
Global Convergence of the Basic QR Algorithm
on Hessenberg Matrices*

By Beresford Parlett

0. Introduction. The QR algorithm was developed by Francis (1960) to find the
eigenvalues (or roots) of real or complex matrices. We shall consider it here in the
context of exact arithmetic.

Sufficient conditions for convergence, listed in order of increasing generality
have been given by Francis [1], Kublanovskaja [3], Parlett [4], and Wilkinson [8].
It seems that necessary and sufficient conditions would be very complicated for a
general matrix.

One of the many merits of Francis' paper was the observation that the Hessen-
berg form ion = 0, i > j + 1) is invariant under the QR transformation and the
algorithm is usually applied to Hessenberg matrices which are unreduced, that is
Oij 9a 0, i = j + 1. The properties of this form combine with those of the algo-
rithm in such a way that a complete convergence theory can be stated quite simply.
The aim is to produce a sequence of unitarily similar matrices whose limit is upper
triangular.

Elementwise convergence to a particular triangular matrix is not necessary for
determining eigenvalues; block triangular form with 1X1 and 2X2 blocks on
the diagonal is sufficient.

Definition. A sequence {77(s) = (A(*yO> s = 1, 2, • • • } of n X n Hessenberg
matrices is said to "converge" whenever hf+xjh^'/j-x —* 0, for each,/ = 2, ■ • -, n — 1.

Theorem 1. The basic QR algorithm applied to an unreduced Hessenberg matrix
77 produces a sequence of Hessenberg matrices which "converges" if, and only if,
among each set of H's eigenvalues with equal magnitude, there are at most two of even
and two of odd multiplicity.

This is a special case, tailored to computer programs, of the main theorem. In
general let coi > o>2 > • • • > o>r > 0 be the distinct nonzero magnitudes occurring
among the roots of H. Of the roots of magnitude o>¿ let pQ) have even multiplicities

mx   ^ m2  à • ■ • è m¿<o > m¿(o+i = 0 ,

and let qQ) have odd multiplicities,

nO ^ n2  è • • • è n¡a) > n¿(¿)+i = 0 .

Main Theorem. Let i7(s) be the sth term of the basic QR sequence derived from an
unreduced Hessenberg matrix H. If zero is a root of multiplicity m, then the last m
rows of H(') are null for s > m and they and the last m columns are discarded from
H(,). As s —-> oo, Hw becomes block triangular, iH('/), and the spectrum of H*?/ con-
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verges to the set of eigenvalues with magnitude w,-. Further H Y itself tends to block
triangular form. There emerge mjl — mj+i unreduced diagonal blocks of order j
[j = 1, • • -, pii)], the union of whose spectra converges to the eigenvalues of even
multiplicity. Similarly, there emerge Ujl — nj+i unreduced diagonal blocks of order
j [j = 1, • ■ -, qii)], the union of whose spectra converges to the eigenvalues of odd
multiplicity.

Theorem 1 follows because if any pii) or qii) exceeds 2, then there will be a
principal submatrix of order greater than 2, none of whose subdiagonal elements
converge to zero. Conversely, if pii) ^ 2, qii) ^ 2 for all i then 77(s) reduces to
block triangular form with 1X1 and 2X2 diagonal blocks.

The position of the unreduced blocks depends on how the m,', nk{ interlace
when ordered monotonically.

The rate of convergence is very slow (like s-1)- This is not a disaster, because
in Francis' program the basic algorithm is used only until at least one of the roots
of the bottom 2X2 submatrix "settles down" to 1 binary bit (that is, to within
50%). Then the extended algorithm is applied to hasten convergence. Theorem 1
ensures that when the hypotheses hold, this test will be passed. Of more importance,
the test will not be passed only if there are too many roots of equal modulus. This
modulus is easily calculated from the determinant of the unreduced submatrix.
The only problem is to decide early when the test will not be passed.

Note that convergence is certain when the roots are real.
A preliminary report of these results appeared as Necessary and Sufficient Con-

ditions for Convergence of the QR Algorithm on Hessenberg Matrices, Proc. of the
ACM National Meeting, Los Angeles, Calif., 1966, Thompson, Washington, D. C,
1966, pp. 13-16.

1. The Algorithm, its Essential Convergence and Known Properties. We shall
assume that the reader has some familiarity with the QR algorithm of J. G. F.
Francis. For expositions of it, see [1], [5], or [9, Chapter 8]. Here we shall give a
brief outline of the algorithm and those convergence properties which are already
known.

From any given square matrix Ax the algorithm generates a sequence \AS} of
matrices unitarily congruent to A i. Under certain mild conditions, it is known that,
as s —> co, As tends to a form which is essentially triangular; namely a block tri-
angular matrix whose diagonal blocks have orders one or two. When Ax, and hence
each As, is real, complex eigenvalues will be found from real two-rowed principal
submatrices.

