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A new nonlinear spectral conjugate descent method for solving unconstrained optimization
problems is proposed on the basis of the CD method and the spectral conjugate gradient method.

For any line search, the new method satisfies the sufficient descent condition gT
k
dk < −‖gk‖

2.
Moreover, we prove that the newmethod is globally convergent under the strongWolfe line search.
The numerical results show that the newmethod is more effective for the given test problems from
the CUTE test problem library (Bongartz et al., 1995) in contrast to the famous CD method, FR
method, and PRP method.

1. Introduction

Unconstrained optimization problems have extensive applications, for example, in petroleum
exploration, aerospace, transportation, and other domains. However, the amount of
necessary calculation also grows exponentially with the increasing scale of the problem.
Therefore, it is required to develop new methods to solve the large-scale unconstrained
optimization problems. The primary objective of this paper is to study the global convergence
properties and practical computational performance of a new nonlinear spectral conjugate
gradient method for unconstrained optimization problemswithout restarts, andwith suitable
conditions.

Consider the following unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f : Rn → R is a continuously differentiable function and its gradient is available.
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Due to need less computer memory especially, conjugate gradient method is very
appealing for solving (1.1) when the number of variable n is large. This method can be
described by the following

xk+1 = xk + αkdk, (1.2)

dk =

{

−gk, for k = 1;

−gk + βkdk−1, for k ≥ 2,
(1.3)

where xk is the current iteration, αk > 0 is the step-size which is determined by some line
search, dk is the search direction, gk is the gradient of f(x) at the point xk, and βk is a
scalar which determines the different conjugate gradient methods [1, 2]. There aremanywell-
known formulas for βk, such as the Fletcher-Reeves (FR) [3], Polak-Ribiere-Polyak (PRP) [4],
Hestenes-Stiefel (HS) [5], and conjugate-descent (CD) [6]. The conjugate gradient method
is a powerful line search method for solving optimization problems, and it remains very
popular for engineers andmathematicians who are interested in solving large-scale problems.
This method can avoid, like steepest descent method, the computation and storage of some
matrices associated with the Hessian of objective functions.

The original CD method proposed by Fletcher [6], in which βk is defined by the
following

βCDk = −

∥

∥gk
∥

∥

2

dT
k−1

gk−1
, (1.4)

where ‖ · ‖ denotes the Euclidean norm of vectors. An important property of the CD method
is that the method will produce a descent direction under the strong Wolfe line search. In the
strong Wolfe line search, the step-size αk is required to satisfy the following:

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk,

∣

∣

∣g(xk + αkdk)
Tdk

∣

∣

∣ ≤ −σgT
k dk,

(1.5)

where 0 < δ < σ < 1. Some good results about the CD method have also been reported in
recent years [7–10].

Another popular method to solving problem (1.1) is the spectral gradient method,
which was developed originally by Barzilai and Borwein [11] in 1988. Raydan [12]
further introduced the spectral gradient method for potentially large-scale unconstrained
optimization problems. The main feature of this method is that only gradient directions are
used at each line search whereas a nonmonotone strategy guarantees global convergence.
What is more, this method outperforms sophisticated conjugate gradient method in many
problems. Birgin and Martı́nez [13] proposed three kinds of spectral conjugate gradient
methods. The direction dk is given by the following way

dk = −θkgk + βksk−1, (1.6)
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where the parameter βk is computed by the following

β1k =

(

θkyk−1 − sk−1
)T
gk

sT
k−1

yk−1

, β2k =
θky

T
k−1

gk

αk−1θk−1g
T
k−1

gk−1
,

β3k =
θkg

T
k
gk

αk−1θk−1g
T
k−1

gk−1
,

(1.7)

respectively, and θk is taken to be the spectral gradient and computed by the following

θk =
sT
k−1

sk−1

sT
k−1

yk−1

, (1.8)

where yk−1 = gk − gk−1, sk−1 = xk − xk−1. The numerical results show that these methods are
very effective. Unfortunately, they cannot guarantee to generate descent directions. Based on
the FR conjugate gradient method, Zhang et al. [14] take modification to the FR method such
that the direction generated is always a descent direction. The dk is defined by the following

dk =

{

−gk, for k = 1;

