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GLOBAL CONVERGENCE PROPERTIES OF
CONJUGATE GRADIENT METHODS FOR OPTIMIZATION*

JEAN CHARLES GILBERT? AND JORGE NOCEDAL$

Abstract. This paper explores the convergence of nonlinear conjugate gradient methods without
restarts, and with practical line searches. The analysis covers two classes of methods that are globally
convergent on smooth, nonconvex functions. Some properties of the Fletcher-Reeves method play
an important role in the first family, whereas the second family shares an important property with
the Polak-Ribire method. Numerical experiments are presented.
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scale optimization
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1. Introduction. The object of this paper is to study the convergence properties
of several conjugate gradient methods for nonlinear optimization. We consider only
the case where the methods are implemented without regular restarts, and ask under
what conditions they are globally convergent for general smooth nonlinear functions.
The analysis will allow us to highlight differences among various conjugate gradient
methods, and will suggest new implementations.

Our problem is to minimize a function of n variables,

(1.1) rain f(x),

where f is smooth and its gradient g is available. We consider iterations of the form

dk --gk for k 1,(1.2)
--gk -+-kdk-1 for k _> 2,

(1.3) Xk+l xk + akdk,

where/k is a scalar, and ck is a steplength obtained by means of a one-dimensional
search. We call this iteration a conjugate gradient method if/k is such that (1.2)-(1.3)
reduces to the linear conjugate gradient method in the case when f is a strictly convex
quadratic and ck is the exact one-dimensional minimizer. Some of the results of this
paper, however, also apply to methods of the form (1.2)-(1.3) that do not reduce to
the linear conjugate gradient method.

The best-known formulas for k are called the Fletcher-Reeves (FR), Polak-
Ribire (PR), and Hestenes-Stiefel (HS) formulas, and are given by

(1.4)

(1.5)
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22 J. C. GILBERT AND J. NOCEDAL

Here, (.,.) is the scalar product used to compute the gradient and II" denotes its
associated norm. The numerical performance of the Fletcher-Reeves [6] method is
somewhat erratic: it is sometimes as efficient as the Polak-Ribire and Hestenes-
Stiefel methods, but it is often much slower. Powell [18] gives an argument showing
that, under some circumstances, the Fletcher-Reeves method with exact line searches
will produce very small displacements, and will normally not recover unless a restart
along the gradient direction is performed. In spite of these drawbacks, Zoutendijk
[27] has shown that the method cannot fail. He proved that the Fletcher-Reeves
method with exact line searches is globally convergent on general functions. Al-Baali
[1] extended this result to inexact line searches.

The Hestenes-Stiefel and Polak-Ribire methods appear to perform very similarly
in practice, and are to be preferred over the Fletcher-Reeves method. Nevertheless,
in a remarkably laborious paper, Powell [19] was able to show that the Polak-Ribire
method with exact line searches can cycle infinitely without approaching a solution
point. The same result applies to the Hestenes-Stiefel method, since the two methods
are identical when (gk, dk-1) 0, which holds when line searches are exact. Since
the steplength of Powell’s example would probably be accepted by any practical line
search, it appears unlikely that a satisfactory global convergence result can be found
for the Polak-Ribire and Hestenes-Stiefel methods. In contrast, A1-Baali’s conver-
gence result for the less efficient Fletcher-Reeves method is very satisfactory. This
disconcerting state of affairs motivated the present study.

In this paper we will consider various choices ofk and various line search strate-
gies that result, in globally convergent methods. In 2 we describe the approach
used in our analysis, and summarize some of the previous work in the area. Sec-
tion 3 establishes global convergence for the class of methods with Ikl --< R/k and
describes a modification of the Polak-Ribire formula. In 4 we consider methods
that use only nonnegative values for k, and which are, in some sense, related to the
Polak-Ribire method. In particular, we show that a suggestion of Powell [20] to
set k max{/R, 0} results in global convergence, even for inexact line searches.
Further remarks on the convergence results are made in 5, and the results of some
numerical experiments are presented in 6.

We note that this paper does not study the rate of convergence of conjugate
gradient methods. For some results on this subject, see Crowder and Wolfe [5], Cohen
[4], Powell [17], Baptist and Stoer [2], and Stoer [22].

2. Preliminaries. Some important global convergence results for conjugate gra-
dient methods have been given by Polak and Ribire [16], Zoutendijk [27], Powell [19],
and A1-Baali [1]. In this section we will see that the underlying approach used for
these analyses is essentially the same, and we will describe it in detail, since it is also
the basis for the results presented in this paper. Before doing so, we describe our
notation, state the assumptions we make about the objective function, and consider
the line search strategy.

Notation and definitions. We denote the starting point by x l, and define
Sk := Xk+l- Xk and Yk :-- gk+l- gk. We say that dk is a descent direction if
(gk, dk) < O. We will also make use of the angle 0 between --gk and d:

(2.1) cos Ok := --(gk, dk}/llgklllldkll.

The Fletcher-Reeves, Polak-Ribire, and Hestenes-Stiefel methods will be abbrevi-
ated as FR, PR, and HS, respectively. For a derivation of these methods and a
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CONVERGENCE OF CONJUGATE GRADIENT METHODS 23

discussion of some of their properties, see Gill, Murray, and Wright [11] and Fletcher

ASSUMPTIONS 2.1. (i) The level set . :- {x: f(x)

_
f(Xl)} is bounded.