The Factorization. Any square matrix A can be expressed as the product, QR,
of a unitary matrix Q and a right triangular matrix R. When A is real, Q can be
taken orthogonal. It is customary to normalize the factorization by requiring that
the diagonal of R have nonnegative elements. When A is nonsingular Q and R are
unique and will be denoted by QiA)   (or QA) and RiA)   (or RA) respectively.

Without the normalization, Q and R are unique only to within a diagonal
unitary factor. Thus for any diagonal unitary matrix D we have A = ÍQaD)ÍDRa)
= QR.

The Basic Algorithm. Given a nonsingular matrix Ax, the algorithm is given by
the rule
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(1.1) fors = 1, 2, •• factor A, into Q,R,,

form RsQs and call it A,+1
It follows from (1.1) that

,   9v As+x = P*AxPt, iM* is the conjugate transpose of M) ,

P. = QiAxl = Qx---Q,,
and so the convergence of As as s —-> œ depends on the unitary factor of Ax".

In practice we are interested in a less stringent property which Wilkinson calls
essential convergence, namely the convergence of As to within a diagonal unitary
congruence. Thus if there is a sequence of diagonal unitary matrices Ds such that
PSDS converges then we say that Ps, A s, and the algorithm all converge essentially.
We shall extend the usage further in the real case by allowing Ds to be orthogonal
and block diagonal with blocks of order 1 and 2.

Convergence. The fundamental result given in [1], [4], [8] is that when the eigen-
values of Ax have distinct moduli, then \AS} converges essentially to upper tri-
angular form. Wilkinson showed that, under a certain assumption, if there is only
one eigenvalue (of any multiplicity) of a given modulus, then the algorithm con-
verges essentially.

Hessenberg Form. It is a useful fact that any matrix may be put into upper
Hessenberg form H Qiij = 0, i > j + 1) by a finite sequence of similarity trans-
formations [9, Chapter 5]. Indeed this form can be achieved in several ways (in-
cluding orthogonal congruences). It was one of the many merits of Francis' article
that it recognised the invariance of the Hessenberg form under the QR transforma-
tion.

The importance of the reduction of the given matrix to this form is not just
the arithmetic economy in transforming Hessenberg matrices as against full ones,
but the clever devices which Francis was able to use in calculating the transformed
matrix. Moreover, we shall show in later sections that the QR algorithm has strong
convergence properties when applied to Hessenberg matrices.

Definition. An n X n Hessenberg matrix 77 is unreduced if /i¿,»-i 9e 0,
i = 2, • • -, n.

We recall that a matrix is called derogatory if the eigenspace of any eigenvalue
has dimension greater than 1.

Lemma. An unreduced Hessenberg matrix is not derogatory.
Proof. The minor of the (1, n) element of 77 — zl is nonzero and independent

of z. Thus the null space of 77 — zl has dimension ;S 1 for all z. Q.E.D.
Is it possible that the basic algorithm might fail to resolve an unreduced Hessen-

berg submatrix of order greater than 2? The answer is yes, but we shall see that
this can only happen in cases which are easily remedied by the extension of the
basic algorithm introduced by Francis.

2. A Particular Case. The permutation matrix

/0       0        l\
P = I 1        0       0 I

Vo     i     o/
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has spectrum ¡1, «, co2j, co = exp (2«/3). Like any unitary matrix it is invariant
under the QR transformation. Moreover it can be shown that no unreduced 3X3
Hessenberg matrix with 3 equimodular simple eigenvalues yields a convergent QR
sequence. Consequently it is surprising to discover that the spectrum alone does
not determine convergence but that the multiplicities of the eigenvalues do play a
role.

The proof of the main theorem is somewhat involved and in this section we
analyze a 4 X 4 example which exhibits the crucial aspects of the general case.
Consider any real unreduced 4X4 Hessenberg matrix 77i with the same spectrum
as P above. The Jordan form of 77i = Y~lJY is given by

J =

1
1
0

L0

0
1
0
0

0
0
u
0

0
0
0
co2J

Since 77s+i = P*HxP„   P, = QiHx*),
unitary factor of Hx'. By Theorem 2, Section 3
F = LyUy with

= 1,2, • • • we must investigate the
F has a triangular decomposition

Ly =

1
Z»
hx

-'■h /.,

I
?43 U

See [9, Chapter 4] for a discussion of triangular (7 ¿7) factorization, L unit lower,
U upper triangular.

Thus

Hx' Y-iJ'Y = Y~lJ»LYUY ■

Following an idea of Wilkinson, we wish to manipulate the factors of Hx' into the
form (unitary) (upper triangular). Although J'Ly is unit lower triangular it is
unbounded in s and this obstructs the analysis. However, a suitable permutation
of the rows yields a matrix with an LÎ7 decomposition with L bounded as s —* =o.
Our problem is to find a permutation matrix B, independent of s, such that BJ'L y
= LJJs with Ls bounded as s —> °o.

