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Abstract

Reliable estimation of visual saliency allows appropriate

processing of images without prior knowledge of their con-

tents, and thus remains an important step in many computer

vision tasks including image segmentation, object recog-

nition, and adaptive compression. We propose a regional

contrast based saliency extraction algorithm, which simul-

taneously evaluates global contrast differences and spatial

coherence. The proposed algorithm is simple, efficient, and

yields full resolution saliency maps. Our algorithm con-

sistently outperformed existing saliency detection methods,

yielding higher precision and better recall rates, when eval-

uated using one of the largest publicly available data sets.

We also demonstrate how the extracted saliency map can

be used to create high quality segmentation masks for sub-

sequent image processing.

1. Introduction

Humans routinely and effortlessly judge the importance

of image regions, and focus attention on important parts.

Computationally detecting such salient image regions re-

mains a significant goal, as it allows preferential allocation

of computational resources in subsequent image analysis

and synthesis. Extracted saliency maps are widely used

in many computer vision applications including object-

of-interest image segmentation [13, 18], object recogni-

tion [25], adaptive compression of images [6], content-

aware image editing [28, 33, 30, 9], and image retrieval [4].

Saliency originates from visual uniqueness, unpre-

dictability, rarity, or surprise, and is often attributed to vari-

ations in image attributes like color, gradient, edges, and

boundaries. Visual saliency, being closely related to how we

perceive and process visual stimuli, is investigated by mul-

tiple disciplines including cognitive psychology [26, 29],

neurobiology [8, 22], and computer vision [17, 2]. Theo-

ries of human attention hypothesize that the human vision

system only processes parts of an image in detail, while

leaving others nearly unprocessed. Early work by Treis-

man and Gelade [27], Koch and Ullman [19], and subse-

Figure 1. Given input images (top), a global contrast analysis is

used to compute high resolution saliency maps (middle), which

can be used to produce masks (bottom) around regions of interest.

quent attention theories proposed by Itti, Wolfe and others,

suggest two stages of visual attention: fast, pre-attentive,

bottom-up, data driven saliency extraction; and slower, task

dependent, top-down, goal driven saliency extraction.

We focus on bottom-up data driven saliency detection

using image contrast. It is widely believed that human cor-

tical cells may be hard wired to preferentially respond to

high contrast stimulus in their receptive fields [23]. We pro-

pose contrast analysis for extracting high-resolution, full-

field saliency maps based on the following observations:

• A global contrast based method, which separates a

large-scale object from its surroundings, is preferred

over local contrast based methods producing high

saliency values at or near object edges.

• Global considerations enable assignment of compara-

ble saliency values to similar image regions, and can

uniformly highlight entire objects.

• Saliency of a region depends mainly on its contrast to

the nearby regions, while contrasts to distant regions

are less significant.

• Saliency maps should be fast and easy to generate to

allow processing of large image collections, and facil-

itate efficient image classification and retrieval.

We propose a histogram-based contrast method (HC) to

measure saliency. HC-maps assign pixel-wise saliency val-
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(a) original (b) IT[17] (c) MZ[21] (d) GB[14] (e) SR[15] (f) AC[1] (g) CA[12] (h) FT[2] (i) LC[32] (j) HC (k) RC

Figure 2. Saliency maps computed by different state-of-the-art methods (b-i), and with our proposed HC (j) and RC methods (k). Most

results highlight edges, or are of low resolution. See also Figure 6 (and our project webpage).

ues based simply on color separation from all other image

pixels to produce full resolution saliency maps. We use

a histogram-based approach for efficient processing, while

employing a smoothing procedure to control quantization

artifacts. Note that our algorithm is targeted towards natu-

ral scenes, and maybe suboptimal for extracting saliency of

highly textured scenes (see Figure 12).