(ii) In some neighborhood Af of, the objective function f is continuously differ-
entiable, and its gradient is Lipschitz continuous, i.e., there exists a constant L > 0
such that

(2.2)

for all x, Af.
Note that these assumptions imply that there is a constant , such that

(2.3) I1()11 < , for all x e .
Let us now turn our attention to the line search. An efficient strategy, studied

by Wolfe [25], consists in accepting a positive steplength ak if it satisfies the two
conditions:

(2.4)
(2.5)

f(Xk + akdk) <_ f(Xk) + alak(gk, dk)
(g(xk + akdk), dk >_ a2 (gk, dk ),

where 0 < al < a2 < 1. We will sometimes also refer to more ideal line search
conditions. To this end let us define the following strategy: a positive steplength ak
is accepted if

(2.6) f(Xk + akdk) <_ f(Xk + &kdk),

where& is the smallest positive stationary point of the function k(a) := f(x+ad).
Assumptions 2.1 ensure that &k exists. Note that both the first local minimizer and
the global minimizer of f along the search direction satisfy (2.6).

Any of these line search strategies is sufficient to establish the following very
useful result.

THEOREM 2.1. Suppose that Assumptions 2.1 hold, and consider any iteration of
the form (1.3), where dk is a descent direction and ak satisfies one of the following
line search conditions:

(i) the Wolfe conditions (2.4)-(2.5), or

(ii) the ideal line search condition (2.6).
Then

cos2 Ok I1  11 <
k>l

This result was essentially proved by Zoutendijk [271 and Wolfe [25], [26]. We shall
call (2.7) the Zoutendijk condition.

We can now describe the basic ideas used for the convergence analysis. The first
results, by Polak and Ribire [16] and Zoutendijk [27], assume exact line searches.
The term exact line search can be ambiguous. Sometimes, it implies that a one-
dimensional minimizer is found, but often it simply means that the orthogonality
condition

(2.8) (gk,dk-) =0
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24 J. C. GILBERT AND J. NOCEDAL

is satisfied. Throughout the paper we will indicate in detail the conditions required
of the line search. Let us suppose that dk-1 is a descent direction and that the line
search satisfies Zoutendijk’s condition and condition (2.8). From (1.2) and (2.8) we
have that

IIgll(2.9) cos0k IIdll’
which shows that dk is a descent direction. Substituting this relation in Zoutendijk’s
condition (2.7) we obtain

IIgll 4
< .(2.10) E iidllk>l

If one can show that {lldll/llgll} is bounded, which means that {cos 0} is bounded
away from zero, then (2.10) immediately gives

O.(z.) g

This is done by Polak and Ribire [16] for their method, assuming that f is strongly
convex, i.e., (g(x)- g(&), x- 5c) >_ c [Ix- &ll 2, for some positive constant c and for all
x and in .

For general functions, however, it is usually impossible to bound {l[dkll/llgkll} a
priori, and only a weaker result than (2.11) can be obtained, namely,

(2.12) liminf Ilall o.

To obtain this result one proceeds by contradiction. Suppose that (2.12) does not
hold, which means that the gradients remain bounded away from zero" there exists
"y > 0 such that

(2.13) IIgll > "
for all k >_ 1. Then (2.10) implies that

1
(2.14) E iidll

< "
k>l

We conclude that the iteration can fail only if IIdll --* c sufficiently rapidly. The
method of proof used by Zoutendijk for the FR method consists in showing that, if
(2.13) holds, then Ildkll 2 can grow at most linearly, i.e.,

for some constant c. This contradicts (2.14), proving (2.12).
The analysis for inexact line searches that satisfy Zoutendijk’s condition can

proceed along the same lines if one can show that the iteration satisfies

(2.15) COS0k

_
C Ilgkll/lldkll,

for some positive constant c. Then, this relation can be used instead of (2.9) to give
(2.10), and the rest of the analysis is as in the case of exact line searches.
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CONVERGENCE OF CONJUGATE GRADIENT METHODS 25

A1-Baali [1] shows that the FR method gives (2.15) if the steplength satisfies the
strong Wolfe conditions"

(2.16) f(xk +
(2.17) I(g(xk + akdk), dk)l <_ --a2(gk, dk),

where 0 < al < if2 < 1. In fact, it is necessary to require that a2 < for the result
to hold. He thus shows that (2.12) holds for the FR method.

A1-Baali’s result is also remarble in another respect. By establishing (2.15),
which by (2.1) is equivalent to

(2.18) (gk, dk) --c []gk] 2,

he proved that the FR method using the strong Wolfe conditions (with 2 < ) always
generates descent directions. Prior to this result it was believed that it was necessary
to enforce the descent condition while doing the line search.

In this paper we use the approach described above to establish the global conver-
gence of various algorithms with inexact line searches. As we do so, we will repeatedly
encounter (2.18), which appears to be a natural way of guaranteeing descent for con-
jugate gradient methods. We call (2.18) the sucient descent condition. The first
class of methods we consider, in 3, is related to the FR method. We show that any
method of the form (1.2)-(]..3) is globally convergent if k satisfies k . The
result readily suggests a new implementation of the PR method that preserves its
efficiency and assures its convergence.

In 4, we study methods with k 0 that are, in some sense, related to the
PR method. A particular case is the following adaptation of the PR method, which
consists in restricting k to positive values: we let

(2.19) k max(, 0}.

The motivation for this strategy arises from Powell’s analysis of the PR method.
Powell [19] assumes that the line search always finds the first stationary point, and
shows that there is a twice continuously differentiable function and a starting point
such that the sequence of gradients generated by the PR method stays bounded away
from zero. Since Powell’s example requires that some consecutive search directions
become almost contrary, and since this can only be achieved (in the case of exact line

searches) when k < 0, Powell [20] suggests modifying the PR method as in (2.19).
In 4 we show that this choice of k does indeed result in global convergence, both
for exact and inexact line searches. Moreover, we show that the analysis also applies
to a family of methods with k 0 that share a common property with the PR
methodwe call this Property (.).

