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GLOBAL CONVERGENCE OF THE POLAK-RIBIÈRE-POLYAK
CONJUGATE GRADIENT METHOD WITH AN ARMIJO-TYPE

INEXACT LINE SEARCH FOR NONCONVEX
UNCONSTRAINED OPTIMIZATION PROBLEMS

ZENG XIN WEI, GUO YIN LI, AND LI QUN QI

Abstract. We propose two algorithms for nonconvex unconstrained opti-

mization problems that employ Polak-Ribière-Polyak conjugate gradient for-
mula and new inexact line search techniques. We show that the new algorithms
converge globally if the function to be minimized has Lipschitz continuous
gradients. Preliminary numerical results show that the proposed methods for
particularly chosen line search conditions are very promising.

1. Introduction

The conjugate gradient (CG) method has played a special role for solving large-
scale nonlinear optimization due to the simplicity of their iteration and their very
low memory requirements. In fact, the CG method is not among the fastest or
more robust optimization algorithms for nonlinear problems available today, but it
remains very popular for engineers and mathematicians who are interested in solv-
ing large problems [24, 25]. The nonlinear conjugate gradient method is designed
to solve the following unconstrained optimization problem:

(1.1) min{f(x) | x ∈ �n},
where f : �n → � is a smooth, nonlinear function whose gradient will be denoted
by g. We consider only the case where the method is implemented without regular
restarts. The iterative formula of the conjugate gradient methods is given by

(1.2) xk+1 = xk + tkdk,

where tk is a step length which is computed by carrying out a line search, and dk

is the search direction defined by

(1.3) dk =
{

−gk if k = 1,
−gk + βkdk−1 if k ≥ 2,
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2174 ZENG XIN WEI, GUO YIN LI, AND LI QUN QI

where βk is a scalar, and gk denotes g(xk). There are at least six formulas for βk,
which are given below:

βHS
k =

gT
k (gk − gk−1)

(gk − gk−1)T dk−1
(Hestenses-Stiefel [19], 1952);(1.4)

βFR
k =

gT
k gk

gT
k−1gk−1

(Fletcher-Reeves [14], 1964);(1.5)

βPRP
k =

gT
k (gk − gk−1)
gT

k−1gk−1
(Polak-Ribière-Polyak [26, 27], 1969);(1.6)

βCD
k = − gT

k gk

dT
k−1gk−1

(Conjugate Descent [13], 1987);(1.7)

βLS
k = −gT

k (gk − gk−1)
dT

k−1gk−1
(Liu-Storey [21], 1991);(1.8)

βDY
k =

gT
k gk

(gk − gk−1)T dk−1
(Dai-Yuan [8], 1999);(1.9)

βDY −HS
k = max{0, min{βDY , βHS}} (Dai-Yuan [11], 2001).(1.10)

Considerable attention has been given to the global convergence for the above
methods. Zoutendijk [34] proved that the FR method with exact line search is
globally convergent. Al Baali [2] extended this result to the strong Wolfe-Powell
line search. Powell [28] proved that the sequence of gradient norms gk could be
bounded away from zero only when

(1.11)
∑
k≥0

1
‖dk‖

< +∞.

So one can prove that the FR method is globally convergent for general functions
by using (1.11). However, the global convergence has not been established for the
PRP method with the standard Wolfe-Powell line search condition. In fact, Powell
proved that even if the step length was chosen to be the least positive minimizer
of the one variable function (φk(t) = f(xk + tdk), t ∈ �), the PRP method could
cycle infinitely without approaching a solution.

Under the sufficient descent condition

(1.12) gT
k dk ≤ −c‖gk‖2,

Powell [28] gave another way to discuss the global convergence of the PRP method
with the weak Wolfe-Powell line search. In [28], the parameter βk in (1.6) is not
allowed to be negative, i.e.,

(1.13) βk = max{βPRP
k , 0}.

By using a complicated line search, Gilbert and Nocedal [15] were able to establish
the global convergence result of the PRP and HS methods by restricting the scalar
βk to be nonnegative.

Grippo and Lucidi [17] proposed a new line search condition which was designed
to match the requirements of the convergence theory to ensure that the Polak-
Ribière-Polyak method is globally convergent for nonconvex problems. However,
the method given by Grippo and Lucidi in [17] did not perform better than the
PRP method which employed (1.13) and the standard (strong) Wolfe-Powell line
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GLOBAL CONVERGENCE OF THE PRP METHOD 2175

search in the numerical computations. The line search in [17] is as follows: For any
given γ > 0 and ρ ∈ (0, 1), find

(1.14) tk = max{ρj · γ|gT
k dk|

‖dk‖2
; j = 0, 1, ...}

such that tk satisfies

(1.15) f(xk+1) ≤ f(xk) − δt2k‖dk‖2

and

(1.16) −c1‖g(xk + tkdk)‖2 ≤ g(xk + tkdk)T dk+1 ≤ −c2‖g(xk + tkdk)‖2,

where 0 < c2 < 1 < c1 are constants. Dai and Yuan [9, 12] and the authors in
[5] gave a further study for the convergence conditions of the PRP method if βk is
defined by (1.13) with the Wolfe-Powell line search conditions. They concluded that
for the PRP method, the boundedness of the level set and the restriction (1.13) are
indispensable. The global convergence results of the PRP method and some other
conjugate gradient methods without line search have been given; see [3, 6, 30].

Under the Armijo inexact line search, Dai [4, 12] discussed the global convergence
of the FR and the PRP methods in a systematic way. He concluded that the PRP
method is globally convergent if the objective function f is strictly convex and
the sufficient descent conditions (1.12) hold. Two new formulas (1.8) and (1.9)
were given in [8, 21]. The new nonlinear conjugate gradient formula (1.9) has been
proved to have some very nice global convergence properties [8, 11, 12].