As an improvement over HC-maps, we incorporate spa-

tial relations to produce region-based contrast (RC) maps

where we first segment the input image into regions, and

then assign saliency values to them. The saliency value of a

region is now calculated using a global contrast score, mea-

sured by the region’s contrast and spatial distances to other

regions in the image.

We have extensively evaluated our methods on publicly

available benchmark data sets, and compared our methods

with (eight) state-of-the-art saliency methods [17, 21, 32,

14, 15, 1, 2, 12] as well as with manually produced ground

truth annotations1. The experiments show significant im-

provements over previous methods both in precision and re-

call rates. Overall, compared with HC-maps, RC-maps pro-

duce better precision and recall rates, but at the cost of in-

creased computations. Encouragingly, we observe that the

saliency cuts extracted using our saliency maps are, in most

cases, comparable to manual annotations. We also present

application of the extracted saliency maps to segmentation,

context aware resizing, and non-photo realistic rendering.

2. Related Work

We focus on relevant literature targeting pre-attentive

bottom-up saliency detection, which may be biologically

motivated, or purely computational, or involve both as-

pects. Such methods utilize low-level processing to deter-

mine the contrast of image regions to their surroundings, us-

ing feature attributes such as intensity, color, and edges [2].

We broadly classify the algorithms into local and global

schemes.

Local contrast based methods investigate the rarity of

image regions with respect to (small) local neighbor-

hoods. Based on the highly influential biologically inspired

early representation model introduced by Koch and Ull-

man [19], Itti et al. [17] define image saliency using central-

surrounded differences across multi-scale image features.

1Results for 1000 images and prototype software are available at the

project webpage: http://cg.cs.tsinghua.edu.cn/people/%7Ecmm/saliency/

Ma and Zhang [21] propose an alternative local contrast

analysis for generating saliency maps, which is then ex-

tended using a fuzzy growth model. Harel et al. [14] nor-

malize the feature maps of Itti et al., to highlight conspic-

uous parts and permit combination with other importance

maps. Liu et al. [20] find multi-scale contrast by linearly

combining contrast in a Gaussian image pyramid. More

recently, Goferman et al. [12] simultaneously model local

low-level clues, global considerations, visual organization

rules, and high-level features to highlight salient objects

along with their contexts. Such methods using local contrast

tend to produce higher saliency values near edges instead of

uniformly highlighting salient objects (see Figure 2).

Global contrast based methods evaluate saliency of an

image region using its contrast with respect to the entire

image. Zhai and Shah [32] define pixel-level saliency based

on a pixel’s contrast to all other pixels. However, for effi-

ciency they use only luminance information, thus ignoring

distinctiveness clues in other channels. Achanta et al. [2]

propose a frequency tuned method that directly defines pixel

saliency using a pixel’s color difference from the average

image color. The elegant approach, however, only consid-

ers first order average color, which can be insufficient to

analyze complex variations common in natural images. In

Figures 6 and 7, we show qualitative and quantitative weak-

nesses of such approaches. Furthermore, these methods ig-

nore spatial relationships across image parts, which can be

critical for reliable and coherent saliency detection (see Sec-

tion 5).

3. Histogram Based Contrast

Based on the observation from biological vision that the

vision system is sensitive to contrast in visual signal, we

propose a histogram-based contrast (HC) method to define

saliency values for image pixels using color statistics of the

input image. Specifically, the saliency of a pixel is defined

using its color contrast to all other pixels in the image, i.e.,

the saliency value of a pixel Ik in image I is defined as,

S(Ik) =
∑

∀Ii∈I

D(Ik, Ii), (1)

where D(Ik, Ii) is the color distance metric between pixels

Ik and Ii in the L∗a∗b∗space (see also [32]). Equation 1

can be expanded by pixel order to have the following form,

S(Ik) = D(Ik, I1) + D(Ik, I2) + · · · + D(Ik, IN ), (2)
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Figure 3. Given an input image (left), we compute its color his-

togram (middle). Corresponding histogram bin colors are shown

in the lower bar. The quantized image (right) uses only 43 his-

togram bin colors and still retains sufficient visual quality for

saliency detection.