−θkgk + βFR
k
dk−1, for k ≥ 2,

(1.9)

where βFR
k

is specified in [3], and θk = dT
k−1

yk−1/||gk−1||
2. They prove that this method can

guarantee to generate descent directions and is globally convergent.
In this paper, motivated by success of the spectral gradient method, we propose a new

spectral conjugate gradient method by combining the CD method and the spectral gradient
method. The direction is given by the following way:

dk =

{

−gk, for k = 1;

−θkgk + βkdk−1, for k ≥ 2,
(1.10)

where βk is specified by the following

βk =

{

βCD
k

, if gT
k
dk−1 ≤ 0,

0, else,
(1.11)

θk = 1 −
gT
k
dk−1

gT
k−1

dk−1

. (1.12)

Under some mild conditions, we give the global convergence of the new spectral conjugate
gradient method with the strong Wolfe line search.

This paper is organized as follows. In Section 2, we propose our algorithm, and global
convergence analysis is provided under suitable conditions. Preliminary numerical results
are presented in Section 3.
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2. Global Convergence Analysis

In order to establish the global convergence of ourmethod, we need the following assumption
on objective function, which have often been used in the literatures to analyze the global
convergence of nonlinear conjugate gradient method and the spectral conjugate gradient
method with inexact line searches.

Assumption 2.1. (i) The level set Ω={x | f(x) ≤ f(x1)} is bounded, where x1 is the starting
point.

(ii) In some neighborhoodN ofΩ, the objective function is continuously differentiable,
and its gradient is Lipschitz continuous, that is, there exists a constant L > 0 such that

∥

∥g(x) − g
(

y
)
∥

∥ ≤ L
∥

∥x − y
∥

∥, for ∀x, y ∈ N. (2.1)

Now we present the new spectral conjugate gradient method as follows.

Algorithm 2.2 (SCD method). Step 1. Data: x1 ∈ Rn, ε ≥ 0. Set d1 = −g1, if ‖g1‖ ≤ ε, then stop.
Step 2. Compute αk by some line search.
Step 3. Let xk+1 = xk + αkdk, gk+1 = g(xk+1), if ‖gk+1‖ ≤ ε, then stop.
Step 4. Compute βk+1 by (1.11), and generate dk+1 by (1.10).
Step 5. Set k = k + 1, go to Step 2.

The following theorem shows that Algorithm 2.2 possesses the sufficient descent
condition for any line search.

Theorem 2.3. Let the sequences {gk} and {dk} be generated by Algorithm 2.2, and let the step-size
αk be determined by any line search, then

gT
k dk < −

∥

∥gk
∥

∥

2
. (2.2)

Proof. We can prove the conclusion by induction. From ||g1||
2 = −gT

1 d1, the conclusion (2.2)
holds for k = 1. Now we assume that the conclusion is true for k − 1 and gk /= 0, that is,
gT
k−1

dk−1 < 0. In the following, we need to prove that the conclusion holds for k.

If gT
k
dk−1 ≤ 0, then βk = βCD

k
. From (1.4), (1.10), and (1.12), we have

gT
k dk = −

(

1 −
gT
k
dk−1

gT
k−1

dk−1

)

·
∥

∥gk
∥

∥

2
−

∥

∥gk
∥

∥

2

gT
k−1

dk−1

· gT
k dk−1 = −

∥

∥gk
∥

∥

2
. (2.3)

If gT
k
dk−1 > 0, then βk = 0. From (1.10), (1.12), and our assumption: gT

k−1
dk−1 < 0, we have

gT
k dk = −

(

1 −
gT
k
dk−1

gT
k−1

dk−1

)

·
∥

∥gk
∥

∥

2
= −

∥

∥gk
∥

∥

2
+

gT
k
dk−1

gT
k−1

dk−1

·
∥

∥gk
∥

∥

2
< −

∥

∥gk
∥

∥

2
. (2.4)

From (2.3) and (2.4), we know that the conclusion (2.2) holds for k.
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Remark 2.4. From (1.4) and (2.3), if gT
k
dk−1 ≤ 0, then we have

βCDk =
gT
k
dk

gT
k−1

dk−1

. (2.5)

Remark 2.5. From (1.11), (2.2), and (2.5), we have βk ≤ gT
k
dk/g

T
k−1

dk−1 for ∀k ≥ 1.