Considerable research efforts have been made to obtain efficient and robust meth-
ods for finding a step length at a given iterate xk and a given descent direction dk;
see [1, 16, 22] and [33]. There are at least four types of line search procedures:
the Armijo step length procedure, the Armijo-Goldstein step length procedure,
the standard Wolfe-Powell step length procedure and the strong Wolfe-Powell step
length procedure. The Armijo rule is finding tk = ρjk such that jk is the smallest
nonnegative integer j satisfying

(1.17) f(xk + ρjdk) − f(xk) ≤ αρjgT
k dk,

where ρ ∈ (0, 1) and α ∈ [0, 1
2 ). The Armijo-Goldstein rule is that tk > 0 satisfies

(1.18) f(xk + tkdk) − f(xk) ≤ αtkgT
k dk

and

(1.19) f(xk + tkdk) − f(xk) ≥ (1 − α)tkgT
k dk

where α ∈ (0, 1/2). The standard Wolfe-Powell criterion is that tk satisfies (1.18)
and

(1.20) g(xk + tkdk)T dk ≥ λgT
k dk,

where α ∈ (0, 1) and λ ∈ (α, 1). The strong Wolfe-Powell criterion is that tk satisfies
(1.18) and

(1.21) |g(xk + tkdk)T dk| ≤ λ|gT
k dk|.

These procedures played a crucial role in the study of minimization problems in
the past forty years. Recently, the authors in [31, 32] proposed three new types of
line searches by using the function

fk = f +
1
2
(x − xk)T Bk(x − xk)
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2176 ZENG XIN WEI, GUO YIN LI, AND LI QUN QI

in (1.17), (1.18), (1.19) and (1.20 ), where Bk is a simple symmetric and positive
definite matrix. More precisely, they gave the following three types of line search
conditions.

1. A modification of the Armijo step length procedure (MA):
Find tk = ρjk such that jk is the smallest nonnegative integer j satisfying

(1.22) f(xk + ρjdk) − f(xk) ≤ αρjgT
k dk − 1

2
(ρj)2dT

k Bkdk,

where ρ ∈ (0, 1) and α ∈ (0, 1
2 ).

2. A modification of the Armijo-Goldstein step length procedure (MAG):
Find tk > 0 such that

f(xk+1) − f(xk) ≤ αtkgT
k dk − 1

2
t2kdT

k Bkdk

and

f(xk+1) − f(xk) ≥ (1 − α)tkgT
k dk − 1

2
t2kdT

k Bkdk,

where α ∈ (0, 1
2 ).

3. A modification of the standard Wolfe-Powell step length procedure (MWP):
Find tk > 0 such that

f(xk+1) − f(xk) ≤ αtkgT
k dk − 1

2
t2kdT

k Bkdk

and
g(xk+1)T dk ≥ −tkdT

k Bkdk + λgT
k dk,

where α ∈ (0, 1
2 ) and λ ∈ (α, 1).

For the strong Wolfe-Powell line search conditions, we may give a modification
of the strong Wolfe-Powell step length procedure (MSWP) as follows:

4. A modification of the strong Wolfe-Powell step length procedure (MSWP):
Find tk > 0 such that

(1.23) f(xk+1) − f(xk) ≤ αtkgT
k dk − 1

2
t2kdT

k Bkdk

and

(1.24) −tkdT
k Bkdk + λgT

k dk ≤ g(xk+1)T dk ≤ −tkdT
k Bkdk − λgT

k dk,

where α ∈ (0, 1
2 ) and λ ∈ (α, 1). (For a proof of the existence of the step length in

MA, MAG, MWP and MSWP see [31].)
The purpose of this paper is to study the global convergence behavior of the

PRP method by using the structure of Bk. Our motivation is also based on the
following facts: 1) the PRP formula (1.6) is more effective when it is applied to
nonlinear optimization problems, see [24]; 2) unlike the other line search conditions,
the Armijo-type line search condition can use the back-tracking technique. This
tends to make finding the step length vary in a predictable manner; 3) the sufficient
descent condition (1.12) is a very nice and important property for conjugate gra-
dient methods, so one hopes to guarantee this property for the conjugate gradient
methods. For the above three objects, we discuss the global convergence of the
PRP method with the following Armijo-type line search (ATLS), which is based on
(1.22), the ideas given by Grippo and Lucidi [17] and the structure of the formula
(1.6). (For convenience, we let Bk = µI for all k with a fixed positive scalar µ.)
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GLOBAL CONVERGENCE OF THE PRP METHOD 2177

The Armijo-type line search (ATLS). Let α ∈ [0, 1/2), c ∈ (0, 1), µ > 0 and
φk > 0 be given. Denote tjk = ρj · φk. The ATLS is to find tk = tjk

k where jk is the
smallest number of j such that

(1.25) f(xk + tjkdk) − f(xk) ≤ α tjk gT
k dk − µ

2
(tjk)2‖dk‖2

and

(1.26) g(xk + tjkdk)T Qk(j) ≤ −c‖g(xk + tjkdk)‖2,

where Qk(j) is defined as

(1.27) Qk(j) = −g(xk + tjkdk) +
g(xk + tjkdk)T (g(xk + tjkdk) − gk)

‖gk‖2
dk.

Here φk is a parameter which plays an important role for improving the initial step
length. In fact, Nocedal [25] pointed out that the efficiency of nonlinear conjugate
gradient methods would be greatly improved if one could design a variant of the
PRP method that produced well-scaled search directions without increasing the
storage requirements of the iteration. In what follows, we propose a way to improve
the initial step length by a reasonable choice of φk in Section 2.

This paper is organized as follows. In Section 2, we first prove an important
property for ATLS and then present a PRP algorithm with ATLS (Algorithm 1),
the sufficient descent property (1.12) of the Algorithm 1 is also proved in this
section. In Section 3, we establish the global convergence of Algorithm 1, and
prove the global convergence of the PRP formula with the MSWP. The preliminary
numerical results are contained in Section 4. Some final remarks are given in the
last section.

2. Algorithm and its properties

Before giving our algorithm, we first prove the following lemma, which shows
that the Armijo-type line search given by (1.25), (1.26) and (1.27) is reasonable.

Lemma 2.1. For any k ∈ N, let α ∈ [0, 1/2), µ > 0 and φk > 0 be given. If
gk

T dk < 0 holds for all k ∈ N, then there exists a nonnegative integer jk such that
tk = φkρjk satisfies ATLS.

Proof. We first prove that there is a j0, such that for all j ≥ j0, (1.25) holds.
Suppose that the conclusion does not hold. Then by passing to the subsequence if
necessary, we may assume that for any j,

f(xk + φkρjdk) − f(xk) > αφkρjgk
T dk − µ

2
(φkρj)2‖dk‖2.