where N is the number of pixels in image I . It is easy to see

that pixels with the same color value have the same saliency

value under this definition, since the measure is oblivious to

spatial relations. Hence, rearranging Equation 2 such that

the terms with the same color value cj are grouped together,

we get saliency value for each color as,

S(Ik) = S(cl) =
n∑

j=1

fjD(cl, cj), (3)

where cl is the color value of pixel Ik, n is the number of

distinct pixel colors, and fj is the probability of pixel color

cj in image I . Note that in order to prevent salient region

color statistics from being corrupted by similar colors from

other regions, one can develop a similar scheme using vary-

ing window masks. However, given the strict efficiency re-

quirement, we take the simple global approach.

Histogram based speed up. Naively evaluating the

saliency value for each image pixel using Equation 1 takes

O(N2) time, which is computationally too expensive even

for medium sized images. The equivalent representation in

Equation 3, however, takes O(N) + O(n2) time, implying

that computational efficiency can be improved to O(N) if

O(n2) ≤ O(N). Thus, the key to speed up is to reduce

the number of pixel colors in the image. However, the true-

color space contains 2563 possible colors, which is typically

larger than the number of image pixels.

Zhai and Shah [32] reduce the number of colors, n, by

only using luminance. In this way, n2 = 2562 (typically

2562 ≪ N ). However, their method has the disadvantage

that the distinctiveness of color information is ignored. In

this work, we use the full color space instead of luminance

only. To reduce the number of colors needed to consider, we

first quantize each color channel to have 12 different values,

which reduces the number of colors to 123 = 1728. Con-

sidering that color in a natural image typically covers only

a small portion of the full color space, we further reduce

the number of colors by ignoring less frequently occurring

colors. By choosing more frequently occurring colors and

ensuring these colors cover the colors of more than 95% of

the image pixels, we typically are left with around n = 85
colors (see Section 5 for experimental details). The colors

Figure 4. Saliency of each color, normalized to the range [0, 1], be-

fore (left) and after (right) color space smoothing. Corresponding

saliency maps are shown in the respective insets.

of the remaining pixels, which comprise fewer than 5% of

the image pixels, are replaced by the closest colors in the

histogram. A typical example of such quantization is shown

in Figure 3. Note that again due to efficiency requirements

we select the simple histogram based quantization instead

of optimizing for an image specific color palette.

Color space smoothing. Although we can efficiently

compute color contrast by building a compact color his-

togram using color quantization and choosing more fre-

quent colors, the quantization itself may introduce artifacts.

Some similar colors may be quantized to different values.

In order to reduce noisy saliency results caused by such

randomness, we use a smoothing procedure to refine the

saliency value for each color. We replace the saliency value

of each color by the weighted average of the saliency val-

ues of similar colors (measured by L∗a∗b∗distance). This

is actually a smoothing process in the color feature space.

Typically we choose m = n/4 nearest colors to refine the

saliency value of color c by,

S′(c) =
1

(m − 1)T

m∑

i=1

(T − D(c, ci))S(ci) (4)

where T =
∑m

i=1
D(c, ci) is the sum of distances between

color c and its m nearest neighbors ci, and the normaliza-

tion factor comes from
∑m

i=1
(T − D(c, ci)) = (m − 1)T.

Note that we use a linearly-varying smoothing weight (T −
D(c, ci)) to assign larger weights to colors closer to c in the

color feature space. In our experiments, we found that such

linearly-varying weights are better than Gaussian weights,

which fall off too sharply. Figure 4 shows the typical ef-

fect of color space smoothing with the corresponding his-

tograms sorted by decreasing saliency values. Note that

similar histogram bins are closer to each other after such

smoothing, indicating that similar colors have higher likeli-

hood of being assigned similar saliency values, thus reduc-

ing quantization artifacts (see Figure 7).