The conclusion of the following lemma, often called the Zoutendijk condition, is used
to prove the global convergence of nonlinear conjugate gradient methods. It was originally
given by Zoutendijk [15].

Lemma 2.6. Suppose that Assumption 2.1 holds. Consider any method (1.1)-(1.2), where dk satisfies
gT
k
dk < 0 for k ∈ N+ and αk satisfies the Wolfe line search. Then

∑

k≥1

(

gT
k
dk
)2

||dk||
2

< +∞. (2.6)

Introduction. The strong Wolfe line search is a special case of the Wolfe line search,
so the Lemma 2.6 also holds under the strong Wolfe line search. What is more, we can also
use the same method to prove the Zoutendijk condition holding for the spectral conjugate
gradient method.

The following theorem establishes the global convergence of the new spectral
conjugate gradient method with the strong Wolfe line search for the general functions.

Theorem 2.7. Suppose that (Assumption 2.1) holds. Let the sequences {gk} and {dk} be generated
by Algorithm 2.2, and let the step-size αk be determined by the strong Wolfe line search (1.5). Then

lim
k→+∞

inf
∥

∥gk
∥

∥ = 0. (2.7)

Proof. According to the given conditions, Lemma 2.6 all hold. In the following, we will obtain
the conclusion (2.7) by contradiction. Suppose by contradiction that there exists a positive
constant r > 0 such that

∥

∥gk
∥

∥ ≥ r, (2.8)

holds for ∀k ≥ 1. On the one hand, rewriting (1.11) as follows

dk + θkgk = βkdk−1, (2.9)

and squaring both side of it, we get

‖dk‖
2 = β2k‖dk−1‖

2 − 2θkg
T
k dk − θ2

k

∥

∥gk
∥

∥

2
. (2.10)
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Table 1: The numerical results of SCD method, CD method, FR method, and PRP method.