3. Iterations constrained by the FR method. In this section we will see
that it is possible to obtain global convergence if the parameter k is appropriately
bounded in magnitude. We consider a method of the form (1.2)-(1.3), where k is
any scalar such that

(3.1) _<

for all k >_ 2, and where the steplength satisfies the strong Wolfe conditions (2.16)-
(2.17) with a2 < . Note that Zoutendijk’s result, Theorem 2.1, holds in this case,
since the strong Wolfe conditions imply the Wolfe conditions (2.4)-(2.5). The next
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26 J. C. GILBERT AND J. NOCEDAL

two results are based upon the work of A1-Baali [1] for the FR method, and are slightly
stronger than those given by Touati-Ahmed and Storey [24].

LEMMA 3.1. Suppose that Assumptions 2.1 hold. Consider any method of the
form (1.2)-(1.3), where k satisfies (3.1), and where the steplength satisfies the Wolfe
condition (2.17) with 0 < a2 < 1/2. Then, the method generates descent directions dk
satisfying

1 < (gk, dk) < 2a2--1 k-l,(3.2)
l-a2 Ilgkll 2 l-a2

Proof. The proof is by induction. The result clearly holds for k 1 since the
middle term equals -1 and 0 _< a2 < 1. Assume that (3.2) holds for some k _> 1.
This implies that (g,d < 0, since

(3.3) 2a2 1
< 0,

1 a2

by the condition 0 < a2 < 3" From (1.2) and (1.4) we have

(gk+ 1, dk(3.4)
(gk+l, dk+)

--1 / k+l --1 k+ (gk+, dk)

Using the line search condition (2.17) we have

which, together ith (3.4), gives

-1+a2
1 Ilgkll 2

From the left-hand side of the induction hypothesis (3.2), we obtain

-1 Ik+ll (72 < (gk+,dk+l)
<--1-t I/k+ll (72

k+ 1 (72

Using the bound (3.1), we conclude that (3.2) holds for k + 1. [:]

Lemma 3.1 achieves three objectives: (i) it shows that all search directions are
descent directions, and the upper bound in (3.2) shows that the sufficient descent
condition (2.18) holds; (ii) the bounds on (g,d) impose a limit on how fast IIdll
can grow when the gradients are not small, as we will see in the next theorem; (iii)
from (2.1) and (3.2) we see that there are positive constants cl and c2 such that

< cos < I1  11
ildkll ildkll.

Therefore, for the FR method or any method with I/kl _< flR, we have that cos 0k is
proportional to Ilgkll/lldkll. We will make good use of this fact later on.

THEOREM 3.2. Suppose that Assumptions 2.1 hold. Consider any method of the

form (1.2)-(1.3), where k satisfies (3.1), and where the steplength satisfies the strong
ThenWolfe conditions (2.16)-(2.17), with 0 < (71 < (72 < 3"

lim inf 119 II o.
k----- cx:)
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CONVERGENCE OF CONJUGATE GRADIENT METHODS 27

Proof. From (2.17) and Lemma 3.1 we have

(3.6) I(gk, dk-1)l < --(T2(gk-1, dk-i) <
1-a2

Thus from (1.2) and (3.1),

IIdkll 2 -- Ilgkll 2 -}- 21kl I(gk, dk-1}l + l]dk-lII 2

IIg - ll + Zlld-lll e

1

Applying this relation repeatedly, defining (1 / a2)/(1 a2) >_ 1, and using the
condition I/kl _< /R, we have

2 2

k

j=l

Let us now assume that IIgll k > 0 for all k. This implies, by (2.3), that

4(3.7) IIdkll 2 _< k.

We now follow tim reasoning described in 2. From the left inequality in (3.5) and
Zoutendijk’s result (2.7), we obtain (2.10). If the gradients are bounded away from
zero, (2.10) implies (2.14). We conclude the proof by noting that (3.7) and (2.14) are
incompatible, cl

This theorem suggests the following globally convergent modification of the PR
method. It differs from that considered by Touati-Ahmed and Storey [24] in that it
allows for negative values of/k. For all k _> 2 let

This strategy avoids one of the main disadvantages of the FR method, as we will now
discuss.

We have observed in numerical tests that the FR method with inexact line searches
sometimes slows down away from the solution: the steps become very small and this
behavior can continue for a very large number of iterations, unless the method is
restarted. This behavior was observed earlier by Powell [18], who provides an expla-
nation, under the assumption of exact line searches. It turns out that his argument
can be extended to the case of inexact line searches, due to (3.5). The argument is
as follows. Suppose that at iteration k an unfortunate search direction is generated,
such that cos0k 0, and that xk+l xk. Thus 119k+lll 1[9kl[, and

FR(3.9) k+l " 1.

Moreover, by (3.5),

[Igk+l Ilgk << JJdk JJ.

D
o
w

n
lo

ad
ed

 0
4
/1

6
/1

6
 t

o
 1

2
8
.9

3
.1

6
2
.7

4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



28 J. C. GILBERT AND J. NOCEDAL

From this relation, (3.9), and (1.2), we see that Ildk+lll Ildkll >> Ilgk+lll, which by
(3.5) implies that cosOk+l - 0. The argument can therefore start all over again. In
6 we give a numerical example demonstrating this behavior.

The PR method would behave quite differently from the FR method in this sit-
uation. If gk+l " gk, then #1 0, SO that by (1.2) and (3.5), COSk+l >> COS0k.
Thus the PR method would recover from that situation. Let us now consider the
behavior of method (3.8) in these circumstances. We have seen that fi/l " 1, and
PR PR#Ig+l " O, in this case. The method (3.8) will thus set #k+l ilk+i’ as desired. It is

reassuring that the modification (3.8), which falls back on the FR method to ensure
global convergence, avoids the inefficiencies of this method.

The previous discussion highlights a property of the PR method that is not shared
by the FR method: when the step is small,R will be small. This property is essential
for the analysis given in the next section, where a method that possesses it will be
said to have Property (,).

It is natural to ask if the bound Iflkl -< can be replaced by

(3.10)

where c > 1 is some suitable constant. We have not been able to establish global
convergence in this case (although, by modifying Lemma 3.1, one can show that the
descent property of the search directions can still be obtained provided r2 < 1/(2c)).
In fact, one can prove the following negative result.