Implementation details. To quantize the color space into

123 different colors, we uniformly divide each color chan-

nel into 12 different levels. While the quantization of colors

is performed in the RGB color space, we measure color dif-

ferences in the L∗a∗b∗color space because of its perceptual

accuracy. However, we do not perform quantization directly

411



Figure 5. Image regions generated by Felzenszwalb and Hutten-

locher’s segmentation method [11] (left), region contrast based

segmentation with (left-middle) and without (right-middle) dis-

tance weighting. Incorporating the spatial context, we get a high

quality saliency cut (right) comparable to human labeled ground

truth.

in the L∗a∗b∗color space since not all colors in the range

L∗ ∈ [0, 100], and a∗, b∗ ∈ [−127, 127] necessarily cor-

respond to real colors. Experimentally we observed worse

quantization artifacts using direct L∗a∗b∗color space quan-

tization. Best results were obtained by quantization in the

RGB space while measuring distance in the L∗a∗b∗color

space, as opposed to performing both quantization and dis-

tance calculation in a single color space, either RGB or

L∗a∗b∗.

4. Region Based Contrast

Humans pay more attention to those image regions that

contrast strongly with their surroundings [10]. Besides con-

trast, spatial relationships play an important role in human

attention. High contrast to its surrounding regions is usually

stronger evidence for saliency of a region than high contrast

to far-away regions. Since directly introducing spatial rela-

tionships when computing pixel-level contrast is computa-

tionally expensive, we introduce a contrast analysis method,

region contrast (RC), so as to integrate spatial relationships

into region-level contrast computation. In RC, we first seg-

ment the input image into regions, then compute color con-

trast at the region level, and define the saliency for each

region as the weighted sum of the region’s contrasts to all

other regions in the image. The weights are set according

to the spatial distances with farther regions being assigned

smaller weights.

Region contrast by sparse histogram comparison. We

first segment the input image into regions using a graph-

based image segmentation method [11]. Then we build the

color histogram for each region as in Section 3. For a region

rk, we compute its saliency value by measuring its color

contrast to all other regions in the image,

S(rk) =
∑

rk 6=ri

w(ri)Dr(rk, ri), (5)

where w(ri) is the weight of region ri and Dr(·, ·) is the

color distance metric between the two regions. Here we

use the number of pixels in ri as w(ri) to emphasize color

contrast to bigger regions. The color distance between two

regions r1 and r2 is defined as,

Dr(r1, r2) =

n1∑

i=1

n2∑

j=1

f(c1,i)f(c2,j)D(c1,i, c2,j) (6)

where f(ck,i) is the probability of the i-th color ck,i among

all nk colors in the k-th region rk, k = {1, 2}. Note that

we use the probability of a color in the probability density

function (i.e. normalized color histogram) of the region as

the weight for this color to emphasize more the color differ-

ences between dominant colors.

Storing and calculating the regular matrix format his-

togram for each region is inefficient since each region typ-

ically contains a small number of colors in the color his-

togram of the whole image. Instead, we use a sparse his-

togram representation for efficient storage and computation.

Spatially weighted region contrast. We further incorpo-

rate spatial information by introducing a spatial weighting

term in Equation 5 to increase the effects of closer regions

and decrease the effects of farther regions. Specifically, for

any region rk, the spatially weighted region contrast based

saliency is defined as:

S(rk) =
∑

rk 6=ri

exp(−Ds(rk, ri)/σ2

s)w(ri)Dr(rk, ri) (7)

where Ds(rk, ri) is the spatial distance between regions rk

and ri, and σs controls the strength of spatial weighting.

Larger values of σs reduce the effect of spatial weighting so

that contrast to farther regions would contribute more to the

saliency of the current region. The spatial distance between

two regions is defined as the Euclidean distance between

their centroids. In our implementation, we use σ2

s = 0.4
with pixel coordinates normalized to [0, 1].