On writing out J'Ly in extenso, we see that row 2 should become row 1 of
BJ'Ly- On checking all 2-rowed minors in the first two columns, we find that row
1 should become row 4. Let B = (e4, ex, e2, e3) where 7 = (ci, e2, e3, e/). Then

BJ'Ly

s + 111
w'hi
2.,

CO    ¿41

1
0>"l32
2,j

CO     ¿42

0
Cd
2«,

CO     ¿43

0
0

w
0

= L.U.,

1 0 0
where the order of magnitude of the elements of L, is given below :

1
-i 0

1
1

0
0
1

0
0
0
1_
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The (3, 2) element is

,(Lijs + hx) — Lx\     (UY .
Vs2(s + hx) — hx/      \hi/

In a previous paper [7] we showed that li2, l32 and their analogues in the general
case cannot vanish because 77i is an unreduced Hessenberg matrix.

The major problem in the general case is to determine the matrix B.
The surprising point here is that the two rows corresponding to the double

eigenvalue 1 have been separated as far as possible.
Returning to the factorization of 77is we find

77is = Y^B-\BJ*Ly)Uy
= Y-'B-'L.U.Uy
= QRLsUsUy,       defining QR = Y~lB~l
= ÍQQsYRsUsUy) ,        defining QSRS = RLS.

Since R is nonsingular upper triangular the strictly lower triangular part of Qs is
determined by Ls (this is proved in Lemma 3.1). Thus as s —* «

0 0 o"
x x 0
x x 0   ' ,
0 0 1.

where the x represent elements which do not converge. By the uniqueness of the
QR factorization P, = Q(77is) = QQS, essentially and 77s+i = Q*Q*HxQQs.

Thus, as s —» =o,
Q.778+iQ.*-*(Ä5F)(F-1JF)(F-lB->Ä-1) = RiBJB-^R-Y

and
0 0 1~
CO 0 0
0 co'2 0   '
0 0 1_

3. The General Case. Any square matrix A = (a,-,-) (with real or complex ele-
ments) may be taken into upper Hessenberg form H by a similarity transforma-
tion (see Section 2). Some subdiagonal elements Äy+i,y may be zero. By partitioning
with respect to these elements we may write 77 as a block upper triangular matrix
(77,0 where each Ha is a Hessenberg matrix with nonzero subdiagonal elements.
We will call such Hessenberg matrices unreduced. Typically, we might have

(Hxx       Hxi       Hx3\
0 7722       7723 J.
0 0 7733/

The QR transformation acts independently on each 77,¿. Indeed if Hu = QiRi
and H = QR then Q is the direct sum of the Qi and the diagonal blocks of RQ are
just RiQi. Thus it suffices to restrict attention to unreduced Hessenberg matrices.

Q,
i
0
0

L0

BJB'1 =

1
0
0

LO
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Suppose such a matrix is singular. We showed in an earlier paper [6] that each
single QR transformation annihilates the bottom row. The algorithm then proceeds
on the submatrix obtained by omitting the last row and column. After a finite
number of steps all the zero eigenvalues will have been found. Thus it remains to
consider nonsingular unreduced Hessenberg matrices.

Nonsingular unreduced Hessenberg matrices. Let 77 be such a matrix. Then 77 is
nonderogatory and so has only one Jordan block to each eigenvalue.

Subsequent analysis will be simplified if we write the Jordan submatrix cor-
responding to a nonlinear elementary divisor in the slightly unconventional form,
illustrated below for a cubic divisor:

X 0        0\      fe       0       0\
|X| X °) - ( !        e        OJco,    |X| = co > 0.
0 |X|        X/       V)        1        6/

Geometrically, this amounts to a nonstandard selection of principal vectors to span
the cyclic subspace associated with X. There is no loss of generality. Let

(3.3) COl   >   C02   >    •  •   •    >   C0r   >   0

be the distinct magnitudes occurring among the roots of 77. We shall write the
Jordan canonical form of 77 as JW ( = WJ) where

(3.4) W   =   OJxIx®    ■  ■  ■   ©C0r7r , J   =   Jxx®    ■  ■  ■    ®Jrr ,

and each Ji{ is a direct sum of the Jordan blocks of the arguments of the eigen-
values of magnitude co,-.

We wish to study the sequence {Hs, s = 1, 2, • • •} obtained by applying the
basic QR algorithm to 77i = 77. This depends (see Section 1) on the unitary factor
P„ of 77s and we shall follow Wilkinson's idea of exhibiting P, explicitly by manipu-
lating the canonical factorization of Tí8. We begin with an essential result proved
in [7].