PROPOSITION a.a. Consider the method (1.2)-(1.3), with a line search that always
chooses the first positive stationary point ofk(c) f(xk +cdk). There exists a twice
continuously differentiable objective function of three variables, a starting point, and
a choice of flk satisfying (3.10) for some constant c > 1, such that the sequence of
gradients { [Igk II } is bounded away from zero.

Proof. The objective function is taken from the fourth example of Powell [19]. It
is twice continuously differentiable. For this function, there is a starting point from
which the PR method with a line search providing the first stationary point fails to
converge, in the sense that IIgll >- "Y > 0 for all k. Therefore, using (1.5) and (2.3),
we have for all k >_ 2,

2PR I<_

Now, suppose that we computed (but did not use) #/R. We would see that for all
k>_2,

FR ,),2

Combining the two inequalities we obtain

<

Therefore, if the constant c in (3.10) is chosen larger than 2"4//4, the PR parameter
# in Powell’s example would always satisfy (3.10). n

We end this section by making an observation about the restart criterion of Powell
[18]. Even though this criterion was designed to ensure the convergence of Beale’s
method, we will apply it to the PR method, and see that it has some of the flavor
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CONVERGENCE OF CONJUGATE GRADIENT METHODS 29

of the modifications described in this section. Powell [18] suggests restarting if the
following inequality is violated

where u is a small positive constant. (Powell actually uses gk instead of gk-1 in the
right-hand side, but one can argue for either choice.) From (1.4) and (1.5),

Applying the restart criterion to the PR method we see that a restart is not necessary
as long as

Once more, /R appears as a measure of the adequacy of R, but this measure is
quite different from (3.1). In the next section we will view Powell’s restart criterion
from a somewhat different angle.

4. Methods related to the PR method with nonnegative /k. We now
turn our attention to methods with /k >_ 0 for all k. In 2 we mentioned that a
motivation for placing this restriction comes from the example of Powell, in which the
PR method cycles without obtaining the solution. Another reason for keeping/k >_ 0
is that it allows us to easily enforce the descent property of the algorithm, as we will
now discuss.

Let us consider the iteration (1.2)-(1.3) with any /k >_ 0. We will require the
su]ficient descent condition

(4.1) (gk, dk) <_ --a311gkll 2,

for some 0 < 0"3

__
1 and for all k _> 1. In contrast to the FR method, the strong

Wolfe conditions (2.16)-(2.17) no longer ensure (4.1). Note, from (1.2), that

(gk, dk) --Ilgkll 2 + k(gk, dk-).

Therefore, to obtain descent for an inexact line search algorithm, one needs to ensure
that the last term is not too large. Suppose that we perform a line search along dk-,
enforcing the Wolfe (or strong Wolfe) conditions, to obtain xk. If (gk, dk-) <_ O, the
nonnegativity of/k implies that the sufficient descent condition (4.1) holds. Moreover,
if (4.1) is not satisfied, then (gk,dk-1) > 0, which means that a one-dimensional
minimizer has been bracketed. In this case it is easy to apply a line search algorithm,
such as that given by Lemardchal [12], Fletcher [7], or Mord and Thuente [15], to
reduce I(gk, dk-)l sufficiently and obtain (4.1). This will be discussed in detail in 6.

We now prove a global convergence result for methods that are related to the
PR method, but that allow only nonnegative values of/k. The idea of our analysis
is simple, but is somewhat concealed in the proofs. We establish the results by
contradiction, assuming that the gradients are bounded away from zero:

(4.3) for some - > O, Ilgkll >-- ")’ for all k >_ 1.

Lemma 4.1 shows that in this case the direction of search changes slowly, asymp-
totically, and Lemma 4.2 proves that a certain fraction of the steps are not too small.
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30 J. C. GILBERT AND J. NOCEDAL

In Theorem 4.3 we show that these two results contradict the assumption that the it-
erates stay in the bounded level set . We conclude that a subsequence of the iterates
converges to a stationary point.

For the results that follow, we do not specify a particular line search strategy. We
only assume that the line search satisfies the following three properties:

(i) all iterates remain in the level set defined in Assumptions 2.1:

(4.4) {xk} C ;
(ii) the Zoutendijk condition (2.7) holds; and
(iii) the sufficient descent condition (4.1) holds.

We mentioned in 2 that the Wolfe line search, as well as the ideal line search (2.6),
ensure Zoutendijk’s condition and reduce f at each step, which implies (4.4). An
exact line search satisfies the sufficient descent condition (4.1), because in this case
(gk, dk) --Ilgkll 2, and in 6 we describe an inexact line search procedure that satisfies
the Wolfe conditions and (4.1) whenk >_ 0. Therefore the results of this section apply
to both ideal and practical line searches.

For the rest of the section, we assume that convergence does not occur in a finite
number of steps, i.e., gk 7 0 for all k.

LEMMA 4.1. Suppose that Assumptions 2.1 hold. Consider the method (1.2)-
(1.3), with k >_ O, and with any line search satisfying both the Zoutendijk condition
(2.7) and the sufficient descent condition (4.1). If (4.3) holds, then d 7 0 and

where uk :-- dk/lldkll.
Proof. First, note that dk 7 0, for otherwise (4.1) would imply gk O. Therefore,

Uk is well defined. Now, let us define

--gk
and 6k(4.6) rk "-ildkll ildkll

From (1.2), we have for k _> 2:

(4.7) Uk rk q- 5kUk-1.