From Taylor’s expansion, we have

φkρjgk
T dk + o(ρj) > αφkρjgk

T dk − µ

2
(φkρj)2‖dk‖2.

Dividing both sides by ρj and letting j → ∞, we obtain

φkgk
T dk ≥ αφkgk

T dk.

Thus we have α > 1 since gk
T dk < 0 and φk > 0. This contradicts to α ∈ [0, 1

2 ).
Second, we prove that there exists j1 ∈ (j0, +∞), such that (1.26) holds. Suppose
that the conclusion does not hold. Then for any j > j0, we have

g(xk + φkρjdk)T Qk(j) > −c‖g(xk + φkρjdk)‖2.
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From the definition of Qk(j) in (1.27), we can deduce that

g(xk + φkρjdk)T (−g(xk + φkρjdk) +
g(xk + φkρjdk)T (g(xk + φkρjdk) − gk)

‖gk‖2
dk)

> −c‖g(xk + φkρjdk)‖2.

Therefore

−‖g(xk +φkρjdk)‖2 +
g(xk + φkρjdk)T (g(xk + φkρjdk) − gk)

‖gk‖2
g(xk +φkρjdk)T dk

> −c‖g(xk + φkρjdk)‖2.

Letting j ∈ (j0, +∞) and j → ∞, by the continuity of g, we obtain that

−‖gk‖2 ≥ −c‖gk‖2

which implies that c > 1 from gk �= 0. This contradicts to c ∈ (0, 1). Therefore
from the above discussions, there exists a jk such that (1.25) and (1.26) hold. �

Next, we propose our modified Polak-Ribière-Polyak method. To this end, we
first introduce a reasonable choice for selecting φk as follows (which is motivated
by [20]):

A reasonable choice for φk. Consider the following quadratic model:

qk(t) = f(xk) + tgT
k dk +

1
2
t2dT

k ∇2f(xk)dk.

Note that if ε > 0 is sufficiently small, then the following approximate relation
holds:

∇2f(xk)dk ≈ g(xk + εdk) − gk

ε
.

Define

(2.1) zk =
g(xk + εdk) − gk

ε
,

it follows that

qk(t) ≈ f(xk) + tgT
k dk +

1
2
t2dT

k zk

and
q′k(t) ≈ gT

k dk + tdT
k zk.

If dT
k zk �= 0, by letting t0 = −gT

k dk

dT
k zk

this implies that q′k(t0) = 0. In this regard, it
motivates us to choose φk by the following rule: let η > 0 be a real number (close
to 0), then

(2.2) φk =

{
−gT

k dk

dT
k zk

, if −gT
k dk

dT
k zk

≥ η,

1, else,

where zk is defined as in (2.1) (as we will see in Section 4, this choice works quite
well by selecting ε = 1e − 8 and η = 1e − 10).

From Lemma 2.1 and our choice of φk, we are now ready to state our modified
Polak-Ribière-Polyak conjugate gradient method as follows:
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Algortithm 1 (Modified PRP methods: MPRP).
Step 0: Let x1 ∈ �n, α ∈ [0, 1/2), c ∈ (0, 1), µ, ε, η > 0. Set d1 = −g1, k = 1.

If g1 = 0, then stop.
Step 1: Compute φk by (2.2) and find a tk > 0 satisfying ATLS.
Step 2: Let xk+1 = xk + tkdk and gk+1 = g(xk+1). If gk+1 = 0, then stop.
Step 3: Compute βk by the PRP formula (1.6) and generate dk+1 by (1.3).
Step 4: Set k := k + 1, go to Step 2.

The following lemma shows that Algorithm 1 has a very nice property due to
the definition of Qk given in (1.27).

Lemma 2.2. For any given k, if gk
T dk < 0 and (tk, xk+1, gk+1, βk, dk+1) is gen-

erated by Algorithm 1, then

(2.3) gT
k+1dk+1 ≤ −c‖gk+1‖2.

Proof. From Lemma 2.1, we can generate a stepsize tk by ATLS and then generate
xk+1, gk+1, βk and dk+1 by Algorithm 1. Therefore

gT
k+1dk+1 = −‖gk+1‖2 + βPRP

k+1 gT
k+1dk

≤ −‖gk+1‖2 +
gT

k+1(gk+1 − gk)
‖gk‖2

gT
k+1dk

= −‖g(xk + tkdk)‖2 +
g(xk + tkdk)T (g(xk + tkdk) − gk)

‖gk‖2
g(xk+tkdk)T dk.

Since tk satisfies (1.26), we have

− ‖g(xk + tkdk)‖2 +
g(xk + tkdk)T (g(xk + tkdk) − gk)

‖gk‖2
g(xk + tkdk)T dk

≤ −c‖g(xk + tkdk)‖2.

So, we obtain our conclusion (2.3). �
From Lemma 2.1 and 2.2, we have the following theorem which indicates that

Algorithm 1 is well defined and has a nice property—the sufficient descent condition
(1.12).

Theorem 2.3. It holds that either there is a k0 ∈ N such that gk0 = 0 or the
algorithm generates a sequence {xk} such that the property (1.12) holds for all k.

Proof. If g1 = 0, then we have finished our proof. Suppose g1 �= 0. Then we have
d1 = −g1, so gT

1 d1 = −‖g1‖2 �= 0 and

gT
1 d1 ≤ −c‖g1‖2.

Using Lemma 2.1 and Lemma 2.2, we can generate (t1, x2, g2). If g2 �= 0, we can
have β1 and d2. Using Lemma 2.2 again, we have

gT
2 d2 ≤ −c‖g2‖2.

Repeating the above discussions and using Lemmas 2.1 and 2.2, we can deduce our
conclusion by induction. �
Remark 2.1. For the FR formula (1.5), we use the following Armijo-type line search:
find tk = ρjk such that jk is the smallest nonnegative integer j satisfying

(2.4) f(xk + φkρjdk) − f(xk) ≤ αφkρjgT
k dk − µ

2
(φkρj)2dT

k dk
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and

(2.5) g(xk + φkρjdk)T QFR
k (j) ≤ −c‖g(xk + φkρjdk)‖2,

where QFR
k is defined as

(2.6) QFR
k (j) = −g(xk + φkρjdk) +

g(xk + φkρjdk)T g(xk + φkρjdk)
‖gk‖2

dk.