Theorem 2. Let the Jordan decomposition of H be H = Y~l JWY. Then Y per-
mits a triangular decomposition without interchanges, Y = LyUy, Ly unit lower
triangular, U y upper triangular.

Our modification of the Jordan form does not invalidate this result since it corre-
sponds to a premultiplication of F by a positive diagonal matrix. So

77s = XJ'W'Y ,       where X = Y~\
(3.5) = XJ'W'LyUy ,       by Theorem 2 ,

= XMW'Uy ,       where M(s) = J'WLYW-'.

One of the principal results of the next three sections is that there is a fixed permu-
tation matrix B such that as s —■> °° BM permits a triangular decomposition
BM = LSUs with Ls bounded. Then, for large enough s,

,„ „,    77* = XB*L.U.W'Uy ,(3.6) _ _
= QRL.U.W'Uy, where QR is the Q - R factorization of XB* ,

(3.7) = (QQ,) (R.U.W'Uy), where QSR, is the Q - R factorization of RL,.

This is a unitary-triangular factorization of 77s. Hence, (see Section 1) P„ = QQ,
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essentially, and, to within a similarity by a diagonal unitary matrix,

(3.8) 77s+i = P.*HP. = Qs*iQ*HQ)Qs = Qs*iRBJWB^R-1)Qs.
The usefulness of this analysis depends on the following observation. Let the

matrices Ls = (L»0 and Qs = iQu) of (3.6) and (3.7) be partitioned conformably
in any manner which makes the diagonal blocks square.

Lemma 3.1. As s —> », Qif —> 0 /or all i, j (i t¿ j) if, and owZy if, Lu —> 0
for alii, j  ii > j).

Proof. Ls is unit lower triangular and bounded ass-» <x>. Hence Ls-1 has the
same properties. Moreover, since Qs is unitary and QSRS = RL„, it follows that
det 7is = det R = |det X\ > 0. For any unitarily invariant norm, we then have

llfi.ll = WQM á PU IIL.II ú y\\R\\,
\\Rrl\\ = \\RYQs*\\ S HL.-'ll p-1)! g 7p-1!!,

where 7 is a bound on ||L,|| and ||L,-l||. Now partitioning all the matrices con-
formably with Ls and Qs we have, for i > j,

Qii = ¿_i 2^, RivLfu>\R,   ),j,       T/jj = ¿_, ¿_, (Ä   )iitQitrRrj ■
ft^-i    v%i ft^i    v^j

Hence, as s —» 00,

Q,¿ —> 0 ,    all t, j   (« > j) if, and only if, L„ -» 0 ,    all i, j   (t > j) .
Equating corresponding blocks in the equations Q„*QS = Q8QS* = 7 yields the
lemma.    □

To see that Qs, and therefore Ls, determines the block triangular structure to
which 778+i tends we consider (3.8) and use the corollary of Lemma 6.2, which
states that

BJWB*1 is upper triangular .

These results will be proved in the following sections. Thus the matrix
iRBJWB~lR~l) of (3.8) is upper triangular and the block triangular form of 77„ is
completely determined by Qs, and therefore by Ls, as s —> 00. The purpose of this
section was to show that it suffices to consider the matrix Ls, the bounded lower
triangular factor of some permutation of J'W'LyW~'.

4. Eigenvalues of Different Magnitudes. The matrix Mis) = J'{W'LYW-S) is
a product of two lower triangular matrices and, in general, Js is unbounded as
s —> 00. Now partition M into blocks, one block for all eigenvalues with a common
magnitude. Then

(4.1) LY = iLij),        ii,j= 1, ••■,!•),

where the partition conforms with (3.4). Then for i > j, as s —» «=, by (3.3),

(4.2) Mu = J'uLijiui/aj)' -» 0 ,
since smi(Di/wj)' —» 0 for any fixed m.

Thus M tends to block diagonal form. However, each diagonal block Mais) =
J'iiLu ii = 1,  • • -, r) is unbounded as s —> » except in the trivial case when Ja
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is diagonal. We seek fixed permutation matrices £>, such that for i = 1, • • -, r,

(4.3) BiMa = LiÜi,    L,-(s) bounded as s —> <* .

We define

(4.4) B = 7?i© • • • ®Br

and then the matrix Ls of Section 3 tends to Lx® • • • ®Lr as s —» oc.
It remains to study J'uLu and L¿. It happens that La depends on all the

eigenvalues with magnitude greater than or equal to »»-. See [7] or Lemma 6.3.
Thus the main theorem cannot be established by considering only matrices H all
of whose eigenvalues have equal magnitude.

In Section 6 we examine in detail a typical diagonal block M a = J'uLu and
there we drop the index i.