Problem Dim SCD method CD method FR method PRP method

Extended Freudenstein and Roth 1000 815/0.58 947/1.20 499/0.56 13/0.02

3000 1450/3.26 1677/6.35 406/1.50 1542/6.10

5000 1447/6.22 1700/10.92 537/3.18 1566/10.26

Extended trigonometric 5000 32/0.03 817/1.13 342/0.25 73/0.07

3000 31/0.08 119/0.22 284/0.56 87/0.19

5000 36/0.16 310/0.97 346/1.10 38/0.15

Extended Beale 1000 24/0.00 44/0.00 24/0.00 13/0.02

3000 33/0.02 17/0.02 24/0.00 13/0.00

5000 30/0.03 43/0.05 20/0.04 19/0.02

Extended penalty 1000 65/0.05 29/0.01 16/0.00 96/0.11

3000 10/0.00 16/0.00 15/0.00 14/0.00

5000 11/0.02 22/0.05 35/0.13 12/0.01

Perturbed quadratic 1000 334/0.05 1847/0.26 1088/0.17 407/0.08

3000 679/0.32 1736/0.74 3191/1.27 705/0.31

5000 922/0.68 1494/1.02 2830/1.84 1081/0.80

Raydan 1 1000 331/0.12 680/0.25 799/0.25 450/0.18

3000 601/0.77 1542/1.57 1044/0.94 760/0.94

5000 1229/2.35 1857/3.04 4192/6.34 1058/2.16

Raydan 2 1000 4/0.00 4/0.00 4/0.00 4/0.00

3000 4/0.01 4/0.02 4/0.02 4/0.00

5000 4/0.02 4/0.01 4/0.01 4/0.02

Hager 1000 434/4.23 699/2.53 1450/16.01 183/1.48

3000 1404/47.23 1591/33.20 2193/74.72 1019/34.11

5000 3163/171.28 946/39.49 4332/234.59 2583/142.81

Generalized tridiagonal 1 1000 26/0.00 72/0.07 87/0.05 43/0.04

3000 55/0.14 59/0.22 167/0.62 62/0.20

5000 89/0.56 61/0.31 38/0.09 34/0.11

Extended tridiagonal 1 1000 34/0.00 15/0.00 86/0.02 14/0.00

3000 10/0.02 67/0.03 22/0.01 12/0.00

5000 9/0.02 79/0.06 16/0.01 16/0.00

Extended three expo terms 1000 14/0.01 97/1.71 23/0.08 8/0.00

3000 15/0.05 86/4.27 49/1.72 8/0.03

5000 64/4.88 123/11.48 247/23.04 8/0.06

Generalized tridiagonal 2 1000 67/0.01 370/0.07 234/0.05 58/0.00

3000 47/0.04 770/0.40 281/0.18 54/0.04

5000 62/0.04 261/0.22 139/0.11 60/0.06

Diagonal 4 1000 7/0.02 4/0.00 6/0.00 4/0.00

3000 4/0.00 4/0.00 6/0.02 4/0.00

5000 9/0.00 6/0.02 7/0.00 4/0.00

Diagonal 5 1000 4/0.01 4/0.00 4/0.01 4/0.02

3000 4/0.02 4/0.04 4/0.01 4/0.01

5000 4/0.03 4/0.05 4/0.04 4/0.03

Extended Himmelblau 1000 10/0.00 17/0.00 17/0.00 23/0.02

3000 11/0.00 131/0.06 19/0.01 24/0.02

5000 12/0.02 103/0.07 20/0.01 24/0.02
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Table 1: Continued.

Problem Dim SCD method CD method FR method PRP method

Extended PSC1 1000 12/0.02 40/0.28 17/0.04 11/0.00

3000 11/0.03 51/1.18 91/2.36 18/0.22

5000 9/0.03 67/2.75 39/1.28 11/0.03

Extended block-diagonal BD1 1000 67/0.02 71/0.02 32/0.02 26/0.01

3000 69/0.06 24/0.03 29/0.03 31/0.07

5000 71/0.13 23/0.05 35/0.06 28/0.05

Extended Maratos 1000 981/0.14 227/0.03 617/0.08 59/0.00

3000 781/0.35 313/0.12 672/0.27 55/0.02

5000 715/0.55 262/0.17 690/0.45 49/0.05

Extended Cliff 1000 41/0.01 48/0.03 154/0.58 27/0.01

3000 51/0.09 303/2.22 206/4.23 39/0.06

5000 17/0.04 61/1.08 113/2.89 20/0.06

Quadratic diagonal perturbed 1000 234/0.03 456/0.08 499/0.08 400/0.06

3000 978/0.45 2999/1.57 702/0.36 817/0.46

5000 807/0.64 1157/1.03 1092/0.91 1023/0.89

Extended Wood 1000 661/0.13 68/0.02 96/0.02 107/0.03

3000 491/0.25 113/0.06 60/0.03 150/0.08

5000 514/0.42 93/0.08 67/0.05 206/0.17

Quadratic QF1 1000 344/0.05 1120/0.14 949/0.11 363/0.05

3000 607/0.25 1677/0.64 3576/1.29 731/0.28

5000 1038/0.72 1606/1.04 2467/1.47 1076/0.72

Extended quadratic enalty QP2 1000 521/0.36 98/0.06 2476/1.17 28/0.01

3000 813/1.65 191/0.30 251/0.37 40/0.10

5000 561/1.89 156/0.39 242/0.61 35/0.14

Quadratic QF2 1000 1188/0.19 1469/0.20 1679/0.21 433/0.06

3000 2949/1.34 1867/0.75 2952/1.13 929/0.40

5000 4161/3.25 2709/1.78 3840/2.39 1236/0.08

Extended EP1 1000 2/V0 2/0.00 2/0.00 2/0.02

3000 3/0.00 3/0.00 3/0.00 3/0.00

5000 3/0.00 3/0.00 3/0.00 3/0.00

Extended tridiagonal 2 1000 41/0.00 137/0.10 78/0.01 36/0.00

3000 179/0.74 865/1.86 236/0.99 109/0.44

5000 125/0.76 381/2.75 335/2.47 202/1.58

ARWHEAD 1000 5/0.00 58/0.03 44/0.01 5/0.02

3000 7/0.00 81/0.11 31/0.03 15/0.04

5000 13/0.03 50/0.18 54/0.16 31/0.14

NONDIA 1000 16/0.00 47/0.02 50/0.00 10/0.01

3000 16/0.00 10/0.02 11/0.00 12/0.00

5000 11/0.02 11/0.01 14/0.00 13/0.01

DQDRTIC 1000 33/0.00 30/0.00 7/0.00 16/0.00

3000 41/0.02 10/0.00 7/0.00 11/0.00

5000 35/0.02 34/0.02 7/0.00 9/0.02

DIXMAANA 1000 7/0.02 11/0.03 12/0.03 9/0.03

3000 8/0.02 11/0.01 13/0.02 9/0.01

5000 9/0.02 11/0.02 13/0.01 9/0.01
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Table 1: Continued.