5. Experimental Comparisons

We have evaluated the results of our approach on the

publicly available database provided by Achanta et al. [2].

To the best of our knowledge, the database is the largest

of its kind, and has ground truth in the form of accu-

rate human-marked labels for salient regions. We com-

pared the proposed global contrast based methods with 8
state-of-the-art saliency detection methods. Following [2],

we selected these methods according to: number of cita-

tions (IT[17] and SR[15]), recency (GB[14], SR, AC[1],

FT[2] and CA[12]), variety (IT is biologically-motivated,

MZ[21] is purely computational, GB is hybrid, SR works

in the frequency domain, AC and FT output full resolution

saliency maps), and being related to our approach (LC[32]).
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(a) original (b) LC (c) CA (d) FT (e) HC-maps (f) RC-maps (g) RCC

Figure 6. Visual comparison of saliency maps. (a) original images, saliency maps produced using (b) Zhai and Shah [32], (c) Goferman

et al. [12], (d) Achanta et al. [2], (e) our HC and (f) RC methods, and (g) RC-based saliency cut results. Our methods generate uniformly

highlighted salient regions. (See our project webpage for all results on the full benchmark dataset.)

We used our methods and the others to compute saliency

maps for all the 1000 images in the database. Table 1 com-

pares the average time taken by each method. Our algo-

rithms, HC and RC, are implemented in C++. For the other

methods namely IT, GB, SR, FT and CA, we used the au-

thors’ implementations, while for LC, we implemented the

algorithm in C++ since we could not find the authors’ im-

plementation. For typical natural images, our HC method

needs O(N) computation time and is sufficiently efficient

for real-time applications. In contrast, our RC variant is

slower as it requires image segmentation [11], but produces

superior quality saliency maps.

In order to comprehensively evaluate the accuracy of our

methods for salient object segmentation, we performed two

experiments using different objective comparison measures.

In the first experiment, to segment salient objects and cal-

culate precision and recall curves [15], we binarized the

saliency map using every possible fixed threshold, similar

to the fixed thresholding experiment in [2]. In the second

experiment, we segment salient objects by iteratively ap-

plying GrabCut [24] initialized using thresholded saliency

maps, as we will describe later. We also use the obtained

saliency maps as importance weighting for content aware

image resizing and non-photo realistic rendering.

Segmentation by fixed thresholding. The simplest way

to get a binary segmentation of salient objects is to thresh-

old the saliency map with a threshold Tf ∈ [0, 255]. To reli-

ably compare how well various saliency detection methods

highlight salient regions in images, we vary the threshold

Tf from 0 to 255. Figure 7 shows the resulting precision

vs. recall curves. We also present the benefits of adding

the color space smoothing and spatial weighting schemes,

along with objective comparison with other saliency extrac-

tion methods. Visual comparison of saliency maps obtained

by the various methods can be seen in Figures 2 and 6.

The precision and recall curves clearly show that our

methods outperform the other eight methods. The extrem-

ities of the precision vs. recall curve are interesting: At

maximum recall where Tf = 0, all pixels are retained as

positives, i.e., considered to be foreground, so all the meth-

ods have the same precision and recall values; precision 0.2
and recall 1.0 at this point indicate that, on average, there

are 20% image pixels belonging to the ground truth salient

regions. At the other end, the minimum recall values of our

methods are higher than those of the other methods, because

the saliency maps computed by our methods are smoother

and contain more pixels with the saliency value 255.