Then we can have the same algorithm as Algorithm 1. Furthermore, the results
of Lemma 2.1 and Lemma 2.2 for the PR method still hold. It is easy to see that
(2.5) holds if and only if

(2.7) g(xk + φkρjdk)T dk ≤ (1 − c)‖gk‖2.

Does the FR formula (1.5) with the line search conditions (2.4) and (2.7) converge
globally?

Remark 2.2. For the conjugate descent formula (1.7), we can use the following line
search: find tk = ρjk such that jk is the smallest nonnegative integer j satisfying

(2.8) f(xk + φkρjdk) − f(xk) ≤ αφkρjgT
k dk − µ

2
(φkρj)2dT

k dk

and

(2.9) g(xk + φkρjdk)T QCD
k (j) ≤ −c‖g(xk + φkρjdk)‖2,

where QCD
k is defined as

(2.10) QCD
k (j) = −g(xk + φkρjdk) − g(xk + φkρjdk)T g(xk + φkρjdk)

gT
k dk

dk.

Then we can have the same algorithm as Algorithm 1. Furthermore, the results of
Lemma 2.1 and Lemma 2.2 for the CD method still hold. It is easy to see from
gT
1 d1 = −‖g1‖2 < 0 that

(2.11) g(xk + φkρjdk)T dk ≤ −(1 − c)gT
k dk

holds if and only if (2.9) holds. So for the CD method, (2.9) can be replaced by
(2.11). It is known that if m = 0 and 1− c �= 0, then the CD formula (1.7) with the
line search (2.8) and (2.11) need not converge; see [10] and [12] for details. Does
the conjugate descent formula (1.7) with the line search conditions (2.8) and (2.11)
converge globally?

Remark 2.3. For the LS formula (1.8), we can use the following line search: find
tk = ρjk such that jk is the smallest nonnegative integer j satisfying

(2.12) f(xk + φkρjdk) − f(xk) ≤ αφkρjgT
k dk − µ

2
(φkρj)2dT

k dk

and

(2.13) g(xk + φkρjdk)T QLS
k (j) ≤ −c‖g(xk + φkρjdk)‖2,

where QLS
k is defined as

(2.14) QLS
k (j) = −g(xk + φkρjdk) − g(xk + φkρjdk)T (g(xk + φkρjdk) − gk)

gT
k dk

dk.

Then we can have the same algorithm as Algorithm 1. Furthermore, the results of
Lemma 2.1 and Lemma 2.2 and for the LS method still hold. We conjecture that
the LS formula (1.8) with the line search conditions (2.12) and (2.13) is convergent
globally.
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3. Global convergence

In this section, we prove global convergence of Algorithm 1 under the following
assumptions.

Assumption A. The level set Ω = {x ∈ Rn : f(x) ≤ f(x1)} is bounded where x1

is the initial point.
Assumption B. There exists a constant L such that for any x, y ∈ Ω,

(3.1) ‖g(x) − g(y)‖ ≤ L‖x − y‖.
Since {f(xk)} is a decreasing sequence, it is clear that the sequence {xk} gener-

ated by Algorithm 1 is contained in Ω, and there exists a constant f∗, such that

(3.2) lim
k→∞

f(xk) = f∗.

Lemma 3.1. Suppose that Assumption A holds. Then we have

(3.3) lim
k→∞

tk‖dk‖ = 0

and

(3.4) lim
k→∞

−tkgT
k dk = 0.

Proof. From (3.2), we have
∞∑

k=1

(f(xk) − f(xk+1)) = lim
N→∞

N∑
k=1

(f(xk) − f(xk+1))

= lim
N→∞

(f(x1) − f(xk+1))

= f(x1) − f∗.

Thus
∞∑

k=1

(f(xk) − f(xk+1)) < +∞,

which when combined with

f(xk + tkdk) − f(xk) ≤ αtkgT
k dk − µ

2
t2k‖dk‖2

yields

(3.5)
∞∑

k=1

t2k‖dk‖2 < +∞

and

(3.6)
∞∑

k=1

−tkgT
k dk < +∞.

Therefore, (3.3) and (3.4) hold. �

The property (3.3) is very important for proving the global convergence of Al-
gorithm 1, and it is not yet known by us whether (3.3) holds for other conjugate
gradient methods with another line search condition (for example, the standard
Wolfe-Powell conditions).
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Lemma 3.2. Suppose that Assumptions A and B hold. If there exists a constant
ε > 0 such that for all k,

(3.7) ‖gk‖ ≥ ε,

then there exists a constant M2 > 0 such that for all k,

(3.8) ‖dk‖ ≤ M2.

Proof. From the definition of dk, we have

‖dk‖ ≤ ‖gk‖ + |βPRP
k | ‖dk−1‖

≤ ‖gk‖ + (‖gk‖ ‖gk − gk−1‖/‖gk−1‖2)‖dk−1‖.
Using Assumption B, we obtain

(3.9) ‖dk‖ ≤ ‖gk‖ + ‖gk‖
Ltk−1‖dk−1‖

ε2
‖dk−1‖.

On the other hand, from the fact that {xk} is bounded, by using Assumption B,
we can deduce that there exists M3 > 0 such that for all k,

(3.10) ‖gk‖ ≤ M3.

Thus (3.9) and (3.10) yield the following inequality:

(3.11) ‖dk‖ ≤ M3 +
M3L

ε2
tk−1‖dk−1‖2 = M3 + (

LM3

ε2
tk−1‖dk−1‖)‖dk−1‖.

From (3.3), this implies that there exist a constant q ∈ (0, 1) and an integer k0,
such that for all k ≥ k0,

LM3

ε2
tk−1‖dk−1‖ ≤ q.

Hence, for any k > k0, we have

‖dk‖ ≤ M3 + q‖dk−1‖
≤ M3(1 + q + q2 + · · · + qk−k0−1) + qk−k0‖dk0‖

≤ M3

1 − q
+ qk−k0‖dk0‖

≤ M3

1 − q
+ ‖dk0‖.