5. Triangular Factorization. If A is a matrix and a = (o¡i, • • •, af), ß = (ßi, • • •, ßf)
are multi-indices let Aßa or A (a; ß) denote the submatrix of A lying in rows
ax, ■ • •, cti and columns ßx, • • ■, /3y. Let det [A ßa] be its minor. We shall need

(5.1) A complex n X n matrix A permits a triangular factorization A = LU
if and only if the first n — 1 leading principal minors do not vanish. See [2, p. 11].

(5.2) If L = Qa) in (5.1), then

la = det [Ail, • • -, j - 1, i; 1, • • -,j)}/det [AH, ■ ■ -,j; 1, ■ • -,j)].
See [2, p. 11].

(5.3) If det [A] 9± 0 there is a permutation matrix II such that IÏ.4 = LU and
the elements of L are bounded by 1 in magnitude. See [9, Chapter 1].

The arguments which yield (5.3) also show
(5.4) If the elements of A are polynomials in one variable and det [A] Y= 0

then there is a permutation matrix B such that BA = LU and the elements of L
are rational functions with the degree of the numerator bounded by the degree of
the denominator. Thus the elements of L are bounded in a neighborhood of in-
finity of the variable.

Formula (5.2) shows that the permuted matrices 11A, BA in (5.3), (5.4) are
such that for eachj = 1, • • -, n — 1,

(5.5) det [BAil, ■ ■ -, j; 1, • • -, j)] is maximal among all

det [A4 (1, ■■■,j- l,i;l, •■■J)},       i^j.
In (5.3) the ordering is by absolute value, in (5.4) it is by (polynomial) degree.

In the case of (5.4) let s be the variable. If the degrees of the minors of A are
independent of s, then B may also be chosen independent of s. We shall study the
matrix Mis) of (6.1). Nonzero minors of J' are products of nonzero minors of the
Ji' = (0,7i + Ni)', |0,-| = 1. Thus the coefficients of the powers of s do depend
on the 6i". So to prove that B is independent of s we must prove that the degrees
of certain minors of M are constant.

6. Eigenvalues of Equal Magnitude. In Section 4 we reduced the problem of
finding those subdiagonal elements of Hs which tend to zero as s —> « to the study
of the bounded triangular factorization of matrices of the form
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(6.1) M = Mis) = J«L,

where

,/ = jj© . . . ©J(,
(6.2) Ji = ad i + Ni,    ¡0¿| = 1 ,    I i = iex, ■■■, em/) ,

Ni = ie2, •••,em¿, 0),        ii = 1, • ••,<).

L = the principal submatrix of Ly (see Theorem 2) corresponding to eigen-
values with some common modulus co and arguments (or signa) Oi,  • • -, 0¡.

For any matrix A and natural number v let A„ A-¡ denote the matrices formed
from the first v columns of A and last v columns of A respectively. Let A', A be
similarly defined for the rows.

We order the minors of M and J' by their degrees as polynomials in s. Let T x»
denote summation of the x,,   v = 1, • • -, t.

We begin with a crucial but simple result.
Lemma 6.1. The maximum v X v minor of J ? is det [(«/¿"V], is unique, and has

degree vQn¡ — v).
Proof.

J/ = T\     pY'N/,    where!      J is a binomial coefficient .

Consider the minor in rows a = (ax, ■ ■ ■, av) and columns ß = (ßx, • • ■, ß,). Replace

(:)

by s"/a\ and observe that the determinant is homogeneous in s of degree
|a| — |/3|, where |«J = ax + • • • + a„ and in 9, of degree s — |«j + |j8|. The
coefficient of these terms is of Vandermonde type and is nonzero.

The degree is maximized only when a = (m< — v + 1, ■ • -, m/), ß = (1, • • -, v),
and the coefficient of sv<-m~v) is given by

(6.3) £,(v) = */-»<-<-»>(«< - v + l)l!(» - 1)!!/(»< - 1)!!,

where k\\ = k\Qc - 1)! ••• 2!.    □
Let ZjQc) — {a — iax, • • -, ay): 1 á «i < ' • - < ay á k, a< integers] and

ZoQc) = 0, the empty set. The order of M and J is |m| = T m<- The indices of
any set of j rows of M could be designated by a multi-index in Zji\m\). However,
.7 is block diagonal and it is more convenient to designate row indices by multi-
multi-indices as follows. Let ß = ißx, ■ ■ -, ßt), ßi G ZMi(m,-) and \ß\ = T tu- Then
Mß is the submatrix of M obtained by taking the rows of M with indices

y-i
(6.4) ßjk + T m>,    k = 1> - - -,Pi,J = I» • • • >l ■

v=-X

If ßj = 0, then ßj does not exist and no rows of Mß involve the submatrix J¡.
Example. Let m = (4, 3, 3),  0 = ((3, 4), (2, 3), (3)),

\ß\ = mi + M2 + M3 = 2 + 2 + 1 ,        M = J'L,
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M-/ is as indicated below.

x
X X

X X

X X

X
X     X
X     X XJ

X

X
X

X     X

X
X     X

X

X

X
X

X
X

X

X

X X
X X

X X

Note that /¿,- is the number of rows of /," involved in the minor.
We recall that if v is a natural number, A, designates the first v columns of A.