Using the identity IlUkll link-ill and (4.7), we have

(4.8)

(the last equality can be verified by squaring both sides). Using the condition 5k _> 0,
the triangle inequality, and (4.8), we obtain

(4.9)

I1(1

Now, by (2.1) and (4.1), we have

cos Ok >_ a3 ildk I1"
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CONVERGENCE OF CONJUGATE GRADIENT METHODS 31

This relation, Zoutendijk’s condition (2.7), and (4.6) imply

Using (4.3), we obtain

and

which together with (4.9) completes the proof.
Of course, condition (4.5) does not imply the convergence of the sequence {Uk },

but shows that thesearch directions uk change slowly, asymptotically.
Lemma 4.1 applies to any choice of/k >_ 0. To proceed, we need to require, in

addition, that k be small when the step sk-1 Xk-Xk- is small. We saw in 3 that
the PR method possesses this property and that it prevents the inefficient behavior
of the FR method from occurring. We now state this property formally.

PIOPERTY (,). Consider a method of the form (1.2)-(1.3), and suppose that

(4.0) 0 < < I111 < ,
for all k >_ 1. Under this assumption we say that the method has Property (,) if there
exist constants b > 1 and > 0 such that for all k"

1
(4.12) I1-11-< === I1-< .
It is easy to see that under Assumptions 2.1 the PR and HS methods have Property
(,). For the PR method, using the constants and in (4.10), we can choose
b := 22//2 and A :- 2/(2Lb). Then we have, from (1.5) and (4.10),

i1
(llg + IIg-ll)llg < 2

i1_11
,

I1-111111 m

Fo be HS ebod, eebbe dece codUo (.) ad be ecod ole

(dk-, Yk-) (dk-, gk) (dk-, gk-}
_> --(1 --a2)(gk-,dk-)
> (1 .)11_11
>_ (1 a2)a3/2

Using this in (1.6) we obtain

22

k>2
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32 J. C. GILBERT AND J. NOCEDAL

Now define A (1 -a2)a3"/2/(2Lb). Using (2.2) we see that if I]Sk_ll] <_ A, then

LA 1
I FI < (1 0-2)0-3,-)/2 2--"

It is clear that many other choices of k give rise to algorithms with Property (,).
For example, ifk has Property (,), so do I/kl and/- max{/k, 0}.

The next lemma shows that if the gradients are bounded away from zero, and if
the method has Property (,), then a fraction of the steps cannot be too small. We
let N* denote the set of positive integers, and for A > 0 we define

/E {i N*" > 2, I1  -111 >

i.e., the set of integers corresponding to steps that are larger than . We will need to
consider groups of A consecutive iterates, and for this purpose we define

x {ieN*"/Ck,h := k _< <_ k + A- 1, I1  - 11 >

Let IK:k,hl denote the number of elements of Kk,h and let [.J and .] denote, re-

spectively, the floor and ceiling operators.
LEMMA 4.2. Suppose that Assumptions 2.1 hold. Consider the method (1.2)-

(1.3), with any line search satisfying (4.4), the Zoutendijk condition (2.7), and the

sufficient descent condition (4.1), and assume that the method has Property (,). Sup-
pose also that (4.3) holds. Then there exists )t > 0 such that, for any A E N* and
any index ko, there is a greater index k > ko such that

AK:,I > 2"

Proof. We proceed by contradiction. Suppose that

(4.13)
for any X > 0, there exists A E N* and k0 such that
for any k >_ ko, we have A

Assumptions 2.1 and equations (4.4) and (4.3) imply that (4.10) holds. Since the
method has Property (,), there exists A > 0 and b > 1 such that (4.11) and (4.12)
hold for all k. For this , let A and ko be given by (4.13).

For any given index > k0 + 1, we have

IIdll 2 <- (llgl[ + Itl IId-llI) 2

<_ 211gll + 2lld_lll 2

< 2,2 + 2/lld,-xll =,
where the second inequality follows from the fact that, for any scalars a and b, we

have 2ab <_ a2 + b2, and hence (a + b) 2 < 2a2 + 2b2. By induction, we obtain

(4.14) Iid[I < c(1+2 +2 2 2 2 22i 2/1_ 2ko2/-1 "}-"""-[-

where c depends on [Ideo-ll, but not on the index 1. Let us consider a typical term
in (4.14)"

(4.15) 2n22n2 ..2
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CONVERGENCE OF CONJUGATE GRADIENT METHODS 33

where

(4.16) k0

_
k _< 1.

We now divide the 2(/- k + 1) factors of (4.15) into groups of 2A elements, i.e., if
N :- [(/- k + 1)/AJ, then (4.15) can be divided into N or N + 1 groups, as follows:

(4.17)

and possibly

(4.18) (2/3tu+2 2/3),

where li (i 1)A, for 1,...,N + 1, and ki li+l + 1, for 1,..., N. Note
from (4.16) that k _> ko, for 1,..., N, so that we can apply (4.13) for k k. We
thus have

(4.19) Pi := IKk,A] < A
i-- 1,.’’ N.

This means that in the range [ki, ki +- 1] there are exactly pi indices j such that
]sj_l] > A, and thus there are (A- Pi) indices with ]sj_] . Using this fact,
(4.11), and (4.12), we examine a typical factor in (4.17),

2-2+2pi b2pi-2+2p

51,

since by (4.19), 2p A 0 and 2b2 > 1. Therefore each of the factors in (4.17) is
less than or equal to 1, and so is their product. For the last group of factors, given in
(4.18), we simply use (4.11)"

<

We conclude that each term on the right-hand side of (4.14) is bounded by (2b2)A,
and as a result we have

(4.20) Ildtll 2 <_ c (1- k0 + 2),

for a certain positive constant c independent of l. In other words, we have shown that
I[dlll 2 grows at most linearly, and we now obtain a contradiction as described in 2.
Recalling that (4.1) implies condition (2.15) and using the Zoutendijk condition (2.7),
we obtain that

This contradicts (4.20), concluding the proof. D
THEOREM 4.3. Suppose that Assumptions 2.1 hold. Consider the method (1.2)-

(1.3) with the following three properties:
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34 J. C. GILBERT AND J. NOCEDAL

(i) k >_ O for all k;
(ii) the line search satisfies (4.4), the Zoutendijk condition (2.7), and the sufficient

descent condition (4.1);
(iii) Property (,) holds.