Setting M2 = max{‖d1‖, ‖d2‖, · · · , ‖dk0‖, M3
1−q + ‖dk0‖}, we deduce that for all k,

(3.8) holds. �

Lemma 3.3. Suppose that Assumptions A and B hold. Let {xk} be generated by
Algorithm 1. Then there exists a constant M1 > 0 such that for all k,

(3.12) tk ≥ M1‖gk‖2/‖dk‖2.

Proof. We will divide our proof into two cases.
Case 1. tk = 1. In this case, we have

‖gk‖2 ≤ 1
c
|gT

k dk| ≤ (1/c)‖gk‖‖dk‖

by using (1.12). Hence

‖gk‖ ≤ 1
c
‖dk‖.
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Using tk = 1, we have

‖gk‖2 ≤ 1
c2
‖dk‖2 =

tk
c2
‖dk‖2.

Hence

(3.13) tk ≥ c2‖gk‖2/‖dk‖2.

Case 2. tk < 1. In this case, we have jk − 1 is a nonnegative integer.
From the definition of tk, (1.25) and (1.26) cannot be simultaneously satisfied for
tk/ρ = φkρjk−1.

Case 2.1. tk/ρ does not satisfy (1.25). From the definition of tk, we have

f(xk + (tk/ρ)dk) − f(xk) > α(tk/ρ)gT
k dk − µ

2
(tk/ρ)2‖dk‖2.

Using the Mean Value Theorem in the above inequality, we obtain θk ∈ (0, 1), such
that

(tk/ρ) · g(xk + θk(tk/ρ)dk)T dk > α(tk/ρ)gT
k dk − µ

2
(tk/ρ)2‖dk‖2.

Dividing both sides of the above inequality by tk/ρ, we have

g(xk + θk(tk/ρ)dk)T dk > αgT
k dk − µ

2
(tk/ρ)‖dk‖2.

Subtracting gT
k dk on both sides of the above inequality, we obtain

(g(xk + θk(tk/ρ)dk) − gk)T dk > −(1 − α)gT
k dk − µ

2
(tk/ρ)‖dk‖2,

which when combined with Assumption B yields

Lθk(tk/ρ)‖dk‖2 > −(1 − α)gT
k dk − µ

2
(tk/ρ)‖dk‖2.

Therefore

tk >
2(1 − α)ρ
2Lθk + µ

(−gT
k dk)

‖dk‖2
.

Hence, we have

(3.14) tk >
2c(1 − α)ρ
2Lθk + µ

‖gk‖2

‖dk‖2
≥ 2c(1 − α)ρ

2L + µ

‖gk‖2

‖dk‖2

by using (1.12) and θk ∈ (0, 1).
Case 2.2. tk does not satisfy (1.26). In this case, we have

−c‖g(xk + (tk/ρ)dk)‖2 < g(xk + (tk/ρ))dk)T Qk(jk − 1).

Using the definition of Qk given in (1.27), we have

− c‖g(xk + (tk/ρ)dk)‖2 < −‖g(xk + (tk/ρ)dk)‖2

+
g(xk + (tk/ρ)dk)T (g(xk + (tk/ρ)dk) − gk)

‖gk‖2
g(xk + (tk/ρ)dk)T dk.

Hence

−c‖g(xk + (tk/ρ)dk)‖2 < −‖g(xk + (tk/ρ)dk)‖2

+
‖g(xk + (tk/ρ)dk)‖2

‖gk‖2
‖g(xk + (tk/ρ)dk) − gk‖‖dk‖.

Dividing both sides of the above inequality by ‖g(xk + (tk/ρ)dk)‖2, we have

(3.15) −c ≤ −1 +
‖g(xk + (tk/ρ)dk) − gk‖‖dk‖

‖gk‖2
.
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Using Assumption B, we obtain,

−c ≤ −1 +
L(tk/ρ)‖dk‖2

‖gk‖2
.

Hence

(3.16) tk > ((1 − c)ρ/L)(‖gk‖2/‖dk‖2).

This finishes the proof of Case 2.2.
Letting

M1 = min{c2,
2(1 − α)ρ
2L + µ

,
(1 − c)ρ

L
},

we obtain (3.12) from the discussions in Case 1 and Case 2. �

By using the above lemmas, we are now ready to establish the following global
convergence theorem for Algorithm 1.

Theorem 3.4. Suppose that Assumptions A and B hold. Let {xk} be generated by
Algorithm 1. Then

(3.17) lim inf
k→∞

‖gk‖ = 0.

Proof. Suppose that the conclusion does not hold. Then there exists a constant
ε > 0 such that for all k,

(3.18) ‖gk‖ ≥ ε.

By Lemma 3.2, we can obtain a constant M1 > 0, such that for all k,

tk ≥ M1‖gk‖2/‖dk‖2,

which when combined with Lemma 3.3 yields

‖gk‖2 ≤ M2

M1
tk‖dk‖.

This make a contradiction to (3.18) by using (3.3) and letting k → ∞ in the above
inequality. Therefore, (3.17) holds. �

The proof of the global convergence result of Algorithm 1 is very different from
those given in the literatures. The general outline of the proofs in the literatures is
that, assuming that the conclusion does not hold, i.e., (3.7) holds, one can derive
that

∞∑
k=1

(gT
k dk)2

‖dk‖2
= +∞,

which contradicts the Zoutendijk condition. In [5], they gave a general and positive
result for conjugate methods with the strong Wolfe line search (see Corollary 2.4
of [5]). Corollary 2.4 of [5] is also based on the Zoutendijk condition. Moreover,
if a conjugate gradient method fails to converge ((3.7) holds), one can easily see
from Corollary 2.4 in [5] that the length of the direction will converge to infinity.
Unlike the proofs mentioned above for the global convergence results given for CG
methods, we did not use the Zoutendijk condition here; furthermore, we proved
that the search direction is bounded if (3.7) holds.
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Remark 3.1. The global convergence properties of the PRP method with (1.13)
(PRP+) and SWP has been widely discussed; see [3, 5, 9, 11, 12, 15, 17, 25, 30]
for details. It is known from [9] and [12] that the PRP+ with the SWP is globally
convergent if gT

k dk ≤ 0 for all k. In this remark, we will prove a similar result for
the PRP with the MSWP, i.e., we prove the global convergence of the following
algorithm if for all k, gT

k dk ≤ 0.