If p is a polynomial, deg p denotes its degree.
Lemma 6.2 Let a = («i, • • -, at),  ai G ^(ra,-). Then

deg det [M"\a\] Ú T M< im i - Pi)

(Pi, ßt),  where  p,   =and  equality  occurs  if,   and  only  if,   a   =   p.
Qni — pi + 1, ■ • -, m/).

Proof. Let j = |a| = S/x,-. By the theorem of corresponding minors (the Binet-
Cauchy theorem) [2, p. 14],

det [Mja] = S det KJ')ßa] det [Lf]       over all ß G Zji\m\) .

Since J is block diagonal, nonzero terms occur only when ß yields exactly ßi indices
corresponding to columns of J i for each i. Such ß may be rewritten ß = (/3i,
ßi G Zßiinii) by using (6.4) and then

.ßt),

det[(7V] = II det [(/,••);•] , (det [AÂ{] = 1 if m = 0)

By Lemma 6.2

deg det [(/<%"] ̂  2>¿(m¿ - PÙ
with equality if and only if a,- = (m,- — m + 1, • • -, m/), ßi = (1, • • -, ß/). Denote
this maximal minor by a = p, ß = ß. The coefficient of this minor in the expansion
of det [Mf] is det [L/]. By Lemma 6.3 det [Lf] ^ 0. The lemma follows.    □

We are now in a position to reorder the rows of M to get a new matrix Pil7
with triangular factorization BM = LÜ where L is bounded ass-» «. Let row
7T,- of M be row i of BM. Let x(j) denote the indices m, x2, • • -, tt¡ arranged in
increasing order. By (5.5), for j = 1, • • -, t,

(6.2) deg det [M/^] ^ deg det [Afy■o-i),*+ i > j

Corollary. BJB~l is upper triangular.
Proof. We say that two indices i, j in {1, • • -, |m| j belong to the same block

if row i and row j of J lie in the same principal submatrix Jk of J. Let i and j
(i > j) be indices such that 7r,-, xy are in the same block. Suppose x¿ > ir¡. Then,
by Lemma 6.1, the degree of det [M/C))] is less than the degree of the minor ob-
tained by replacing row it, by row in. This contradicts the maximality condition
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(6.2). Hence m < xy. But /TilI,- = iBJB~l){j and the only nonzero off-diagonal
elements of J have x,- = xy + 1 and x», ir¡ in the same block. It follows that i g j
for the nonzero elements.    □

At this stage we have proved that, as s —■> <*>, the block structure to which 77 s
tends is the same as the block structure to which Ls tends. We have seen that Ls
tends to block diagonal form, one block to all eigenvalues with the same magni-
tude. We have not yet determined the structure to which each diagonal block
Li tends (t = 1, ■ • -, r). See (4.4) for the definition of L,.

The matrix Ls is not to be confused with the matrix L of Lemma 6.3 which is
a principle submatrix of Ly\ see (6.2) and Section 4.

Lemma 6.3. det [Lf] j¿ 0.
Proof. Let F = F(Xi, • • -, Xi, X2, • • -, X2, X3, • ■ -, X0 be the confluent Vander-

monde matrix associated with the eigenvalues X,- of 77. For example,

F(Xi, Xi, Xi, X2, X2) =

X,
1
0
X-2
1

\x
2Xx

1
x22

2X2

Xi3
3Xi2
3Xi

X23
3X22

Xi4
4Xi3
6Xi2

X24
4X23J

Let V = LrUr be the triangular factorization of V.
In [7] we proved that LY = Ly and obtained explicit formulas for the elements

of Ly. The principle submatrix L of LY corresponds to all the eigenvalues of mod-
ulus coA (say), see (3.3). Let us relabel these eigenvalues ??i, • • -, jj¡ and their multi-
plicities mi, • • -, ra¡. Let x be the monic polynomial whose zeros are all the eigen-
values X¿ (counting multiplicity) with |X¿| > œk, while px, ■ ■ -, Pt are defined by
Piiz) = 1,

Psiz) = n (s - vi)mi.
i=X

Let  L   =   (L**)   be  partitioned  conformably  with  the Jordan  blocks  of  the
ru ii = 1, ■ • -, t). Then Lij = Q'J^) is of order m¿ X m¡ and in [7] we proved

1% = 0rpO<a_%,)/(« - ß)Mtrpi)ivi) ,    i=j,atß,
= id/dr,i)a-\iiii - r,j)ß-1in>j)ir,i)]/ia - l)!(xp0(^0 ,    i > j ■

