. If an average operation
only involves the nodes in S1

k (or S2
k), those nodes are still

in S1
k (or S2

k) after the operation. However, if an average
operation involves nodes in both S1

k and S2
k (and we know

there must be an operation that involves nodes from both sets
since the network is connected), these nodes have value less
than M − ε(k − 1) after the operation due to the following
reason. At least one node is from S2

k . Even if all the other
nodes have the highest possible value M +ε, the average value
is at most (M+ε)(m−1)+M−ε(k)

m < M−ε(k−1) where m is the
number of concerned nodes in this average operation. Then at
least |S2

k | + 1 nodes will be in S2
k−1 after that operation.

Starting from sets S1
n and S2

n at time t, we have |S2
n| ≥ 1

(recall that there must be some node whose value is less than
C = M−ε(n)). After the first average operation for nodes that
are in S1

n and S2
n, we have |S2

n−1| ≥ 2. After the first average
operation on nodes in S1

n−1 and S2
n−1 we have |S2

n−2| ≥ 3.
So eventually, we have S2

1 = n 3. This contradicts that the
infimum of Ht is M (i.e., Ht ≥ M ).

Therefore, we have limt→∞Ht = C. In the same way, we
can prove that limt→∞Lt = C. Combining these two results,
we have that all the values on the sensors converge to C.

Theorem 7: The asynchronous rate-based algorithm con-
verges to the global average value.

Proof: We prove this result using an approach similar
to Theorem 6. Let the min rij = r (i 6= j and rij > 0) and
change the occurrence of ε(k) in the above proof to ε(k) =
( 1

rn+1−k − 1)ε. Notice for any step k (k = n, n − 1, · · · , 1),
we have the following: M + ε− rij(M + ε− (M − ε(k))) ≤
M + ε − r(M + ε − (M − ε(k))) = M + ε − r(ε + ε(k)) =
M +ε−r(ε+ ε

rn+1−k −ε) = M +ε− ε
rn−k = M−ε(k−1). In

this way, we can prove the asynchronous rate-based algorithm
converges.

We define the deduced graph of the sensor network after
time t, Gt(V, E), where V is the set of vertices representing
the sensor nodes and (ni, nj) ∈ E (for ni ∈ V and nj ∈ V ) if
and only if ni and nj involve in the same average operation4

after time t. The sensor network is operation connected if
Gt(V, E) is connected for any t > 0. Alg. 4 assumes all
the nodes perform the algorithm with uniform distribution.
However, as long as the network is operation connected, the
convergence result still holds by examining our proof. This

3Note that S2

1
is the set of nodes whose values are less than M − ε(1) =

M − nε
4Or exchange operation in rate-based algorithm. For convenience in the

following discussion, we only talk about the averaging algorithm. However,
the later discussion applies to the rate-based algorithm as well.

includes the following three scenarios provided the network
is operation connected: (1) the network is connected and each
node has a non-zero probability to be involved in an average
operation after any time t, (2) not all the neighbors of a node
respond to the average operation as in the cases of failed
nodes or bad communication channel, (3) the sensor nodes
are mobile.

Now we discuss the convergence speed of the asynchronous
algorithms. As before, we define the error to be Ht−C

C where
Ht is the highest value at time t. We consider the case in
which only one node has stimulus value H0 initially, while
others have value 0. In a real scenario, all the nodes may have
non-zero values. We can think of this case as n copies of
networks are running and each copy starts with some value on
only one node. In each step, the same operations are applied to
all the copies and the real network clock reading vector is the
sum of the clock reading vectors of all the n copies. Note that
the convergence on the real network is no slower than that on
the slowest among all the n copies. Therefore, to evaluate the
worst convergence, we only need to consider a network with
only one node that has non-zero initial value; our simulation
assumes this as well.

Suppose at time t, the highest value is Ht, and most of the
other nodes have value very close to C. The part that is close
to C will be kept on each node in the future; the Ht − C
part on the node with the highest value will be leveled down
to the other nodes. It follows that every time we increase the
number of rounds of the algorithm running linearly, we get
the Ht − C part, i.e. the error, reduced exponentially. This
actually is corroborated in our simulation.