Algortithm 2 (PRP formula (1.6) with MSWP).
Step 0: Let x1 ∈ �n, α ∈ (0, 1) and λ ∈ (α, 1). Set d1 = −g1, k = 1. If g1 = 0,

then stop.
Step 1: Find a tk > 0 satisfying MSWP.
Step 2: Let xk+1 = xk + tkdk and gk+1 = g(xk+1). If gk+1 = 0, then stop.
Step 3: Compute βk by PRP formula (1.6) and generate dk+1 by (1.3).
Step 4: Set k = k + 1, go to Step 2.

If for all k, gT
k dk ≤ 0, then Algorithm 2 is well defined and has the following

global convergence result. (Note that for convenience, we let Bk = µI for all k with
a fixed positive scalar µ.)

Theorem 3.5. Suppose that Assumptions A and B hold. Let {xk} be generated by
Algorithm 2. Suppose that for all k ∈ N we have

(3.19) gT
k dk ≤ 0.

Then it holds that
lim inf
k→∞

‖gk‖ = 0.

Proof. Using Assumption B and the MSWP, we obtain

−(1 − λ)gT
k dk − µtk‖dk‖2 ≤ (gk+1 − gk)T dk ≤ Ltk‖dk‖2.

So

(3.20) tk ≥ −(1 − λ)gT
k dk

(L + µ)‖dk‖2
,

which when combined with (3.19) yields
∞∑

k=1

(gT
k dk)2

‖dk‖2
≤ L + µ

1 − λ

∞∑
k=1

(−tkgT
k dk).

Using (3.6), we have the following Zoutendijk condition:

(3.21)
∞∑

k=1

(gT
k dk)2

‖dk‖2
< +∞.

On the other hand, we have that for all k ≥ 2,

dk + gk = βPRP
k dk−1.

Squaring both sides of the above equation, we may get

‖dk‖2 = −‖gk‖2 − 2gT
k dk + (βPRP

k )2‖dk−1‖2,

which when combined with (3.19) yields

‖dk‖2 ≥ (βPRP
k )2‖dk−1‖2 − ‖gk‖2.

From (1.3) we have
gT

k dk − βPRP
k gT

k dk−1 = −‖gk‖2.
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According to the MSWP, we have

|gT
k dk| + λ|βPRP

k ||gT
k−1dk−1| + µtk−1|βPRP

k | ‖dk−1‖2 ≥ ‖gk‖2.

Squaring both sides of the above inequality and using the inequality

(a + b + c)2 ≤ 3(a2 + b2 + c2) (∀a, b, c > 0),

we have

(gT
k dk)2 + λ2(βPRP

k )2(gT
k−1dk−1)2 ≥ 1

3
‖gk‖4 − µ2(βPRP

k )2t2k−1‖dk−1‖4.

Using β ∈ (0, 1), we have

(gT
k dk)2 + (βPRP

k )2(gT
k−1dk−1)2 ≥ 1

3
‖gk‖4 − µ2(βPRP

k )2t2k−1‖dk−1‖4.

Therefore, we can deduce that

(gT
k dk)2

‖dk‖2
+

(gT
k−1dk−1)2

‖dk−1‖2
=

1
‖dk‖2

((gT
k dk)2 +

‖dk‖2

‖dk−1‖2
(gT

k−1dk−1)2)

≥ 1
‖dk‖2

((gT
k dk)2 + (βPRP

k )2(gT
k−1dk−1)2 −

(gT
k−1dk−1)2

‖dk−1‖2
‖gk‖2)

≥ 1
‖dk‖2

(
1
3
‖gk‖4 −

(gT
k−1dk−1)2

‖dk−1‖2
‖gk‖2 − µ2(βPRP

k )2t2k−1‖dk−1‖4).

Hence

(gT
k dk)2

‖dk‖2
+

(gT
k−1dk−1)2

‖dk−1‖2
+ µ2(βPRP

k )2
t2k−1‖dk−1‖4

‖dk‖2

≥ 1
‖dk‖2

(
1
3
‖gk‖4 −

(gT
k−1dk−1)2

‖dk−1‖2
‖gk‖2).

(3.22)

Noting that (by the Cauchy-Schwartz inequality and the Assumption B)

|βPRP
k | = |g

T
k (gk − gk−1)
gT

k−1gk−1
| ≤ Ltk−1‖gk‖2‖dk−1‖

‖gk−1‖2

≤ M2
3 L

ε21
tk−1‖dk−1‖ = M̃tk−1‖dk−1‖,

(3.23)

where M̃ = M2
3 L

ε21
, it follows that

(gT
k dk)2

‖dk‖2
+

(gT
k−1dk−1)2

‖dk−1‖2
+ µ2M̃2 t4k−1‖dk−1‖6

‖dk‖2

≥ 1
‖dk‖2

(
1
3
‖gk‖4 −

(gT
k−1dk−1)2

‖dk−1‖2
‖gk‖2).

(3.24)

Next we will complete the proof by contradiction. Suppose that the conclusion does
not hold, i.e., there exists a constant ε1 > 0 such that for all k,

(3.25) ‖gk‖ ≥ ε1.

In particular, we have

(3.26) ‖gk‖2 ≤ 1
ε12

‖gk‖4.
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From the Zoutendijk condition (3.21) it follows that

(3.27) lim
k→∞

(gT
k−1dk−1)2

‖dk−1‖2
= 0.

This implies that for all large k,

(3.28)
1
3
‖gk‖4 −

(gT
k−1dk−1)2

‖dk−1‖2
‖gk‖2 ≥ 1

6
‖gk‖4.

On the other hand, from Lemma 3.2 there exists M̄2 > 0 such that ‖dk‖ ≤ M̄2 for
all k. This implies that

‖dk‖ ≥ ‖gk‖ − |βPRP
k | ‖dk−1‖ ≥ ε1 − |βPRP

k |M̄2.

It follows from (3.3) and (3.23) that there exists k0 ∈ N such that for k ≥ k0,

‖dk‖ ≥ ε1/2.

