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Control of thought and behavior is fundamental to human intelligence. Evidence suggests a frontoparietal brain network implements

such cognitive control across diverse contexts. We identify a mechanism— global connectivity— by which components of this network

might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region’s activity was found to predict performance in a

high control demand working memory task and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region,

involving connections both within and outside the frontoparietal network, showed a highly selective relationship with individual differ-

ences in fluid intelligence. These findings suggest LPFC is a global hub with a brainwide influence that facilitates the ability to implement

control processes central to human intelligence.

Introduction
Solving the problems of everyday life requires effective control of
thought and behavior. This is most evident when such cognitive
control breaks down. For instance, individuals with brain lesions
in the lateral prefrontal cortex (LPFC) have difficulty with com-
mon tasks such as planning and executing grocery shopping trips
(Shallice and Burgess, 1991). Even healthy individuals are limited
in their capacity for cognitive control, as measured by indices
such as working memory capacity and general fluid (gF) intelli-
gence (Conway et al., 2002). This “cognitive control capacity”
appears to be highly general and life relevant, predicting impor-
tant outcomes such as academic and vocational success (Engle et
al., 1999; Gottfredson and Saklofske, 2009).

Recent evidence suggests cognitive control capacity may be
supported by whole-brain network properties. For instance, van
den Heuvel et al. (2009b) found that individuals with higher
intelligence had more efficient whole-brain network organiza-
tion. More recently, we found that a specific frontoparietal brain
network thought to underlie cognitive control capacity (Cole and
Schneider, 2007; Duncan, 2010) has especially high global con-
nectivity (Cole et al., 2010b). In contrast to the whole-brain net-
work property account (and accounts that emphasize specific
connections among regions), this suggests global connectivity of
specific control regions may be important for cognitive control
capacity. This would allow for a mechanism by which specific

control regions can access and influence other relevant networks
(such as sensory-motor networks involved in task-relevant pro-
cessing) to adaptively monitor and regulate ongoing behavior
(Dehaene et al., 1998; Miller and Cohen, 2001).

In the current study we used a recently developed graph the-
oretic approach to neuroimage data, sometimes referred to as
global brain connectivity (GBC) or weighted degree centrality
(Cole et al., 2010b, 2011; Rubinov and Sporns, 2011). This ap-
proach enabled consideration and characterization of specific re-
gions’ full range of connectivity, including connections outside
the canonical frontoparietal control network, allowing us to
comprehensively examine the role of each region’s global con-
nectivity in human cognitive control and intelligence.

We tested our hypothesis that cognitive control capacity is
supported by the global connectivity of specific control network
regions using a convergent approach involving analyses of both
task-related and resting state functional MRI data. First, we iden-
tified regions meeting stringent criteria for involvement in cog-
nitive control using the N-back task, a benchmark probe of
working memory and cognitive control (Braver et al., 1997). Sec-
ond, we used resting state functional MRI data to test whether
these regions had high GBC relative to the rest of the brain. Fi-
nally, we determined whether the GBC in any of these regions
predicted individuals’ intelligence and cognitive control abilities.
This final test is critical because a demonstration that a given
brain region has both reliable involvement in control and high
GBC does not necessitate that the global connectivity of such a
region has a functional role in supporting cognitive control ca-
pacity. Indeed, we found that the GBC of most regions meeting
these criteria could not reliably predict intelligence, as the GBC of
only a single region—left LPFC— could do so. This suggests that
there may be a specific brain region that uses brainwide connec-
tivity as a central mechanism for supporting cognitive control
and intelligence.
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Materials and Methods
Participants. The data presented here were collected as part of a larger,
multifaceted study. Individuals participated in 3 separate sessions,
spaced a few days to a few weeks apart, to complete personality tests,
mood questionnaires, neuropsychological tests, and the N-back fMRI
scanner task. The first session was 3 h long and involved answering sev-
eral standard paper-and-pencil questionnaires; the second was 2 h long
and involved answering computerized questionnaires and cognitive
tasks; the third was 2.5 h long, and involved an fMRI scan of the N-back
task. The Raven Advanced Progressive Matrices, Set II (Raven et al.,
1998) and The Cattell Culture Fair Test (Cattell et al., 1973) were in-
cluded in the first session as measures of gF. The standard scoring pro-
cedures for each test were used to compute measures from these tests.
Data from these participants have been used in other articles to address
questions distinct from those in the current study (Fales et al., 2008;
Shamosh et al., 2008; DeYoung et al., 2009, 2010; Burgess et al., 2011).

One hundred twenty-one participants (70 female; mean age, 23 years;
range, 18 – 40 years) were recruited from the undergraduate population
at Washington University (n � 60) or surrounding communities and
received financial remuneration for their participation. The experiment
was approved by the Washington University Institutional Review Board.

Participants were eliminated from N-back task-based analyses if they
showed unusually poor performance, as indicated by multivariate anal-
ysis (Mahalanobis distance; indexed across six variables that coded the
proportion of incorrect responses and response omissions for each type
of trial). Five participants were eliminated on the basis of this criterion
(Mahalanobis distance of � 22.46, reflecting the corresponding �

2 value
at p � 0.001, with 6 degrees of freedom). A further 13 participants were
eliminated due to at least one incomplete or missing BOLD scan or due to
computer failure resulting in a loss of behavioral data. Finally, because
the task analysis required that at least one error be committed on each
type of 3-back trial, 10 participants who performed perfectly on novel
trials were excluded. All results in the task analyses are therefore reported
for 93 participants.

For the resting state functional connectivity analyses, 13 participants
were removed from analysis because they had one or more incomplete or
missing BOLD scans. Further, because a FreeSurfer gray matter mask was
used for computing GBC for each participant, 14 participants with poor
quality anatomical images (and resulting poor quality gray matter
masks) were removed. We included 94 participants for the reported con-
nectivity analyses. The different exclusion criteria for task-based and
rest-based analyses resulted in 78 participants overlapping across analy-
ses. The lack of complete overlap in the 2 samples might be considered
statistically beneficial, as this increased statistical independence between
the task-based activity and the rest-based connectivity results. In-house
software was used for task activation analyses, while AFNI (Cox, 1996)
and R (R Development Core Team, 2009) were used for connectivity
analyses. In the sample of 94 participants used for most of the analyses,
the mean age was 22 years (SD, 4.7 years; range, 18 –39 years).