Then lim inf Ilgk II O.
Proof. We proceed by contradiction, assuming (4.3). Therefore, the conditions

of Lemmas 4.1 and 4.2 hold. Defining ui := di/lldill, as before, we have for any two
indices l, k, with _> k"

xl Xk-1 E
i-k

E 1[si-1]lUk-1 +E 118i-lll(Ui-1- Uk-1).
i--k i--k

Taking norms,

i-k i--k

By (4.4) and Assumptions 2.1 we have that the sequence {xk} is bounded, and thus
there exists a positive constant B such that llxkll _< B, for all k _> 1. Thus

i--k i-k

Let A > 0 be given by Lemma 4.2. Following the notation of this lemma, we
define A [8BlAb. By Lemma 4.1, we can find an index ko such that

1
(4.22) E IIi lti--1]12 - 4A"

i>_ko

With this A and k0, Lemma 4.2 gives an index k >_ k0 such that

A
(4.23) ,xI :k,al > 2"

Next, for any index E [k, k +A- 1], we have, by the Cauchy-Schwarz inequality
and (4.22),
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CONVERGENCE OF CONJUGATE GRADIENT METHODS 35

Using this relation and (4.23) in (4.21), with k + A- 1, we have

k+A--11

i=k
--(.

Thus A < 8B/A, which contradicts the definition of A. El
Since the PR and HS methods have Property (,), the.previous theorem applies to

them provided we restrict/3k to be nonnegative. This suggests, among other things,
the following formulae:

(4.24) /3k max(/3, 0),

PR I,

and the corresponding formulae for the HS method. Of particular interest are inexact
line searches, such as the Wolfe search. We formally state the convergence result for
(4.24)--a choice of/3k suggested by Powell [20].

COROLLARY 4.4. Suppose that Assumptions 2.1 hold. Consider the method (1.2)-
(1.3) with/3k max{/3R, 0}, and with a line search satisfying the Wolfe conditions
(2.4)-(2.5) and the sufficient descent condition (4.1). Then liminf Ilgkll O.

We conclude this section by noting the relationship between (4.24), which can be
viewed as an automatic restarting procedure, and Powell’s restarting criterion. The
latter states that a restart is not needed as long as

(4.26) [(gk, gk-)[

_
u]lgk][ 2,

where we now use gk and not gk-1 in the right-hand side, and where u is a small
positive constant. By (1.5) the condition/3R > 0 is equivalent to

Thus (4.24) can be viewed as a less restrictive restarting test than (4.26). It follows
that the global convergence result of Corollary 4.4 also applies to the PR method with
Powell’s restart (4.26), provided u < 1.

5. Discussion. In 3 we saw that global convergence is obtained for any/3k in
the interval 271 [--/3a,/3k ], and in 4 we proved global convergence for any
with Property (,) contained in the interval :2 [0, cx). We now ask whether these
results can be combined to obtain larger intervals of admissible/3k. In particular, since
the PR method has Property (,), we ask whether global convergence is obtained by
restricting/3 to the larger interval 2"1 U 22, i.e., by letting

f/3 >-/3
--/4k otherwise.

Interestingly enough, global convergence cannot be guaranteed, and this is shown
by the fourth example of Powell [19]. In this example, the sequence {/3R//3} has
exactly three accumulation points:

1
3’ 1, and 10.
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36 J. C. GILBERT AND J. NOCEDAL

Therefore, there exists an index k0 such that flk /R _> _flR, for all k _> k0. Now
the function can be modified and the starting point can be changed so that the PR
method generates, from the new initial point &l, a sequence {&k} with 2k x+o-2,
for k >_ 2. In this modified example, we have/’a _> -fl[:a, for all k _> 2, but the
sequence of gradients is bounded away from zero.

There is another example in which intervals of admissible k cannot be combined.
Any method of the form (1.2)-(1.3) with a line search giving (gk, dk-ll 0 for all k,
and with flk E /73 [--1, 1], is globally convergent. This is easy to see, since in this
case

where is an upper bound on IIg(x)ll. Therefore Ildkll 2 grows at most linearly, and
global convergence follows by the arguments given in 2. On the other hand, Corollary
4.4 shows that the PR method is convergent if restricted to/72 [0, c). However, the
PR method may not converge iffl is restricted to/73 U/72 [-1, oc). The argument
is again based on the counterexample of Powell and on the fact that fl _> -1/4 for
all k (this is proved by means of the Cauchy-Schwarz inequality; see Powell [19]).
Therefore, in this example/R E [-1, c), but convergence is not obtained.

Therefore we are not able to generalize the results of3 and 4, and instead look
more closely at the conditions used in these sections. We ask under what conditions
isZ > 0, or/ > --ilk For strictly convex quadratic functions and exact line
searches, the PR method coincides with the FR method. Since/a is always positive,
so is flk Let us now consider strongly convex functions. It turns out that in this

FRcase/ can be negative, and in fact can be less than --ilk
PROPOSITION 5.1. There exists a C strongly convex function of two variables

and a starting point xl for which the PR method with exact line searches gives <- < O.
Proof. Let us introduce the following strictly convex quadratic function ] of two

variables x (x(),x(2)):
1](x) .= +

with gradient and Hessian (the Euclidean scalar product is assumed)

Starting from the point xl (-3, 3), the PR method with exact line searches gives

(7)
Next, it finds

5
The third point is the solution point x. (0, 0).

and

10( )d2=-- and 2=-.

We now perturb the function f inside the ball B(0, 1):= {x" XI -]- X2 < 1),
defining

f (x) f (x) +
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where the function will be such that

(5.1) (x) 0 Vx B(0, 1),

and e will be a small positive number. As the line joining xl and 2 does not intersect
the closure of B(0, 1), we see that the PR method on this new function f, starting
from the same point x l, will give x2 :2 and d2 d2. We now show how to choose
the function and the number e > 0 so that f is strongly convex and/R is negative.