Consequently, from ‖dk‖ ≤ M̄2 and (3.5) we obtain

(3.29)
∞∑

k=k0

t4k−1‖dk−1‖6

‖dk‖2
≤ 4M̄2

2

ε21

∞∑
k=k0

t4k−1‖dk−1‖4 < ∞.

Using (3.24), (3.28), (3.29) and the Zoutendijk condition (3.21) we have

(3.30)
∞∑

k=1

‖gk‖4

‖dk‖2
< +∞.

However, noting that (by (3.25) and ‖dk‖ ≤ M̄2)

‖dk‖2

‖gk‖4
≤ M̄2

2

ε14
,

we have
∞∑

k=1

‖gk‖4

‖dk‖2
≥

∞∑
k=1

ε1
4

M̄2
2 = +∞.

This makes a contradiction and completes the proof. �

Remark 3.2. In this remark, we give an algorithm (Algorithm 3) using the LS
formula and the line search condition MSWP and conjecture that Algorithm 3 is
convergent globally if the descent condition (3.19) holds for all k.

Algortithm 3 (LS formula (1.8) with MSWP).
Step 0. Given x1 ∈ �n, set d1 = −g1, k = 1. If g1 = 0, then stop.
Step 1. Find a tk > 0 satisfying MSWP.
Step 2. Let xk+1 = xk + tkdk and gk+1 = g(xk+1). If gk+1 = 0, then stop.
Step 3. Compute βk by LS formula (1.8) and generate dk+1 by (1.3).
Step 4. Set k = k + 1, go to Step 2.
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Remark 3.3. Similarly to the PRP method, the HS method need not converge under
the exact line search used. Thus a natural question is: Does the HS formula (1.4)
with the MSWP converge globally? This might be a topic for further research.

4. Numerical experiments

In this section, we report the numerical results for Algorithm 1 and Algorithm 2.
The problems that we tested are from [23]. For each test problem, the termination
condition is ‖gk‖ ≤ 10−6 or the iteration exceeds 5000. In order to rank the
iterative numerical methods, one can compute the total of the function and gradient
evaluations by the formula

(4.1) Ntotal = Nf + θ · Ng

where Nf and Ng denote the number of function evaluations and gradient evalua-
tions, respectively, and θ is some integer. From the results on automatic differen-
tiation (cf. [7, 18]), the value of θ can be chosen from 2 to 5 (hence one gradient
evaluation is equivalent to at least 2 of the function evaluations if automatic differ-
entiation is used). Notice the following two facts: (1) The variant of PRP methods
and DY-HS methods are regarded as the most efficient conjugate methods of the ex-
isting methods; (2) We are interested in conjugate gradient methods such that they
have not only global convergence property but also good numerical performance;
(3) The conjugate gradient methods are especially popular and useful for large-scale
problems. Hence we choose our two new methods to compare with several variants
of PRP methods and the DY-HS method for some large-scale problems. Tables
4.1.1, 4.1.2, 4.3.1 and 4.3.2 show the computation results, where the columns have
the following meanings:

Problem: the name of the test problem in MATLAB;
Dim: the dimension of the problem;
NI: the number of iterations:
Nf : the number of function evaluations:
Ng: the number of gradient evaluations.
Our numerical report contains three parts. In Subsection 4.1, we tested the

MPRP method with different parameters c and µ. In Subsection 4.2, we tested
the PRPMSWP method with different parameters µ. Finally, using the parameter
suggested in Subsection 4.1 and 4.2, we compared our two new methods with other
variants of PRP methods and the DY-HS method.

4.1. Numerical experiments for the MPRP method with different para-
meters. From Table 4.1.1, it is obvious that when the parameters c or µ become
smaller, the numbers of the iteration, function evaluation and gradient evaluation
are also decreased. This phenomenon is not very hard to understand since the
condition of ATLS will be easier to satisfy when c or µ become smaller. From the
test, it is suggested here that c and µ should be smaller than 0.1.
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Table 4.1.1. Tests results for MPRP methods with different parameters

µ = 0.01 µ = 0.1 µ = 1

Problem Dim c ρ NI/Nf/Ng NI/Nf/Ng NI/Nf/Ng

ROSEX 1000 1e-8 1e-4 34/50/84 34/50/84 114/196/310
1e-2 1e-4 34/50/84 34/50/84 114/196/310
0.1 1e-4 34/50/84 34/50/84 109/189/298
0.5 1e-4 48/86/134 48/86/134 117/208/325
0.9 1e-4 63/249/312 63/249/312 99/316/415

2000 1e-8 1e-4 34/50/84 34/50/84 114/196/310
1e-2 1e-4 34/50/84 86/670/98 114/196/310
0.1 1e-4 34/50/84 91/690/104 109/189/298
0.5 1e-4 48/86/134 77/580/96 117/208/325
0.9 1e-4 63/249/312 63/249/312 99/316/415

5000 1e-8 1e-4 34/50/84 34/50/84 114/196/310
1e-2 1e-4 34/50/84 34/50/84 114/196/310
0.1 1e-4 34/50/84 34/50/84 109/189/298
0.5 1e-4 48/86/134 48/86/134 117/208/325
0.9 1e-4 63/249/312 63/249/312 99/316/415

4.2. Numerical experiments for the MSWP method with different para-
meters. In this subsection, we will test the following four methods:

PRPMSWP1: Algorithm 2 with α = 0.01, λ = 0.1 and µ = 0.01.
PRPMSWP2: Algorithm 2 with α = 0.01, λ = 0.1 and µ = 0.1.
PRPMSWP3: Algorithm 2 with α = 0.01, λ = 0.1 and µ = 1.
From Table 4.2.1, it is obvious that when the parameter µ becomes smaller,

the numbers of the iteration, function evaluation and gradient evaluation are also
decreased. Moreover, the test suggests that the parameter µ in MSWP should be
smaller than 0.1.

Table 4.2.1. Tests results for MSWP/SWP methods

µ = 0.01 µ = 0.1 µ = 1

Problem Dim NI/Nf/Ng NI/Nf/Ng NI/Nf/Ng

ROSEX 1000 24/111/85 24/309/201 28/320/206
2000 24/111/85 24/309/201 28/320/206
5000 24/111/85 24/309/201 28/320/206

4.3. Numerical experiments for the three variants of the PRP method.
In this subsection, we will test the following six CG methods:

MPRP: Algorithm 1 with ε = 1e − 8, η = 1e − 10, ρ = 1e − 4, α = 0.1, c = 0.01
and µ = 0.1.