The 3-back task. The 3-back task was administered using PsyScope
(Cohen et al., 1993) on a Macintosh G3 (Apple Computer). Participants
performed a standard version of the task that has been used in several
previous studies of working memory (Gray and Braver, 2002; Gray et al.,
2002, 2003, 2005; Schaefer et al., 2006; Yarkoni et al., 2009). Stimuli
(either words or faces) were displayed sequentially on a screen. Partici-
pants were instructed to respond with the right index finger if the current
stimulus matched the stimulus presented 3 trials back (target response)
and with their right middle finger if the current stimulus was different
(nontarget response). The 3-back trials were classified into 3 types: novel,
target, and lure. Each participant’s behavioral performance was assessed
by computing their mean accuracy rate separately for each trial type.

On Novel trials (52% of all trials), the presented item was completely
novel to the participant and had not been previously presented. On Tar-

get trials (32%), the presented item was the same as the one presented 3
trials previously. On Lure trials (16%), the current item had been pre-
sented at least once before but had not been presented exactly 3 trials
back. The tension between targets and lures presented the main source of
difficulty in the task. In theory, the inclusion of lure trials should prevent

participants from simply using a recognition-based strategy and classify-
ing any previously seen item as a target. In practice, however, participants
performing the N-back often use a heuristic approach that allows for a
combination of familiarity-based and control-based responding (Kane et
al., 2007), implying that the results of many N-back studies may reflect
the aggregate action of several very different cognitive processes.

For a given scanning run, stimuli were either all faces (unfamiliar
attractive males and females intermixed, either neutral or smiling) or all
words (concrete English nouns with neutral content, such as rooster,
elbow, steel, fence, ball, tooth). These stimuli were used in a number of
previous studies (Braver et al., 2001; Gray et al., 2002, 2003). Each stim-
ulus was presented individually for 2.0 s, with a fixation point (cross-
hair) shown between stimuli. The task was presented in 6 scanning runs,
each consisting of 2 blocks of 32 task trials randomly interspersed with 18
variable intertrial intervals included to facilitate deconvolution of event-
related responses. Task blocks were also preceded and followed by 15-
frame blocks of resting fixation, for a total of 45 fixation frames per run.

fMRI data acquisition and preprocessing. Whole-brain images were ac-
quired on a 3T Allegra System (Siemens). Structural images were acquired
using a magnetization-prepared rapid gradient-echo T1-weighted sequence.
Functional images were acquired using an asymmetric spin-echo echo-
planar sequence sensitive to BOLD magnetic susceptibility (TR � 2360
ms, TE � 50 ms, flip � 90°). Each scanning run gave 149 sets of brain
volumes (32 contiguous, 4 mm thick axial images, 4 � 4 mm in-plane
resolution).

Preprocessing was conducted separately for the general linear model
(GLM) and functional connectivity (fcMRI) analyses. For the GLM anal-
ysis, functional images were corrected for movement, normalized within
each scanning run, and temporally aligned within each brain volume.
Next, images were transformed into atlas space (Talairach and
Tournoux, 1988) and smoothed with a Gaussian filter (6 mm FWHM)
before statistical analysis.

For the resting state fcMRI analysis, functional images were extracted
from the rest periods between task blocks using a previously validated
method (Fair et al., 2007). Although there are some criticisms of using
signal between task blocks as rest (Barnes et al., 2009), we minimized
these concerns in the following way (see Discussion for further consid-
eration of this issue): we used rest images that were 14.16 s (6 frames) or
more past the end of every task block and 4.72 s (2 frames) or fewer into
the start of every task block. Further, mean signal amplitude for each rest
block was subtracted for each voxel before rest block concatenation.
There were 3 rest blocks per run, resulting in 35 rest frames per run (after
removing the first 5 frames of each run). There were 8.26 min of rest total
(across the 6 runs) per participant.

These resting state functional images were further preprocessed with
the following steps: (1) slice-time correction, (2) removal of first 5 images
from each run to reach steady state, (3) rigid body motion correction, (4)
bandpass filtering (0.009 � f(t) � 0.08), (5) removal of a set of nuisance
regressors including signals from the ventricles, deep white matter, whole
brain average, motion correction parameters, and first derivatives of
these regressors, (6) additional removal of local white matter (using 16
mm radii spheres) nuisance regressors on a voxelwise basis (ANATICOR)
(Jo et al., 2010), and (7) smoothing with a 6 mm spherical dilation of gray
matter voxels (to avoid averaging non-brain voxel noise with the gray
matter). These steps helped to ensure that spurious signal confounds did
not impact our results. Finally, following GBC processing but before
group analysis, the images were transformed into atlas space (Talairach
and Tournoux, 1988).

fMRI GLM Analysis. The regions of interest (ROIs) were identified
using a GLM data analysis approach (Friston et al., 1995). Because the
experiment was designed for a mixed blocked/event-related analysis
(Visscher et al., 2003; Dosenbach et al., 2006), separate regressors were
used to estimate sustained (i.e., blocked) and transient (i.e., event-
related) activation. Sustained activation during task blocks relative to
fixation periods was modeled with an assumed response shape by con-
volving a boxcar with a model hemodynamic response function. Event-
related effects were estimated empirically using a basis set of finite
impulse response regressors. Each event-related effect was modeled using
a set of 7 staggered regressors spanning a total epoch duration of 16.52 s.
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All analyses were conducted on summary magnitude estimates obtained
by averaging the signal at the third, fourth, and fifth time points of each
time course (i.e., the expected peak of activation).

Six different event-related effects of interest were modeled in the GLM,
representing separate coding of correct and incorrect responses for each
of the 3 different trial types (e.g., correct novel trials, incorrect novel
trials, correct target trials). This approach enabled us to analyze the data
using a 3 � 2 repeated-measures ANOVA with trial type and accuracy as
factors. In addition to the 6 effects of interest, each GLM contained a
number of covariates of no interest, including 6 covariates coding for
experimental condition at the block level (reflecting a 2 � 3 factorial
combination of stimulus type and mood induction valence), a paramet-
ric covariate coding for trial-by-trial differences in reaction time to con-
trol for time-on-task effects (Yarkoni et al., 2009), a covariate coding all
trials with omitted response separately [mean, 3.1% (SD, 3.2%) of all
trials]), onset and offset covariates that modeled the initiation and ter-
mination of each block of trials to control for reliable task-independent
activation that occurs at the start and end of task blocks (Dosenbach et
al., 2006), and nuisance regressors modeling separate intercepts and lin-
ear trends for each BOLD run.

For all within-subject analyses, brain regions were identified using
whole-brain paired t tests that compared activation at each voxel
between conditions of interest. For individual differences in N-back
performance, we conducted a whole-brain correlation analysis be-
tween mean response accuracy and task-related activation. Because
individual differences analyses typically have substantially lower
power to detect effects than within-subject analyses (Braver et al.,
2010; Yarkoni et al., 2010), we sought to improve signal-to-noise by
averaging both response accuracy and brain activation across all trial
types (i.e., Novel, Target, and Lure) before analysis.