We take for a function of the form

(x) :=

where / is the linear function

I(x) 4x() x(2),

and y is a C function satisfying

r(x)= 0 ifxB(0,

Clearly, satisfies (15.1), and has bounded second-order derivatives. Therefore, by
choosing e sufficiently small, say 0 < e < e, the Hessian of f will be uniformly
positive definite and f will be a C strongly convex function.

Now, when the function f is determined in this manner, there is a unique mini-
mum of f from x2 in the direction d.. As

Vf(0)= V](0)+ V(0)= (_41 )
is orthogonal to d2 2, the one-dimensional minimum is still obtained at x3 (0, 0)
(but this is no longer the solution point). Therefore,

Z + lVf(0)l <Vf(0), Vf(x)> /
iV](x)l 20/9

We see that/R < -a < 0, if 0 < e < e2 := 2/51. By taking e e (0, min(el,e2)),
we obtain the desired result. D

This proposition shows that the convergence result given by Polak and Ribire
[16], which was obtained for strongly convex functions and exact line searches, is not a
consequence of Theorem 4.3, since the latter requires k _> 0. Nor is it a consequence
of Theorem 3.2, because Proposition 5.1 shows that/ can lie outside the interval

FR ].
6. Numerical experiments. We have tested several of the algorithms sug-

gested by the convergence analysis of this paper, on the collection of large test prob-
lems given in Table 1.

The starting points used are those given in the references. For the problems of
Mor, Garbow, and Hillstrom [14], we set the parameter factor equal to 1; for test
problems 8, 9 and 10, starting point 3 from the reference was used. We verified that, in
each run, all the methods converged to the same solution point; otherwise the problem
was not included in the test set. The problems are not numbered consecutively because
they belong to a larger test set. Since conjugate gradient methods are mainly useful
for large problems, our test problems have at least 100 variables.

The following are the methods tested; they differ only in the choice of k and,
possibly, in the line search.
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TABLE 1
List of test functions.

Problem Name Reference n
2
3
6
8
9
10
28
31
38
39
40
41
42
43
45
4(1)
46(2)
47
48
49
5O
51
52
53
54
55

Calculus of variations 2
Calculus of variations 3
Generalized Rosenbrock
Penalty 1
Penalty 2
Penalty 3
Extended Powell singular
Brown almost linear
Tridiagonal 1
Linear minimal surface
Boundary-value problem
Broyden tridiagonal nonlinear
Extended ENGVL1
Extended Freudenstein and Roth

Gill and Murray [9]
Gill and Murray [9]
Mor6 et al. [14]
Gill and Murray [9]
Gill and Murray [9]
Gill and Murray [9]
Mord et al. [14]
More et al. [14]
Buckley and LeNir [3]
Woint [23]
Toint [23]
Toint [23]
Woint [23]
Woint [23]

Wrong extended Wood
Matrix square root (ns-1)
Matrix square root (ns-2)
Sparse matrix square root
Extended Rosenbrock
Extended Powell
Tridiagonal 2
Trigonometric
Penalty 1 (2nd version)
INRIA ults0.4 (u0--0.95)
INRIA ulcrl.2
INRIA ulcrl.3

Toint [23]
Liu and Nocedal [13]
Liu and Nocedal [13]
Liu and Nocedal [13]
Mor et al. [14]
Mor et al. [14]
Woint [23]
Mor et al. [14]
Mor et al. [14]
Gilbert and Lemarchal [8]
Gilbert and Lemarchal [8]
Gilbert and Lemarchal [8]

100, 200
100, 200
100, 500
100, 1000
100
100, 1000
100, 1000
100, 20O
100, 1000
121,961
100
100
1000, 10000
100, 1000
100
100
100
100, 1000
1000, 10000
100, 1000
100, 1000
100, 1000
1000, 10000
403
455
1559

1. FR: The Fletcher-Reeves method.
2. PR-FR: The Polak-Ribire method constrained by the FR method, as in

(.S).
3. PR: The Polak-Ribire method.
4. PR+: The Polak-Ribire method allowing only positive values of/R, as in

For the line search we used the algorithm of Mor and Thuente [15]. This algo-
rithm finds a point satisfying the strong Wolfe conditions (2.16)-(2.17). We used the
values al 10-4 and a2 0.1, which, by Theorem 3.2, ensure that methods FR and
PR-FR are globally convergent. The line search for the PR and PR+ methods was
performed as follows. We first found a point satisfying the strong Wolfe conditions,
using the values of al and 62 mentioned above. If at this point the directional deriva-
tive of f is negative, we know that the sufficient descent condition (4.1) holds for the
PR+ method, and we terminate the line search (this was discussed at the beginning
of 4). On the other hand, if the directional derivative is positive, the algorithm of
Mor and Thuente has bracketed a one-dimensional minimizer, and if the line search
iteration is continued it will give, in the limit, a point Xk with (gk, dk-1} O. By
continuity and (4.2) it is clear that the line search will find a point satisfying the suf-
ficient descent condition (4.1) in a finite number of iterations. In the numerical tests
we set a3 10-e in (4.1). This line search can fail to produce a descent direction for
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P N

TABLE 2
Smaller problems.

it/f-g it/f-g mod

2 100 405/827 405/820
3 100 1313/2627 1313/2627
6 i00 261/547
8 100 10/36 15/49
9 100 7/20 8/22
10 100 116/236 93/191
28 100 1426/2855 1291/2584
31 100 2/3 2/3
38 100 70/142 70/142
39 121 59/122
40 100 175/351 175/351
41 100 29/60 24/50
42 1000 10/27 9/25
43 100 16/41 14/39
45 100 74/166
46(1) 100 617/1238 253/510
46(2) 100 886/1776 251/506
47 100 151/306 59/122
48 1000 79/185 71/172
49 100 1426/2855 1291/2584
50 100 72/146 72/146
51 100 202/409 42/94
52 1000 3/10 3/10