Problem Dim SCD method CD method FR method PRP method

DIXMAANB 1000 11/0.00 12/0.00 12/0.02 12/0.02

3000 12/0.00 12/0.02 12/0.01 12/0.02

5000 12/0.03 12/0.01 12/0.03 13/0.03

DIXMAANC 1000 14/0.00 14/0.00 16/0.00 15/0.00

3000 15/0.02 17/0.02 17/0.01 16/0.01

5000 15/0.01 16/0.01 17/0.03 16/0.04

DIXMAANE 1000 273/0.09 1021/0.31 579/0.16 246/0.07

3000 521/0.80 756/0.70 712/0.55 484/0.47

5000 680/1.44 1066/1.50 1013/1.28 666/1.09

Partial perturbed quadratic PPQ1 1000 371/3.19 707/5.31 664/3.86 450/4.08

3000 370/30.39 543/45.59 802/49.48 517/44.19

5000 287/65.78 523/113.13 787/133.55 276/63.87

Broyden tridiagonal 1000 41/0.00 346/0.08 2167/0.34 45/0.02

3000 88/0.05 429/0.20 497/0.22 86/0.05

5000 86/0.08 734/0.58 344/0.26 81/0.06

Almost perturbed quadratic 1000 410/0.06 809/0.11 990/0.13 384/0.06

3000 708/0.31 1436/0.57 2255/0.85 768/0.31

5000 848/0.61 1770/1.19 2400/1.49 967/0.66

Tridiagonal perturbed quadratic 1000 351/0.06 1028/0.15 1265/0.19 358/0.06

3000 663/0.33 1330/0.59 2074/0.87 549/0.25

5000 987/0.95 1667/1.22 3034/2.11 1260/0.97

EDENSCH 1000 162/0.28 261/0.25 128/0.21 93/0.16

3000 45/0.11 178/0.89 145/0.72 47/0.14

5000 65/0.42 318/1.32 164/1.38 54/0.25

VARDIM 1000 16/0.02 16/0.01 16/0.02 16/0.00

3000 19/0.01 19/0.02 19/0.01 19/0.01

5000 14/0.01 14/0.02 14/0.01 14/0.01

Diagonal 6 1000 4/0.00 4/0.00 4/0.02 4/0.01

3000 4/0.02 4/0.02 4/0.01 4/0.02

5000 4/0.02 4/0.00 4/0.02 4/0.01

DIXMAANF 1000 279/0.16 587/0.23 338/0.12 239/0.11

3000 673/1.44 869/0.83 599/0.46 348/0.36

5000 742/2.45 692/1.01 2588/6.44 584/0.95

DIXMAANG 1000 293/0.12 673/0.29 368/0.11 257/0.08

3000 989/1.48 1449/1.35 739/0.62 448/0.47

5000 507/0.97 1671/3.17 997/1.39 742/1.29

DIXMAANH 1000 272/0.11 632/1.41 1010/0.28 247/0.10

3000 733/1.43 653/0.64 513/0.41 1771/29.08

5000 898/3.06 604/1.44 1296/1.74 588/2.11

DIXMAANI 1000 231/0.08 876/0.25 426/0.11 268/0.09

3000 439/0.50 1261/1.06 628/0.50 542/0.52

5000 468/0.81 1071/1.59 943/1.22 654/1.05

DIXMAANJ 1000 266/0.13 488/0.14 362/0.11 281/0.09

3000 768/1.56 720/3.23 516/0.41 385/0.39

5000 471/0.83 1250/2.15 1589/2.08 547/1.64
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Table 1: Continued.