Here ixp)iz)  = x(.z)p(z). By omitting the x in these expressions we obtain the
elements   lYß  of  the  lower  triangular  factor  L  of  the  Vandermonde   matrix
V =  VivY1, ' ' •> ritmi) associated with the eigenvalues of magnitude coj,. By using
Leibnitz' rule for differentiating xp, we find that

( iri"i) ) V — ^(^^ pi 4 >
U¿)/a»! rim) la-"' l =laß  ' è J

To use this result, we define unit lower triangular matrices 7\ by
mj— X

Ti =   T TrMivi)Yyivi)Ni",   Ni = (it, e3, ■ ■ -,emi, 0) ,

and

T = Tx® ■■■ ®Tt,       D = x(r,i)7i© ©X(7J,)7(
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Then L — DTLD~l and, since D is diagonal and T block unit lower triangular

det [Ly"] = det [TV] det [T/\ det [7/]/det [Dj>] .
Now we observe that Vf is itself the Vandermonde matrix associated with

Vi"1, ■ ■ ■, Vt"1 and so

0* Ubi«- VßYa"ä = det Vj" = det [LyM] det [Û/] ,
a>ß

the last part following from the triangular structure of Û. Since Û is nonsingular
det [Lf] 9e 0 and the lemma follows,    fj

7. Block Structure of L as s —* w. We consider a typical block Ma — J«L«
(see (4.2)) and drop the subscript ¿. With the aid of Lemma 6.2 we can describe
the permutation matrix B and the bounded unit lower triangular factor L in
BM = LÜ.

To determine B it suffices to describe the permutation x characterized by con-
dition (6.2).

Observe first that, by (5.2), for i > j, as s —> «3,

(7.1) deg det [M'.(i)] > deg det [MrS*-» •»<] implies £(7; j) -» 0 ,

and

(7.2) deg det [ili*<>>] = deg det [M'/^-^-'t] implies £(i; ¿) +>■ 0 .

Recall that x(j) denotes the indices xi, • • •, x, arranged in increasing order.
We now imagine that the rows of M are taken one by one in some order

(xi, X2, • • 0 and placed in natural order (1, 2, • • •) in PÍV7. At the ith step, we
ask which of the remaining rows of M should be chosen as the ¿th row of BM.
The process may be described by a variable index ß = ißx, ■ ■ -, ßt). Initially
ß = (0, • • •, 0). When a row is taken from block v (the rows of .7 which lie in ./0
the index ßv is increased by 1. This simplification is possible because of

Lemma 7.1. The rows of each block in M are taken in decreasing order. I'hus ß
indicates that the last ßv rows of block v have been chosen and, the first mv — ß, remain
iv = 1,  ••-,<)•

Proof. By Lemma 6.2, xi must be the last index in a block of maximal order.
As induction hypothesis suppose that at step \ß\ the last pv rows from block v have
been assigned to BM. By criterion (6.2) the next index chosen must make
det [■fl7'/J<|l£i+1)] maximal among all other possible choices. By Lemma 6.2 xi,,|+i
must be the last remaining index of one of the blocks. By the principle of finite
induction the lemma holds for \u\ = 1, • • -, \m\.    □

This proof shows that at each step there are at most t possibilities for the next
row. Let

(7.3) diß) = TPiimi - ßi) = E(W2)2 - Z(m,-/2 - M02.
Then we seek the maximal value, 5(|ju| + 1), among

dißx + 1, ßi, ■ ■ ■, ßt) ,
/- As dißx, ß2 + 1, ß3, • ■ -, ßt) ,

dißx, ■ • ■, ßt-x, Pt + 1) -
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From the second term in (7.3) we obtain immediately
Lemma 7.2. 5(|/i| + 1) = diß) + max¿ (m¿ — 2pt — 1).
This implicitly describes the permutation x and the matrix B. At step \ß\ we

increase one of the ßi (<m¿) which satisfy

(7.5) m¿ — 2ßi = max (m„ — 2ßv) = e(|/t|) ,
v

where the maximum is over all v with ß„ < m„. If, at step \ß\, there is an r-fold
choice of ßi which achieve the maximum, then r — 1 steps later, at step |/*| + r — 1,
there will be a unique ju¿ achieving the maximum because

(7.6) 6(|M|) = ei\ß\ + 1) = • • • = e(|M| + r - 1) > e(|ju| + r) .

There is a unique choice for xi„|+1 if, and only if, ei\ß\) > ei\ß\ + 1). Hence, by
(7.1), as s —> ce

(7.7) Li\ß\+i;\ß\+r)-^0,       i>r,
and, by (7.2),

(7.8) Li\ß\ +¿;|m| +;")+>0,       i,j = l,---,r,       i> j.
We thus see that if, at step |m| — 1, there is only one possibility for x|„i and, at
step \ß\, an r-fold choice for xi^i+i, then the r X r principal submatrix of L in
rows \ß\ + 1, •••, \ß\ +r has no subdiagonal elements which vanish at s =  ».