PRPSWP: the PRP formula with the SWP, where α = 0.01 and λ = 0.1:
PRP+SWP: the PRP+ formula with the SWP, where α = 0.01 and λ = 0.1.
PRPGL: the PRP formula with the GL line search conditions (1.14), (1.15) and

(1.16), where ρ = 1e − 4; δ = 0.1; c2 = 0.05; c1 = 150 and γ = 0.5.
DY-HS: the DY-HS formula with the SWP, where α = 0.01 and λ = 0.1.
PRPMSWP: the Algorithm 2 with the MSWP, where α = 0.01, λ = 0.1 and

µ = 0.01.
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Table 4.3.1. Test reults for the PRPSWP/PRP+SWP/PRPMSWP/
DY-HS/PRPGL/MPRP methods

PRPSWP PRP+SWP PRPMSWP DY-HS PRPGL MPRP
Problem Dim NI/Nf /Ng NI/Nf /Ng NI/Nf /Ng NI/Nf /Ng NI/Nf /Ng NI/Nf /Ng

ROSEX 1000 24/111/85 25/116/91 24/111/85 24/127/101 103/568/568 34/50/84
2000 24/111/85 25/116/91 24/111/85 24/127/101 103/568/568 34/50/84
5000 24/111/85 25/116/91 24/111/85 24/127/101 103/568/568 34/50/84

SINGX 1000 187/636/546 108/353/305 103/376/226 29/153/124 > 5000 22/23/45
2000 178/565/463 234/736/536 152/504/433 29/153/124 > 5000 22/23/45
5000 178/565/463 234/736/536 152/504/433 29/153/124 > 5000 22/23/45

TRIG 1000 56/114/109 63/138/138 57/114/109 58/133/125 366/367/367 68/89/157
2000 58/125/119 63/138/138 58/125/119 57/123/119 366/367/367 68/89/157
5000 58/125/119 63/138/138 58/125/119 57/123/119 366/367/367 68/89/157

IE 1000 7/15/8 7/15/8 7/15/8 7/15/8 14/19/19 7/8/15
2000 7/15/8 7/15/8 7/15/8 7/15/8 14/19/19 7/8/15
5000 7/15/8 7/15/8 7/15/8 7/15/8 14/19/19 7/8/15

TRID 1000 33/138/83 34/76/72 33/66/62 32/136/82 116/753/753 27/28/55
2000 34/141/84 37/86/80 34/62/57 34/141/84 116/753/753 27/28/55
5000 36/148/88 37/86/80 35/70/65 36/142/84 116/753/753 27/28/55

Table 4.3.1 shows the numerical test of these CG methods (here “> 5000” means
the iteration exceeds 5000).

In order to rank these methods, we compute the total number of function and
gradient evaluations by the following formula Ntotal = Nf + θ · Ng (here we cal-
culate two extremal cases θ = 2 and θ = 5 respectively). Note that the PRP-
SWP method has been considered to be the conjugate gradient method with the
best performance in most of the literatures. Therefore, in this part, we compare
the PRP+SWP, PRPGL, PRPMSWP, DY-HS, MPRP methods with the PRP-
SWP method as follows: for each testing example i, compute the total numbers
of function evaluations and gradient evaluations required by the evaluated method
j (EM(j)) and the PRPSWP method by the formula (4.1) (in case the iteration
exceeds 5000, we set the corresponding value of Nf and Ng by Nf = Ng = 5000),
and denote them by Ntotal,i(EM(j)) and Ntotal,i(PRPSWP ); then calculate the
ratio by the following rule:

ri(EM) =
Ntotal,i(EM)

Ntotal,i(PRPSWP )
.

Finally, the relative efficiency of the method i is calculated by the geometric mean
of these ratios over all the test problems, that is,

r(EM) = (
∏
i∈S

ri(EM))1/|S|,

where S denotes the set of the test problems and |S| the number of elements in
S. One advantage of the above rule is that, the comparison is relative and hence
is not dominated by a few problems for which the method requires a great deal of
function evaluations and gradient functions.

According to the above rule, it is clear that r(RPRSWP ) = 1. The values of
r(PRPMSWP ), r(PRP + WWP ), r(PRPGL), r(DY -HS) and r(MPRP ) are
listed in Table 4.3.2. From Table 4.3.2, we can see that (1) the average perfor-
mances of the MRPR method are the best among the six CG methods; (2) the
PRPGL method is less efficient than the other five CG methods; (3) the average
performances of PRPMSWP are slightly better than the PRPSWP and PRP+SWP
method but less efficient than the DY-HS method. Notice that MPRP method not
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only possesses the global convergence property but also has good numerical perfor-
mance (according to our preliminary numerical test). Hence, we prefer to choose
the MPRP method.

Table 4.3.2. Relative efficiency for the PRPSWP/PRP+SWP/PRPMSWP/
DY-HS/PRPGL/MPRP methods

θ r(PRPSWP) r(PRP+SWP) r(PRPMSWP) r(DY-HS) r(PRPGL) r(MPRP)

2 1.0000 0.9842 0.8020 0.5637 7.8999 0.3514

5 1.0000 0.9850 0.8050 0.5607 8.2127 0.4006

5. Final remarks

In this paper, we have carefully studied methods related to the PRP nonlinear
conjugate gradient formula with some Armijo type line searches. The global conver-
gence of the PRP method for nonconvex optimization problems is given by Grippo
and Lucidi in [17] with strong line search conditions, and the PRPGL method did
not perform better than the PRP with the SWP in the numerical computations.
From our preliminary numerical results, one of our methods (MPRP) given in this
paper not only possesses the global convergence, but also outperforms the other
variants of PRP methods. Finally, from the numerical results given in this paper,
we can see that the performance of the two methods (MPRP and PRPMSWP) are
dependent strictly on the choices of the parameter µ. It would be more interesting
to define Bk as a matrix of a certain simple structure that carries some second order
information of the objection function. This might be a topic of further research.
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