Other variations of our algorithm can choose the highest
value (or lowest value) among all the neighbors to be the
synchronized clock reading. When each node executes the
diffusion operation exactly once in each round, it takes O(n)
rounds for the highest (or lowest) value to propagate to the
whole network. Thus, the convergence time is O(n) where n
is the number of nodes.

B. Discussion

Pure RBS method can be used to compute the clock
difference between any two nodes by subsequently comparing
the nodes on a path connecting the two nodes. By [5], the
receive error, which translates to the clock difference in a RBS
operation, is Gaussian distributed with variance σ. For two
nodes with k hops apart, the average clock difference is

√
kσ.

Note that here we ignore the clock drift in this multi-hop RBS
process because the drift is very small in the short period of
multi-hop communication.

In our diffusion-based scheme (suppose we use RBS as our
local synchronization method), the clock difference between
any two nodes is comprised of three types of errors: (1) the
receive error as in the generic RBS scheme, (2) the clock drift
of any node after the last RBS operation, (3) the error due to
the limited diffusion speed in our diffusion scheme (let it be
ε0). The clock drift is negligible due to the same reason as in
the generic RBS scheme. The receive error and the diffusion



error are independent. The receive error did not appear in
the diffusion error in our previous analysis as we assumed
that all the nodes participating in the same RBS operation are
synchronized perfectly. Thus, the clock difference between any
two nodes in the network is the sum of the receive error and
the diffusion error, which is

√
kσ + ε0 where k is the number

of hops that separate the two nodes apart. The above analysis
assumes the time can be represented continuously on each
node, that is, any clock has perfect resolution on time. This is
true if the tick time ∆ is small. When ∆ is predominant, the
precision of diffusion-based method is subject to the tick time
as the first two protocols. The errors in our diffusion-based
protocols are k∆ where k is the maximal number of hops that
separate any two nodes in the network apart.

Our method is independent of and can be built upon any lo-
cal synchronization method. The error in our diffusion method
depends on the error inherent to the local synchronization
method. For example, we can reduce the clock error by using
multiple RBS operations. The idea is to execute repeatedly
the RBS operations to reduce the clock difference variance.
Suppose two nodes participate in m RBS operations in a
short period, we can get m copies of their clock difference,
d1, d2, · · · , dm, which are all Gaussian distributed with average

d and deviation σ Thus,
∑

m

i=1
di

m is Gaussian distributed with
average d and deviation σ√

m
.

The convergence speed of our diffusion method is slow
compared to that of a synchronization algorithm with an
initiator. However, the diffusion is useful when only a coarse
synchronization is required. The following discusses when the
protocols are useful and how we can improve on them.

1) The local synchronization is more important than the
precise global synchronization since in most of the
applications events are processed locally. For example,
in that vehicle tracking application, the sensors that
sense the vehicle communicate with each other to collab-
oratively obtain the information about the vehicle such
as moving speed, direction, and vehicle type. Although
the global synchronization convergence takes longer,
local diffusion is very fast because a small number of
sensors are involved.

2) The clock reading distribution is uniform in various ar-
eas of the sensor field. Thus, the average clock readings
of different areas are approximately the same. After the
local diffusion, the synchronized clock value in an area
is approximately the same as that of a remote area.

3) Our proof shows that the asynchronous algorithms con-
verge with random node operations and with any prob-
ability distribution of executions upon all the nodes as
long as each node always has the chance to be involved
in the execution. Each node can run the asynchronous
operations on the fly without knowing what other nodes
are doing. This model can adapt to the changing network
topology, node failure, adverse communication condi-
tions, node mobility, etc.