Statistical maps were corrected for multiple comparisons using a
whole-brain false discovery rate (FDR) (Nichols and Hayasaka, 2003)
threshold of 0.05 and a clusterwise (extent) threshold of �9 contiguous
statistically significant voxels. For the subsequent conjunction analysis
that sought to identify regions common to multiple contrasts, all maps
included in each conjunction were individually corrected for multiple
comparisons before masking (Nichols et al., 2005).

For visualization purposes, statistical maps were mapped onto a
3-dimensional representation of the cortical surface (the Population-
Average, Landmark- and Surface-Based atlas; Van Essen, 2005) using Caret
software (Van Essen et al., 2001; http://brainvis.wustl.edu/wiki/index.
php/Caret:About).

GBC analyses. A region’s GBC was computed as the average connec-
tivity of that region with the rest of the brain (equivalent to unthresh-
olded weighted degree centrality) (Cole et al., 2010b). Several studies
have used unthresholded weighted degree centrality in the past as well
(Cole and Schneider, 2007; Langer et al., 2011; Rubinov and Sporns,
2011). Analyses were restricted to each subject’s individual gray matter
mask (dilated by one functional voxel to accommodate spatial smooth-
ing of functional data), obtained using FreeSurfer (Fischl et al., 2002).
The brainwide GBC analyses were performed according to the following
steps for each volume of interest (either a region or a voxel): First, a
correlation was obtained with each voxel’s resting state time series (ex-
cluding itself). Second, the correlations were transformed to Fisher Z
(Fz) values. Third, all (positive, negative, or absolute value) correlations
were averaged to produce a GBC value. Voxelwise GBC maps were com-
puted using AFNI’s 3dTcorrMap, while GBC with an ROI was computed
using custom scripts running AFNI’s 3dDeconvolve, 3dcalc, and
3dmaskave (Cox, 1996). For the ROI analyses, connectivity was based on
correlations with the average of the time series from all within-region
voxels.

Importantly, we never averaged positive and negative connections,
given that mixed positive and negative values could cancel each other
(e.g., averaging 0.2 and �0.2). Instead, for analyses using positive
connections, each subject’s negative connections were excluded. Sim-
ilarly, for analyses using negative connections, each subject’s positive
connections were excluded. All voxels were included for analyses us-
ing absolute values. Note that the main GBC analysis (see Fig. 2) used
positive connections only, given the current controversy regarding

negative connections (Fox et al., 2009; Murphy et al., 2009), though
the LPFC ROI effects were also significant for the negative-only and
absolute value analyses.

The “top 10% GBC” analyses were conducted by identifying the voxels
with GBC �90% of the gray matter voxels (Cole et al., 2010b; Lynall et al.,
2010; Fornito et al., 2011). Top percentages were calculated as the num-
ber of voxels with higher GBC than the region divided by the total num-
ber of voxels in the brain.

For individual differences correlations, each volume’s (either a re-
gion’s or a voxel’s) GBC was extracted for each subject, and a correlation
was computed based on individual variability in this measure and in the
composite gF behavioral measure (using AFNI’s 3dRegAna). For the
whole-brain GBC analyses, the statistical map was thresholded at p �

0.01 uncorrected, then corrected for multiple comparisons (familywise
error) to p � 0.05 using a cluster threshold. AFNI’s AlphaSim (Cox,
1996) was used to compute a cluster size threshold of 16 voxels based on
10,000 Monte Carlo simulations. These simulations used a group gray
matter mask (gray matter mask voxels with overlap across at least 50% of
subjects), and image smoothness for the simulations was estimated using
AFNI’s 3dFWHMx.

Restricted GBC analyses. We assessed the origin of the LPFC connec-
tivity– gF correlation by recalculating this correlation for each in a series
of connectivity strength ranges. LPFC’s group average connectivity map
(excluding voxels within LPFC itself) was used to define the across-voxel
strength ranges, starting at an Fz of 0 and going up and down in incre-
ments of 0.05 until only a small number of voxels remained. Note that
these are subsets of the full absolute value LPFC GBC– gF analysis ( p �

0.002), such that multiple comparisons are controlled for using the logic
of the protected Fisher’s least significant difference approach. The same
procedure used for calculating GBC was used here (i.e., calculating
LPFC’s time series correlation with each voxel, then averaging) but was
restricted to each group average map strength range.

The strength range analysis indicated that LPFC’s connectivity could
be roughly separated into 3 broad functional systems based on connec-
tivity strengths. The cognitive control network had strong positive con-
nectivity (Fz � 0.2), the default mode network had relatively strong
negative connectivity (Fz � �0.05), and sensory-motor networks had
relatively weak positive and negative connectivity (�0.15 � Fz � 0.2).
We used these group average strength ranges, along with independently
identified voxel masks, to define the 3 systems.

The cognitive control and default mode networks were defined using
NeuroSynth (Yarkoni et al., 2011), which identifies locations with a high
probability of their being reported in studies using specific terms. The cog-
nitive control network locations are based on 93 studies (forward inference)
using the term cognitive control. The default mode network locations are
based on 77 studies using the term “default mode.” Locations for both cog-
nitive control and default mode networks were downloaded August 14,
2011, with p � 0.05 thresholds and FDR corrections for multiple compari-
sons. The sensory-motor locations were based on probabilistic cytoarchitec-
ture obtained using AFNI TT_N27_CA_EZ_PMaps, which is derived from
the SPM Anatomy toolbox (Eickhoff et al., 2005). All voxels in the primary
visual, primary auditory, primary motor, and somatosensory cortices were
included. Any voxels that overlapped between any 2 of the 4 system masks
were excluded from the analysis.

The LPFC connectivity-gF correlations were computed for each func-
tional system separately. To better ensure separation of the systems, the
group average strength ranges indicated above were used to restrict the
voxels contributing to each system’s average LPFC connectivity. In addi-
tion, only positive connections were used (selected separately for each
subject) for control network voxels and only negative connections were
used for default mode network voxels, based on previous activation-
based and connectivity-based studies demonstrating anticorrelations be-
tween these systems (Fox et al., 2005). The absolute value of each
connection was taken before averaging for the sensory-motor networks
to avoid averaging of positive and negative connections (which could
cancel out individual difference effects).
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Results
Identifying core cognitive control regions
Brain regions were identified as important for cognitive control
based on their activation profile in a group of 93 participants
scanned during performance of the N-back task of working
memory and executive control. First, these regions had to show
increased activation for lure/interference trials, which had high
control demands relative to other N-back trials (Gray et al.,
2003). Second, they had to demonstrate increased activation on
correct relative to error N-back trials, indicating a trial-by-trial
contribution to successful performance. Last, average N-back
trial-related activity had to correlate with task accuracy across
participants, indicating a role in performance-related individual
differences. Three regions within the frontoparietal control net-
work were identified that met these strict criteria: left LPFC, right
premotor cortex (PMC), and right medial posterior parietal cor-
tex (mPPC) (Fig. 1, Table 1).