Saliency cut. We now consider the use of the com-

puted saliency map to assist in salient object segmentation.
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Method IT[17] MZ[21] GB[14] SR[15] FT[2] AC[1] CA[12] LC[32] HC RC

Time(s) 0.611 0.070 1.614 0.064 0.016 0.109 53.1 0.018 0.019 0.253

Code Matlab C++ Matlab Matlab C++ C++ Matlab C++ C++ C++

Table 1. Average time taken to compute a saliency map for images in the database by Achanta et al. [2]. Most images in the database (see

our project webpage) have resolution 400× 300. Algorithms were tested using a Dual Core 2.6 GHz machine with 2GB RAM.
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Figure 7. Precision-recall curves for naive thresholding of saliency maps using 1000 publicly available benchmark images. (Left, mid-

dle) Different options of our method compared with GB[14], MZ[21], FT[2], IT[17], SR[15], AC[1], CA[12], and LC[32]. NHC denotes

a naive version of our HC method with color space smoothing disabled, and NRC denotes our RC method with spatial related weighting

disabled. (Right) Precision-recall bars for our saliency cut algorithm using different saliency maps as initialization. Our method RC shows

high precision, recall, and Fβ values over the 1000-image database. (Please refer to our project webpage for the respective result images.)

Saliency maps have been previously employed for unsuper-

vised object segmentation: Ma and Zhang [21] find rect-

angular salient regions by fuzzy region growing on their

saliency maps. Ko and Nam [18] select salient regions us-

ing a support vector machine trained on image segment fea-

tures, and then cluster these regions to extract salient ob-

jects. Han et al. [13] model color, texture, and edge features

in a Markov random field framework to grow salient ob-

ject regions from seed values in the saliency maps. More

recently, Achanta et al. [2] average saliency values within

image segments produced by mean-shift segmentation, and

then find salient objects by identifying image segments that

have average saliency above a threshold that is set to be

twice the mean saliency value of the entire image.

In our approach, we iteratively apply GrabCut [24] to

refine the segmentation result initially obtained by thresh-

olding the saliency map (see Figure 8). Instead of manually

selecting a rectangular region to initialize the process, as in

Figure 8. Saliency Cut. (Left to right) Initial segmentation, trimap

after first iteration, trimap after second iteration, final segmenta-

tion, and manually labeled ground truth. In the segmented images,

blue is foreground, gray is background, while in the trimaps, fore-

ground is red, background is green, and unknown regions are left

unchanged.

classical GrabCut, we automatically initialize GrabCut us-

ing a segmentation obtained by binarizing the saliency map

using a fixed threshold; the threshold is chosen empirically

to be the threshold that gives 95% recall rate in our fixed

thresholding experiments.

Once initialized, we iteratively run GrabCut to improve

the saliency cut result. (At most 4 iterations are run in our

experiments.) After each iteration, we use dilation and ero-

sion operations on the current segmentation result to get a

new trimap for the next GrabCut iteration. As shown in

Figure 8, the region outside the dilated region is set to back-

ground, the region inside the eroded region is set to fore-

ground, and the remaining areas are set to unknown in the

trimap. GrabCut, which by itself is an iterative process us-

ing Gaussian mixture models and graph cut, helps to re-

fine salient object regions at each step. Regions closer to

an initial salient object region are more likely to be part of

that salient object than far-away regions. Thus, our new

initialization enables GrabCut to include nearby salient re-

gions, and exclude non-salient regions according to color

feature dissimilarity. In the implementation, we set a nar-

row image-border region (15 pixels wide) to be always in

the background in order to avoid slow convergence in the

border region.

Figure 8 shows two examples of our saliency cut algo-

rithm. In the flag example, unwanted regions are correctly

excluded during GrabCut iterations. In the flower exam-

ple, our saliency cut method successfully expanded the ini-

tial salient regions (obtained directly from the saliency map)

and converged to an accurate segmentation result.
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(a) original (b) LC[32] (c) CA[12] (d) FT[2] (e) HC-maps (f) RC-maps (g) ground truth

Figure 9. Saliency cut using different saliency maps for initialization. The respective saliency maps are shown in Figure 6.

original CA RC original CA RC

Figure 10. Comparison of content aware image resizing [33] re-

sults using CA[12]saliency maps and our RC saliency maps.