Problem Dim SCD method CD method FR method PRP method

DIXMAANK 1000 260/0.11 1036/0.36 500/0.14 278/0.11

3000 420/0.47 1103/1.13 774/0.62 428/0.42

5000 620/1.59 1386/2.66 784/1.06 620/1.04

ENGVAL1 1000 32/0.00 242/0.14 268/0.38 53/0.03

3000 80/0.28 366/1.06 950/4.67 229/1.05

5000 340/2.56 267/1.64 325/2.37 181/1.30

ENSCHNB 1000 10/0.00 9/0.00 9/0.00 9/0.00

3000 8/0.01 9/0.01 9/0.02 9/0.01

5000 9/0.02 9/0.02 9/0.02 8/0.00

ENSCHNF 1000 27/0.00 45/0.00 1206/1.51 23/0.00

3000 28/0.02 85/0.06 487/1.33 26/0.04

5000 27/0.04 76/0.07 158/0.23 24/0.03

From the above equation and Remark 2.5, we have

‖dk‖
2 ≤

(

gT
k
dk

gT
k−1

dk−1

)2

· ‖dk−1‖
2 − 2θkg

T
k dk − θ2

k

∥

∥gk
∥

∥

2
. (2.11)

Dividing the above inequality by (gT
k
dk)

2, we have

‖dk‖
2

(

gT
k
dk

)2
≤

||dk−1||
2

(

gT
k−1

dk−1

)2
−

2θk

gT
k
dk

− θ2
k ·

∥

∥gk
∥

∥

2

(

gT
k
dk

)2

=
||dk−1||

2

(

gT
k−1

dk−1

)2
−

(

θk ·

∥

∥gk
∥

∥

gT
k
dk

+
1

∥

∥gk
∥

∥

)2

+
1

∥

∥gk
∥

∥

2

≤
||dk−1||

2

(

gT
k−1

dk−1

)2
+

1
∥

∥gk
∥

∥

2
.

(2.12)

Using (2.12) recursively and noting that ‖d1‖
2 = −gT

1 d1 = ‖g1‖
2, we get

‖dk‖
2

(

gT
k
dk

)2
≤

k
∑

i=1

1
∥

∥gi
∥

∥

2
. (2.13)

Then we get from (2.13) and (2.8) that

(

gT
k
dk

)2

‖dk‖
2

≥
r2

k
, (2.14)
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Figure 1: Performance profiles of the given methods with respect to CPU time.

which indicates

∑

k≥1

(

gT
k
dk

)2

‖dk‖
2

= +∞. (2.15)

This contradicts the Zoutendijk condition (2.6). Therefore the conclusion (2.7) holds.

3. Numerical Experiments

In this section, we report some numerical results. Under the strong Wolfe line search, we
compare the performances of the CPU time and the iteration number of the SCDmethodwith
that of CD, FR, and PRP methods on the given test problems which come from the CUTE test
problem library [16]. The parameters in the strong Wolfe line search are met the following
requirements: δ = 0.01 and σ = 0.1. We stop the iteration if the iteration number exceeds 5000
or the inequity ‖gk‖ ≤ 10−6 is satisfied. All codes were written in FORTRAN 90 and run on a
PC with 2.0GHz CPU processor and 512MB memory and Windows XP operation system.

In Table 1, the column “Problem” represents the problem’s name. “Dim” denotes the
problem’s dimension. The detailed numerical results are listed in the form NI/CPU, where
NI and CPU denote the iteration number and the CPU time in seconds, respectively. From
Table 1, some CPU times are zero. This is because that the CPU times are retained two digits
in our numerical experiments. In order to compare these methods in the performance of the
CPU time, we use a constant χ = min {CPUi(method) | i ∈ S} instead of CPUi0(method)
when CPU time of the i0 problem is zero, where S denotes the set of the test problems whose
CPU time is not zero.
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Figure 2: Performance profiles of the given methods with respect to the number of iterations.

In this paper, we adopt the performance profiles by Dolan and Moré [17] to compare
the SCD method with CD, FR, and PRP methods. Figure 1 shows the performance profiles
with respect to CPU time means that for each method, we plot the fraction P of problems
for which the method is within a factor τ of the best time. The left side of the figure gives
the percentage of the test problems for which a method is the fastest; the right side gives the
percentage of the test problems that are successfully solved by each of the methods. The top
curve is the method that solved the most problems in a time that was within a factor τ of the
best time. Using the same method, we also test on the iteration number, see Figure 2.

From Figures 1–2, the SCD method performs a little worse than the famous PRP
method in the performances of the CPU time and the iteration number. However, the
SCD method has absolute potential compared with the famous CD and FR methods in the
performances of the CPU time and the iteration number. So the efficiency of the SCD method
is encouraging.
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