Identifying cognitive control regions with high GBC
We next tested the hypothesis that these 3 regions might be cen-
tral to cognitive control because they serve as global hubs—re-
gions highly connected to many other brain regions, as indexed
by the GBC measure. In previous work, we demonstrated that
regions within the frontoparietal control network tend to have
the highest GBC within the brain (Cole et al., 2010b). In the
present study, GBC was assessed using standard resting state
functional connectivity MRI (rs-fcMRI) measures from �8 min
of resting state data acquired in each participant from inter-
spersed rest blocks occurring between task blocks, an approach
validated in previous work (Fair et al., 2007). Note that rs-fcMRI
is widely viewed as a useful brain connectivity measure because it
is correlated with known structural connectivity (Honey et al.,
2009; van den Heuvel et al., 2009a), though it likely reflects “func-
tional/Hebbian” connectivity as well (Lewis et al., 2009); is highly
consistent with well-established functional networks (Smith et

al., 2009; Van Dijk et al., 2010); likely reflects intrinsic connectiv-
ity as it is present even under anesthesia (Vincent et al., 2007); and
is highly replicable (e.g., within individuals, between individuals,
across scanners, across parameters) (Shehzad et al., 2009; Van
Dijk et al., 2010). Each region’s GBC was computed as its average
positive rs-fcMRI connectivity with the rest of the brain. Based on
previously defined criteria for what constitutes a hub region
(Cole et al., 2010b), we found that all 3 regions could be consid-
ered global connectivity hubs, as their GBC was in the top 10%
compared across the whole brain.

Using GBC to predict cognitive control and intelligence
We next tested for a relationship between these regions’ GBC and
cognitive control capacity. Importantly, gF was used rather than
N-back performance to assess cognitive control capacity with an
independent and more robust measure of stable, traitlike, and
domain-general individual differences. gF is a domain-general
measure of the fluid aspects (those aspects independent of knowl-
edge and culture) of general intelligence that has been used in
psychometric research for over a century of studies involving
thousands of participants (Gottfredson, 1997). Robust findings
demonstrate its relevance to a wide variety of both psychometric and
real-life tasks (Gottfredson, 2002), providing good reason to expect
that results based on gF will generalize to a wide variety of other tasks,
especially those in which cognitive control demands are high (Got-
tfredson, 1997). We quantified gF as the z-normalized average of 2
well-established measures of gF collected outside the scanner: the
Raven Advanced Progressive Matrices, Set II (Raven et al., 1998) and
the Cattell Culture Fair Test (Cattell et al., 1973).

Individual differences correlations between positive-con-
nectivity GBC (computed using positive connections only) and
gF were statistically significant for LPFC (r � 0.32, p � 0.0015)
but not for mPPC (r � 0.08, p � 0.42) or PMC (r � 0.13, p �

0.22) (Fig. 2A). This LPFC GBC– gF correlation remained statis-
tically significant after controlling for the effect of age (r � 0.24,

Figure 1. Cognitive control regions, as defined by successful cognitive control. A, ROIs were defined based on brain activity during successful N-back task performance. The following highly

selective criteria were used: preferential activation for trials requiring flexible control (lures), correct � incorrect trials, positive correlation with accuracy across participants. All 3 of these regions

were hubs (in top 10% connectivity in the brain). B, Illustration of effects defining the LPFC ROI. LPFC was more active across correct relative to error trials and more active for lure than other trial

types. LPFC activity (correct trials across all trial types) was also correlated with overall response accuracy across individuals (r � 0.39, p � 0.0002).

Table 1. Regions identified in the task-based and connectivity analyses

Volume (4 mm 3) X Y Z Lure versus others Correct versus error Accuracy correlation

LPFCa 17 �43.4 13.6 29.4 F � 10, p � 0.002 F � 11, p � 0.001 r � 0.39, p � 0.0002

mPPCa 17 11.4 �64.3 52.2 F � 11, p � 0.001 F � 6, p � 0.02 r � 0.42, p � 0.0001

PMCa 11 28.5 �4.6 54.2 F � 9, p � 0.003 F � 15, p � 0.0002 r � 0.29, p � 0.007

LPFCb 16 �46.3 14.9 28.5

LPFC c 9 �44.2 13.7 29.8
aRegions identified in the task-based analysis.
bRegions identified in the voxelwise GBC-gF correlation (connectivity) analysis.
cOverlap among task-based, connectivity, and Burgess et al. (2011) analyses.
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p � 0.018). These results demonstrate
that individuals with higher GBC in LPFC
have greater cognitive control capacity,
suggesting brainwide connectivity with a
specific control region helps support cog-
nitive control abilities. Further, these re-
sults converge with results from previous
N-back studies (Gray et al., 2003; Burgess
et al., 2011), based on both brain (resting
state connectivity) and behavior (fluid in-
telligence) measures, to suggest that left
LPFC is central to the implementation of
cognitive control.

The main GBC analyses used positive
connections only, given the current con-
troversy regarding negative connections
(Fox et al., 2009; Murphy et al., 2009).
However, the LPFC region effects were
also significant for the negative-only (r �

�0.29, p � 0.004) and absolute value (r �

0.31, p � 0.002) analyses. This suggests
that negative connectivity might be func-
tionally relevant with regard to gF.

We also examined the predictive
power of GBC with a second independent
measure of cognitive control, working
memory capacity, as indexed by the well-
established operation span task (Conway
and Engle, 1996). Convergent with the gF
results, a significant relationship was only
observed for GBC in LPFC: r � 0.24, p �

0.019 (for mPPC and PMC, p � 0.15). In
subsequent analyses, we focus primarily
on gF given the well-established generality
and life relevance of this cognitive con-
struct (Gottfredson and Saklofske, 2009).

To assess specificity to fluid (as op-
posed to crystallized) intelligence, we de-
termined whether LPFC GBC was also
correlated with a measure of crystallized
intelligence: the vocabulary subtest of the Wechsler Adult Intel-
ligence Scale-Third Edition test (Wechsler, 2005). We found no
significant correlation between crystallized intelligence and
LPFC GBC (r � 0.12, p � 0.25), despite there being a significant
correlation between crystallized intelligence and gF (r � 0.43, p �

0.00001). Further, the LPFC GBC– gF correlation was (margin-
ally) significantly higher than the LPFC GBC-crystallized intelli-
gence correlation (z � 1.87, p � 0.06). These results suggest that the
relationship between LPFC GBC and intelligence was specific to fluid
aspects of intelligence, consistent with our interpretation that this rela-
tionship reflects cognitive control processes underlying intelligence.