351
1313
95
12
6
91
1289

1
47
4
175
1
8
13
66
248
243
50
66
1289
52
12
2

pR+

it/g it/g

400/812 400/812
1299/2599 1299/2599
256/529 254/525
9/39 12/47
8/ 7/0

118/244 119/244
120/280 168/382

1/4 1/4
71/144 71/144

132/266 132/266
24/50 24/50
10/34 9/30
16/44 13/37
37/90 45/109
257/518 257/518
251/506 251/506
60/124 60/124
6/z /zo
117/281 168/382
72/146 72/146
45/103 45/103
4/12 4/12

mod

0
0
1
2
2
1
3
0
0
0
0
0
2
1
3
0
0
0
3
3
0
0
2

the PR method if it terminates at a point with negative directional derivative, and if

k < 0 (see the discussion in 4). We used it, nevertheless, because we know of no
line search algorithm that is guaranteed to satisfy the strong Wolfe conditions and
also provide the descent property for the PR method. Fortunately, in our tests the
line search strategy described above always succeeded for the PR method.

Our numerical experience with conjugate gradient methods indicates that it is
advantageous to perform a reasonably accurate line search. Therefore, in addition
to setting if2 to the small number 0.1, we ensured that the line search evaluated the
function at least twice. The choice of the initial trial value for the line search is also
important. For the first iteration we set it to 1/llglll, and for subsequent iterations we
used the formula recommended by Shanno and Phua [21], which is based on quadratic
interpolation.

The tests were performed on a SPARCstation 1, using FORTRAN in double
precision. All runs were stopped when

IIg(Xk)ll < 10-5(1 +

except for the INRIA problems for which the runs were stopped when the value
of the function had reached a given threshold (fstop 10-12 for ults0.4, fstop
-0.8876 10-2 for ulcrl.2 and fstop -0.10625 10-1 for ulcrl.3). The results in
Tables 2 and 3 are given in the form: (number of iterations) /(number of function
evaluations). The number given under the column "mod" for method PR-FR denotes
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P N

TABLE 3
Larger problems.

FR
it/f-g

FR-PRII it/f-g
2 200 703/1424 701/1420
3 200 2808/5617 2808/5617

oo o/
s ooo 1/ /4
10 1000 138/281 145/299
28 1000 533/1102 1369/2741
a 00 /4 /4
38 1000 264/531 263/529
39 961 143/290
4:10000 /: /
4a 000 0/:7 l/as
4 000 e/849 4/:aa
48 10000 61/143 130/283
49 1000 568/1175 1369/2741
50 1000 274/551 273/549
1 000 a/47 40/
5: 0000 4/ 4/1
53 403 ** 233/494
54 455 ** 44/91

:a/47 :a/4

596
2808
433
7

142
1366

1
217
5
5
15
92
123
1366
245
5
4
130
7
15

it/f-g it/f-g

701/1420 701/1420

1068/2151 1067/2149
6/28 10/42
16/8 16/8
212/473 97/229
/ /

/87 /87
7/28 6/26
10/33 9/29

113/231 113/231
24/73 19/62
212/473 97/229

40/92 40/92
/1 /

237/508 237/508
44/87 44/87
23/47 23/47

TABLE 4
Relative performance, in terms of function evaluations.

:;F4.R07 .55 11.o21 1.00

Imod
0
0
1
2
0
3
0
0
0
1
2
0
4
3
0
0
1
0
0
0

the number of iterations for which IRI >. For method PR+, "mod" denotes
the number of iterations for which/R < 0. If the limit of 9999 function evaluations
was exceeded the run was stopped; this is indicated by ",." The sign "**" means
that the run stopped because the line search procedure described above failed to find
a steplength. This occurred when the stopping criterion was very demanding.

It is interesting to note that /R was constrained in most of the iterations of
the method PR-FR, but was only rarely modified in the PR+ method. Many of the
problems were run again for a larger number of variables. The results are given in
Table 3.

In these runs the methods were implemented without restarting. We also per-
formed tests in which the methods were restarted along the steepest descent direction
every n iterations. (Since n is large, very few restarts were performed.) The FR
method improved substantially, but this method was still the least efficient of the
four. The other three methods performed similarly with and without restarts, and we
will not present the results here.

In Table 4 we summarize the results of Tables 2 and 3 by giving the relative
number of function evaluations required by the four methods. We have normalized
the numbers so that PR+ corresponds to 1. The symbol > means that FR requires
more function evaluations than the number given, since for some runs the method was
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stopped prematurely; also, problems 53 and 54, in which FR failed, were not taken
into account.

The FR method is clearly the least efficient, requiring a very large number of
function evaluations in some problems. The performance of methods PR-FR, PR, and
PR+ appears to be comparable, but we would not like to draw any firm conclusions
from our experiments. PR-FR appears to be preferable to FR, but we have no
explanation for its poor performance on some problems. A close examination of
the runs provided no new insights about the behavior of the methods. The global
convergence analysis of this paper has not suggested a method that is clearly superior
to PR. For that it may be necessary to study the convergence rate or other measures
of efficiency of the methods. We leave this for a future study.

We conclude by giving an example that illustrates the inefficient behavior of the
FR method, as predicted in 3. For problem 45 with n 100, we observed that for
hundreds of iterations cos0k stays fairly constant, and is of order 10-2, while the
steps Ilxk Xk-lll are of order 10-2 to 10-3. This causes the algorithm to require a
very large number of iterations to approach the solution. A restart along the steepest
descent direction terminates this cycle of bad search directions and tiny steps. A
similar behavior was observed in several other problems.

Acknowledgment. We are grateful to Michael Powell for showing us how to
shorten the proof of Lemma 4.1, and for several other helpful comments.
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