We now observe that, at any step, if e(|/¿|) = max, (m„ — 2ß„) is even then
no i with mi odd could achieve it, and vice versa. Thus an r-fold choice occurs
only among r blocks whose orders have the same parity.

Consequently we relabel the multiplicities so that

ex = mx i£ e2 = m2 ^ • • • ^ ep = mp > e^+i = 0

are even and

fx = mp+x ̂  f2 = »1^2 ^ ■ • • =g fq = mp+q > fq+1 = 0

are odd, and p + q = t.
Lemma 7.3. For each i = 1, ■ ■ ■, p, there are e,- — e,-+i steps when a unique choice

for x|^|_i is followed by an i-fold choice for x|M| among the i largest blocks of even order.
A similar result holds for the odd case.

Proof. The selection begins with all /z„ = 0. Select any i among {1, ■ ■ -, p}.
We ask when ß{ increases to 1. By (7.5) ßi, ■ ■ ■, pp remain zero while at least one
e¡ — 2pj > e„ j < i. On the other hand while ßi = 0 we cannot have e¡ — 2ßj < e,-
for any j < i. Thus at some stage e¡ — 2yuy = e„ j < i. This situation obtains
until the odd blocks satisfy m, — 2ßv < e¿, v > p. Thus when ß is such that
t(|(u| — 1) > e„ ei\ß\) = ei an ¿-fold choice occurs; any one of mi, • • -, ßi may
be increased.

By the same reasoning there will be an ¿-fold choice, following a unique choice,
at each increase of ßi until e, — 2/x, = eî+i at which step an {i + l)-fold choice
occurs. This yields |(e, — ei+1) occurrences of an ¿-fold choice.

However, diß) = dim — p), m = (mx, ■ ■ ■, mt), and so the selection process
is symmetric about \m. In detail, we ask when ßi increases to \id + e,+i). By
(7.5) again there must be some stage at which
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e, — 2ßv = — ei+x,       v á¿,
Pu = ei,        i» = » + 1,

m» — 2/x„ < — ei+1,        v > p ,
e(\ß\ - 1) > -ei+1.

■,v

Again any of ßx,  • ■ -, ßi is eligible for an increase. By the same reasoning there
will be such a choice at each increase of ßi until e,- — 2ut =  — e¿, at which point
an ii — l)-fold choice appears. This yields another §(e; — e,+i) occurrences and
proves the lemma.    Y\

Since

iBJB~í)ii= J,i,ri = «0*,

it follows that the eigenvalues of the diagonal blocks of 77s whose subdiagonal
elements fail to converge to zero do tend to eigenvalues whose multiplicities have
the same parity.

We have not determined the exact positions of these blocks. These follow
readily from (7.5) once we know the interlacing of the multiplicities ex, ■ • -, ep
and fx, ■ • ■, fq when they are ordered monotonically. The details are left to the
interested reader.

8. An Example. Consider a 10 X 10 unreduced Hessenberg matrix, necessarily
complex, with four distinct eigenvalues Oi, 02, 03, 04 of modulus 1. Let their multi-
plicities be mi = 4, m2 = 3, m3 = 2, mi = 1. Then

(8.1)   J = 1
1

©
1 \1 03/ ©  04-

We give below a table showing ß = (ßx, ßi, ß3, ßx) and e(|/¿|) = max (m„ — 2ß/),
ßv < m„.

(8.2)

0
1
2
3
4
5
(i
7
8
9

10

ßi

0
1
1
2
2
•1
2
3
3
3
4

Pi

0
0
1
1
1
2
2
2
2
3
3

P.;

0
0
0
0
1
1
1
1
2
2
2

Ml

0
0
0
0
0
0
1
1
1
1
1

e(M)

4
3
2
2
1
1
0
0

-1
-2

Consequently one choice for B is given by

B* = (e4, e7, e3, e9, e6, e10, e2, e8, e-0, ex)

and
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0 0 0 0 0 0
10        0        0        0 0
0 0 10 0 0
0 0 0 10 0
X2       0        0        0 1 0
* X4       0 0 0 0     '

Xi       0        0 1
* X3       0 0

X2 0
Xi_

Here the asterisk indicates that although BJB~l is triangular, the matrix Qs tends
to diagonal form except for 2 X 2 principal submatrices in rows 3, 4 and 5, 6 and
7, 8. Since 77s+i = QsiRBJB^R-^Q* it follows that h{'¡ , A& and ä$ are the only
subdiagonal elements which fail to converge to zero ass^ °o. This does not con-
tradict the convergence of the algorithm in our use of the word.
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(8.3)    BJB'1

0
X-.

1
0
X!

0
0
0
x3
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