Assessing the relative specificity of the LPFC GBC– gF effect
The primary goals of previous work investigating the neural basis
of intelligence have been to identify whole-brain network contri-
butions to intelligence (van den Heuvel et al., 2009b), region-
specific activity contributions to intelligence (Duncan, 2000), or
connection-specific contributions to intelligence (Song et al., 2008).
In contrast, due to our hypothesized mechanism of cognitive con-
trol, our primary goal was to identify how specific regions’ global
connectivity might contribute to intelligence. As a critical aspect of
this goal, we next sought to assess the relative specificity of the ob-
served LPFC GBC–gF effect. We did this by examining GBC–gF

correlations separately in all brain voxels. Remarkably, only a single
significant region was identified (p � 0.05, family-wise error cor-
rected for multiple comparisons), despite the relatively large sample
size, with its location closely overlapping the LPFC region identified
in the task-based analysis (Fig. 2B, Table 1B). This suggests the GB-
C–gF effect was specific to LPFC.

Still, it remains possible that there were effects just below the
statistical threshold used in this analysis. To assess this possibility
and further evaluate the robustness of the LPFC GBC– gF effect,
we compared the LPFC GBC– gF correlation with the GBC– gF
correlation of every voxel in the brain (Fig. 3A). We accom-
plished this using a standard approach for comparing dependent
correlations (Meng et al., 1992). Supporting the specificity of
LPFC, we found that much of the brain had a lower GBC– gF
correlation (p � 0.05, familywise error corrected for multiple
comparisons).

We might expect, based on previous activity studies showing
strong relationships with intelligence (Gray et al., 2003), that
control network regions such as anterior PFC and anterior cin-
gulate cortex would show strong GBC– gF correlations. Further
supporting this possibility, these regions also have among the
highest GBC in the brain (Cole et al., 2010b). Surprisingly, these

Figure 2. GBC correlations with gF. A, Positive GBC was calculated for the 3 regions identified in the task-based analysis, and

correlations were assessed with gF. Only LPFC showed a significant correlation. GBC is a graph theoretical measure of resting state

fcMRI, calculated here for each seed ROI, by computing the average connectivity strength between the region and every other voxel

of the brain. Note that all 3 regions were in the top 10% in terms of GBC (but only LPFC GBC was significantly correlated with gF).

B, Correlations were assessed between each brain voxel’s positive GBC and gF scores. Of the entire brain, only left LPFC was

statistically significant ( p � 0.05, corrected for multiple comparisons). The LPFC region strongly overlapped with the LPFC region

identified in the task-based analysis.
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were among the many regions showing significantly smaller
GBC– gF effects than LPFC (Fig. 3A, highlights).

It still remains possible that other control network regions,
especially those with activity correlating with gF, might also show
significant GBC– gF correlations, reducing the specificity of the
LPFC effect. We increased our ability to detect such correlations
(relative to the previous voxelwise analysis) using an ROI ap-
proach with a larger set of control network regions, identified by
Burgess et al. (2011) with the same large dataset as here (Fig. 3B).
Burgess et al. (2011)identified these regions using criteria similar
to (but less conservative than) our own (Fig. 1), but with one key
difference: the activity in all 10 regions (the 3 we had identified,
plus an additional 7) correlated with gF. We found that 9 of the 10
regions had voxels in the top 10% of GBC, further suggesting they
might show GBC– gF correlations.

Nevertheless, we again found a remarkable degree of specific-
ity in the GBC– gF effect, since the correlation was significant
only in the left LPFC region (r � 0.29, p � 0.005 for left LPFC;
p � 0.19 for all other regions). Note that several regions had
outlier subjects (GBC further than 2 SD from the group mean);
however, the results were similar when including or excluding
them. This left LPFC region overlapped with the LPFC regions
identified in the first analysis (Fig. 1) and the whole-brain search
analysis (Fig. 2B), such that results from all 3 analyses overlapped
in a common set of voxels (Table 1C). These results demonstrate
that regions showing activity– gF correlations and high GBC are
not guaranteed to show GBC– gF correlations. In other words,
the results suggest GBC– gF effects may be mechanistically dis-

tinct from activity– gF effects (e.g., activity reflects within-region
processing, while GBC reflects access to a wide variety of task-
relevant regions for implementing control).

It remains possible that the GBC– gF effect was actually dis-
tributed throughout the control network, and that, despite the
highly statistically significant effect in left LPFC, the GBC metric
was not sensitive enough to identify the effect in each region
individually. We therefore averaged the GBC values across all the
control regions (excluding left LPFC) to look for a network-wide
effect and found that the resulting GBC– gF correlation was still
not significant (r � 0.06, p � 0.59). Moreover, this network-wide
correlation was significantly lower than the left LPFC GBC– gF
correlation (z � 2.0, p � 0.046).

Finally, we ruled out a network-wide effect using partial re-
gression, testing whether the left LPFC GBC– gF correlation was
statistically independent of the other 9 control regions (Fig. 3C).
First, to remain conservative, subjects were removed from this
analysis if they were outliers for any of the 10 regions (this re-
moved 17 subjects), which reduced the LPFC GBC– gF correla-
tion slightly (r � 0.29, p � 0.01). Next, GBC values from each of
the regions (excluding left LPFC) were included in a multiple
regression model with the gF values. The residuals from this
model (i.e., with gF-correlating individual differences variance
from the 9 regions removed) were then correlated with the orig-
inal left LPFC region’s GBC values. The left LPFC GBC– gF
correlation was almost identical and remained statistically signif-
icant (r � 0.26, p � 0.03), suggesting that the left LPFC effect was
statistically independent from the other regions. This effect re-

Figure 3. Examining the specificity of the left LPFC GBC– gF correlation. A, The LPFC GBC– gF correlation was compared with the GBC– gF correlation of every brain voxel. Significant voxel clusters

are shown ( p � 0.05, corrected for multiple comparisons). This supports the specificity of the LPFC GBC– gF effect and demonstrates that the contribution of global connectivity to intelligence is not

uniform throughout the brain. Potential control regions (based on previous studies) are highlighted. B, The GBC– gF correlation was calculated for a larger set of regions from Burgess et al. (2011)

that appeared likely to show GBC– gF correlations. Using the same dataset as here, Burgess et al. (2011) identified 10 regions (the largest 8 are depicted here) with N-back lure fMRI activity

correlating with individual differences in cognitive control capacity (e.g., gF). Despite these regions’ activities correlating with gF, only left LPFC (substantially overlapping with the previously defined

LPFC region) showed a significant GBC– gF correlation. C, The left LPFC GBC– gF correlation was computed before and after removing the variance from all Burgess et al. (2011) regions (excluding

left LPFC). The GBC– gF correlation for the left LPFC region (as defined in Fig. 1) was largely unaffected by removing the variance from the Burgess et al. (2011) regions. This demonstrates that the

left LPFC GBC– gF correlation was statistically independent of a large set of cognitive control regions. Note that 9 of the 10 regions had voxels in the top 10% GBC, demonstrating that the GBC– gF

correlation is not guaranteed simply due to a control region having both gF-correlating activity and high GBC.
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mained even when restricting the 9 regions to the voxels in the
top 10% GBC (r � 0.25, p � 0.04). Together, all these analyses
further support the conclusion that the GBC– gF effect was highly
selective to left LPFC and, moreover, was independent of other
cognitive control regions despite their high GBC and gF-
correlating activity.