To objectively evaluate our new saliency cut method us-

ing our RC-map as initialization, we compare our results

with results obtained by coupling iterative GrabCut with ini-

tializations from saliency maps computed by other methods.

For consistency, we binarize each such saliency map using

a threshold that gives 95% recall rate in the corresponding

fixed thresholding experiment (see Figure 7). A visual com-

parison of the results is shown in Figure 9. Average preci-

sion, recall, and F -Measure are compared over the entire

ground-truth database [2], with the F -Measure defined as:

Fβ =
(1 + β2)Precision × Recall

β2 × Precision + Recall
. (8)

We use β2 = 0.3 as in Achanta et al. [2] to weigh preci-

sion more than recall. As can be seen from the comparison

(see Figures 7-right and 9), saliency cut using our RC and

HC saliency maps significantly outperform other methods.

Compared with the state-of-the-art results on this database

by Achanta et al. (precision = 75%, recall = 83%), we

achieved better accuracy (precision = 90%, recall = 90%).

(Our demo software is available at our project webpage.)

Content aware image resizing. In image re-targeting,

saliency maps are usually used to specify relative impor-

tance across image parts (see also [3]). We experimented

with using our saliency maps in the image resizing method

proposed by Zhang et al. [33]2, which distributes distortion

energy to relatively non-salient regions of an image while

preserving both global and local image features. Figure 10

compares the resizing results using our RC-maps with the

results using CA[12] saliency maps. Our RC saliency maps

help produce better resizing results since the saliency val-

ues in salient object regions are piece-wise smooth, which is

important for energy based resizing methods. CA saliency

maps, having higher saliency values at object boundaries,

are less suitable for applications like resizing, which require

entire salient objects to be uniformly highlighted.
2The authors’ original implementation is publicly available.

Figure 11. (Middle, right) FT[2] and RC saliency maps are used

respectively for stylized rendering [16] of an input image (left).

Our method produces a better saliency map, see insets, resulting

in improved preservation of details, e.g., around the head and the

fence regions.

Figure 12. Challenging examples for our histogram based meth-

ods involve non-salient regions with similar colors as the salient

parts (top), or an image with textured background (bottom). (Left

to right) Input image, HC-map, HC saliency cut, RC-map, RC

saliency cut.

Non-photorealistic rendering. Artists often abstract im-

ages and highlight meaningful parts of an image while

masking out unimportant regions [31]. Inspired by this ob-

servation, a number of non-photorealistic rendering (NPR)

efforts use saliency maps to generate interesting effects [7].

We experimentally compared our work with the most re-

lated, state-of-the-art saliency detection algorithm [2] in the

context of a recent NPR technique [16] (see Figure 11). Our

RC-maps give better saliency masks, which help the NPR

method to better preserve details in important image parts

and region boundaries, while smoothing out others.

6. Conclusions and Future Work

We presented global contrast based saliency computa-

tion methods, namely Histogram based Contrast (HC) and

spatial information-enhanced Region based Contrast (RC).

While the HC method is fast and generates results with fine

details, the RC method generates spatially coherent high

quality saliency maps at the cost of reduced computational

efficiency. We evaluated our methods on the largest pub-

licly available data set and compared our scheme with eight

other state-of-the-art methods. Experiments indicate the

415



proposed schemes to be superior in terms of both precision

and recall, while still being simple and efficient.

In the future, we plan to investigate efficient algorithms

that incorporate spatial relationships in saliency computa-

tion while preserving fine details in the resulting saliency

maps. Also, it is desirable to develop saliency detection

algorithms to handle cluttered and textured background,

which could introduce artifacts to our global histogram

based approach. Finally, it may be beneficial to incorporate

high level factors like human faces, symmetry into saliency

maps. We believe the proposed saliency maps can be used

for efficient object detection [13], reliable image classifica-

tion, robust image scene analysis [5], leading to improved

image retrieval [4].
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