4) One of the factors that affects the convergence speed

is that all nodes have the same probability to execute
the average operation. The operation of a node whose
clock is similar to its neighbors does not contribute
much to the convergence. An improvement to reduc-
ing communication and speeding up convergence is to
adaptively bias toward the nodes with large difference
to their neighbors. In this way, the large difference may
be amortized quickly. The probability can be chosen
proportional to D

C′
where D is the maximal difference

among a node and its neighbors and C ′ is the average
value estimated at the node.

VIII. SIMULATION

We implemented the averaging synchronization algorithm
(Alg. 4) in simulation. We ran a series of scenarios with
different network parameters. For each time slot (say one sec-
ond), each node executes the average operation once although
the order of the operations of all the nodes is randomized.
In a real network, the frequency is specified for each node
and each node needs to perform the operation once for each
set time interval. We define a round to be the time for each
node to finish the average operation in Alg. 4 exactly once, so
the number of rounds for the network to achieve some error
threshold signifies the convergence speed.

For each experimental set with the same parameters, the
simulation was executed several times using a randomly gen-
erated network topology. In each experiment, a stimulus is
generated at a randomly chosen node and propagated to the
whole network until the relative error is achieved. In Fig. 6,
3, and 4, the data points are drawn from the experiments
and the curves are plotted with the average values for each
experimental set. The simulation results are presented as
follows:
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Fig. 3. The convergence speed with different transmission ranges. The
network parameters are: sensor field 10x10, number of nodes 1000, algorithm
stops at error 0.01%. The crosses signify the number of rounds for each
experiment. The plotted curve is the average number of rounds for networks
with the same network parameters.

1) The first suite of experiments (Fig. 5) relate the relative
error with the number of rounds executed by the sensors.
We generated two random networks with the following
network parameters: number of nodes 200, sensor field
10x10, transmission range 1.5, and algorithm stop error
0.01%. As we conjecture in the previous section, the
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Fig. 4. The convergence speed with the number of nodes with fixed node
density. The network parameters are: sensor field proportional to the number
of nodes (10 nodes per unit area), transmission range 0.7, algorithm stops at
error 0.1%. We see almost linear decrease in the convergence speed with the
increase of the nodes. The plotted curve is the average number of rounds for
networks with the same network parameters.
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Fig. 5. Two typical simulations for average algorithm. The experiments
have the following parameters: number of nodes 200, sensor field 10x10,
transmission range 1.5, and algorithm stop error 0.01%. The number of
neighbors of each node varies in each experiment. In the first experiment,
the maximal number of neighbors is 21, minimal number of neighbors is
2, average number is 12.25, the standard deviation is 3.58. In the second
experiment, the numbers are 25, 3, 13.44, and 5.13 respectively.

error rate decreases exponentially with the increase of
the number of rounds. The simulation confirms our
conjecture.

2) Convergence speed vs. number of nodes with other
parameters fixed (Fig. 6). The two figures evaluate the
convergence speed with the number of nodes. Each data
point in the figure represents a running on a randomly
generated network with the following parameters: sensor
field 10x10, transmission range 1.5, and algorithm stop
error 0.01%. The markers are the number of rounds
(in the first figure) and the number of total operations
(in the second figure) for each experiment. The plotted
curve is the average number of rounds and number of
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Fig. 6. The convergence speed with different number of nodes. The network
parameters are: sensor field 10x10, transmission range 1.5, and algorithm
stop error 0.01%. The markers are the number of rounds for each experiment.
The plotted curve is the average number of rounds for one suite of network
parameters. A sparse network with less nodes undergoes large variation in
terms of convergence speed. The first figure shows the number of rounds
for each network. The second figure presents the total number of operations
conducted by all the nodes in each network.

total operations for one suite of network parameters. A
sparse network with less nodes undergoes large variation
in terms of convergence speed. The first figure shows
the number of rounds decreases with the increase of
the number of nodes. The second figure shows the total
number of average operations conducted by all the nodes
is approximately the same for each network. This is
because the number of neighbors increases linearly with
the number of nodes with other network parameters
fixed.