Ruling out effects of motion
A recent study by Power et al. (2012) established that even subtle
movement can alter rs-fcMRI estimates, such that group or indi-
vidual differences in motion might lead to false conclusions re-
garding differences in rs-fcMRI estimates. This appears unlikely
to be able to explain the observed GBC– gF correlation, given its
apparent specificity to LPFC (motion likely affects the entire
brain, or at least more than just a single region). To remain con-
servative, however, we tested whether motion could explain the
observed LPFC GBC– gF correlation.

First, we estimated overall motion [framewise displacement
(FD)] as described by Power et al. (2012), regressed out each
subject’s motion from the gF scores, and found that the LPFC
GBC– gF correlation was almost identical to that before (r � 0.30,
p � 0.004). We next used the “scrubbing” method recommended
by Power et al. (2012) and found that the LPFC GBC– gF re-
mained statistically significant (r � 0.27, 0.0075) despite using a
highly conservative threshold [FD � 0.3, DVAR � 0.3; Power et
al. (2012) used FD � 0.5, DVAR � 0.5) to remove a large amount
of potentially motion-contaminated data. These results strongly
suggest that the LPFC GBC– gF correlation is not an artifact of
motion.

Determining whether the left LPFC GBC– gF effect was global
in origin
We next sought to more thoroughly understand the source of this
GBC– gF effect to determine whether it was truly global in nature
or actually reflected a dominant effect of a subset of LPFC con-
nections. LPFC connectivity was restricted to different ranges
(both positive and negative) of connectivity strength, and we
examined how these restrictions changed the GBC– gF correla-
tion (Fig. 4). Strength ranges were specified starting at an Fz of 0
and going up and down in 0.05 bins. We found that the correla-
tion was statistically significant for nearly every strength range

(Fig. 4A), even those in weak and negative connection strength
ranges, suggesting a global origin of the LPFC GBC– gF effect
rather than a localized contribution of a subset of connections.
Note that weak connections are typically ignored in rs-fcMRI
studies due to their low signal-to-noise ratio but that the GBC
measure may be effectively boosting signal-to-noise of wide-
spread effects by averaging connectivity values across voxels
(similar to improved local signal-to-noise from spatial smooth-
ing) (Mikl et al., 2008).

Expanding on this analysis, we sought to identify whether
there were distinct functional systems underlying these LPFC
connection strength ranges. We observed that the strong positive
connections with LPFC occurred with regions primarily in the
frontoparietal control network, while weak positive and negative
connections were made primarily with sensory-motor regions.
Strong negative LPFC connections were primarily with the de-
fault mode network, a set of regions that are metabolically active
at rest but deactivated during cognitive control tasks (Raichle,
2010). We formalized these observations by defining these 3 sys-
tems based on independent criteria from probabilistic cytoarchi-
tecture and meta-analysis results (Eickhoff et al., 2005; Yarkoni et
al., 2011) and using cutoffs from the strength-range distinctions
described above (Fig. 5A). We found that LPFC connectivity sig-
nificantly predicted gF in each of the 3 systems (Fig. 5B), support-
ing the conclusion that the LPFC GBC– gF effect is truly global
rather than originating from within-network (strong positive)
connections alone.

Several follow-up analyses were conducted to test for alterna-
tive explanations of these results. First, we measured the across-
individual SD for each strength range to see if the stronger
individual-differences effects were due to greater variance in the
weaker strength ranges. Incompatible with this possibility, the SD
actually went up along with (both positive and negative) connec-
tivity strength. Second, we counted the number of voxels contrib-
uting to each strength range. We reasoned that if the LPFC
GBC– gF correlation were truly global in origin, the correlation
should be higher when more voxels are included rather than
when connections are stronger. Compatible with a global origin,
the highest negative and positive strength ranges had very low
voxel counts (due to strict thresholds for these high strengths)
and were the only strength ranges not statistically significant.

Figure 4. Identifying the origin of the LPFC GBC– gF correlation. A, We systematically restricted the connectivity contributing to the calculation of the GBC– gF correlation to determine

the contributing connectivity strength ranges. LPFC’s group average connectivity map was split into Fz 0.05 “strength bands” and restricted GBC– gF correlations calculated using those

voxels. All strength ranges were significant, except the highest and lowest, likely due to the low number of voxels included in these 2 strength ranges. This likely indicates that the

GBC– gF effect is global in origin, such that the more voxels that are included the better the connectivity– gF correlation. This is in contrast to the effect originating from high-strength

connectivity, in which restricting to higher strength connections would improve the connectivity– gF correlation. B, The LPFC seed connectivity group map is shown, colored by

connectivity strength ranges (corresponding to colors in A).
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As a final analysis, we tested whether the LPFC GBC– gF cor-
relation was truly global in origin by examining whether the 3
functional systems identified in Figure 5 were correlated in terms
of their predictive role in explaining gF variation. In other words,
we hypothesized that the LPFC connectivity-gF correlation
would not be statistically significant for any single functional
system when accounting for individual differences in the other
functional systems using multiple linear regression. Compat-
ible with a global origin of the LPFC GBC– gF effect (in which
individual differences in LPFC connectivity act in a unified
fashion across systems), LPFC connectivity with each of the
systems was no longer uniquely correlated with gF when the
other 2 were included in a single linear model (all p � 0.21).
This was also true when each of the systems was modeled in
pairs (control network � default network, control network �

sensory-motor networks, or default network � sensory-motor
networks; all p � 0.10). Further, individual differences in
LPFC connectivity with the sensory-motor networks was cor-
related with the default mode network (r � �0.56, p � 0.001)
and the cognitive control network (r � 0.69, p � 0.001), while
individual differences in LPFC connectivity with the cognitive
control network was also correlated with the default mode
network (r � �0.59, p � 0.001). The observation that gF-
correlating LPFC connectivity appears to vary between indi-
viduals as a whole, rather than in a system-specific manner,
suggests that the contribution of LPFC connectivity to fluid
intelligence can be best characterized in terms of global rather
than connection-specific or system-specific connectivity.

Estimating the relative effect size of the LPFC
GBC– gF correlation
The LPFC GBC– gF correlation effect size might be considered
small (r � 0.32, 10% of the variance). To gain some perspective
on this, we looked at the well known brain size–intelligence cor-
relation (Willerman et al., 1991). Standard FreeSurfer gray mat-
ter segmentation (Dale et al., 1999) was used to estimate gray
matter volume for each participant. Gray matter volume pre-
dicted gF with a correlation of r � 0.26 (p � 0.009; 6.7% of the
variance). Critically, this is similar to the effect size of the LPFC
GBC– gF correlation, r � 0.32. In addition, the LPFC GBC– gF
correlation explained independent variance (r � �0.019 be-
tween brain size and LPFC GBC), suggesting the LPFC GBC– gF
is reflecting a unique mechanism underlying intelligence.

Also addressing the concern regarding effect size, we exam-
ined the LPFC activity– gF correlation, reported previously by
Burgess et al. (2011). This effect size was smaller (r � 0.23, p �

0.03, 5% of the variance) than the GBC– gF correlation in the
same voxels (r � 0.30, p � 0.004), again suggesting the LPFC
GBC– gF effect size is meaningful in relation to previous findings
of fundamental factors underlying intelligence. Critically, the
LPFC GBC– gF correlation again explained independent variance
(r � �0.05). This strongly suggests that the GBC effect is based
on an independent mechanism supporting intelligence. Further,
the lack of correlation between LPFC activity and LPFC GBC
supports the conclusion that task activity was unlikely to have
affected the GBC result.

Given the statistical independence of these 3 factors correlat-
ing with gF, we built a single statistical model to see how much gF
variance the 3 factors could explain together. We included only
the 88 participants overlapping between the GBC and Burgess et
al. (2011) analyses. Note that the whole brain gray matter volume
correlation with gF was higher in these 88 individuals than the full
set of 94 individuals (r � 0.33, p � 0.0017). A linear model
including LPFC GBC, LPFC lure activity, and whole brain gray
matter volume was able to explain 26% of the variance in gF (r �

0.51, p � 0.00001). All 3 factors significantly contributed to the
model (p � 0.001 for LPFC GBC, p � 0.016 for LPFC activity,
and p � 0.0009 for gray matter volume).

Discussion
We hypothesized, based on previous work demonstrating that
control network regions have high GBC (Cole et al., 2010b), that
the global connectivity of some control network regions would
predict intelligence. Supporting this hypothesis, we found that
left LPFC GBC predicted gF across individuals. Surprisingly, this
effect was relatively specific to the left LPFC as only this region
was statistically significant in a whole brain search. Further, this
effect was statistically larger than in a variety of other regions and
remained significant even after removing variance from other
control network regions.

Methodological implications
Given that GBC is computed by averaging connection strengths,
it is possible for a region’s GBC to simply reflect a small set of
strong connections (the region’s “community”) (Power et al.,
2011). However, the present results demonstrate that a region’s

Figure 5. Testing for global or system-specific origins of the LPFC GBC– gF effect. A, We separated LPFC connectivity into 3 systems. The cognitive control network was identified using a

meta-analysis of cognitive control studies, sensory-motor regions were identified based on probabilistic cytoarchitecture, and the default mode network was identified using a meta-analysis of

studies investigating that network. B, LPFC group average connectivity generally had high positive strength for cognitive control regions, low positive and negative strength (combined using

absolute values) for sensory-motor regions, and high negative strength for default mode regions. We used the conjunctions between the masks in A along with these group strength ranges to isolate

the 3 systems. Individual differences in mean LPFC connectivity with each of the 3 systems correlated with gF, suggesting a truly global origin of the LPFC GBC– gF effect.
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GBC can reflect connectivity throughout the brain and that it is
possible for behavior connectivity relationships to be well char-
acterized in terms of global connectivity.

Though weak connections have typically been ignored in rs-
fcMRI studies (Fox et al., 2005), the present results suggest (based
on an independent behavioral measure) that these connections
may be functionally relevant (Fig. 4). Rather than reflecting direct
connectivity, these weaker connections might reflect distant in-
direct connections (Krienen and Buckner, 2009) between LPFC
and other brain regions. Importantly, this suggests GBC with
rs-fcMRI may be a particularly comprehensive way to assess
functionally relevant connections, since this approach can detect
connections even if functional relevance might be the result of
long, multisynaptic chains. Alternatively, this weak connectivity
could be the result of mixtures of strong positive and strong
negative connectivity at a finer spatial grain than our multi-
millimeter voxels. Supporting this possibility, LPFC anatomical
connections are known to project (directly, and indirectly via
thalamus) to both excitatory and inhibitory neurons in macaque
monkey sensory-motor cortices (Barbas and Zikopoulos, 2007).

We used whole brain signal regression as an rs-fcMRI prepro-
cessing step. Recently, it has been argued that this might artifac-
tually introduce rs-fcMRI negative connectivity by shifting the
connectivity distribution (Murphy et al., 2009). However, others
have demonstrated that connectivity is more functionally specific
when using whole brain signal regression (Fox et al., 2009). The
apparent utility of whole brain signal regression in conjunction
with the remaining controversy regarding negative connectivity
led us to use this method but to focus on positive connections in
the main GBC– gF analysis (Fig. 2).

Importantly, however, our use of individual difference corre-
lations with an independent behavioral measure could provide
evidence regarding the functional relevance of negative connec-
tivity with rs-fcMRI. We found that even negative LPFC connec-
tivity correlated with gF. Critically, we would expect a positive
correlation between negative connectivity and gF if negative rest-
ing state connectivity was actually positive connectivity shifted
into negative connectivity ranges. In contrast to this prediction,
the LPFC GBC– gF correlation involving negatively signed con-
nections was also negative. In other words, when negative con-
nections between LPFC and other brain regions were greater in
sign (i.e., stronger), fluid intelligence was higher. This effect is the
mirrored pattern of that observed with positive connections.
Such an effect provides new evidence, based on an independent
behavioral measure, that the strength of negative connections is
not purely a measurement error but may also be functionally
relevant.