3) Convergence speed vs. various network setups (Fig. 7).
We did simulations on four suites of network setups.
In each setup, we generated multiple random networks
with the same network parameters. The first figure
uses the following parameters: number of nodes 200,
sensor field 10x10, transmission range 1.5. The second
figure uses: number of nodes 400, sensor field 10x10,
transmission range 1.5. The third figure uses: number of
nodes 400, sensor field 15x15, transmission range 1.5.
The fourth figure uses: number of nodes 400, sensor
field 18x18, transmission range 1.5. In each sub-figure,
the lines represent the performance variations due to the
randomly generated network topologies. With the same
network scope and transmission range, the convergence
speed increases with the increase of the number of
nodes (by comparing the first and second figures). The
reason is that when the number of neighbors of each
node increases, the network is more connected, which



expedites the diffusion. With the same number of nodes
and transmission range, the average number of neighbors
of a node decreases with the increase of the network
scope. This leads to a less connected network, then the
convergence speed decreases (by comparing the second,
third, and fourth figures).

4) Convergence speed vs. transmission range with other
parameters fixed (Fig. 3). The figure evaluates the con-
vergence speed with different transmission ranges. The
network parameters are: sensor field 10x10, number of
nodes 1000, algorithm stops at error 0.01%. The crosses
signify the number of rounds for each experiment. The
plotted curve is the average number of rounds for one
suite of network parameters. With the same network
scope and number of nodes, the convergence speed
decreases with the increase of the transmission range.
This is due to the fact that the number of neighbors of
each node increase and the number of nodes covered by
each average operation increases.

5) Convergence speed vs. number of nodes with fixed sen-
sor density (Fig. 4). The network parameters are: sensor
field proportional to the number of nodes (10 nodes per
unit area), transmission range 0.7, algorithm stops at
error 0.1%. The plotted curve is the average number
of rounds for one suite of network parameters. The
convergence speed decreases linearly with the increase
of the number of nodes in the context of the fixed
sensor density. Since each node has the same number
of neighbors in each simulation, the diffusion speed
is dependent on the number of sensors in the whole
network.

IX. CONCLUSION

We consider the global synchronization problem in sensor
networks. We propose the all-node-based method, the cluster-
based method, and the diffusion-based methods to solve the
problem. The first two methods require a node to initiate the
global synchronization, which is neither fault-tolerant nor lo-
calized. In the diffusion-based method, each node can perform
its operation locally, but still achieve the global clock value
over the whole network. We present two implementations
of the clock diffusion: synchronous and asynchronous. The
synchronous method assumes all the nodes perform their local
operations in a set order, while the asynchronous method
relaxes the constrain by allowing each node to perform its op-
eration at random. We present the theoretical analysis of these
methods and show simulation results for the asynchronous
averaging synchronization method.

Our proposed algorithms can be extended to other sen-
sor network applications, such as data aggregation. We are
currently examining how the methods presented here fit to
more general applications. Our future work also includes
implementing the algorithms in a real sensor network using
our Mica Mote sensor network platform.
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Fig. 7. Simulation results of different experimental sets. In each figure, we
fix the parameters of the network, but obtain different networks by randomly
generating the node positions (the different lines in each figure represent
different networks generated). For each network experimental set, we run
the algorithm till the error is below 0.01% (error is defined as Ht−C

C
where

Ht is the highest value at that time and C is the average value in the end).
In each round, we randomly generate the node execution order although we
force each node to execute the average operation once in each round. We vary
the number of nodes and the network scope for each experimental set. The
first figure uses the following parameters: number of nodes 200, sensor field
10x10, transmission range 1.5. The second figure uses: number of nodes 400,
sensor field 10x10, transmission range 1.5. The third figure uses: number of
nodes 400, sensor field 15x15, transmission range 1.5. The fourth figure uses:
number of nodes 400, sensor field 18x18, transmission range 1.5. This verifies
our conjecture that the relative error decreases exponentially with the increase
of the number of rounds. We can see some effects on the convergence speed
of the network scope, number of nodes and transmission range from these
figures.