Limitations
Previous research suggests that there are only minor differences
between functional connectivity estimates from extended rest pe-
riods and concatenated short rest periods as used here (Fair et al.,
2007). It remains possible, however, that some gF-correlating
connectivity was altered by individuals’ (task-related or task-
independent) mental states, especially given that task blocks were
interspersed in time with the resting periods (Waites et al., 2005;
Barnes et al., 2009). This possibility appears unlikely given that
the GBC– gF correlation was not significant for a variety of re-
gions with gF-correlating activity, and LPFC GBC did not corre-
late with LPFC activity (r � �0.05). Even if mental state did affect
the GBC– gF correlations, however, this would not invalidate the
present results. Rather, it would shift our interpretation, suggest-
ing that high gF individuals transiently increase their LPFC GBC

more than low gF individuals. This would continue to suggest a
key role for LPFC global connectivity in cognitive control but
would indicate a different mechanism by which these brain-
based and psychological factors are related. Future research into
this possibility will be important for determining whether global
connectivity—a region’s integration with the entire brain—is rel-
atively static or is changeable on a moment-to-moment basis.

Most previous studies that have investigated the relationship
between connectivity and intelligence focused on specific con-
nections (Jung and Haier, 2007; Song et al., 2008), local/within-
network integration (Li et al., 2009; Song et al., 2009), or overall
global connectivity (Li et al., 2009; Zalesky et al., 2011) rather
than region-specific global connectivity. To our knowledge, only
2 studies have investigated the relationship between region-
specific global connectivity and intelligence: Langer et al. (2011)
and van den Heuvel et al. (2009b; see their voxelwise secondary
analysis). Our study represents a significant methodological and
conceptual advance over this previous work. In contrast to
Langer et al. (2011), we used fMRI to improve spatial localization
relative to electroencephalography (Sharon et al., 2007), which is
especially important for properly characterizing connectivity
(Schoffelen and Gross, 2009). In contrast to van den Heuvel et al.
(2009b), we used a large sample size (N � 94), corrected for
multiple comparisons, and defined ROIs based on independent
and theoretically meaningful functional criteria, thus avoiding
circularity concerns (Kriegeskorte et al., 2009). It has been argued
that using functionally defined regions is superior to using ana-
tomically or arbitrarily defined regions for connectivity analysis
since inadvertently including 2 regions in a single node can be
detrimental to characterizing a graph (Smith et al., 2010; Wig et
al., 2011). Further, the use of large sample sizes is especially crit-
ical when identifying individual differences effects, as recent
methodological analyses have made it clear that studies with
smaller sample sizes are likely subject to effect size inflation
(Yarkoni, 2009), whereas studies with larger samples are likely to
result in effect sizes closer to the true population effect (Braver et
al., 2010). The results here demonstrate that these advances en-
abled significantly greater specificity in the functional inference
drawn from the data; that is, the 3-way relationship between
cognitive control, global connectivity, and fluid intelligence was
only observed within a single brain region, the left LPFC.

Note that though our observed effect size (r � 0.32) was mod-
erate, we would not expect any single fundamental factor to pre-
dict intelligence much more than this, given the many factors that
likely contribute to intelligence. Supporting this conclusion, we
found that 2 previously reported factors contributing to gF have
equivalent effect sizes, brain size (r � 0.26) and LPFC activity
(r � 0.23). Further, it may be that few brain behavior relation-
ships are actually greater than this effect size, given that much of
the existing literature reflects inflated effect sizes due to small
sample sizes (see above) and/or double-dipping (Vul et al., 2009),
which we avoided.

The present results might seem to suggest left LPFC is the “seat
of intelligence.” Critically, however, our analyses suggest LPFC is
mechanistically unique rather than unique in its support of intel-
ligence. Indeed, analyses with the same dataset indicate activity in
a variety of regions support intelligence (Burgess et al., 2011;
Preusse, 2011), while other studies show brainwide connectivity
(van den Heuvel et al., 2009b), specific connections (Jung and
Haier, 2007), and dopamine signaling (Schlagenhauf et al., 2012)
also support intelligence. Our results provide novel evidence that
left LPFC supports cognitive control and intelligence via a unique
mechanism involving extensive global connectivity. Thus, it was
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critical that we rigorously tested for region-specific global con-
nectivity rather than overall global connectivity (as most studies
looking for intelligence correlations with global connectivity
have done). One important possibility for future research to in-
vestigate is whether other control network regions are able to
exert control over a variety of task-relevant regions via their in-
fluence on LPFC. Further, it will be important to assess whether
other measures of connectivity might be more sensitive/accurate
with respect to either global hub properties or unique mecha-
nisms present in other cognitive control regions.

Theoretical implications and future directions for research
In contrast to studies emphasizing whole-brain network contri-
butions to intelligence or studies emphasizing the contributions
of specific regions (or networks) to intelligence, we found that a
specific region’s global connectivity predicts intelligence. This
suggests a reconceptualization of LPFC as a functional hub that
uses its brainwide influence to facilitate cognitive control and
intelligence. Importantly, the observation of other cognitive con-
trol regions with high GBC but significantly lower GBC– gF cor-
relations suggests that LPFC likely has some additional properties
beyond extensive connectivity that underlie the observed GBC–gF
correlation.

One possibility, based on Miller and Cohen’s (2001) model of
LPFC function, is that LPFC acts as a “flexible” hub, able to
flexibly shift its connectivity with a variety of task-relevant re-
gions according to task demands. Within this conceptualization,
resting state fMRI GBC likely reflects the number of possible
routes that LPFC can use during tasks to reconfigure connectiv-
ity. Thus, individuals with greater LPFC GBC would likely be able
to dynamically reconfigure to a more specific connectivity pat-
tern for any of a wide variety of possible task demands, increasing
the specificity of LPFC’s control over activity in those regions.
This increased capacity for control across individuals would
likely be reflected in the LPFC GBC– gF correlation. Further re-
search is necessary to verify other predictions of the flexible hub
hypothesis, such as task-dependent shifts in connectivity [but see
Rowe et al. (2005), Cole et al. (2010a), Stelzel et al. (2011), and
Deserno et al. (2012)].

We found that the LPFC GBC– gF correlation was present
across a wide variety of strength ranges and spatial locations.
Supporting the flexible hub account, many of these connections
were with sensory and motor regions. This may reflect a particu-
lar architecture for a flexible neural system underlying human
intelligence: Engineers have characterized flexible, adaptive con-
trol in terms of the ability for a system to access (both monitor
and influence) multiple sources of task-relevant information
(Åström and Murray, 2008). Additionally, although the func-
tional importance of negative connectivity is not well understood
(Murphy et al., 2009), the predictive relationship between gF and
LPFC connections with the default mode network is consistent
with a key role for inhibition of task-irrelevant processing in
cognitive control and fluid intelligence (Anticevic et al., 2010).
Further investigation into the functional relevance of cognitive
control hubs, including the possibility that LPFC benefits from
high global connectivity due to its unique flexibility, will be es-
sential for understanding the neural architecture underlying hu-
man intelligence.
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